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Abstract. The first boundary value problem for a nonlinear Schrödinger equation is investigated.
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scheme of DuFort–Frankel type in C and W 1

2 norms are proved. Grid analogues of energy conservation
laws and grid multiplicative inequalities are used.
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1. Introduction. We consider the first boundary value problem for a nonlinear
Schrödinger-type equation. Such equations appear, for example, in many models of
nonlinear optics [1] and in models of energy transfer in molecular systems [2]. They
are also used in quantum mechanics, seismology, plasma physics, and other fields of
science.

There are a lot of studies on the numerical solution of initial and initial-boundary
problems for the nonlinear Schrödinger equations [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
We are interested in finite difference methods that have some grid analogues of con-
servation laws. The importance of these discrete laws is discussed in [3]. For example,
the difference schemes of Crank–Nicolson type have such property. In [4, 5, 6] un-
conditional convergence and stability are proved for the schemes of this type. But,
unfortunately, these schemes are implicit.

On the contrary, many explicit schemes are unstable—for example, Euler schemes
[7]. Some Euler-type schemes are conditionally stable. A three-layered explicit dif-
ference scheme of DuFort–Frankel type is also conditionally stable. This scheme was
introduced for the Schrödinger equation in [7, 8, 9]. The consistency of this scheme
requires the condition τ/h → 0, where τ and h are time and space grid steps.

In [8, 9] the linear Schrödinger equations were investigated and stability of the
schemes was proved. In [7] nonlinear equations were also discussed, and the grid
analogue of the conservative law in the space L2 was obtained. But there was no
proof of the convergence and stability of the difference scheme. Thus, our paper
sufficiently extends the results of [7, 8, 9].

As we know, the finite difference scheme of DuFort–Frankel type has not yet been
investigated widely and fully for the nonlinear Schrödinger equation. It seems also
that the schemes of this type could be implemented for parallel computations. This
fact also increases the importance and actuality of our paper.
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We would like to draw attention to the novelty of the method, which was used
during the investigation of the problem. This method was based on the new type of a
priori estimates and was developed in [4, 5, 6]. In these papers the method was used
for two-layered implicit difference schemes for the nonlinear Schrödinger equation.
The method has allowed one to avoid restriction on time and space grid steps.

In the present case the restriction on these grid steps appears due to approxima-
tion and stability properties of the scheme. Unless it is not possible to avoid these
restrictions, the method works well and helps to prove convergence and stability of
the schemes even in the case of three-layered schemes.

In the case of cubic nonlinearity we have obtained the analogues of conservation
laws in the spaces L2 and W 1

2 . In the more general case we have a new type of a
priori estimate. Under the condition τ/h2 ≤ ν < 1/2|a|, where a is the constant from
the equation and ν is some arbitrary constant, the convergence and stability of the
difference scheme in the norms of spaces C and W 1

2 were proved.
In section 2 we formulate the problem and prove the grid analogues of the em-

bedding theorem and the multiplicative inequality. In section 3 we prove the grid
analogues of the conservation laws for a solution of the cubic Schrödinger equation.
In section 4 we prove the convergence and stability of the difference scheme for the
cubic Schrödinger equation in the spaces L2 and C. Finally, in section 5 we prove the
convergence and stability on initial data of the difference scheme in the spaces C and
W 1

2 for more general nonlinearity.

2. Statement of the problem: Auxiliary statements. We consider the first
initial-boundary value problem for the cubic Schrödinger equation

(2.1)
∂u

∂t
= ia

∂2u

∂x2
− iλ|u|2u, (x, t) ∈ Q,

with initial and boundary conditions

(2.2) u(0, t) = u(1, t) = 0, t ∈ [0;T ], u(x, 0) = u0(x), x ∈ [0; 1].

Here i =
√
−1, Q = (0; 1)× (0;T ), a, λ are real constants, a 6= 0; u(x, t) is a complex-

valued function.
We define the inner product between two functions v(x) and w(x) as

(v, w) =

∫ 1

0

v(x)w∗(x)dx.

Let Lp and W 1
2 denote the Sobolev spaces of complex-valued functions with the norms

‖v‖Lp
=

(

∫ 1

0

|v(x)|pdx
)1/p

, ‖v‖W 1
2

=
(

‖v‖2
L2

+
∥

∥

∥

∂v

∂x

∥

∥

∥

2

L2

)1/2

.

Here w∗(x) is the complex conjugate of w(x). Also we define Re v and Im v as real
and imaginary parts of the complex expression v.

Let C(Q̄) be the space of continuous functions with the norm

‖v‖C(Q̄) = max
(x,t)∈Q̄

|v(x, t)|.

It is well known that the solution of the problem (2.1), (2.2) satisfies the following
conservation laws for all t ∈ [0, T ]:

(2.3) ‖u(t)‖L2
= I1(t) = I1(0);
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(2.4)
∥

∥

∥

∂u

∂x
(t)

∥

∥

∥

2

L2

+ (λ/2a)‖u(t)‖4
L4

= I2(t) = I2(0).

We introduce a uniform grid with steps τ and h in the domain Q̄: Q̄h = ω̄h × ω̄τ

and Qh = ωh × ωτ . We consider that τ = T/M , tj = jτ , h = 1/N , xl = lh,
ω̄τ = {tj ; j = 0, . . . ,M}, ωτ = {tj ; j = 1, . . . ,M − 1}, ω̄h = {xl; l = 0, . . . , N},
ωh = {xl; l = 1, . . . , N − 1}.

We shall use the grid analogues of the Sobolev spaces Lph and W 1
2h. Ch denotes

the analogue of the space C(Q̄). Let us define inner products at the grid ω̄h,

(u, v) =
N−1
∑

l=1

ulv
∗
l h, (u, v] =

N
∑

l=1

ulv
∗
l h.

The norms in this grid are defined as follows:

‖u‖pLph
=

N−1
∑

l=1

|ul|ph, ‖u]|2 = (u, u], ‖u‖2 = (u, u), ‖u‖2
W 1

2h

= ‖u‖2 + ‖ux̄]|2.

We denote p = pjl = p(xl, tj), p̂ = pj+1
l , p̌ = pj−1

l , ṗ = (p̌ + p̂)/2, p+ = pjl+1,

p− = pjl−1, p̄ = p− + p+, pt = (p̂ − p̌)/2τ , px̄ = (p − p−)/h, px↖ = (p̌ − p−)/h,
px↙ = (p− p̌−)/h.

We shall prove grid analogues of one embedding theorem and a multiplicative
inequality.

Lemma 2.1. Let v0 = v̂0 = vN = v̂N = 0. Then

(2.5) max
{

‖v̂‖Ch
, ‖v‖Ch

}

≤ 0.5
(

‖v̂x↖]| + ‖v̂x↙]|
)

.

Proof. We denote by v1;l and v−1;l the grid functions v̂l and vl. Then, for all
l = 1, . . . , N − 1, we have

|v1;l| =
∣

∣

∣

−1
∑

k=−l

(v(−1)k+1;l+k+1 − v(−1)k;l+k)
∣

∣

∣
≤

−1
∑

k=−l

∣

∣v(−1)k+1;l+k+1 − v(−1)k;l+k

∣

∣ .

Similarly we may write

|v1;l| =
∣

∣

∣

N−l−1
∑

k=0

(v(−1)k+1;l+k+1 − v(−1)k;l+k)
∣

∣

∣
≤

N−l−1
∑

k=0

∣

∣v(−1)k+1;l+k+1 − v(−1)k;l+k

∣

∣ .

Summing these two inequalities, we obtain

2|v1;l| ≤
N−l−1
∑

k=−l

∣

∣v(−1)k+1;l+k+1 − v(−1)k;l+k

∣

∣ =
N
∑

k=1

∣

∣v(−1)k−l;k − v(−1)k−l−1;k−1

∣

∣ .

Similarly we have

2|v−1;l| ≤
N
∑

k=1

∣

∣v(−1)k−l+1;k − v(−1)k−l;k−1

∣

∣ .
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From the estimate max {‖v̂‖Ch
, ‖v‖Ch

} ≤ maxl (|vl| + |v̂l|) and from the last two
inequalities it follows that

2 max
{

‖v̂‖Ch
, ‖v‖Ch

}

≤
N
∑

k=1

|v̂k;x↖|h +
N
∑

k=1

|v̂k;x↙|h.

The estimate (2.5) follows from Cauchy’s inequality. The lemma is proved.
In an analogous manner we prove a grid multiplicative inequality.
Lemma 2.2. Let v0 = v̂0 = vN = v̂N = 0. Then

(2.6) max
{

‖v̂‖2
Ch

, ‖v‖2
Ch

}

≤ 0.5
(

‖v̂‖ + ‖v‖
)(

‖v̂x↖]| + ‖v̂x↙]|
)

.

Proof. For all l = 1, . . . , N − 1, we have

|v1;l|2 =
∣

∣|v(−1)0;l|2 − |v(−1)−l;l−l|2
∣

∣ =

∣

∣

∣

∣

∣

−1
∑

k=−l

(

|v(−1)k+1;l+k+1|2 − |v(−1)k;l+k|2
)

∣

∣

∣

∣

∣

≤
−1
∑

k=−l

∣

∣|v(−1)k+1;l+k+1|2 − |v(−1)k;l+k|2
∣

∣ .

Similarly we may write

|v1;l|2 ≤
N−l−1
∑

k=0

∣

∣|v(−1)k+1;l+k+1|2 − |v(−1)k;l+k|2
∣

∣ .

Summing these two inequalities we obtain

2|v1;l|2 ≤
N
∑

k=1

∣

∣|v(−1)k−l;k|2 − |v(−1)k−l−1;k−1|2
∣

∣ .

Similarly we have

2|v−1;l|2 ≤
N
∑

k=1

∣

∣|v(−1)k−l+1;k|2 − |v(−1)k−l;k−1|2
∣

∣ .

From the last two inequalities it follows that

2(|v−1;l|2 + |v1;l|2) ≤
N
∑

k=1

∣

∣|v−1;k|2 − |v1;k−1|2
∣

∣ +
N
∑

k=1

∣

∣|v1;k|2 − |v−1;k−1|2
∣

∣ .

Note that

N
∑

k=1

∣

∣|v(−1)j ;k|2 − |v(−1)j+1;k−1|2
∣

∣ =
N
∑

k=1

∣

∣

∣

|v(−1)j ;k| − |v(−1)j+1;k−1|
h

∣

∣

∣

×
(

|v(−1)j ;k|+|v(−1)j+1;k−1|
)

h ≤
(

N
∑

k=1

∣

∣

∣

v(−1)j ;k−v(−1)j+1;k−1

h

∣

∣

∣

2

h

)1/2

(‖v−1‖+‖v1‖).

The estimate (2.6) follows from here. The lemma is proved.
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In the following we shall use some well-known inequalities.
The embedding theorems for the grid functions v, v0 = vN = 0 [14] are

(2.7) ‖v‖Lph
≤ ‖v‖Ch

≤ 0.5‖vx̄]| ≤ 0.5‖v‖W 1
2h
.

A grid analogue of the Gronwall inequality [15] is

(2.8) Yj ≤
(

Ȳ0 + 2etj max
0≤l<j

{bl}
)

exp(4dtj).

Here Y ≥ 0 and b ≥ 0 are defined on the grid ω̄τ , Y0 ≤ Ȳ0; e ≥ 0, 0 < τd ≤ 1/2 and
for all j = 1, . . . ,M the following inequality holds:

Yj ≤ Ȳ0 + τd

j−1
∑

l=0

(Yl + Yl+1) + τe

j−1
∑

l=0

bl.

3. The difference scheme. Grid conservation laws. We relate the problem
(2.1), (2.2) with the following DuFort–Frankel-type difference scheme:

(3.1) pt = ia
p̄− 2ṗ

h2
− iλ|p|2ṗ, (x, t) ∈ Qh,

(3.2) p(x0, t) = p(xN , t) = 0, t ∈ ω̄τ , p(x, 0) = u0(x), x ∈ ω̄h.

The solution on the first layer t1 can be found using some two-layered scheme.
In [7] one case of a grid analogue of (2.3) for the difference scheme (3.1), (3.2)

was investigated. In this section we will prove grid analogues of (2.3) and (2.4).
Lemma 3.1 (grid analogue of (2.3)). The equality

(3.3) ‖p(tj+1)‖2 + ‖p(tj)‖2 +
2aτ

h2
Im(p̄(tj), p(tj+1)) = I1h(tj) = I1h(t0)

is valid for the solution of difference scheme (3.1), (3.2) for all j = 0, . . . ,M −1 . Let

the condition on the ratio of time and space grid steps

(3.4) 0 <
2|a|τ
h2

≤ ν < 1,

where ν is an arbitrary constant, be satisfied. Then the following estimate is valid:

(3.5) ‖p(tj+1)‖2 + ‖p(tj)‖2 ≤ µ
(

‖p(t1)‖2 + ‖p(t0)‖2
)

.

Here and later µ = 1+ν
1−ν .

Proof. We take the inner product on both sides of (3.1) with 4τ ṗ. The real part
of the obtained equality is

Re(p̂− p̌, p̂ + p̌) = −4aτ

h2
Im(p̄, ṗ) +

8aτ

h2
Im ‖ṗ‖2 + 4λτ Im

N−1
∑

i=1

|pi|2|ṗi|2h.

Thus,

‖p̂‖2 − ‖p̌‖2 +
4aτ

h2
Im(p̄, ṗ) = 0
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and

‖p̂‖2 + ‖p‖2 +
2aτ

h2
Im(p̄, p̂) = ‖p‖2 + ‖p̌‖2 − 2aτ

h2
Im(p̄, p̌).

Summing these equalities for time layers, and noticing that Im(p̄, p̌) = − Im(p̌, p̄) and

(p̌, p̄) =

N−1
∑

l=1

p̌l(p
∗
l−1 + p∗l+1)h =

N−2
∑

l=0

p̌l+1p
∗
l h +

N
∑

l=2

p̌l−1p
∗
l h = (¯̌p, p)

we obtain (3.3).
Now we can easily evaluate

| Im(p̄(tk), p(tk+1))| ≤ ‖p(tk)‖2 + ‖p(tk+1)‖2,

and, using (3.4), we can write

∣

∣

∣

2aτ

h2
Im(p̄(tk), p(tk+1))

∣

∣

∣
≤ ν(‖p(tk)‖2 + ‖p(tk+1)‖2).

The estimate (3.5) immediately follows from here. The lemma is proved.
Lemma 3.2 (grid analogue of (2.4)). The equality

(3.6) ‖px↖(tj+1)]|2 + ‖px↙(tj+1)]|2 +
λ

a
‖p(tj+1)p(tj)‖2 = I2h(tj) = I2h(t0)

is valid for the solution of the difference scheme (3.1), (3.2) for all j = 0, . . . ,M − 1.
Proof. We take the inner product on both sides of (3.1) with p̂− p̌. The imaginary

part of the obtained equality is

1

2τ
Im ‖p̂− p̌‖2 =

a

h2
Re

(

p̄− 2ṗ, p̂− p̌
)

− λ

2
Re

(

|p|2(p̂ + p̌), p̂− p̌
)

.

Thus,

2

h2
Re

(

2ṗ− p̄, p̂− p̌
)

+
λ

a

(

‖pp̂‖2 − ‖p̌p‖2
)

= 0.

Note that

2

h2
Re(2ṗ− p̄, p̂− p̌) =

2

h2

(

‖p̂‖2 − ‖p̌‖2 − Re(p̄, p̂) + Re(p̌, p̄)
)

.

Since (p̌, p̄) = (¯̌p, p), it follows that

2

h2
Re(2ṗ− p̄, p̂− p̌) =

2

h2

((

‖p̂‖2 − Re(p̄, p̂) + ‖p‖2
)

−
(

‖p‖2 − Re(¯̌p, p) + ‖p̌‖2
))

.

Using the condition (3.2), we notice that

2
(

‖p̂‖2 − Re(p̄, p̂) + ‖p‖2
)

=
N
∑

l=1

(

|pl−1|2 − 2 Re(pl−1p̂
∗
l ) + |p̂l|2

)

h

+
N−1
∑

l=0

(

|pl+1|2 − 2 Re(pl+1p̂
∗
l ) + |p̂l|2

)

h =
N
∑

l=1

|pl−1 − p̂l|2h +
N−1
∑

l=0

|pl+1 − p̂l|2h.
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Therefore,

2

h2

(

‖p̂‖2 − Re(p̄, p̂) + ‖p‖2
)

= ‖p̂x↖]|2 + ‖p̂x↙]|2.

Now we write

‖p̂x↖]|2 + ‖p̂x↙]|2 +
λ

a
‖pp̂‖2 = ‖px↖]|2 + ‖px↙]|2 +

λ

a
‖p̌p‖2,

and by summing these equalities for time layers we obtain (3.6). The lemma is proved.

4. Convergence and stability of the difference scheme. Suppose that the
solution of the problem (2.1), (2.2) is smooth enough to satisfy the approximation of
the difference scheme. Let Φ(tj) be a truncation error. It is easy to find that this
error is of order O(τ2 + h2 + (τ/h)2). Thus, the consistency of the scheme requires
the condition τ/h → 0 to be fulfilled.

Suppose that the solution of the problem (2.1), (2.2) is also smooth enough to
satisfy the following conditions:

(4.1) max
tj∈ωτ

{‖Φ(tj)‖L2h
} → 0, τ, h → 0,

and

(4.2) M1 = max
t∈[0,T ]

‖u(t)‖W 1
2
< ∞, M2 = max

t∈[0,T ]

∥

∥

∥

∂u

∂t
(t)

∥

∥

∥

L2

< ∞.

From here and from the embedding theorem
◦

W 1
2 → C it follows that

(4.3) max
t∈[0,T ]

‖u(t)‖L2
≤ ‖u‖C(Q̄) ≤ 0.5M1.

Let ε = u− p be an error of the solution. Then we have the following difference
scheme for this error:

(4.4) εt =
ia

h2
(ε̄− 2ε̇) + Ψ + Φ, (x, t) ∈ Qh,

(4.5) ε(x, 0) = 0, x ∈ ω̄h, ε(x0, t) = ε(xN , t) = 0, t ∈ ω̄τ .

Here

Ψ = −iλ
(

|u|2u̇− |p|2ṗ
)

.

Suppose that the function ε on the first layer satisfies the condition

(4.6) ‖ε(t1)‖2
W 1

2h

→ 0, τ, h → 0.

We shall prove one more auxiliary lemma.
Lemma 4.1. Suppose that the conditions (3.4) and (4.6) are satisfied. Then there

exist constants τ0 > 0 and h0 > 0 such that for all positive τ ≤ τ0 and h ≤ h0 the

following estimates for the solution of the problem (3.1), (3.2) are valid:

(4.7) max
1≤j≤M

(‖px↖(tj)]| + ‖px↙(tj)]|) ≤ M3,
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(4.8) ‖p‖C(Q̄h) = max
(xl,tj)∈Q̄h

|p(xl, tj)| ≤ 0.5M3.

Here M3 = M3(a, λ,M1, ν).
Proof. At first we consider the case λ/a ≥ 0. It is not difficult to derive the

equality

(4.9) ‖p̂x↖]|2 + ‖p̂x↙]|2 = ‖p̂x̄]|2 + ‖px̄]|2 +
2τ2

h2
Re

( p̂− p

τ
,
p̂− − p−

τ

)

.

Using the conditions (4.6), (4.9), (4.2), (2.7), we evaluate I2h(t0), when τ and h are
positive and small enough:

‖px↖(t1)]|2 + ‖px↙(t1)]|2 +
λ

a
‖p(t1)p(t0)‖2 ≤ 2M2

1 +
ντ

|a|M
2
2 +

λ

16a
M4

1 ≤ 0.5M2
3 ;

here τ ≤ |a|M2
1 /νM

2
2 , M2

3 = 2M2
1 (3+λM2

1 /16a). The inequality (4.7) follows directly
from here. At last, we use (2.5) and obtain (4.8).

Let λ/a < 0. In this case from the equality (3.6) for all j = 0, . . . ,M − 1 we can
obtain the following estimate:
(4.10)

‖px↖(tj+1)]|2 + ‖px↙(tj+1)]|2 ≤ ‖px↖(t1)]|2 + ‖px↙(t1)]|2 +
∣

∣

∣

λ

a

∣

∣

∣
‖p(tj+1)p(tj)‖2.

For the last term in the right-hand side of this inequality we can write the following
estimates:

∣

∣

∣

λ

a

∣

∣

∣
‖p(tj+1)p(tj)‖2 ≤

∣

∣

∣

λ

a

∣

∣

∣
‖p(tj+1)‖Ch

‖p(tj)‖Ch
‖p(tj+1)‖ ‖p(tj)‖

≤
∣

∣

∣

λ

2a

∣

∣

∣
max

{

‖p(tj+1)‖2
Ch

, ‖p(tj)‖2
Ch

} (

‖p(tj+1)‖2 + ‖p(tj)‖2
)

≤
∣

∣

∣

λ

2a

∣

∣

∣

(

‖px↖(tj+1)]|2 + ‖px↙(tj+1)]|2
)1/2 (‖p(tj+1)‖2 + ‖p(tj)‖2

)3/2

≤ 1

2

(

‖px↖(tj+1)]|2 + ‖px↙(tj+1)]|2
)

+
λ2

8a2

(

‖p(tj+1)‖2 + ‖p(tj)‖2
)3

≤ 1

2

(

‖px↖(tj+1)]|2 + ‖px↙(tj+1)]|2
)

+
µ3M6

1λ
2

26a2
.

Here we consequently use (2.6), (3.5), (4.3) and suppose that τ and h are positive and
small enough. From this estimate and from the inequality (4.10), we find, similar to
the case λ/a ≥ 0,

‖px↖(tj+1)]|2 + ‖px↙(tj+1)]|2 ≤ 4M2
1 +

2ντ

|a| M
2
2 +

µ3λ2

25a2
M6

1 ≤ 1

2
M3;

here we can take τ ≤ |a|M2
1 /νM

2
2 , M2

3 = M2
1 (12 + λ2µ3M4

1 /16a2).
In an analogous way, we obtain from here the estimates (4.7) and (4.8). The

lemma is proved.
Now we can prove the convergence of the difference scheme in C norm.
Theorem 4.1. Let the conditions (3.4), (4.1), (4.2), (4.6) be satisfied. Then

the solution of the problem (3.1), (3.2) converges to the solution of the problem (2.1),
(2.2) in the space C(Q̄h). There exist constants τ0 > 0 and h0 > 0 such that for all

positive τ ≤ τ0 and h ≤ h0 the following estimate is valid:

(4.11) ‖ε‖2
C(Q̄h) ≤ c1‖ε(t1)‖ + c2 max

1≤j≤M−1

{

‖Φ(tj)‖
}

.
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Here cl = cl (a, λ, ν,M1, T ), l = 1, 2.
Proof. We take the inner product on both sides of (4.4) with 4τ ε̇ and, similar to

Lemma 3.1, we obtain the equality

‖ε̂‖2 + ‖ε‖2 +
2aτ

h2
Im(ε̄, ε̂) = ‖ε‖2 + ‖ε̌‖2 +

2aτ

h2
Im(¯̌ε, ε̌) + 4τ Re(Ψ, ε̇) + 4τ Re(Φ, ε̇).

Using the estimates (4.3) and (4.8), we can evaluate the last two summations of the
right-hand side of this equality. The first one may be evaluated

4τ Re(Ψ, ε̇) = 4λτ Im
(

|u|2u̇−|p|2ṗ, ε̇
)

= 4λτ Im
((

(|u|2−|p|2)u̇, ε̇
)

+
(

|p|2ε̇, ε̇
))

≤ τ |λ|
∣

∣

(

(|u|+|p|)(|û|+|ǔ|)|ε|, (|ε̂| + |ε̌|)
)∣

∣ ≤ 0.5τ |λ|(M1+M3)M1‖ε‖(‖ε̂‖+‖ε̌‖)
≤ d1τ

(

(‖ε‖2 + ‖ε̂‖2) + (‖ε̌‖2 + ‖ε‖2)
)

;

here d1 = 0.25|λ|(M1 + M3)M1. We evaluate the next one as follows:

4τ Re(Φ, ε̇) ≤ 2τ |(Φ, (ε̂ + ε̌))| ≤ 2τ‖Φ‖2 + τ
(

‖ε̂‖2 + ‖ε̌‖2
)

.

After this evaluation of summations we sum the obtained inequalities for time layers
from t1 up to tj and obtain the estimate

‖ε(tj+1)‖2 + ‖ε(tj)‖2 +
2aτ

h2
Im(ε̄(tj), ε(tj+1))

≤ ‖ε(t1)‖2 + ‖ε(t0)‖2 +
2aτ

h2
Im(ε̄(t0), ε(t1)) + 2τ

j
∑

k=1

‖Φ(tk)‖2

+ (d1 + 1)τ

j
∑

k=1

(

(‖ε(tk+1)‖2 + ‖ε(tk)‖2) + (‖ε(tk)‖2 + ‖ε(tk−1)‖2)
)

.

Similarly as in Lemma 3.1, it follows from (3.4) that

‖ε(tj+1)‖2 + ‖ε(tj)‖2 ≤ µ
(

‖ε(t1)‖2 + ‖ε(t0)‖2
)

+ d2τ

j
∑

k=1

‖Φ(tk)‖2

+ d3τ

j
∑

k=1

(

(‖ε(tk+1)‖2 + ‖ε(tk)‖2) + (‖ε(tk)‖2 + ‖ε(tk−1)‖2)
)

;

here d2 = 2/(1 − ν), d3 = (d1 + 1)/(1 − ν).
We use the grid Gronwall inequality (2.8), where d = d3, e = d2,

bi = ‖Φ(ti+1)‖2, Ȳ0 = µ
(

‖ε(t1)‖2 + ‖ε(t0)‖2
)

, Yj = ‖ε(tj+1)‖2 + ‖ε(tj)‖2.

Thus, for all positive τ ≤ 1/2d3 the following estimate holds:

‖ε(tj+1)‖2 + ‖ε(tj)‖2 ≤ µ exp(4Td3)(‖ε(t1)‖2 + ‖ε(t0)‖2)

+ 2d2T exp(4Td3) max
1≤k≤M−1

{

‖Φ(tk)‖2
}

.

Since ε(t0) = 0, we have

‖ε(tj)‖2 ≤ d4‖ε(t1)‖2 + d5 max
1≤k≤M−1

{

‖Φ(tk)‖2
}
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for all j = 0, . . . ,M . Here d4 = µ exp(4d3T ), d5 = 2d2T exp(4d3T ).
Let τ, h → 0. Then from (4.1) and (4.6) the convergence of the right-hand side of

this inequality to 0 follows. Thus, we have obtained the convergence of the difference
scheme (3.1), (3.2) in L2 norm.

From the multiplicative inequality (2.6) it follows that

‖ε̂‖2
C(Q̄h) ≤ max

tj∈ω̄τ

{‖ε(tj)‖} max
1≤j≤M

{

‖ux↖(tj)]| + ‖ux↙(tj)]|
}

+ max
tj∈ω̄τ

{‖ε(tj)‖} max
1≤j≤M

{

‖px↖(tj)]| + ‖px↙(tj)]|
}

.

For positive and small enough τ , h and τ ≤ 5|a|M2
1 /2νM

2
2 , it follows from the equality

(4.9) and the condition (4.2) that

‖ûx↖]| + ‖ûx↙]| ≤
(

4M2
1 +

2τνM2
2

|a|
)1/2

≤ 3M1.

Therefore, from (4.7) and from the last estimate we obtain

‖ε̂‖2
C(Q̄h) ≤ (3M1 + M3) max

tj∈ω̄τ

{

‖ε(tj)‖
}

.

Here the right-hand side converges to 0.
From here (4.11) follows with the constants

c1 = (3M1 + M3)
√

d4, c2 = (3M1 + M3)
√

d5.

Note that M3 = M3(a, λ,M1, ν). Thus, cl = cl (a, λ, ν,M1, T ), l = 1, 2. The theorem
is proved.

We shall prove the stability of the difference scheme on initial data in C norm.
Let u1(x, t), u2(x, t) and p1, p2 be the solutions of the problems (2.1), (2.2) and

(3.1), (3.2) with the initial data u10(x) and u20(x), respectively.
Theorem 4.2. Let the conditions of Theorem 4.1 be satisfied. Then there exist

constants τ0 > 0 and h0 > 0 such that for all positive τ ≤ τ0 and h ≤ h0 the following

estimate holds:

(4.12) ‖p1 − p2‖2
C(Q̄h) ≤ c3‖u10 − u20‖.

Here c3 = c3

(

a, λ, ν, T,maxt∈[T ;0]{‖u1(t)‖W 1
2
, ‖u2(t)‖W 1

2
}
)

.

Proof. We denote z = p1 − p2. Then

zt =
ia

h2
(z̄ − 2ż) − iλ

(

|p1|2ṗ1 − |p2|2ṗ2

)

, (x, t) ∈ Qh,

z(x, 0) = u10(x) − u20(x), x ∈ ω̄h, z(x0, t) = z(xN , t) = 0, t ∈ ω̄τ .

We take the inner product on both sides of this equation with 4τ ż. Similarly as in
Theorem 4.1, we can obtain the inequality

‖z(tj+1)‖2 + ‖z(tj)‖2 ≤ µ
(

‖z(t1)‖2 + ‖z(t0)‖2
)

+ d1τ

j
∑

k=1

(

(‖z(tk+1)‖2 + ‖z(tk)‖2) + (‖z(tk)‖2 + ‖z(tk−1)‖2)
)

;
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here d1 = (λ/(1 − ν))‖p1‖C(Q̄h)

(

‖p1‖C(Q̄h) + ‖p2‖C(Q̄h)

)

. Since the condition (4.8)
holds, the constant d1 is bounded when τ and h are positive and small enough.

From the grid Gronwall inequality (2.8) it follows that

max
tj∈ω̄τ

‖z(tj)‖2 ≤ d2(‖z(t1)‖2 + ‖z(t0)‖2).

Here d2 = d2(a, λ, T, ‖p1‖C(Q̄h), ‖p2‖C(Q̄h), ν).
When τ > 0 is small enough, the condition ‖z(t1)‖ ≤ 2‖z(t0)‖ is satisfied. Sim-

ilarly as in Lemma 4.1, we can prove the dependence of the norms ‖p1‖C(Q̄h) and
‖p2‖C(Q̄h) on the constants maxt∈[T ;0] ‖u1(t)‖W 1

2
and maxt∈[T ;0] ‖u2(t)‖W 1

2
. From

here and from the last two estimates the stability in L2 follows:

max
tj∈ω̄τ

‖z(tj)‖ ≤ d3‖z(t0)‖;

here d3 = d3(a, λ, T, ν,maxt∈[T ;0]{‖u1(t)‖W 1
2
, ‖u2(t)‖W 1

2
}).

Similarly as in Theorem 4.1, from the multiplicative inequality (2.6) the estimate
(4.12) follows. The theorem is proved.

5. A general case of the problem. We consider the nonlinear Schrödinger
equation

(5.1)
∂u

∂t
= ia

∂2u

∂x2
+ f(u, u∗)u.

Here f(u, u∗) is a polynomial with arguments u and u∗ and f(u, u∗) = f(−u,−u∗).
We can find a continuous nondecreasing function ϕ(y) that satisfies the conditions

(5.2) |f(u, u∗)| ≤ ϕ(|u|),
∣

∣Djf(u, u∗)u
∣

∣ ≤ ϕ(|u|), |j| = 1, 2;

here j is a two-dimensional vector, |j| = j1 + j2, D
j = ∂|j|/∂uj1∂u∗j2 .

We relate (5.1) with the following difference scheme:

(5.3) pt = ia
p̄− 2ṗ

h2
+ f(p, p∗)ṗ, (x, t) ∈ Qh.

It can be proved that the following estimates for the nonlinear grid function
f(v, v∗)v̇ are satisfied:

(5.4) |(f(v, v∗)v̇, v̇)| ≤ 0.5ϕ
(

‖v‖Ch

)(

‖v̂‖2 + ‖v̌‖2
)

,

(5.5)

∣

∣

(

f(v, v∗)v̇ − f(w,w∗)ẇ, v̇ − ẇ
)∣

∣ ≤ ϕ
(

max
{

‖v̌‖Ch
, ‖v‖Ch

, ‖v̂‖Ch
, ‖w‖Ch

})

×
(

‖v̌ − w̌‖2 + ‖v − w‖2 + ‖v̂ − ŵ‖2
)

.

From (5.5) we can obtain

(5.6) |((f(v, v∗)v̇)x̄, v̇x̄]| ≤ ϕ
(

max
{

‖v̌‖Ch
, ‖v‖Ch

, ‖v̂‖Ch

}) (

‖v̌x̄]|2 + ‖vx̄]|2 + ‖v̂x̄]|2
)

.

Also we have
(5.7)

|((f(v, v∗)v̇(tk)−f(w,w∗)ẇ(tk))x̄, żx̄(tk)]|≤
(

max
l=−1,0,1

{1, ‖vx̄(tk+l)]|, ‖wx̄(tk+l)]|}
)

× cϕ
(

max
l=−1,0,1

{‖v(tk+l)‖Ch
, ‖w(tk+l)‖Ch

}
)(

max
l=−1,0,1

{‖zx̄(tk+l)]|2}
)

,
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where c is some constant and z = v − w.
One can prove the estimates (5.4)–(5.7) in a manner analogous to the similar

estimates in [6].
We shall prove the convergence and stability of this new scheme in a different

manner than the proof in sections 3 and 4. We shall obtain a new type of a priori
estimates [4, 5, 6], instead of equalities of the type (3.3) or (3.6).

Let p be the solution of the difference scheme (5.3), (3.2). Let the condition (3.4)
be satisfied. We can obtain the equality similarly to (3.3):

‖p̂‖2 + ‖p‖2 +
2aτ

h2
Im(p̄, p̂) = ‖p‖2 + ‖p̌‖2 +

2aτ

h2
Im(¯̌p, p) + 4τ Re

N−1
∑

l=1

f(pl, p
∗
l )|ṗl|2h.

Two estimates follow from here.
First, we evaluate the nonlinear part and the summations of 2aτ

h2 Im(p̄, p̂) type.
We obtain

(5.8) ‖p̂‖2 + ‖p‖2 ≤ µ(‖p‖2 + ‖p̌‖2) +
2τ

1 − ν
ϕ
(

‖p‖Ch

)(

‖p̂‖2 + ‖p̌‖2
)

.

Second, we sum the previous equalities for layers tk, k = 1, . . . , j − 1, use the
estimate (5.4) and obtain the inequality
(5.9)

‖p(tj)‖2 + ‖p(tj−1)‖2 ≤ µ(‖p(t1)‖2 + ‖p(t0)‖2)

+
2τ

1 − ν
ϕ(‖p‖C(Q̄tjh

))

j−1
∑

k=1

(

(‖p(tk+1)‖2 + ‖p(tk)‖2) + (‖p(tk)‖2 + ‖p(tk−1)‖2)
)

.

Here ‖p‖C(Q̄tjh
) = max0≤k≤j{‖p(tk)‖Ch

}.
We denote the fictitious nodes of the grid (−h, τj) and (1 + h, τj), where j =

0, . . . ,M . Let v−1 and vN+1 be the values of grid function on these nodes. We
define the solution of the difference scheme on these nodes as follows: p−1 = −p1

and pN+1 = −pN−1. This corresponds to the boundary conditions (2.2) and to the

equality ∂2u
∂x2 (0, t) = ∂2u

∂x2 (1, t) = 0. Here u is the solution of the extended differential
problem (5.1), (2.2) on the frontier of the domain. The extension is valid due to the
zero boundary conditions and since the nonlinear function is odd.

We have defined earlier p = pjl . Thus, from (5.3) it follows that

ptx̄ = ia
p̄x̄ − 2ṗx̄

h2
+ (f(p, p∗)ṗ)x̄, j = 1, . . . ,M − 1, l = 1, . . . , N.

We take the inner product on both sides of this equality with 4τ ṗx̄ and obtain

‖p̂x̄]|2 + ‖px̄]|2 +
2aτ

h2
Im(p̄x̄, p̂x̄]

= ‖px̄]|2 + ‖p̌x̄]|2 +
2aτ

h2
Im(¯̌px̄, px̄] + 4τ Re ((f(p, p∗)ṗ)x̄, ṗx̄] .

Again, two estimates follow from here.
First, from (2.7) and from the estimate of the nonlinear part we obtain

|((f(p, p∗)ṗ)x̄, ṗx̄]| ≤ (2/h)‖f(p, p∗)‖Ch
‖ṗ‖ ‖ṗx̄]| ≤ (1/h)ϕ

(

‖p‖Ch

)

‖ṗx̄]|2.
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Hence,

(5.10) ‖p̂x̄]|2 + ‖px̄]|2 ≤ µ(‖px̄]|2 + ‖p̌x̄]|2) +
2τ

(1 − ν)h
ϕ
(

‖p‖Ch

)(

‖p̂x̄]|2 + ‖p̌x̄]|2
)

.

Second, from (5.6) it follows that
(5.11)

‖px̄(tj)]|2 + ‖px̄(tj−1)]|2 ≤ µ(‖px̄(t1)]|2 + ‖px̄(t0)]|2) +
4τ

1 − ν
ϕ
(

‖p‖C(Q̄tjh
)

)

×
j−1
∑

k=1

(

(‖px̄(tk+1)]|2 + ‖px̄(tk)]|2) + (‖px̄(tk)]|2 + ‖px̄(tk−1)]|2)
)

.

We sum the inequalities (5.8) and (5.10), use the condition (3.4), and obtain the
estimate

‖p̂‖2
W 1

2h

≤ µ(‖p‖2
W 1

2h

+ ‖p̌‖2
W 1

2h

) +
hν

|a|(1 − ν)
ϕ
(

‖p‖Ch

)(

‖p̂‖2
W 1

2h

+ ‖p̌‖2
W 1

2h

)

.

When 0 < h ≤ |a|(1 − ν)/2νϕ(‖p‖Ch
), we have

(5.12) ‖p̂‖2
W 1

2h

≤ (4µ + 1) max
{

‖p‖2
W 1

2h

, ‖p̌‖2
W 1

2h

}

.

We sum the inequalities (5.9) and (5.11) and obtain
(5.13)

‖p(tj)‖2
W 1

2h

+ ‖p(tj−1)‖2
W 1

2h

≤ µ
(

‖p(t1)‖2
W 1

2h

+ ‖p(t0)‖2
W 1

2h

)

+
4τ

1 − ν
ϕ
(

‖p‖C(Q̄tjh
)

)

×
j−1
∑

k=1

(

(‖p(tk+1)‖2
W 1

2h

+ ‖p(tk)‖2
W 1

2h

) + (‖p(tk)‖2
W 1

2h

+ ‖p(tk−1)‖2
W 1

2h

)
)

.

Assume that the truncation error satisfies the condition

(5.14) max
tj∈ωτ

{

‖Φ(tj)‖W 1
2h

}

→ 0, τ, h → 0.

This is a natural condition, since from (3.4) it follows that

‖Φx̄(tj)]| ≤ c
(

N
∑

i=1

∣

∣

∣

τ2 + h2 + (τ/h)2

h

∣

∣

∣

2

h
)1/2

≤ c(ν2h3 + h + νh) = O(h).

An error of the solution of the problem (5.1), (2.2) satisfies the equalities (4.4),
(4.5), where

Ψ = (f(u, u∗)u̇− f(p, p∗)ṗ) .

From (5.5) and (5.7), similarly as in [6] and in the proof of the estimate (5.13),
we can obtain the inequality for the error of the solution:
(5.15)

‖ε(tj)‖2
W 1

2h

+ ‖ε(tj−1)‖2
W 1

2h

≤ µ(‖ε(t1)‖2
W 1

2h

+ ‖ε(t0)‖2
W 1

2h

) +
2τ

1 − ν

j−1
∑

k=1

‖Φ(tk)‖2
W 1

2h

+
τ

1 − ν

(

1 + 4cϕ
(

max
{

‖u‖C(Q̄), ‖p‖C(Q̄tjh
)

})

max
0≤k≤j

{

1, ‖ux̄(tk)]|, ‖px̄(tk)]|
}

)

×
j−1
∑

k=1

(

(‖ε(tk+1)‖2
W 1

2h

+ ‖ε(tk)‖2
W 1

2h

) + (‖ε(tk)‖2
W 1

2h

+ ‖ε(tk−1)‖2
W 1

2h

)
)

.
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We shall now prove the convergence of the difference scheme (5.3), (3.2).
Theorem 5.1. Let the conditions (3.4), (4.2), (4.3), (4.6), (5.14) be satisfied.

Then the solution of the difference scheme (5.3), (3.2) converges to the solution of

the problem (5.1), (2.2) in spaces W 1
2h and C(Q̄h). There exist constants τ0 > 0 and

h0 > 0 such that for all positive τ ≤ τ0 and h ≤ h0 the following estimates hold:

(5.16) max
tj∈ω̄τ

{

‖ε(tj)‖W 1
2h

}

≤ c4‖ε(t1)‖W 1
2h

+ c5 max
tj∈ωτ

{

‖Φ(tj)‖W 1
2h

}

;

(5.17) ‖ε‖C(Q̄h) ≤ 0.5c4‖ε(t1)‖W 1
2h

+ 0.5c5 max
tj∈ωτ

{

‖Φ(tj)‖W 1
2h

}

;

here cl = cl (a, ϕ, ν,M1, T ), l = 4, 5.
Proof. We can prove this theorem in a manner analogous to the similar theorems

for two-layer difference schemes in [4, 5, 6].
We shall prove boundedness of the function p(tj), tj ∈ ω̄τ : ‖p(tj)‖W 1

2h
≤ 2M1.

We use the method of mathematical induction.
When j = 0, it follows from (3.2) that

‖p(t0)‖W 1
2h

≤ 2‖u(t0)‖W 1
2h

≤ 2M1.

Let j = 1. Since the condition (4.6) holds, we have ‖ε(t1)‖W 1
2h

≤ M1 for τ and h

small enough. Then we obtain ‖p(t1)‖W 1
2h

≤ 2M1.

Let the estimates ‖p(tk)‖W 1
2h

≤ 2M1 be valid for all k = 0, . . . , j − 1. From (2.7)

we find ‖p‖C(Q̄tj−1h) ≤ M1. Then for all h ≤ h0, h0 = |a|(1 − ν)/(2νϕ(M1)), we can

use (5.12) and obtain

‖p(tj)‖2
W 1

2h

≤ 4(4µ + 1)M2
1 .

From the condition (2.7) it follows that

‖p‖C(Q̄tjh
) ≤

√

4µ + 1M1 and max
0≤k≤j

{‖p(tk)‖W 1
2h
} ≤ 2

√

4µ + 1M1.

Since (4.2) is valid, we can use the grid Gronwall inequality (2.8) for the estimate
(5.15), when τ and h are positive and small enough, τ ≤ 1/2d1. Here

d1 =
(

1 + 4cϕ(
√

4µ + 1M1) max{1, 2
√

4µ + 1M1}
)

/(1 − ν).

Thus,

(5.18) ‖ε(tj)‖2
W 1

2h

≤ d2‖ε(t1)‖2
W 1

2h

+ d3 max
1≤l≤M−1

{

‖Φ(tl)‖2
W 1

2h

}

,

where d2 = µ exp(4d1T ), d3 = 4T exp(4d1T )/(1 − ν).
The right-hand side of this estimate converges to 0 when τ, h → 0. Thus, there

exist constants τ0 > 0 and h0 > 0 such that for all positive τ ≤ τ0 and h ≤ h0 the
estimate ‖ε(tj)‖W 1

2h
≤ M1 holds. Therefore, ‖p(tj)‖W 1

2h
≤ 2M1. The induction step

is proved.
Thus, the statement

max
tj∈ω̄τ

{‖p(tj)‖W 1
2h
} ≤ 2M1
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is valid and the estimate (5.18) holds for all tj ∈ ω̄τ . It follows that the estimate
(5.16) is valid. Using (2.7), we also obtain (5.17), where c4 =

√
d2 and c5 =

√
d3. The

theorem is proved.
Similarly as in [4, 5, 6], we prove the stability of the difference scheme on initial

data. Let u1(x, t), u2(x, t) and p1, p2 be the solutions of the problems (5.1), (2.2) and
(5.3), (3.2) with the initial data u10(x) and u20(x), respectively.

Theorem 5.2. Let the conditions of Theorem 5.1 be satisfied. Then there exist

constants τ0 > 0 and h0 > 0 such that for all positive τ ≤ τ0 and h ≤ h0 the following

estimates hold:

(5.19) max
tj∈ω̄τ

{

‖p1(tj) − p2(tj)‖W 1
2h

}

≤ c6‖u10 − u20‖W 1
2h
,

(5.20) ‖p1 − p2‖C(Q̄h) ≤ 0.5c6‖u10 − u20‖W 1
2h
.

Here c6 = c6
(

a, ϕ, ν, T,maxt∈[0;T ]{‖u1(t)‖W 1
2
, ‖u2(t)‖W 1

2
}
)

.

Proof. Using the estimates (5.5) and (5.7), similarly as in Theorems 4.2 and 5.1,
we can obtain the inequality

‖z(tj)‖2
W 1

2h

+ ‖z(tj−1)‖2
W 1

2h

≤ µ(‖z(t1)‖2
W 1

2h

+ ‖z(t0)‖2
W 1

2h

)

+ τd1

j−1
∑

k=1

(

(‖z(tk+1)‖2
W 1

2h

+ ‖z(tk)‖2
W 1

2h

) + (‖z(tk)‖2
W 1

2h

+ ‖z(tk−1)‖2
W 1

2h

)
)

.

Here z = p1 − p2 and

d1 = 4cϕ
(

max{‖p1‖C(Q̄h), ‖p2‖C(Q̄h)}
)

max
tj∈ω̄τ

{

1, ‖p1(tj)‖W 1
2h
, ‖p2(tj)‖W 1

2h

}

.

The boundedness of norms

‖p‖C(Q̄h) ≤ M1 and max
tj∈ω̄τ

{‖p(tj)‖W 1
2h
} ≤ 2M1

was proved in Theorem 5.1. Thus, when τ and h are positive and small enough, we
can use the grid Gronwall inequality for the estimate obtained before. (5.19) and
(5.20) follow from here. The theorem is proved.
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