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Abstract—We present a method which allows computing and
analyzing longitudinal optical modes in multisection ring and
edge-emitting lasers, provided the traveling wave model gives an
appropriate description for the dynamics in these devices.

Multisection ring and edge-emitting semiconductor lasers
(SL) are useful devices for different purposes. The small
size and the high frequency of the optical field intensity
modulation makes these devices interesting for optical data
communications and their application in photonic integrated
circuits. Modeling, simulations and analysis are crucial for
optimizing of existing SLs as well as for designing new devices
with a particular dynamical behavior.

We apply the software package LDSL-tool [1] for
simulations and analysis of the SLs. This software allows
considering a large variety of laser devices or coupled laser
systems, which can be schematically represented by a set
of mutually interconnected ns sections and nj junctions: see
Fig. 1. According to the proposed laser device construction, for
each front and rear edge z′k and z′′k of any section Sk = [z′k, z

′′
k ]

one can attribute a unique junction. On the other hand, each
junction Jl joins jl ≥ 1 section edges, so that

∑nj

l=1 jl = 2ns.
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Fig. 1. Multisection lasers and coupled laser devices as sets of differently
joined sections Sj and junctions Jl. (a): Master (S1) – slave (S3) laser
system. (b): Laser (S1) with an external feedback. (c): Ring laser (S2) with a
single outcoupling waveguide. In all cases, only a single longitudinal spatial
dimension is taken into account.

Within each section we consider the spatial-temporal dy-
namics of the wave function Ψ(z, t) =

(
E
p

)
, where E =

(
E+

E−

)
and p =

(p+
p−

)
denote complex slowly varying amplitudes of

counter-propagating optical fields and polarizations, respec-
tively. The dynamics of Ψ is governed by the field equations

−i∂t Ψ(z, t)=H
(
β±
)

Ψ+Fsp, z ∈ Sk, k = 1, . . . , ns, (1)

where operator H is defined by a 4× 4 matrix

H(β±) =

(
vgH0(β±) +

ivg ḡ
2 I − ivg ḡ2 I

−iγ̄ I (iγ̄ + ω̄) I

)
,

H0(β±) =

(
i∂z−β+ −κ−
−κ+ −i∂z−β−

)
, I =

(
1 0
0 1

)
.

β±(z, t) in the expressions above represents the complex
propagation factors of the optical fields. In the passive parts of
the laser, these factors are just complex constants determining
scattering losses and possible additional rotation of the field
functions. In the active part of the device, they depend on the
dynamically changing carriers. When considering quantum-
well [2] or quantum-dot SLs [3], one can use different models
for β± and corresponding carrier dynamics. It is noteworthy,
that, in contrast to linear laser configurations, the difference
∆β = β+ − β− in ring SLs is, in general, non-vanishing [4].

To close the TW model (1), one should define all fields E+

and E− incoming into all sections of the SL. These fields are
determined by the field reflection and transmission conditions

E il = TlEol , l = 1, . . . , nj . (2)

Here, the vector E il , which denotes the required fields incoming
into all jl section edges attached to the junction Jl, is related
to the vector Eol defining all fields outgoing from those edges.

Tl in the expression above is the jl × jl-dimensional
complex valued matrix denoting the field scattering at the
junction Jl. For the junction of two adjacent sections in the
linear device (jl = 2) it is usually given by the simple identity
matrix, I. At the junctions corresponding to the laser facets
(jl = 1) it determines the field reflection and is given by a
complex constant rl, |rl| ≤ 1. For the junction corresponding
to the coupling between the ring laser and the linear waveguide
(J2 in Fig. 1(c)) it can be given as

T2 =

 T2 iT̃2 −r∗2 0
iT̃2 T2 0 0
r2 0 T2 iT̃2

0 0 iT̃2 T2

 , T 2
2 + T̃ 2

2 + |r2|2 ≤ 1,

where T2 and T̃2 are the field transmission coefficients to the
ahead and aside located sections, whereas r2 models small
localized back-reflection of the optical field [4]. In the general
case, the coefficients of the matrices Tl can be frequency-
dependent, and their estimation can require appropriate mea-
surements or an advanced modeling, which takes into account
the curvature of the adjacent sections, the field diffraction, and
the overlapping of the lateral modes in the coupling region.

The concept of optical modes plays a significant role for
understanding laser dynamics in general. They represent the
natural oscillations of the electromagnetic field and determine
the optical frequency and the life time of the photons contained
in the given laser cavity. The instantaneous optical modes
of linear multisection lasers were discussed, e.g., in Ref. [5].
These modes are pairs (Ω(β±),Θ(z, β±)) of eigenvalues and
eigenvectors of the spectral problem

ΩΘ(z, t)=H
(
β±
)

Θ(z, t), z ∈ Sk, k = 1, . . . , ns, (3)



which satisfies the boundary conditions (2) and is determined
at instantaneous distributions of β±(z, t). The imaginary and
the real parts of the complex eigenvalues Ω are mainly deter-
mining the angular frequency and the damping of the corre-
sponding mode. Thus, eigenvectors Θ(z, β±) of modes with
vanishing =mΩ are defining (stable or unstable) stationary
(continuous wave) states with optical frequencies <eΩ.

In the previous work [5], the methods for computation of
instantaneous modes in linear SLs were discussed. It appears,
that similar algorithms also apply for the general case. Namely,
the Eqs. (3) in each section Sk can be rewritten as two
linear ODEs for optical field mode components Θ+

E(z, β±)
and Θ−E(z, β±), which can be solved by means of 2 × 2-
dimensional transfer matrices,(

Θ+
E

Θ−
E

)
(z′′k , β

±) =M(Ω, β±)
(

Θ+
E

Θ−
E

)
(z′k, β

±), k = 1, . . . , ns.

Together with the reflection-transmission conditions (2), the
relations above are providing 4ns linear equations for 4ns
mode functions Θ±E at the section edges z′k and z′′k . The
determinant of this system of linear equations, χ(Ω, β±), is a
complex-valued function depending on the propagation factors
β± and complex frequency Ω. Once the function χ(Ω) 6≡ 0,
the set of its roots coincide with a set of all complex mode
frequencies.

Two examples below illustrate the usefulness of the mode
analysis in explaining the dynamical behavior of the SLs.
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Fig. 2. Calculated mode damping =m(Ωk) (top) and frequency separation
<e(Ωk−Ωk−1) of the adjacent modes (bottom) vs. mode frequency =m(Ωk)
for the Fabry-Perot laser and the lasers with different DBR.

In the first example, single section Quantum Dash based
self mode-locked (ML) SLs with integrated passive distributed
Bragg reflectors (DBR) were considered [6]. In all cases, the
total length of the SL was 1 mm, whereas κLBG = 1. The
length of the DBR part of the laser, LBG, was chosen to be
250, 50 or 25 µm. The measurements have shown that the laser
with LBG = 25µm and κ = 400 cm−1 could emit the self-
ML pulses comparable to those observed in a single-section
Fabry-Perot quantum dash laser. While the ML pulsations in
SL with LBG = 50µm and κ = 200 cm−1 had a rather large
radio-frequency linewidth, the SL with LBG = 250µm and
κ = 40 cm−1 was not suitable for ML at all. Fig. 2 presents the
mode analysis of such devices. The upper diagram shows, how
the introduction of the grating changes the relative positions
of the complex mode frequencies Ω. For κ = 40 cm−1 only a

few modes located within the ∼ 300 GHz wide stop-band have
similar thresholds, whereas the damping of all other modes is
large. A typical performance of such DBR laser is the cw
operation at the maximal gain mode, or the mode-beating type
pulsations involving a couple of modes. In the cases of κ =
200 cm−1 and κ = 400 cm−1, the damping of 20 or even more
modes within the stop-band is not much different. However,
for a smaller κ, the DBR violates significantly the equidistance
of the mode frequencies (panel (b)), which is equally important
for the realization of ML pulsations.
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Fig. 3. Mode frequencies Ω of the ring SL for κ± = r2 = 〈δβ〉 = 0 (a),
κ± = r2 = 0 but 〈∆β〉 6= 0 (b), and κ± = 〈∆β〉 = 0 but r2 = 0.2 (c).

Fig. 3 represents another example of the mode analysis.
A study of the complex function χ(Ω, β±) suggests the
appearance of the complex frequencies Ω in pairs, whereas,
for small or vanishing κ±, the adjacent pairs are separated
by the field round-trip frequency τ−1. In the degenerate case,
when backscattering r2 or κ± and spatially averaged difference
〈∆β〉 vanish, the mode frequencies within each pair coincide:
see Fig. 3(a). In this case, the simulations show multiple stable
cw states with different contributions of counter-propagating
fields operating at the same frequency. Once the degeneracy
disappears, the mode pairs split, resulting in different dynami-
cal regimes of the ring SL. For example, Fig. 3(b) and (c) show
the mode splitting corresponding to the unidirectional cw state
and over-modulated alternating oscillations, respectively.

In conclusion, the computation of the optical modes leads
to a better understanding of the nonlinear dynamics of semi-
conductor laser devices and is very useful when optimizing
existing semiconductor lasers or designing new devices with a
particular dynamical behavior.
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