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ON CONVERGENCE AND STABILITY OF DIFFERENCE SCHEMES 
FOR NONLINEAR SCHRODINGER TYPE EQUATIONS 

M. Radiifinas 

Abstract--The first and the second boundary value problems for a system of nonlinear equations of 
Schr0dinger type 

0u Ou O2u 
- -  = A - -  + i B - - r  + f(u, u*) 
at ax Ox-' 

are investigated. Here A and B are real and real positive definite, respectively, constant diagonal matrices, 
f is a polynomial complex vector function. We do not try to get rid of the addend A ,~u Using a new ilx " 
type of a priori  estimates, convergence and stability of difference schemes of Crank-Nicolson type for 
these problems in W~ norm are proved. No restrictions on the ratio of time and space grid steps are 
assumed. 

INTRODUCTION 

We consider a class of evolution equations. We prove the convergence and stability of a conservative difference 
scheme of Crank-Nicolson type for the nonlinear Schr6dinger equation system 

au au a2u 
- -  = A - - + '  + f ( u , u * ) .  at  a x t B ' ~ x 2  

Such equations appear in many models of nonlinear optics [1, 2], in models of  energy transfer in molecular 
systems [3, 4], and they are used in plasma physics, quantum mechanics, and other fields of science. 

There are a lot of studies in the field of initial value problems for the Schr6dinger equations, but the theory 
for the initial-boundary problems is less developed. In a majority of the works the first boundary problem [6-8, 
11, 12] is considered. The second boundary problem is considered in [9]. Some authors solve problems using 
finite element methods [11, 12], the others use difference schemes [6--10]. 

The main difficulties appear due to a nonlinear function f(u. u*). In this work, as in many models, the 
nonlinear part is polynomial. It appearect that the existence or blowing up of the continuous or discrete solution 
of the Schr6dinger equation depends on the degree of nonlinearity [5]. In this work we consider the period of 
time when the solution of continuous problem exists. The convergence and stability of  the difference schemes 
are proved using a new type of a pr io r i  estimates and technique developed in papers [6-9]. No restrictions on 
the ratio of  the grid steps are assumed. 

The present work differs from the works mentioned above because we do not try to get rid of the addend 
;~u Also, due to this addend, we can not use eigenvalue functions to obtain a p r i o r i  estimates. We know A ~ .  

A ;Ju in our equation using a simple that in the case of the first boundary problem we can get rid of the addend . , ~  
transformation. But in the case of the second boundary problem such transformation does not work. We prove 
in this paper that one can use the technique [6-9] even in this case. 

In Section I we find a p r i o r i  estimates for the continuous problem. In Section 2 we prove some properties 
for the nonlinear part and then find a pr io r i  estimates for a solution of a difference scheme. In Section 3 we 
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provc the convergence of iterative process for a nonlinear difference scheme and get some estimates. In Section 
4 we obtain the main result of  the paper - the convergence and stability of  the scheme in the space W 1. 

I. STATEMENT OF THE PROBLEM.  A PRIORI E S T I M A T E S  

We consider boundary value problems for the nonlinear Schr6dinger equation system: 

3U 0U 32U 
- -  = A - - + i B F r 2  3x . ( x , t )  E Q, (1.1) 

with the initial condition 
B 

u(x.  O) = uo(x),  x E f2. (1.2) 

and boundary conditions 

u(0, t) = u ( l , t )  = 0 ,  t E [0; T], (1.3) 

o r  

3u 3u 
~xx(0, t) = ~x(1 ,  t) = 0, t E [0; T]. (1.4/ 

Here S2 = (0; 1), Q = f2 x (0; T) ,  A ,  B are real constant diagonal matrices, B > 0, u(x ,  t) = (ul,  u2 . . . . .  u,,), 
f = ( f l ,  f2 . . . . .  f,,), where ui, f ,  are complex-valued.  We assume that functions f,.(u, u*) are polynomials ,  that 
is, 

,Vi 

f i (u ,  u*) = ~--~giku ~ ,  i = 1 . . . . .  n, "¢i ,¥k I/~i,I ) 1, ( I .5)  
k = l  

here u -i = u~ ~ , d ,  ,,*Jn+l . t j*J2n " " ~ , ,  ~l "" --,, , IJl = jt + " "  + jn + jn+l + " "  + d2n. 
Let ~o(y) = ) /s f l2(y  + I) ~ - l ,  where ~, = maxik{[?'i~J}, j3 = maxik{lflikl}, s = maxi{s i} .  Then 

I f , (u ,  u*)l ~ lul~o(lul), ID-if , (u ,  u*) I <~ q)(lul) ¥i, tJl = 1,2,  (1.6) 

here lul = max{luil}, D ~ 0LJl/0u~ ' " 3t,;{"3',~ ~"+' *J'" . . . . . .  Ou,, - , ~o(y) is a continuous nondecreasing function. 

We assume that uo E W~ N @~(f2) for the problem (1.1)-(1.3) and there exists a solution u(x,  t) such that 

( o) 
u E L o o  0, T ; W ~ N W ~ ( f 2 )  , Ilullc<~) =max{lluillc<~)} < ~ .  (1.7) 

Also we assume that u0 E W~(f2) for the problem (1.1), (1.2), (1.4) and there exists a solution u(x,  t) such that 

u E L~c (0, T; W~(f2)) ,  IlU[Ic(~) = max{lluillc(-~)} < oo. 
i 

(1.8) 

Here L2, W t , W 2 are Sobolev spaces; L2, W~, W~ are spaces of  n components ,  that is B = B x . . .  x B, where 

B is one of the Sobolev spaces mentioned above; the norms Ilvll~ = ~'i'=~ Ilvill~3. 
We use the well-known imbedding theorem 

(1.9) 

here IlwII = IlwllL~_ and q = c , (mes  f2). 
Let us denote b = mini {bi },/~ = max, {b, }. a = maxilla,  I}, where a,. b, are the elements  of  diagonal matrices 

A. B, respectively. 
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LEMMA 1.1. Assume that (1.6), (1.7), or (1.8) are satisfied, then the following estimates hold: for the 
solution of ( 1.1 )-(1.3) 

Ilu(t)llw~ ~< dl Ilu(0)llw~ (1.I0) 

and for the solution of ( l .1 ) ,  (1.2), (1.4) 

[lu(t)llw~ ~< d211u(0)llw~, (1.11) 

here dl = dl (a, b, cl, n, T, ¢p(llullc(~))), d2 = d2(a, n, T, go(llullc<~))). 

Proof. For all j we multiply both sides of (I . I)  by u;, then integrate over g2 and take real parts. Integrating 
by parts we obtain 

i'o.j Ouj Re f  .;dx 0.5dl[ujH2 = 0.5aj (]uj[2[lo)+ Reibj ~--~x Ujlo) - Reibj ]-~x 2+ 

f2 

=0.5ajRe(]ujl2[Io)+Re f f ju;dx.  
f2 

If (1.3)is  satisfied, we estimate I R e f a  f ju;dxl <~ fa I~l lu; ldx,  then sum these inequalities and then integrate 
over the interval [0; t], use (1.6), and after that we obtain the estimate (a) 

! 

[lu(t)[I 2 ~ llu(0)ll 2 + 2n~o (llullc(~)) f Ilu(r)ll2dv. 
0 

If (1.4) holds, then we estimate 

f ~  0uj 0uj 2 , lujlZdx ~211ujlt Ox ~11uill 2 +  ~ ~l luj l lw] 

f2 

and obtain the estimate (b) 

t t 

tla<,)H:- ilo,o ll: .<a f + (,I.11c<=,)f 
0 0 

lilt * 
Now for all j we multiply both sides of (1.1) by ._2_ then integrate over f2 and take imaginary parts. As a result 

ill ' 

we get 

Imf 
f2 

"OU/ 2dx f "Ou/ Ou7 f O'-,,jO,,Td~ f 0, 7 = a i Im 0,--~- o--7 dx + hi Re 0x2 0t " + [m f j (u ,  u*) Ot dx. 
fZ f2 f2 

(1.12) 

We take a conjugate equation 

ih, 7 i~. 7 ' ~ . O - U  I . .  

i)t = aj iJx ibl "-77~ + jj (u,u*) 
0 x - 

a n d  in the case of problem (I.I)-(1.3) we substitute i)u~/0t by the right-hand side of the conjugate equation 
only in the third term of the right-hand side of (1.12). In the case of problem (1.1), (1.2), (1.4) we make the 
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same substitution in the first and in the third terms of the same side of (1.12). In the case of problem (1.1 )-( 1.3)
we integrate by parts, then integrate over the interval [0; t J. use (1.9) and obtain the inequalities

II all 11
2

II au 11
2

II aII II II au IIa.: (t) - a; (0) ~ alb a; (t) Iluj(t)11 +alb a; (0) Iluj(O)1I
t

+ 2(1 + aCl/b) f II ~~ (r)1I11 ~; (r)lldr.
o

We use (1.9). e-inequalities [15] with e = 0.5, the inequality

II aJ: II II ~ aJ:- aUk aJ: au* II n II au II_1 (r) = !...J -' - +~_k ~ 2tp (lIu(r)lId L _1 (r) ,
ax k=l aUk ax aUk ax j=1 ax

which follows from (1.6). sum the obtained inequalities for j = I. .... n. use (a), and get the estimate

t

Ilu(t)II~~ ~ (a21b2 + 2acllb + 2) lIu(O)II~~ + 2n (a21b2 + 4acllb + 4) tp (Ilullc@) f Ilu(r)II~~dr.
o

Using the Bellman-Gronwall lemma [13] we obtain estimate (1.10) with

Similarly, for problem (1.1), (1.2). (1.4) we have the inequality

then add (b) and get the estimate

t

Ilu(t)II~~ ~ Ilu(o)lI~~ + (a + 4ntp (ll ull c@)) f lIu(r)II~~dr.
o

From this estimate (1.11) with £12 = exp(T(0.5a + 2ntp(lIullc(Q)) follows. The lemma is proved.

2. DISCRETE PROBLEM. A PRIORI ESTIMATES

We introduce the uniform grids with steps rand h in the domain Q. Qlh = Wil, * wr and Qlh = Wlil * W r

are grids in the case of the first problem, Q211 = W211 *wr and Q211 = W211 * Wr are grids in the case of the
second problem. Here h = liN. r = TIM. li = ir. wr = {ti; i = O..... M}, wr = {ti; i = O..... M - I}. We
denote Xi = ih, Wil, = {X;: i = 0.... , N}. Will = {X;; i = 1, .... N - I} in the first case, and x; = (i - 0.5)h.
W2h = {x;; i = 0, ... , N + I}. W2h = {x;; i = I, .... N} in the second case. Here. in the second case, we defined
the fictitious space grid points .to = -0.5h and XN+I = I + 0.5h.

We will use grid analogues L 211. W2
1
11 • Wi/,. L2h • wi/,. W~II of Sobolev spaces and C" denotes the analogue

of the space C (Q). Let us define scalar products at the grid WII,:

.V-l

(tt, v) = L lllv;h.
1=1

[U, vl = (tt. v) + (hI2)(lI()v~ + ttNV~).

N

(tt. vl = LttiV;h.
1=1
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similarly at the grid ~2/,: 

N -  I N N N 

(", I,,. = (,,. = t . ,  

i = 2  i=1 i = 2  i=1  

The norms in both grids are denoted as follows: 

I [u] l  2 = [u, u], [ lu] l  2 = (u, u], 

flu ., = l[u]l + llu.~]l', flu 

llull a = (u, u) ,  

= llull~v, + llu.~xll 2. 

The norms in the spaces L2/,, W~/~, W 2 2/, are defined in the same way as earlier. 

We denote p = p /  = p(xi ,  tj), ~ = p /+' ,  [~ = (p + /~)/2, Pt = ( b - p ) / r ,  P.~x = (Px - p.~)/h, 

Px = (P/+I - p / ) / h ,  p~ = (p{ - p / _ l ) / h ,  p.r = (P/+I - p / _ , ) / 2 h ,  p = (p, . . . . .  Pn). 
We relate problem (1.1)-(1.3) with the following Crank-Nicolson  type symmetr ic  difference scheme:  

p, = Ali.t + iBli.~x + f (p,  p*), (x, t)  E Qth, (2.1) 

p(x ,  0) = u0(x),  x 6 ~ lh ,  (2.2) 

p(x0, t) = p(xlv, t) = 0, t e ~ r .  (2.3) 

Also we relate problem (1.1), (1.2), (1.4) with a similar scheme: 

Pt = Ap.f + iBp.~x + f( l  h, p*), (x, t) E Q2h, (2.4) 

p ( x ,  0 )  = U 0 ( X ) ,  X E O.)2h, (2.5) 

p(x0, t) = p(xl ,  t), p(xN. t) = p (xu+ l ) ,  t E ~ .  (2.6) 

o . . 

In the case of  the first problem, we often deal with functions u 6W~h,  that is, u~ = u~v = 0 and [lull = [[u][. 
The following well-known inequalities are valid for such functions [15] 

Ilull = I[u]l ~< c_,llu~]l, c_, = c2(mes f2). (2.7) 

For functions from wJ/, we have [15] 

Ilullc ~< c3llul]wJh, c3 = c3(mesf2)  (2.8) 

Before deriving a priori estimates in the discrete case, we prove some properties of  the fu ,c t ion  f(u,  u*). 
For us it is convienent to denote by [(u)l any of the norms in the space L2h, introduced above.  

LEMMA 2.1. 
problems we have 

Assume that f(u.  u*) satisfies ( I .5) .  (1.6) and w. v E L2h. Then Vi = 

l ( L (v ,  v ' ) ) l  ~< ~ ( l lv l lc ) l (v ) l ,  

I(JS(v. v*) - J ) (w,  w ' ) ) l  <~ 2v '~ , ;  (max{llvl lc.  I lwllc})I(v - w)l.  

1 . . . . .  n, for  both 

(2.9) 

(2.10) 
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Proo f .  At any point Xk of  the grids w~t, or oo,.t, we have the estimates 

If,(v~, vT,)[ 2 <~ ¢p: ([vkl)[vkl 2 ~ ~o "~ (llvllc) ~ Iv, kl -~. 
i = l  

They lead to the estimates 

Hence we get (2.9). 

[(fi(v, v*))l 2 ~< ~o 2 (llv[Ic) ]vi~] 2h. 
k = l  I i = l  

Now at that same space grid point x~ we can write 

,) 

2,, w k ) )  " 
Ifi(vk, v~) - fl'(Wk, W~)I 2 ~< ~ f i ( ~ j - l ( V k ,  Wk)) - -  ft'(~j(Vk, 

j = l  

2tt 

~< 2n ~ l f i (~ j - l )  - f i  ( ~ : j ) l  2 ,  

j = l  

where sej(vk, wk) is a 2n dimensional vector: se0 = (Va.k . . . . .  v,,.k, v~.t . . . . .  v,,.~); 

~j = (wl .k  . . . . .  wj . , ,  vj+l.~ . . . . .  v,*,.k ) , if j = 1 . . . . .  n; 

~j = (Wl.k . . . . .  wj_,, ,k,  Vj_,,+l.k . . . . .  V,,.k ) , if j = n + 1 . . . . .  2n. 

Let j ~< n, then 

t" fl, l . j  /3, t . j  *[~il.2n f,( j)l ×,,wfi2' wj.  ) 
- -  = . . . . . . .  I)~z,k 

- -  Y i l W l . k  • . . t O j . k  Uj .  k ' '  . 1)n. k 

I=1 \ m = O  

~< [t~j.k --wj.kl~0(max{lvk[, Iwkl}). 

If j > n, we can obtain a similar result. Hence, we can write 

[)%(v~ - f,(w~)[ 2 <~ 4n~o'-(max{Ivkl. Iw~l}) ~ Iv//, - u)/.J,[ 2, 
j= l  

and obtain (2.10). The lemma ~s proved. 
We can get some corollaries from this lemma: 

COROLLARY 2.1. Under  the conditiotzs o f  L e m m a  2.1 f o r  all i = 1 . . . . .  tt and  f o r  both p rob lems  we have  

Itfi.~(v. v*)l[ ~ 2vGTcp (livllc) IIv.~lt, (2.11) 

ItJ)(v. v*)llw~, ~ 2 ~ ~ o  (llvllc)Ilvllw! • (2.12) 

Proo f .  We take Vk. vk-I and the norm 11 ]1 instead off v~, wk and I( )1, respectively in Lemma 2.1. This leads 
to (2.11). Formula (2.12) follows l'rom (2 .9)and /2.1 I). 
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LEMMA 2.2. Assume that f(u, u*) satisfies (1.5), (1,6) and w, v E W~h. Then ¥i = 1 . . . . .  n, f o r  both 
problems we have 

ll(fi(v, v ' ) -  f,-(w, w*)).+]] ~< 2v/'2n~o( max{llvllc, llwllc}) (llz.+]l + 2c.+llw.+]illzllwJ,,,). 

here z = v -  w. 

(2.13) 

Proof.  Similarly as in Lemma 2.1, at every space grid point x~ we have 

(l/h)lCfi(v~, v~) - fiCv~-l, v~_l)) - (fi(Wk, W~) -- fi(Wk-l, Wk-l))l 
2n 

~< ( l / h )  ~ I( f i(~/_l(v+, V,-l)) - j')(~/(v+, V k _ l ) ) )  - -  (j~Cb~j_i (Wk, Wk_l) ) - -  j~ (b~j (Wk,  W k _ l ) ) ) l  
j = l  

2,, si [ flil., fli~l *flil.2n~ 
"'" Uj,k_ I Ui.k " ' "  <<" Y ~- '~~  ~ t=, m=O , , . j-m-,, , ,  V,,.k JVj.k.+ 

- -  m=O U)j'k-I U)j'k "'" ~Wl .k_ l  "'" Z [3i'.j-'n-I m Ug,,.k )113j.k.~: 

2n si 
Y Z Z [ I  . /5,1.1 *f l i / '~ ) l  "1- ~/) . fliLI *flil.2n /~,1.1 *fli/.2n.l'~ 

j = l  l= l  ~lZj'k2tlJl 'k-I "'" vn'k J'k'~;(Ul'k-I "'" On'k - -  t O l . k - I  " ' "  t/3n.k )1) • 

We estimate the first summand using the expression of function ~p, the second one - in the same way as the 
similar difference in Lemma 2.1. We obtain 

ICf~(v, v*) - f,(w, w*))~+t ~< 2~o (llvllc) ~ Izi.k+l + 4q9 (max(llvtlc. Ilwllc}) Iwj.kel llz~llc. 
j = l  j = l  r = l  

Using (2.8), we can obtain the following estimate: 

II(fi(v, v*) - fi(w, w') )d l  2 ~< 8ngo 2 (llvllc)Ilz.+]l 2 + 32n2c~o 2 (max{llvllc, Ilwllc}) IIw~llllzll~%. 

From this (2.13) follows. Lemma 2.2 is proved. 

COROLLARY 2.2. Under the conditions o f  Lemma 2.2 f o r  all i = 1 . . . . .  n, f o r  both problems  we have 

[ICfi(v, v*) - fiCw, w*))llwj~ <~ 2"/'2n~p(max{llv[Ic, Ilwllc})(l + 2c311wllw~h)llv - wllw~,,. (2.14) 

Proof. This inequality follows from Lemmas 2.1 and 2.2. 

LEMMA 2.3 (Difference Gronwall inequality). Let f imct ions A (ll ) O, A (~-) ) O, F >1 0 be defined on the 
grid mr, and let the f imction Y ) 0 be defined on the grid -gr. Let A = 2(A ~l) + A~2/), Yo = const >1 Yo. I f  the 
condition 

/ 
- -  A (2) V F,  ) Yj <~ Yo + ~ (AII)yi +,~i " i - ,  + ri 

i=1 

/r A ~t~ is satisfied and max,~ , i } ~< 1/2. then we have the estimate 

t ) ( + )  m),xIr, I <. 7,, + 2 F .  F, j oxp . 
/= I  i=1 
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Proof. The proof of this lemma can be found in [16]. 

COROLLARY 2.3. Suppose that A ~ll A ~2~ F. Y, -Yo are the same as in Lemma 2.3, amt A It~ 
" " i 

F, = ebi- l ,  r, = r = T / M .  If  the conditions 

t2) 
= A i = d ,  

i-I /-t 

Yj <~ -Yo + rd ~_(Y i  + Yi+,) + re Z hi 
i = o  i = o  

and 0 < rd  <~ 1/2 are satisfied, then we have the estimate 

Yj ~< (Yo + 2et/ max {bi}) exp(4dt/): 
O<~i < j 

(2.15) 

here tj = r j  <<, T. 

Proof. The proof of this corollary follows directly from Lemma 2.3. 

LEMMA 2.4. Assume that (1.6) is satisfied for problem (2.1)-(2.3). Then there exists ro > 0 such that 
Vr, 0 < r ~< "to we have 

I[ p(tj )11 w!,, <~ r)I] p(to)[I wt,,. (2.16) 

here [t = d(a, b. c2. n. ti, ~o([IPlIc~G i)), ro = ro(a. b. c2, n. ~o(llPlicl~, i)). 

Proof. We take a scalar product (...) of (2.1) and p, use the discrete Green formulas [15], and take the real 
part. We use (2.3), sum the equations for layers from to up to ti_l, and get the estimate (a) 

I Ip(t i ) l l  2 ~< Iip(to)ll e + 2v ~ I I f , ( tk) l l  H/~(tk)l l .  
k=O i=1 

Now we multiply scalarly (using the scalar product (., .)) both sides of (2.1) by rpit and take imaginary 
part. We take Eq. (2.1) instead of Pit in the third summand of the right-hand side of the equation, use the 
discrete Green formulas and an expression of /5 by p and /:3, divide both sides of the equality by 0.5 hi, sum 
the equations for layers from to up to t/-l,  estimate real and imaginary parts of scalar products by their absolute 
value, estimate ]ai I/bi ~ a /b ,  use inequalities Ilui II <~ 1['~]1, (2.7), and obtain the inequalities 

tlpi;.(ri)][ 2 - iip,~(to)]l 2 <~ (a/b)  (l[pi~(r/)][ lipi(t/)l[ + c411pi~(to)ll 2) 

i -1  

+ 2r(l  + acz /b)  ~ [If,~(tk)]l [lfii.~(tk)]l. 
k=O 

We use s-inequality with s = 0.5, sum the obtained inequalities, use (a), and obtain 

[Ip(ti)llew2;, ~ e~llpIto)ll~r, "3 +2r(e~ + I) lld'i(tk)Ilw! I[fi;(tk)Jlw2,,; 
k = 0  t = 1 

(2.17) 

here el = /2 + 2ac2/h + aZ/b:).  
Now we use /2.12), estimate II;}lL 2 ~ 0.5{ltfill 2 + Ilt?H 2) and obtain 

llp(t/)ll~v,: ~< el Hp(tl))]l~.lj_,, + 2r(el + I)pz~o ItpHc(~,: 
/ - I  

k = 0  
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Now (2.16)follows from Corollary 2.3 with 

,? = (x/a 2 + 2abe2 + 2b2/b) exp 4(3 + 2ac , /b  + a / )n(i~o Ilp[Ic(O, j) , 

( ))-' ro = (4(3 + 2ac2/b + ae/he)nq) IlP[Ic(~, ' ) 

The lemma is proved. 

Assume that (I .6)  is satisfied for  problem (2.4)-(2.6). Then there exists ro > 0 such that Vr,  

(2.18) 

LEMMA 2.5. 
0 < r < ro we have 

I[p(t/)llw, h ~< dllp(to)]lwj h 

here d = d(a ,  n, ti, ~°(llPllcl~,j i )), l"o = to(a, n, t i, ~°( llpllcc-O,) I) )" 

Proof.  We take the scalar product [., .] of the ith component of Eq. (2.4) and ,hi, use the discrete Green for- 
mulas and condition (2.6), and take real part. We get [[/3i][2 = [[Pi]12 +ai z ([,hix,/5i)+ (/}i2, ,hi ])-t-2r Re[f/,  ,hi ]. 
We estimate [[pcr,/5,) + (/5~.~,/5'11 <~ 11/5 ~.~]12 + 1[/5'112 --- 1l/5~ll~v, ~,,_ lail <~ a, then take }--~-','=l, use the Cauchy 

inequality, and obtain the estimate (a) 

It/,ll-' -<. Itplt a +,, llpllb . + t[f lt tl/5 lt. 
i - - I  

We find the scalar product [., .] of the ith component of (2.4) and rpit, take imaginary part, and get 

0 = airIm[/si.t, pit] + birRe[/si2.r, Pit] + r im[f / ,  Pit]. 

We take Eqs (2.4) instead of pit in the first and third summands of the right-hand side of the equation, use the 
discrete Green formulas, condition (2.6), the expression of/5 by p and /~, divide both sides of the equality by 
0.5bi, use the Cauchy inequality, sum the obtained inequalities, and finally get the estimate 

][i3,~][2 < []p~]]2 & 2r ~ I]f,.~][ ]l̀ hi~]]- 
i=1  

We add (a), sum inequalities for layers from to up to t i, and obtain 

flp(ti)lL2w~,, <~ [{p(to)llewt: + ra  ~ [{p(tk){lew~: + 4r [If/(tk)llw~hll`hi(tk)llw~ h._ 
k=O k--O i=1  

(2.19) 

Hence 
I - I  

!lptti)ll~v,, ' <~ Ilp(tl})tt~vL ' + r 0.5a + 4n~0 IlPltc(O,j /,.=o 
2 2 2 

and from here. as in the case of Lemma 2.4, estimate {2.18) follows with 

Lemma 2.5 is proved. 
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3. T H E  I N V E S T I G A T I O N  OF T H E  N E W  LAYER 

Now we will prove the solvability and uniqueness of problems (2.1)-(2.3) and (2.4)-(2.6). We need the 
following lemmas. 

LEMMA 3.1. Assume we have the problem (a) in the grid Qth: vt = gtbt + iDi:.~x + g, where x ~ r.o~h; 

v ~W~h_ (3W~h;g ~W~h; ~3 o=~3N = 0 : t h e n V r  ~! ~,~W~ h N W  22h and we have 

ll~3llw], <~ dl Ilullw) h + rd211gllw~: (3.1) 

here d~ = d/(a,  b, c2), j = 1,2. 
If  we have the problem (b) in the grid -Q'_h: vt = fib i. + i[~ber + g, where x ~ w2h; vo = vt, 13N = ON+I" 

V ~ W~h; g ~ W_,~h" v0 = vf, vu = iN+I; then there exists ro > 0, Vr ~< ro ~! v ~ W_~ h and we have 

IIGl[% ~ d311V[Iw~ + rd41tgllw~ (3.2) 

here r0 = ro(a), d / =  d/(a),  j = 3, 4. 

In both cases tS,/) 6 R, 1,51 ~ a, 0 < b <<. b. 

Proof. We gather functions 13 in problems (a) and (b) at the left-hand side of  equations. In the case (a) we 

obtain ~ - h r f i i . / 2 - i D r ~ . e x / 2  = ~ with x e colh, bO = fin = O. In the case (b) we have f i -~rt3 . i . /2- i /~rf iex/2  = ,~' 
with x ¢ o)2h, vo = vl, vN = ON+l, 730 = bl, v,v = ~3N+l. In both cases [¢ = u + hrv . t / 2  + ibrve .r /2  + rg  and 
~' ~ L2h. We can write Ll~  = g and L2b = ,~, where LI and L2 are linear operators in a finite-dimensional 
space. Let g ~ O, v -- 0, then we have problems L~,  = 0 and L~_~ = 0 in this case. Now g satisfies (1.6) and 
we can use Lemmas 2.4 and 2.5. We obtain the inequality Ilbllw~ ~ dllollw_,, = 0, where d is the constant from 

the lemmas, mentioned above. Hence, homogeneous linear problems in the finite dimension space have only 
one solution 13 --- 0. From here, as in [14], we know, that (a) and (b) problems have unique solutions. 

In case (a) we use (2.17) with n = 1, j = 1, (remember that there d 1> 1) and obtain the inequality 

I I ~ l l w J -  dllPllw~ h ~ r (d  + l)llgllwl,_,,(llpllw~,, + v"Jllpllwj~). 

From here (3.1) follows with dt = , /(2 + 2ac2/b + a2/b2), d2 = d~ + 1. 
In case (b) we use (2.19) with n = 1, j = 1 and obtain the inequality 

I[/~llw),, -IlPll~2vt ~< 2r(ll/~tlwg,, + IlPllw~,,)(a/a(ll/511w~,, + IlPlIw~,,) + Ilgllw#h). 

From here (3.2) follows with ro < 4/a,  d3 = 1 + 2 a r o / ( 4 - a r o ) ,  d4 = 8 / ( 4 - a t 0 )  and if ro <~ 2/a,  then d3 ~< 3, 
& <~ 4. 

Using the estimations written above, we can show that 11,3[Iwj,, is bounded by the norms of functions from 

W~h. Hence, b ~ W~h. In both cases we can write 

II~,.ll = II - 2ig,/rD + ?zib,./[~ + 2i~/rD[I <~ (2 / rb  + a/b)1l~llw!,, + 2f[~']l/rb. 

If r is fixed all norms on the rieht-hand~ side of this inequality are bounded. Thus, ~ e W e:t,. Lemma 3.1 is 
proved. 

I.EMMA 3.2. A.,,'.,u~ne we have problem (c~ in the grid Qlh" v = ~r~.,,/2 + i/~rve,./2 + rg.  where x E ~olh" 

g E L2/,; vo = VN = 0; then Vr ~! t., E W[/,_ N WS, amt we have 

I[v]l ~ rdt t lg]l .  Itv~]] ~ d_~Llgll. [Iv~,H ~< &llg]l .  (3.3) 
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I f  we have problem (d) in the grid -Q2h" v = h rv , . / 2  + i/~rv~x/2 + rg, where x ~ oo2h; 0o = vt, vu = UN+I; 
g ~ Lzh: then there exists ro > 0, gr  ~< TO 3! V ~ W 2 2h attd we have 

11oll ~< rd4[[g]l. Ilue]l ~< &l[g]l, 110~,.11 ~< d61[g]l. (3.4) 

here ro = to(a, b), dj = dj(a ,  b), j = 1 . . . . .  6. 

In both cases ~, b are the same as in Lemma 3.1. 

Proof.  The  existence and uniqueness of the solutions we prove similarly as in Lemma 3.1. We multiply 
scalarly (using the scalar product [...]) both sides of equation of our problem (c) (or (d)) by 0 and take real parts. 
For (c) we obtain 110]I <~ r[[g]l and for (d) we have 11o]12 ~< arllo.~]l t [v] l /2+r l [g] l  I[v]l, or 11o]1 ,< ar[Iv~]l /2+ 
rl[g]l. When we take imaginary parts, in case (c) we have ]1v.~]12 <~ allv.~]l [[vl]/b + 211011 ]lgll/b. Using the 
estimate, which we have gotten before, from the s-inequality with s = 0.5 we obtain the estimate 110~]1 <, d21[g]l. 
In case (d) we get 110~]12 ,< a[Iv~][ I[v][/b+21[v]l  I[g]l/b. From here we obtain 110.¢]12 ~< (r /2b)  (allY ell + 21[g]1) 2 
or IIv.e]l <- dsl[g]l, and then the estimate I[v]l ~< rd4l[g]l follows. [Iv[Iw, h is bounded, thus 0 ~ W~h. 

We can obtain the last estimate of (3.3) and (3.4) directly from the equations: II V~x II -< 21 [v] l / rb  + a  II p.~]l/b + 
2[[g]l/b <<. dl[g]l, where d = d3 or d = d6. The right-hand side of the inequality is bounded, thus 0 6 W2~. 

Here we have d~ = 1, d2 = ,,/r(a?'r + 2b) /b ,  d3 = (4 + ad~)/b,  'Or. Also d4 = "v /2b / (4 ' -~ -  a v ' ~ ) ,  
d5 = 2.v"~-o/(v/2"b - a~'~') ,  d6 : (2d3 + ad4 + 2 ) /b  if only r ~< r0 < 2b/a2; and d4 ~< 2, d5 ~< 2 /a  or 
d5 <~ 2 . , / ~ o / b ,  d6 <~ 8 /b  if r <~ ro < b /2a  2. 
Lemma 3.2 is proved. 

Searching for solutions of problems (2.1)--(2.3) and (2.4)-(2.6) in a new layer, we must solve nonlinear 
equation systems. We use iterative methods. Now we write iterative processes for both problems and prove their 
convergence with the exponential rate. 

We have the following process for the first problem: 

pk+t  _ p 

r 

Bi : k+l ( P k q - P  Pk*2 ) A (p.~+l + P.i-) + + P.~x) + f P* 
- -  ~ . - ~ -  [P.~x 2 ' ' X E (.OIh, 

: _ k + l  : p~¢+l pO p,  Po = 0 .  

For the second problem the process is given by the following relations: 

Bi : k+l {pk  + p 
pk+lr_ p -- A2 (p~+l + P.~) + ~ ~.P.~x + P.~x) + f ~ 2 

_ k + l  pO = p ,  p~+l  = Pl , 

pk. + p .  ,~ 

2 J 
x E t,.O2h, 

(3.5) 

pkv+l _k+l = P N + I '  ( 3 . 6 )  

N LEMMA 3.3. Assume that the fol lowing conditions are satisfied: p 6W~t,  W;_h, f(p, p*) 6~"~h' [IPI[w~,, ~< Ce. 

Then process (3.5) produces the unique sequence o f  the fi~nctions {pk }, k = 0, 1 . . . . .  converging to the solution 
o 

of  problem (2.1)-(2.3) in the space W~h fqW~h. There is the unique solution f~ o f  this problem with the condition 
IIf~llc = O(1), when r --+ O. More over, there exists rl > 0 such that Vr  0 < r < rl,  '¢k we have 

I[Pkllw~,, <~ dlllPHw~h. [l~llw~h <~ dl[]pllw~ h, (3.7) 

here dl = dl(a ,  b, c2); rt = r l (a ,  b, c2, c3, q, ~. ~p), where q < 1. 
I f  the conditions p ~ W~h, f(p, p*) E W~,, I]Pllw~, <~ ot are satisfied, then process (3.6) produces  the unique 

sequence {pk }. k = 0, 1 . . . . .  co~zverghtg to the solution of  p r o b l e m ,  (2.4)-(2.6) in the space W 22h. 3! fJ satisJVing_ 
thecotrdit ion [[13[Ic- = O( l ) ,when  r--+ O. There exists r2 > O s u c h t h a t V r  0 < r < r2, Vk we have 

][pkl[w!:, -<. dzHpHw~:,. ]lp]tw!h ~< de]lpllw!,, (3.8) 

here d2 = d2(<z); r2 = r2(a, b, tt. c3. q, ce. ~o). where q < 1. 
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Proof. The existence and uniqueness of the sequence in both cases follow from Lemma 3.1. We will prove 
the estimates using a method of mathematical induction. 

a) When k = 0, then (3.7) and (3.8) are valid, because p0 = p. 
b) Suppose these estimates are valid for all i ~< k. Then, using Lemma 3.1, '¢j = 1 . . . . .  n we get 

k+l 
pj tlwj~ - e~llp~llw~ <~ re21l~((p k + p)/2,  (p'~* + p*)/2)llwg .. 

[1 _k+l where e~, e2 are constants in the estimates (3. I) or (3.2). We multiply both sides of  the inequalities by [~i II w, + 
2h 

n ~! e~ IlPjlIw~n, take Y~4=t' use Corollary 2.1 and estimate ~ j = t  [IPjll ~< v'%llPll, divide both sides by Hp k+l IIw'~ + 

e~llPllw~n and obtain 

lip k+~ [[w~ - e~ [[pjllw~ <~ re2n~o ((ltpkllc -+- Ilpllc)/2) lip k + Ptlw~n. 

We use the induction's supposition and get 

liP k+l [Iw~h ~< (el q-- re2n~p ((e3 + 1)c3~/2) (e3 + 1))IlpllwJn, 

here e3 is one of the constants dl, d2 of this lemma. We need the condition el + rezn~o ((e3 --t-- 1)c3a/2) (e3 -/- 
1) ~< e3 to be satisfied. We can take e3 = el q- I, then this condition is valid, when 0 < r ~< r0, where 
co = l/e2n~o ((el + 2)c3et/2) (el + 2). The induction step is proved. 

Now we subtract the equations for the p~ component from the equations for the p~+l component. We denote 
p ~ + l _ p , ~ =  k v). Using Lemma 3.2, we obtain the estimates (a) 

][vk]] ~< ve4][g~]], 114~]1 ~ e5[[gk][, llOj~x[] <~ e6l[gk][, 

here e4, e5, e6 are constants from the inequalities (3.3) or (3.4) and 

k (pk* gi = f j ( ( p k + p ) / 2 ,  + p*) /2) -- ~ ((p k- '  + p ) / 2 , ( p k - " + p * ) / 2 ) .  

Using (2.10), we can obtain: [[g~]l ~< v/n~P ((e3 --l- 1)c3ot/2)I[vk-I]l. From (a) we easily get (b) 

I[vt:]l ~< re4nq)((e3 q- I)c3ff/2)I[vk-l]l  

and (c) 

" ilvkllwff ~ evl[vk-l]l, 

/ 
here e7 nqo ((e3 -k- 1)c3~/2) ~/ = r - e ~ + e g + e g .  If r ~< q/(e4n~o((e3+l)c3o~/2)), where q < 1, from (b) we 

obtain I[vk]l ~< qkl[v°][. Then from (c) we obtain Ilvkl[w- ~< eTq*-ll[v°][. It follows that '¢ ml ,m2  E N. mt <~ 

m2, liP mz - p "  IIw~_,, <~ q" ' - levl[v°]l / ( l  - q )  ~ O, when ml. m2 --+ ~c. Thus, the sequence {pk} is a Cauchy 

sequence in the complete Banach space W~t ,. It means [14] 3! w ~ W~h, such that I[p k - wllw~ h --+ 0, when 

k --+ oz. Due to the inequality II pk II w,_, h <~ e3 I1P II w!h, we obtain II w 11 w~h ~< tl pk I[ w~h + II w -  pk 11W.,' h <~ e3 II P II w~,, + ~, 
where e is any small positive number. Thus, [Iwllw~,, ~< e3l[P[Iw~h. 

We will prove that w satisfies problems (2.1)-(2.3) or (2.4)-(2.6). We gather all summands at the left-hand 
side of the equations of corresponding problem, take w instead of [~, subtract the equations of iterating process 
(3.5) or (3.6), take the norm of space L2h and obtain the inequality 

A,w  (f(w p w.+p.)2 f(w+pk 12 
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where r is fixed and k --+ oo. From here it follows 

w -  i B  (w+p w* +p*) I p A (w + p)+ - --~- (w + P)~x - f = 0. 
r 2 _ 2 2 

Thus, w has the same values as the solution of  the problem in the grids wlh or w:h. Similarly we can show that 
w satisfies the equations of  the boundary conditions. 

Now we will show that if p E W~h, then Vr ~< r0 =1! 13, such that 111311c = O(1) when r --+ 0. Suppose we 
have two such solutions 131 and 132. We denote 131 - 132 = z. Then from (2.1)-(2.3) or (2.4)-(2.6) we obtain the 
equations in the grids Wlh or W2h: 

mr iBv  ( ( 1 3 , + P  I3~+P  * )  ( P 2 + P  P ~ + P * ) )  
z = - - ~ - - z ~ + - - - ~ z . ~ . r + r  f 2 " 2 - f  2 ' 2 ' 

Using Lemma 3.2 and (2. I0), we can obtain the estimate 

IIz[I ~< rne4~o((max{ll0t lie, 110211c} + IlPllc)/2)llzll. 

We supposed that our solutions are bounded in the norm of  the space Ch, thus, Ilzll ~< O(r)llzll. Hence, Ilzll = 0 
and 131 = 132 in the grids wlh or W2h. Similarly we deal with the boundary equations. Hence,  the function w, 
which we can find from the iterative process, is the unique solution of  problems (2. I ) - (2 .3)  or (2.4)-(2.6) in the 
given class of  functions. Lemma 3.3 is proved. 

4. CONVERGENCE AND STABILITY OF THE DIFFERENCE SCHEME 
Let a grid function ~(t j)  be an error of  approximation of  difference schemes (2.1)-(2.3)  or (2.4)-(2.6) in a 

layer tj, where tj = r j  and r = T/M.  In the grids wlh or w2h we have 

~ ( t j ) - ~ ( u t ( t j )  -Ou-~--(r ( j  4 0 . 5 ) ) ) -  A (ti.i (t/) -ou~---~-x ( r  ( j  + 0 .5 ) ) )  

( ) - iB(i!~x(t)) - ~ x z ( r ( j  + 0.5)) - (f(fi, fi*(tj)) - f(u,  u * ( r ( j  + 0.5)))) ,  

where u is a solution of  problem (1.1)-(1.3) or (1.1), (1.2), (1.4). We know that in the case of  the first boundary 
value problem we have uo = uu = 0, thus q~(x0, tj) = ~b(xN, tj) = 0. In the case of  the second boundary value 
problem, we define the value of  the solution of  (1.I),  (1.2), (1.4) in the fictitious grid points xo, xN similarly as 
in the difference scheme: uo = ul,  uu = uu+l .  When h ~ 0, these conditions and (1.4) are equivalent. 

We suppose that u(x,  t) is smooth enough and the following condition is satisfied: 

, ,[tl®('J EIw'hl , 0 ,  when --, 0 max (4.1) 
O < ~ j < ~ M - I  - 

Also we introduce the grid function e as an error of the solution in the grids Qlh or Qzh: ~ = u -- p, where p 
is the solution of  (2.1)-(2.3) or (2.4)-(2.6). 

We subtract a difference problem in a layer t/ from a corresponding differential problem in a time moment  
r ( j  + 0.5). In the case of  the first problem we have u(xo, t) = u(xu, t) = P0 = PN = 0, thus, we obtain the 
following equations: 

~t = Ak~ + iBk.~x + qJ + ~, (x, t) E Qlh, 

e(X,  O) : O. .~. E "~lh, E(X O, I) : e(XN,  t) = 0, t E ~r -  (4.2) 

In the case of the second problem we have dcfined u(xo. t) = u(xl ,  t), U(XN, t) = U(XN+I, t),  thus 

~ t = A k , + i B k ; , + q J + ~ .  (x . t )  E Q2h. ~ ( x , 0 ) = ( ) ,  x E ~ z h ,  

e(x0, t) = e(xl ,  t). z(x,v, t) = e(.rN+l, t), t E ~ .  (4.3) 

In both cases qJ = f (u . /1 ' )  - f(l  5, lb'). 



O n  c o n v e r g e n c e  a n d  s t a b i l i t y  o f  d i f f e r e n c e  s c h e m e s  191 

THEOREM 4.1. Assume that (I .5)-(1.7),  (4.1) are satisfied for  problem ( 1.1)-(1.3). Then a solution p of  
problem (2 .1)-(2.3)  converges to a solution u in the norm of  space L ~ ( 0 .  T: W~h) and there exists r~, hl) > 0 

! 

such that Vr, 0 < r ~< r~, Vh, 0 < h <~ h o we have 

max <.c4 max 
O<~j<~M - O<~j<.M-I - 

(4.4) 

here M r  = T, C 4 : c4(a, b, c2, c3, Ilullc(~), Iluollwd, ~o). 
/ f ( l . 5 ) ,  (1.6), (1.8), (4 .1 )a re sa t i s f i ed fo rp rob lem (1.1), (1.2), (I .4) ,  then a solution of  (2 .4 ) - (2 .6 )converges  

I t  I t  to u in the same norm and there exists r o, h~ > 0 s,tch that g r ,  0 < r <~ r o, Yh, 0 < h <~ h'~ we have 

max max ( 4 5 ,  
O<~j<~M - O<~j<~M-I - 

here c5 = cs(a, b, c5, Itullcl~), Iluoll%, ~o). 

Proof. In case (4.2) we notice that qJ(x0, tj) = ~ (xN,  tj) = 0. Then, similarly as in Lemma 2.4, we obtain 
an inequality similar to (2.17). Using I1% + ~ill ~< t1%1t + It~i11, (2.14), the e-inequality with e = 0.5, the k 
expression by ~ and e, we obtain 

/-I 
, ~ II*(tk)llw~n IIs(tj)[I-w," <~ elll~(t0)llw~ n + r (e l  + 1) 

k=0 
j-I  

4- r(el q-l)(e2n + 0.5)Z(lle(ta+l)ll2wdh 4-]le(tk)ll~vdh); 
k=0 

here 

e~=2f f2n~° (max{ l lu l l c ( -O) ' l lP l l c (G , ) } )  ( l + 2 c 3  max o<~<~j - 

et is the constant from inequality (2.17). 
Let rl = l / ( ( e l  + I)(2~;2n + 1)). Then Vr, 0 < r <~ rl we use Corollary 2.3, the equality [D(to)llw~ h = 0, 

take the square root, and have 

Ile(tj)l]w~ h <~ 74 o<,m..<ax ' { II*(tk)llW~ h }, (4.6) 

here ?4 = x/2(el + l)tj exp(9(e l  + 1)(2~2n + 1)). 
In case (4.3) we use (2.19), (2.14) and Vr, 0 < r ~ r2, where z" 2 = l / (a  4- 4e2n q-- 2), we get 

{ } IlE(tj)llw, ~ ?5 max IIcD(tk)llw,h (4.7) 
- O < ~ k < < . . j - I  - 

here ?5 = 2v /~exp( t j (  a + 4Y2n + 2)). 
We notice that if positive parameter ~2 increases the values of parameters ~74 or ?5 increase, too. 

/ t / t 
For the first problem we will show that 3r o, h o such that Vr, h, 0 < r <~ r 0, 0 < h ~< h o, '¢j = 0, 1 . . . . .  M,  

I[p(ti)llc <~ a~ = 21]U1[c(~). We use mathematical induction: 
a) If j = 0, then Np(to)[Ic <~ Ilu(to)ltc ~< I[ul[c(O) ~ or. 
b) Let IIp(ti)llc <~ oe Vi = 0, 1 . . . . .  j - 1. Using Lemma 2.4 we can write the estimates: IIp(tj_l)llwJ h <~ 

~;311p(to)llw~ • Here /;3 is the parameter from estimate (2.16), it depends on IlPllc(~9_~). If that norm increzfses, 

e3 increases, too. Due to the induction's supposition, IlPllcl~,j_tl ~< c¢. Thus. we can write I[p(ti)Hw~ h <~ 

e3[[p(to)IIw),, = e3tluollw~h Vi = 0, 1 . . . . .  j - l, where /;3 <~ e3 = ,,/77exp (4(el + l)nT~o(a0). Using Lemma 

3.3. we obtain IIp(t i)llw~ h ~< e3e411uo{Iw~j ,, where e] is constant from (3.7). Using (2.8), we obtain the estimate 

lip(t/)llc <~ c3e3e'4Huolt%~ h. 
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In (4.6) parameter  c4 depends  on IlPllc<~,j >, maxo<,~,<j {llp(t~)[I w~ } and increases, when these norms increase. 

We evaluate these norms by the constants c3e3e'~lluollwd~ and e3e'411uollwd ~. We obtain constant  c4/> 74, where 

ca = x/2(e~ + 1)Texp(T(e~ + 1)(2e2n + 1) 

and 

e~ = 2v/2n(1 + 2c3e3e'411uol]w~h)~o(c3e3e'41luo]lw~h ). 

We can obtain a constant ca when 0 < r <~ r.~, where r3 = min {(4(el + l)n~o(oQ) - l ,  ((el + 1)n(e 4 + l)~p((e~ + 

l)c3ellluollwJh/2))-', ((el + l)(2e2n + 1))-1}. Now we have [le(tj)llw] h <~ c4maxo<,k<<.j-l{llq~(t~)[lw~n}, where 

the right-hand side of  the inequality converges to 0 when r,  h ~ 0. Then ::lr~, h~ > 0, r~ ~< r3 such that Vr, 
0 < r ~< r~, Vh, 0 < h <~ h~ we can obtain: [le(tj)llw~ ~ (I/c3)l[ullc~-O). Using (2.8) and expression of  e by 

u and p, we get II(u - p)( t j ) [ Ic  ~< I lul lc~l .  Then the inequality follows: IIp(tj)llc <<. Ilullcl~l + Ilu(t~)llc ~< a .  
The induction step is proved. 

Similarly we deal with the second problem. As follows from Lemmas  3.3 and 3.1, when r is small enough, 
81 I t  

we can estimate e 4 ~< 4, where e 4 is the constant from (3.8). In the same way as before we get c5 /> ~75, where 

c5 = 2V"-Texp(T(a + 4e'n + 2)), 

e" = 2v '~n ( l  + 8c3eslluo[Iwdh)~(4c3esl[uo[Iw~h) >1 2V/2n (I + 2c3e4esIluoIIwdh)~o(c3e'4'es[luollwd,,). 

and e5 is the constant which we obtain from (2.18): e5 = e x p ( T ( a  + 8n~p(~))). We can get c5 when 

r <~ r4 = min {(a + 8n~o(~)) - I  , (20n~o(2.5c3eslluollw~h)) - t  , (b/2a), (a + 4e'2'n + 2 ) - '  }. 

. . . . . . .  ' Vh, 0 < h ~< " the condition of  the induction step We can find r o, h 0 > 0, r o <~ r4 such that 'Or, 0 < r ~< to,  h o, 
is satisfied. 

I I I  t /  
When we know such r~, h o and r 0 , h o, we can write IIp(t~)llc ~< o~ Yj = 0, 1 . . . . .  M. Now in (4.6) and (4.7) 

we can take constants c4 and c5, independent from p, instead of  C4 and '~5. From this s ta tement  and from (4.1) 
the convergence of schemes in the norm L ~ ( 0 ,  T; W~h) follows. Theorem 4.1 is proved. 

THEOREM 4.2. Assume that u, (x, t) and u2(x. t) are two solutions of  (1 .1)- (1 .3)  with the initial conditions 
Ulo and u2o. Let (1 .5) - (1 .7) ,  (4.1) be satisfied in both cases. Then there exists r~, h~} > 0 such that 'Or, 

I P 0 < r ~< r o, 'v'h, 0 < h <~ h o the following estimate for the solutions of (2 .1)- (2 .3)  is valid: 

max {ll(Pt - P2)(tj)l[w2h } ~< c6llUlo - u2ollw4h, (4.8) 
O ~ j ~ M  " - - 

here c6 = c6(a, b. c2. c3, [[Ul Ilcl~>, Ilu211c(~l, Ilu,oltwdh, qo). 
Similarly assume that Ul (x. t) and u2(x, t) are two solutions of (I .  1 ), (1.2), (1.4) and conditions (1.5), (1.6), 

(1.8), (4.1) are satisfied, then there exists r~', h o > 0 such that with the corresponding r.  h the following estimate 
for the solutions of (2.4)-(2.6)  is valid: 

max {ll(Pl - P2)(r/)llw4,,} ~ c711ulo - U2oilwt,, (4.9) 

here c7 = c 7 ( a ,  b ,  c 3, NUl IIcc~. Iluz[Ic/~). Ilulollwdh, ~)- 

Proof. We denote z = Pl - P2 and T = f(lbt) - f(lb2). Then, subtracting the equations for p~_ from the 
equations for p, ,  we obtain problems of type (2.1)-(2.3) or (2.4)-(2.6) for a function z with a function T instead 
o f f .  

t ! In the first case we usc (2.17), estimate liT, IIw,~ with the help of  (2.14), use Theorem 5.1 and find r o, h o 

such that V r . h ,  0 < r <~ r~'), 0 < h ~< h o the following estimates are valid: [IPiIIc~-) ~< 2tluillct~) and 
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{llP;(tk)llwjh}_ ~ e3e41lu;ollwJ h, where i = 1 2. Here and in what follows el e3, e' max0,<k~M • • 4" e5 are constants 

from Theorem 5.1. From here we obtain the following inequality: 

i - I  

[Iz(ty)llw,~h_ ~< elllz(t°)[lwjh + r(el  + l)e6n [Iz(tk+l)[Iw~ n" + Ilz(t/,)llw4 h- , 
k=0 

where constant 

e 6 = 2~"2n (1 + 2c3e3e'4[]U,o[[w~a)~O (2 max{Hun [Icc~), Ilu2llc(0~}) • 

Now we can use Corollary 2.3 and obtain the inequality 

Ilz(tj)ll~v, h ,< el exp(4T(el  + 1)e6n)llz(to)ll-wt.h. 

This estimate is valid Yj = 0, 1 . . . . .  M, hence, we get (4.8) with ¢6 = v/E]'exp(2T(el + l)e~n). 
t t  In the second case we prove similarly that there are r~', h o such that (4.9) is valid. Here 

c7 = exp(Tae6'n),  e~' = 2-,/2-n(1 + 8c3eallu~ollw~h)qg(2max{lluollc(-~), Ilu?.llc(~)}). 

Theorem 4.2 is proved. 

COROLLARY 4.1. Under the conditions o f  Theorems 4.1 and 4.2 we can prove the convergence and stability 
o f  difference schemes in the norm II [Icl~), 

Proof.  This statement follows from (2.8). 
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