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ABSTRACT

We derive an optoelectronic model based on a gradient formulation for
the relaxation of electron-, hole- and photon- densities to their equilibrium
state. This leads to a coupled system of partial and ordinary differential
equations, for which we discuss the isothermal and the non-isothermal
scenario separately.

1. INTRODUCTION

The aim of this work is to formulate a model for optoelectronic processes in semicon-
ductors as a generalized gradient system. We will discuss the isothermal case and the
non-isothermal case. For both cases we will consider the admissible state variables qqq in a
state space QQQ, and determine a suitable thermodynamical functional Φ : QQQ→R, that drives
all the optoelectronic processes, as well as a potential Ψ∗ : QQQ×QQQ∗→ [0,∞) encoding the
different additive dissipative processes in the material. With the aid of these functionals Φ
and Ψ∗, the evolution of the state qqq is governed by the rate equation

(1) q̇qq = Dηηη Ψ∗(qqq;−DqqqΦ(qqq)) in Q

where q̇qq denotes the time-derivative of the state vector qqq and Dηηη Ψ∗(qqq;ηηη) denotes the de-
rivative of Ψ∗(qqq;ηηη) wrt. the ηηη , and similarly, DqqqΦ(qqq) the derivative of Φ(qqq) wrt. qqq.

It was first shown in [10, 11, 5] that certain diffusion processes can be written as gradient
flows of the form (1) with Φ given by the free energy or the entropy functional. In [7, 8] it
was proven that also reaction-diffusion systems can be cast in the gradient structure of (1)
and in [7, 4] this approach was adapted to the drift-diffusion and recombination processes
arising in semiconductors.

In this contribution we will show that also the optoelectronic models treated in, e.g.,
[13, 12, 2] fall into the framework of (1), see [7, 8, 4]. These models consist of trans-
port equations for the densities of charge carriers, electrons n and holes p, and describe
their motion in the device driven by diffusion and drift in a self-consistent electrical field
EEE = −∇ϕc. In addition, electrons, holes and photons are generated or annihilated ac-
cording to different radiative and non-radiative processes, coupled to the equations in a
thermodynamically consistent way. The number of photons generated by such kinds of
radiative recombination mechanisms is determined by a photon rate equation, which arises
from the corresponding reaction kinetics; this feature so far was not considered in [7, 8, 4].

To incorporate the photon rate equation to our gradient flow formulation we make use
of the ideas of [14]. Therein, the key idea is to extend the classical thermodynamic treat-
ment of electromagnetic radiation beyond the purely thermal black-body radiation towards
luminescent radiation which is observed, e.g., in diodes and lasers. It is assumed that opto-
electronic excitations in a semiconductor lead to an equilibrium of electron/hole chemical
potentials µc,µv with the photon chemical potential µγ so that µγ = µc +µv. This leads to
a modified radiation formula following Bose-Einstein statistics for the number of photons
per volume and energy interval

ρ(E) f (E,µ) =
E2

π2

( nr

h̄c

)3(
exp
(

E−µγ
kBθ

)
−1
)−1
≈ E2

π2

( nr

h̄c

)3
exp
(
−E−µγ

kBθ

)
,

with E = h̄ω beyond Planck distribution in equilibrium, where µγ ≡ 0 for photons, cf.
[14]. From this, by standard thermodynamics, we can compute entropy and energies as
functions of photon density γ and temperature θ , cf., [6]. This approach allows us to
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adapt the framework of [4] to optoelectronics. In order to present simple closed-form
expressions in this contribution, we assume that electron-, hole-, and photon-distributions
can be approximated by Boltzmann distributions.

2. GRADIENT STRUCTURE: FROM FUNCTIONALS TO DIFFERENTIAL EQUATIONS

Thermodynamic functionals. The optoelectronic system consists of negatively charged
electrons n in the conduction band and positively charged holes p in the valence band. The
density of states is parabolic with band edges Ec,Ev and effective masses m∗c ,m

∗
v for con-

duction and valence band. Furthermore we have a photon density γ in the system with
constant refractive index nr and quadratic density of states. While the electron and hole
densities n, p are space-dependent, it is assumed that the photon density γ is constant in
space. This leads to the following effective densities of state for electrons (conduction
band), holes (valence band), and photons in equilibrium

(2) n̄ = Nc = 2
(

m∗ckBθ
2π h̄2

)3/2
, p̄ = Nv = 2

(
m∗vkBθ
2π h̄2

)3/2
, γ̄ = 2

π2

(
nrkBθ

h̄c

)3
,

and to the intrinsic carrier density n2
i = n̄ p̄exp

(
(Ev−Ec)/(kBθ)

)
. In (2) by h̄ we denote

the Dirac constant, kB is the Boltzmann constant, and θ is the absolute temperature. We
use the notation ccc = (c1,c2,c3) = (n, p,γ) and c̄cc = (c̄1, c̄2, c̄3) = (n̄, p̄, γ̄), where all ci, c̄i
are densities with units of (length)−3. Assuming the Boltzmann distributions for charge
carriers and photons, we define the internal energy U , the entropy S , and the free energy
F of the system as

(3a) U (ccc,θ) =
∫

Ω
U dx, S (ccc,θ) =

∫

Ω
Sdx, F (ccc,θ) =

∫

Ω
F dx,

where Ω ⊂ R3 is an open bounded domain occupied by the semiconductor. Moreover,
F(ccc,θ) =U(ccc,θ)−θS(ccc,θ), where the densities U and S are given by

U(ccc,θ) =
ε
2
|∇ϕc|2 + kBθ

( 3
2 (n+ p)+3γ

)
+Ecn−Ev p+ cV θ ,(3b)

S(ccc,θ) =−kB

[
n
(
log n

n̄ − 5
2

)
+ p

(
log p

p̄ − 5
2

)
+ γ
(

log γ
γ̄ −4

)]
+ cV logθ ,(3c)

in which cV θ and cV logθ constitute lattice contributions to the internal energy in (3b) and
the entropy in (3c), where cV denotes the heat capacity of the lattice. The contribution to
the entropy by electrons and holes are given by the Sackur-Tetrode equation. The internal
energy density U in (3b) contains the electrostatic potential ϕc, which depends implicitly
on ccc as it is determined by the Poisson equation

(3d) −∇ · ε∇ϕc = e(C+ p−n),

where C is the given concentration of dopants, e is the elementary charge and ε denotes the
dielectric permittivity. Now we define dual dissipation functionals Ψ∗(qqq;ηηη) =Ψ∗rec(qqq;ηηη)+
Ψ∗diff(qqq;ηηη), for which we separately discuss additive contributions due to recombinations
and diffusion.
Dissipation by recombinations with detailed balance. Between electrons, holes, and
photons we consider different types of recombinations r with stoichiometric coefficients
αααr = (αr

1,α
r
2,α

r
3) and βββ r = (β r

1 ,β
r
2 ,β

r
3) in the sense of [7]. As can be found in, e.g.,

[2, 12, 3] recombinations, characteristic for optoelectronic semiconductor materials, can
be written in the form

αr
1n+αr

2 p+αr
3γ

kr
+


kr
−

β r
1n+β r

2 p+β r
3γ.
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In particular, this form includes non-radiative recombination-generation processes such as
Auger- and Shockley-Read-Hall, as well as radiative emission-absorption, both sponta-
neous and stimulated. More precisely, their specific form is

n+ p 
 /0 thus ααα1−βββ 1 = (1,1,0)> recombination-generation,

n+ p+ γ 
 2γ thus ααα2−βββ 2 = (1,1,−1)> stimulated absorption-emission,

n+ p 
 γ thus ααα3−βββ 3 = (1,1,−1)> spontaneous absorption-emission,

each of them with forward reaction rate kr
+ and backward reaction rate kr

−. Assuming
detailed balance there is a steady state ĉcc so that kr(qqq) = kr

+(qqq)ĉccαααr
= kr
−(qqq)ĉccβββ r

. This nota-
tion means ĉccαααr

= n̂αr
1 p̂αr

2 γ̂αr
3 . Following [7, 8] and using η̃ηη = (ηn,ηp,ηγ) a suitable dual

dissipation functional for the recombinations is given by

Ψ∗rec(qqq;ηηη) =
∫

Ω

1
2

η̃ηη ·H(qqq)η̃ηη dx, H(qqq) =
3

∑
r=1

Λr(qqq)(αααr−βββ r)⊗ (αααr−βββ r),(4a)

Λr(qqq) = kr(qqq)`
((ccc

ĉcc

)αααr

,
(ccc

ĉcc

)βββ r)
, where `(x,y) =

{
x−y

logx−logy x 6= y,

y x = y.
(4b)

Note that H, defined in (4a), is symmetric by construction and positive semidefinite on the
stochiometric subspace (for details see [7]).
Isothermal model. In the isothermal case we have qqq = ccc and the gradient dynamics with
fixed θ = θ?, is driven by the free energy F (ccc) ≡F (ccc,θ?), so that the evolution of the
state variables qqq = ccc is given by ċcc = Dηηη Ψ∗

(
ccc;−DF (ccc)

)
. Using a projector P ∈R2×3 such

that Pηηη = (ηn,ηp)
>, we introduce the dual dissipation potential for diffusion as follows

Ψ∗diff(qqq;ηηη) =
∫

Ω

1
2

∇Pηηη ·M(q)∇Pηηη dx, M(qqq) =
1
e

(
nµn 0

0 pµp

)
,(5)

where ∇Pηηη ·M∇Pηηη means ∑d
i ∂i(Pηηη)>M∂iPηηη . Here µn, µp > 0 represent electron and

hole mobilities. The dual dissipation potential comprising recombination and diffusion is
given by Ψ∗(qqq;ηηη) = Ψ∗diff(qqq;ηηη)+Ψ∗rec(qqq;ηηη). Integrating by parts we find that the deriva-
tive of Ψ∗ is

〈Dηηη Ψ∗(qqq;ηηη),ννν〉=
∫

Ω
ννν>
[
−P>∇ ·M(qqq)∇Pηηη +H(qqq)ηηη

]
dx(6)

where ννν = (νn,νp,νγ) with νn,νp are general functions and νγ is constant. When perform-
ing integration by parts we used appropriate boundary conditions for the boundary terms to
vanish. By the properties of M we clearly see that DqqqΨ∗(qqq; ·) : QQQ×QQQ∗→R is a symmetric
and positive semidefinite operator. Due to (3) we have

∂cccF(ccc,θ?) = kBθ?




log(n/n̄)
log(p/ p̄)
log(γ/γ̄)


+




Ec− eϕc
eϕc−Ev

0


 .(7)

Then (6) and (7) lead to the abstract form

ṅ =−∇ · jjjn−
[
Λ1(∂nF +∂pF)+(Λ2 +Λ3)(∂nF +∂pF−∂γ F)

]
,(8a)

ṗ =−∇ · jjjp−
[
Λ1(∂nF +∂pF)+(Λ2 +Λ3)(∂nF +∂pF−∂γ F)

]
,(8b)

|Ω|γ̇ =
∫

Ω
(Λ2 +Λ3)

[
∂nF +∂pF−∂γ F

]
dx,(8c)

where the currents jjjn and jjjp are defined as
(

jjjn
jjjp

)
=−M∇

(
∂nF
∂pF

)
=−M∇

(
kBθ? log(n/n̄)+Ec− eϕc

kBθ? log(p/p̄)−Ev + eϕc

)
.
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Using (4b) we get

ṅ =−∇ · jjjn−Rnr−g(qqq)
(

np
n2

i
− γ

γ̄

)
,(9a)

ṗ =−∇ · jjjp−Rnr−g(qqq)
(

np
n2

i
− γ

γ̄

)
,(9b)

|Ω|γ̇ =−
[∫

Ω

g(qqq)
γ̄

dx
]

γ +
∫

Ω
g(qqq)

np
n2

i
dx,(9c)

where n̂p̂ = n2
i (θ?) and γ̂ = γ̄ . The term Rnr = k1(qqq)(np/n2

i −1), represents non-radiative
recombination-generation processes. The rate of optical transitions g(qqq) = (γ/γ̄)k2(qqq)+
k3(qqq) includes stimulated and spontaneous absorption-emission and resembles optical gain
in lasers. An equilibrium state of (9) is characterized by neq peq = n2

i and γeq = γ̄ . To
determine the equilibrium carrier densities neq, peq requires to solve the Poisson equa-
tion (3d), which is nonlinear due to the insertion of peq = ni exp(−eϕc/(kBθ?)) and neq =
ni exp(eϕc/(kBθ?)). With no-flux boundary conditions the gradient system (9) then implies
a monotonous decay of the free energy towards this equilibrium

d
dt F (ccc(t)) = 〈DcF ,ċcc〉=−〈DcF ,Dηηη Ψ∗(ccc;DcF )〉 ≤ 0(10)

as a consequence of the positive semi-definiteness of Dηηη Ψ∗(qqq; ·).
Non-isothermal model. In the non-isothermal case it is advantegeous to start with the
internal energy u = U(ccc,θ) as an independent variable, cf. [1]. Then, we solve (3b) for
θ = Θ(ccc,u) and set q̄qq = (ccc,u) ∈ QQQ. We redefine energy and entropy as Ū (q̄qq) =

∫
Ω udx,

and S̄ (q̄qq) = S
(
ccc,Θ(ccc,u)

)
. For any functional Φ : QQQ→ R the derivative Dq̄qqΦ(q̄qq) now has

four components. Therefore, the dual dissipation potential Ψ̄∗ in the non-isothermal case
can be obtained by extending the dual dissipation potential Ψ∗ of the isothermal case as
follows

Ψ̄∗(q̄qq;ηηη) =
∫

Ω
∇(Pηηη) ·M̄(q̄qq)∇Pηηη +ηηη · H̄(q̄qq)ηηη dx,(11a)

where M̄= Θ
(

M Mcross
M>cross Mu

)
and H̄= Θ

(
H 0
0 0

)
,(11b)

where P∈R3×4 is a projector Pηηη = (ηn,ηp,ηu). Observe that Dq̄qqŪ (ccc,u) = (000,1)>, so that
the integrand in (11a) vanishes and thus also Dηηη Ψ̄∗(q̄qq;Dq̄qqŪ (q̄qq)) = 0. In turn, this implies
the conservation of the internal energy Ū (q̄qq(t)) as

d
dt Ū = 〈Dq̄qqŪ , ˙̄qqq〉= 〈Dq̄qqŪ ,Dηηη Ψ̄∗(q̄qq;Dq̄qqS̄ )〉= 〈Dηηη Ψ̄∗(q̄qq;Dq̄qqŪ ),Dq̄qqS̄ 〉= 0,

where the last step follows from the symmetry of Dηηη Ψ̄∗(q̄qq; ·). The evolution of the thermo-
optoelectronic system is given by ˙̄qqq = Dηηη Ψ̄∗(q̄qq;Dq̄qqS̄ (q̄qq)) with the negative entropy as the
driving functional. Since it is more common to write the equations using the temperature θ
as a variable, we now reverse the previous change of variables and replace u with U(ccc,θ)
and Θ(ccc,u) with θ and set Ξ(ccc,θ) = (ccc,U(ccc,θ)). This generates the transformed dual dis-
sipation potential w.r.t. the variables qqq = (ccc,θ) by Ψ∗(ccc,θ ;ηηη) = Ψ̄∗(Ξ(ccc,θ);Aηηη) inducing
q̇qq = Dηηη Ψ∗(qqq;DqS ), where

A =
(
D(c,θ)Ξ

)−>
=

(
I3×3 − ∂cccU

∂θU
0 1

∂θU

)
, A(qqq)∂qqqS(qqq) = 1

θ

(
−∂cccF(ccc,θ)

1

)
.

The derivative Dηηη Ψ∗ is as in (6), but with a new projector P, we replaced qqq = ccc by qqq =
(ccc,θ), ηηη by Aηηη , and H,M by H̄,M̄. In addition to (8) but with temperature-dependent
coefficients we obtain the following equation for the temperature

(∂θU)θ̇ =−∇ · jjjθ +(∂nU)(∇ · jjjn)+(∂pU)(∇ · jjjp)+(∂cccU) ·H∂cccF,(12)



5

with (∂cccU)> = (−eϕc +Ec,eϕc−Ev,0)+ 1
2 kBθ(3,3,6) and the currents




jjjn
jjjp
jjjθ


= M̄∇

1
θ




∂nF
∂pF
−1


≡ M̄∇

1
θ




kBθ log(n/n̄)+Ec− eϕc
kBθ log(p/p̄)−Ev + eϕc

−1


 .(13)

Using Λr(ccc,θ) from (4b) as in (9) we get the explicit form

ṅ =−∇ · jjjn−Rnr−g(qqq)
(

np
n2

i
− γ

γ̄

)
,(14a)

ṗ =−∇ · jjjp−Rnr−g(qqq)
(

np
n2

i
− γ

γ̄

)
,(14b)

|Ω|γ̇ =−
[∫

Ω

g(qqq)
γ̄

dx
]

γ +
∫

Ω
g(qqq)

np
n2

i
dx,(14c)

ĉV θ̇ =−∇ · jjjθ +
2

∑
i=1

∂ciU(∇ · jjjci)+αnrRnr +αrg
(

np
n2

i
− γ

γ̄

)
,(14d)

where αnr = (∂nU +∂pU) = 3kBθ +Eg and αr = (∂nU +∂pU−∂γU) = Eg, with the band
gap is Eg = Ec−Ev. The heat capacity ĉV ≡ (∂θU) = cV +kB

( 3
2 (n+ p)+3γ

)
+E ′c(θ)n−

E ′v(θ)p is usually dominated by cV . Note in general Ec,Ev, n̄, p̄ depends on space and
temperature, which will then consistently generate extra drift terms in the current in (13).
Also observe that the same calculations as in (10) with DS instead of −DF provide the
production of entropy d

dt S (qqq(t))≥ 0.

3. DISCUSSION

The non-isothermal model derived here is in the spirit of [2], but our approach is fo-
cussed on a concise derivation in the framework of gradient structures. Since a term-by-
term comparison is beyond the scope of this paper let us mention a few key differences.
The model in [2] is for a semiconductor laser, for which additionally light is spatially lo-
calized in a mode density χ solving a Helmholtz equation. Even though one can easily
modify the functionals to create similar looking terms, e.g., g is replaced by g|χ|2 in the
emission-absorption, the coherent, and in this sense more luminescent, character of light
makes a thermodynamic approach using entropies more elusive. We believe that using the
GENERIC formalism to couple the charge transport to Hamiltonian system which are ei-
ther more microscopic, e.g., quantum mechanical [9], or to the classical Maxwell equation
might help to clarify the situation. For the shortness of the presentation we assumed homo-
geneous natural boundary conditions of vanishing normal fluxes and obtained the decay of
the free energy. Obviously the model is built so that it also supports electrical pumping of
a photon field, i.e., an energy flux through non-homogeneous boundary conditions.
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