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Abstract

We study the dispersive behavior of waves in linear oscillator chains. We show that for
general general dispersions it is possible to construct an expansion such that the remain-
der can be estimated by 1/t uniformly in space. In particalur we give precise asymptotics
for the transition from the 1/t1/2 decay of nondegenerate wave numbers to the gener-
ate 1/t1/3 decay of generate wave numbers. This involves a careful description of the
oscillatory integral involving the Airy function.
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1 Introduction

In this work we study the dispersive behavior of waves in linear oscillator chains. While there
is a large body of the analysis in certain regimes of the dispersion relation there seems to be



no general theory providing a uniform estimates. The main problem derives from the fact that
the large-time asymptotics of the solutions can be estimated along the rays given by the group
velocity by the presentation via oscillatory integrals. The difficulty to obtain uniform estimates
for the remainders of an asymptotic expansion stems from the fact that the dispersion relation
θ 7→ ω(θ) necessarily contains degenerate points (i.e. where ω′′(θ̂) = 0). While for nonde-
generate points the solutions decay like t−1/2, the decay at degenerate points the decay is only
of order t−1/k with k ≥ 3. Such separate estimates for dispersive partial differential equations
or discrete lattices are classical (cf. [Whi74, Hör90, Ste93, FP99, Fri03, IZ05, SK05, MP10] and
the references there), but our aim is to find a uniform expansion providing also a sharp estimate
in the transition regions, i.e. for nearly degenerate wave numbers. Moreover, for nondegenerate
wave numbers the asymptotic profiles are given in terms of simple trigonometric functions, the
degenerate case with k = 3 (i.e. ω′′′(θ̂) 6= 0) leads to fronts with a profile given in terms of the
Airy function, see Figure 1.

Figure 1: Green’s function G11(t, j) at t = 2000 for the linear FPU chain. Lower left: periodic
wave trains for nondegenerate group velocities. Lower right: Airy-type behavior at the degener-
ate front.

To be more precise we study the general linear oscillator chain

ẍj = −a0xj +
K∑
k=1

ak
(
xj+k − 2xj + xj−k

)
, j ∈ Z, (1.1)

where a0 ≥ 0 is due a stabilizing background potential and a1, ..., aK ∈ R give the interaction
coefficients. With a0 = 0, a1 = 1, and K = 1 we obtain the linearized Fermi-Pasta-Ulam
(FPU) system (cf. [FPU55]). The dispersion relation is given via

ω2 = Λ(θ) := a0 +
K∑
k=1

2ak
[
1− cos(kθ)

]
for θ ∈ S1 := R/(2πZ),
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where we always assume stability in the form Λ(θ) ≥ 0. Thus, we define the positive branch of
the dispersion relation and the group velocity via

ω(θ) :=
√

Λ(θ) ≥ 0 and c(θ) := ω′(θ).

The oscillatory integrals to be estimated have the form∫
S1

A(θ)ei(ω(θ)t+θj) dθ =

∫
S1

A(θ)ei(ω(θ)+cθ)t dθ =: gA(t, c),

where we always use the relation j = ct ∈ Z, which is important to keep the periodicity of the
integrand.

Two of the analytical difficulties in the analysis can be explained at this point. First, if Λ(θ) =
γ2(θ−θ1)

2n + O(|θ−θ1|2n+1) the dispersion relation ω(θ) may be nonanalytic. We treat this
case by assuming a0 = 0, which gives ω(θ) = γ|θ| + O(θ2) where we assume γ =(∑K

k=1 k
2ak)

1/2 > 0. The second difficulty arises from degeneracies of the dispersion re-
lation. The group velocity is given by the relation

c = cgr(θ) = ω′(θ).

Fixing a θ with ω′′(θ) 6= 0 and thus fixing c = ω′(θ) and assuming that the support of the A in
the definition of gA is contained in a sufficiently small neighborhood of θ, we have the expansion

gA(t, c) = cA cos
[
(ω(θ)+cθ)t+ sign(ω′′(θ))

π

4

]
t1/2 +Rnon

A (t, c)

with Rnon
A (t, c) = O(t−1), see Section 4.2. However, for θ near a degenerate case with

ω′′(θ̂) = 0 but ω′′′(θ) 6= 0, we obtain the expansion

gA(t, ĉ) = eitb(c)
[
cAAi(a(c)t2/3)t−1/3 + dAAi′(a(c)t2/3)t−2/3

]
+Rdeg

A (t, c)

with Rdeg
A (t, c) = O(t−1) and suitable functions a(c) and b(c), see [Hör90] or Section 4.3. To

obtain a uniform error estimate we give quantitative estimates for the two error terms Rnon
A (t, c)

and Rdeg
A (t, c) and show that the degenerate expansion based on the Airy function coincides

up to an error O(t−1) with the harmonic expansion in an overlapping region.

In summary our main result reads as follows.

Theorem 1.1:
Assume that (1.1) satisfies a0 = 0 and the dispersion relation has the formω(θ) = sign(θ)ω̃(θ),
where ω̃ is smooth and satisfies the

nondegeneracy condition: ω̃′′(θ) = 0 =⇒ ω̃′′′(θ) 6= 0.

Then there exists a constant C(ω̃) such that for all t > 0 the Green’s function matrix Gj(t) ∈
R2×2 for (1.1) written for the vectors r = (xj+1−xj)j∈Z and p = (ẋj)j∈Z satisfies the estimate

|Gj(t)− Gexpan(t, j/t)| ≤ C(ω̃)/t for all j ∈ Z and all t > 0,

where the function Gexpan(t, c) is given in (3.8).
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Using the classical decay estimates for the Green’s functions for group velocities outside the
range of ω̃′ (see Proposition 2.3), we easily obtain bounds in `p spaces, namely for each p > 1
there exists Cp > 0 such that

‖G(·)(t)− Gexpan(t, ·/t)‖`p ≤ Cp t
−(p−1)/p for t > 0.

In particular, this result implies that the dispersive decay estimates for the Green’s function given
in [MP10] for p ∈ (2, 4) ∪ (4,∞)

‖G(·)(t)‖`p ≤ Cupper
p t−αp for t > 0 with αp = min{p−2

2p
, p−1

3p
}

are sharp. Our hope is that using the specific form of Gexpan
j (t) one can improve the decay

results for nonlinear systems as well, see [GHM06, SK05, MP10].

Our analysis was stimulated by the work in [Fri03], which analyzed synchronization effects oc-
curring for c = 0, which corresponds to the wave number θ = ±π. The analysis is done for
fixed j and can be made uniform on parabolic regions j2 ≤ Ct. The dispersion of the energy
was analyzed in [Mie06, HLTT08] via the Husimi and Wigner transform, even in multidimen-
sional cases. The usage of dispersion in the error control for discretized PDEs is discussed in
[IZ05, Ign07].

Notations. Bold face letters r,p, . . . denote elements in `p(R) or, with the common abuse
of notation, smooth functions r(·),p(·), · · · : R→ `p(R).

Capital letters normally refer to linear operators, e.g. Gj(t) : R2 → R2 and G(t) : `p(R2)→
`p(R2) or, again, to smooth functions mapping into these spaces.

To simplify the notations we denote bounds in general by C and carry out the distinction via
indices C1, C2, ... only if it is necessary. To highlight the dependency on parameters we write
for instance C = C(ω, δ). For δ ∈ R the notation is obvious. For ω being a sufficiently smooth
function this refers to a dependency on ‖ω‖Wn,p for suitable n ∈ N0 and p ∈ N.

2 Dispersion in the generalized linear FPU

2.1 The generalized linear FPU

We consider an infinite number of equal particles with unit mass interacting with a finite number
K of neighbors via linear forces. According to Newton’s law, the equations of motion are

ẍj =
∑

1≤k≤K

[
ak(xj+k − xj)− ak(xj − xj−k)

]
, j ∈ Z. (2.1)

Here xj ∈ R denote the displacements. We write x := (xj)j∈Z. The system (2.1) is Hamilto-
nian, i.e. (ẋ, ṗ)T = J can dHx(x,p)T with momentum p := ẋ, Hamiltonian functionHx(x,p) =∑

j∈Z
(

1
2
p2
j +

∑
1≤k≤K

ak
2

(xj+k − xj)2
)

and J can the canonical Poisson operator defined by

〈(x,p)T ,J can(x̃, p̃)T 〉`2⊕`2 = 〈x, p̃〉`2 − 〈x̃,p〉`2 .
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The system (2.1) exhibits plane waves solution of the form xj(t) = ei(θj+ω̂t) if and only if the
dispersion relation

ω̂2 = Λ(θ) :=
∑

1≤k≤K

2ak
[
1− cos(kθ)

]
(2.2)

is satisfied. By periodicity, it suffices to take θ ∈ (−π, π]. We have Λ(0) = 0 which is
a consequence of Galilean invariance, i.e. for all ξ, c ∈ R the transformation (xj, pj) 7→
(xj+ξ+ct, pj+c) leaves (2.1) invariant. Throughout, we assume the stability condition

∀ θ ∈ (−π, π] \ {0} : Λ(θ) > 0 (2.3)

holds. This certainly holds if all ak are positive, however more general cases are possible. Thus
we are able to define the relevant branch ω̂ = ω(θ) of the dispersion relation via

ω(θ) :=
√

Λ(θ) ≥ 0. (2.4)

With a slight abuse of notation we simply call ω the dispersion relation.

Due to the Galilean invariance it is convenient to use distances instead of the displacements
r := (∂1 − 1)x = (xj+1 − xj)j∈Z as new variables. Then the Hamiltonian function turns
into Hr(r,p) = 1

2

∑
j∈Z
(
p2
j +

∑
1≤k≤K ak|

∑
0≤l<k rj+l|2

)
. The transformed Hamiltonian

system reads as
(ṙ, ṗ)T = Jr dHr(r,p)T =: L(r,p)T (2.5a)

with

Jr :=

(
0 ∂1 − 1

1− ∂−1 0

)
, dHr =

(∑
|l|<K

∑
|l|<k≤K(k − |l|)ak∂l 0

0 1

)
, (2.5b)

and (∂lz)j = zj+l. The operator Jr is a non-canonical Poisson structure arising from the push-
forward of the Poisson tensor J can, that is Jr = T J can T ∗ where T is the linear map defined
by (r,p)T = T (x,p)T .

Using the Fourier transform F : `2(Z,R2)→ L2(S1,R2) defined by ẑ(θ) =
∑

j∈Z zje
−ijθ, it

is possible to solve (2.5) explicitly. Applying F leads to(
˙̂r
˙̂p

)
=

(
0 eiθ − 1

1− e−iθ 0

)(
ω2

r (θ) 0
0 1

)(
r̂
p̂

)
, (2.6)

where

ω2
r (θ) =

∑
0<k≤K

kak + 2
∑

0<l≤K−1

( ∑
l<k≤K

(k − l)ak
)

cos(l · θ). (2.7)

Now, solving the linear system (2.6) we obtain the fundamental matrix Ĝr(t, θ) and Green’s
function of our original problem is given by inverse Fourier transform, G(t) = F−1{Ĝr(t, θ)} =
1
2π

∫
S1 Ĝr(t, θ) dθ with

Gj(t) =
1

2π

∫
S1

(
cos(ω(θ)t) eiθ−1

ω(θ)
sin(ω(θ)t)

−ω(θ)
e−iθ−1

sin(ω(θ)t) cos(ω(θ)t)

)
eij θ dθ , j ∈ Z (2.8)

Thus the long time behavior of solutions is determined by oscillatory integrals. Altogether we
proved the following lemma.
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Proposition 2.1 (Explicit solution):
Given some initial conditions (r0,p0)T ∈ `2(Z,R2), the unique solution of (ṙ, ṗ)T = L(r,p)T

defined in (2.5) is determined by

(r(t),p(t))T = eL t(r0,p0)T (2.9a)

where (eL t)t∈R is a differentiable group of bounded operators on `2(Z,R2) defined by(
eL t(r,p)T

)
j

=
∑
k∈Z

Gk(t) · (rj−k, pj−k)T for j ∈ Z (2.9b)

with Gj(t) defined in (2.8).

Now we want to characterize the dispersion relation more precisely. From now on we will assume
that, additionally to the stability condition, the following non-degeneracy condition is satisfied,

ω′(0) > 0 and ∀ θ̂ ∈ S1 : ω′′(θ̂) = 0 =⇒ ω′′′(θ̂) 6= 0 (2.10)

These conditions as will be discussed below in connection with (2.16). In fact, these are not
fundamental for the upcoming discussions, but a violation would lead to different decay rates and
necessitate case-by-case analysis. Now we may highlight important properties of the dispersion
relation ω in the following lemma.

Lemma 2.2:
For the dispersion relation defined by (2.2) and (2.4) holds

ω(θ) = 2
∣∣sin θ

2

∣∣ωr(θ) (2.11)

with ωr given by (2.7). Furthermore, for ωr holds

∀ θ ∈ S1 : ωr(θ) = ωr(−θ) = ωr(θ+2π) (2.12a)

and, if additionally the stability and non-degeneracy conditions (2.3) and (2.10) are satisfied,
then

∃ cr > 0 ∀ θ ∈ S1 : ωr(θ) ≥ cr . (2.12b)

Proof. Since the linear equation (2.1) is invariant under the transformation (∂1 − 1), the first
statement follows from ¨̂r = −Λ(θ)r̂ and the fact that (2.6) implies ¨̂r = 2(cos θ − 1)ωr(θ)

2r̂.
The symmetry and periodicity ωr is obvious from the explicit formula (2.7). To see cr > 0 note
first that, in view of (2.3), it is sufficient to check ωr(0) 6= 0. But this follows from ω′(0) = ωr(0)
and (2.10).

Note that the first factor of ω is due to the transformation of the Poisson tensor and arises
independently of the actual interaction of the particles. For that reason we carried out the trans-
formation in detail.
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Finally, we state a second equivalent representation of Green’s function which will be used
below. It is obtained by rewriting the dispersion relation,

ω̃(θ) = 2 sin θ
2
ωr(θ) (2.13)

and using the symmetry of ωr, namely

G(t, c) =
1

2π

∫
S1

(
eitφ±(2θ,c) ± eiθ

ωr(2θ)
eitφ±(2θ,c)

±ωr(2θ)
eiθ

eitφ±(2θ,c) eitφ±(2θ,c)

)
dθ

where φ±(θ, c) = θc± ω̃(θ) and c =
j

t
.

(2.14)

The proof as well as further useful representations of G are given in Appendix A. Note that ω̃
now is 4π-periodic. The new variable c ∈ R characterizes the rays j = ct and refers to the the
group velocity cgr(θ) = ±ω′(θ). In view of the fact that θ 7→ cgr(θ) is not injective, it is useful
to define

Θ(c) := {θ ∈ S1 |ω′(θ) = c} .
Note that, although we will sometimes consider c being a continuous variable, it is to be evalu-
ated in j/t. This is crucial in view of the fact that θ 7→ eitφ±(2θ,c) remains 2π-periodic for that
choice.

2.2 Critical wave numbers, dispersive decay and finite sonic velocity

The asymptotic behavior of solutions of (2.5) is dominated by dispersion occurring in such
lattices systems. A typical consequence in this context is the decay of solutions to localized
initial conditions: Consider the group (eL t)t∈R in (2.9) and assume that the dispersion rela-
tion ω satisfies the stability condition (2.3) and the non-degeneracy condition (2.10). Then, for
p ∈ [2, 4) ∪ (4,∞] there exists Cp such that, for all t ≥ 0, we have

‖eL t‖`1,`p ≤
Cp

(1 + t)αp
, where αp =


p− 2

2p
for p ∈ [2, 4),

p− 1

3p
for p ∈ (4,∞].

(2.15)

Here we skipped the case p = 4 where an additional logarithmic correction term occurs, see
[MP10] for details and the proof. Like in PDE theory, this decay estimate carries over to nonlinear
equations if the nonlinearity is weak and the initial conditions are sufficiently small, see again
[MP10] and also [SK05, GHM06].

To obtain these decay rates αp, which are better than those one gets by standard Riesz Thorin
interpolation based on α2 = 0 and α∞ = 1/3, the local decay of (eL t)t∈R needs to be
estimated carefully. We will from now on focus on this local behavior. In the remaining section
we summarize important results concerning upper bounds of solutions. In Section 3 and 4,
respectively, we will derive uniform asymptotic expansions for the solutions. In this context we
will see that these results are optimal - not only in term of the decay rates, but also in terms of
c = j/t.
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Figure 2: Dispersion relation and solutions for different times for the linearized FPU, i.e. ω(θ) =
2| sin θ

2
|.

The dispersive decay relies on the fact that the behavior of solutions to (2.5) is determined by
oscillatory integrals of the form

g(t, c) =

∫
S1

A(θ)eitφ(θ,c) dθ (2.16)

with A(θ) standing for 1, 1/ωr(θ) or ωr(θ). According to Lemma 2.2, A is real-analytic in any
case. Thus, oscillations with wave numbers θ travel along rays j = cgr(θ)t, where the group
velocity is defined by the relation ∂θφ(θ, cgr(θ)) = 0, i.e. cgr(θ) = ±ω̃′(θ). The method of
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Figure 3: Dispersion relation and solutions for different times for a system with second nearest-
neighbor interaction with a1 = 0.08 and a2 = 0.23. The coefficients are chosen such that the
group velocities are approximately 1 and 1/2.

stationary phase, see e.g. [Ste93, Won89, Whi74] indicates that the decay along these rays
is like t−1/2 if ∂2

θφ(θ, c) = ω̃′′(θ) 6= 0 and like t−1/3 for ω̃′′(θ) = 0. Weaker decay rates,
for instance t−1/4, are excluded by the non-degeneracy condition (2.10). We define the set of
critical wave numbers Θcr and the maximal wave speed cmax via

Θcr :=
{
θ̂ ∈ S1 | ω̃′′(θ̂) = 0

}
and cmax := max

{
|ω̃′(θ)|

∣∣ θ ∈ S1
}
.

Note that 0 ∈ Θcr and, since K in (2.2) is finite, the set Θcr is discrete. In this paper we
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in particular aim to understand the cross-over between the two different decay rates, i.e. the
behavior for c ∈ Ccr(ε) with

Ccr(ε) :=
⋃
{

θ̂ ∈ Θcr}
[
cgr(θ̂)−ε, cgr(θ̂)+ε

]
⊂ R .

In the upcoming sections two other sets will be relevant. For the sake of completeness we define
these already here.

Θcr(δ) :=
⋃
θ̂∈Θcr

Uδ(θ̂) ⊂ S1 , Θcr(c, ε) :=
{
θ̂ ∈ Θcr

∣∣∣ ∣∣cgr(θ̂)− c
∣∣ ≤ ε

}
The first is analogous to Ccr(ε), but in terms of the wave numbers and the Θcr(c, ε) character-
izes critical wave numbers corresponding to group velocities in a neighborhood of a given group
velocity c.

In Figure 2 and 3 we plot two dispersion relations and associated solutions rj(t) for different

times to display the influence of the critical wave numbers θ̂j ∈ Θcr. As a consequence of the
Galilean invariance the wave number θ = 0 is outstanding in two respects (cf. (2.11)). First, as
already mentioned above, 0 ∈ Θcr such that there are always wave fronts traveling with speed
c = ±ω̃′(0) and second, since ω̃(0) = 0, these wave front are monotone. We will prove this
monotonicity of the front in Section 4. The latter holds for all t > 0 (not only in the limit t→∞)
if ω̃′(0) = maxθ∈S1 ω̃′(θ) := cmax, i.e. the sonic velocity, which is not satisfied in general for
K > 1.

The tool to derive upper bound on (2.16) is van der Corput’s lemma, see e.g. [Ste93]. It states
that if

∣∣φ(k)(θ)
∣∣ ≥ λ > 0 for θ ∈ (θ, θ) where either k ≥ 2, or k = 1 and φ′ is monotonic,

then ∣∣∣∣∣
∫ θ

θ

A(θ)eitφ(θ) dθ

∣∣∣∣∣ ≤ C(k,A) (λt)−1/k (2.17)

with C(k,A) = (5·2k−1−2)
(

maxθ∈[θ,θ] |A(θ)|+
∫ θ
θ
|A(θ)|dθ

)
. Based on this a global

bound on g(t, c) is straightforward, cf. [MP10, Lemma 3.5]: There exists a constant C(ω̃, A) >
0 depending on the dispersion relation ω̃ and A such that

∀ t ≥ 0, c ∈ R : |g(t, c)| ≤ C(ω̃, A)

(1 + t)1/3
. (2.18)

Similarly, it is possible to obtain an upper bound of order t−1/2 for c bounded away from group
velocities corresponding to critical wave numbers, i.e. for c /∈ Ccr(ε) with ε > 0. But a careful
application of van der Corput’s lemma gives an upper bound for the singularity occurring as
c→ ω̃′(θ̂), θ̂ ∈ Θcr. Namely, according to [MP10, Lemma 3.6] we can choose ε = t−2/3, and
there exists again a constant C̃(ω̃, A) > 0 such that

∀t ≥ 0 ∀c ∈ R \ Ccr(t−2/3) :

∣∣g(t, c)
∣∣ ≤ C̃(ω̃, A)

(1 + t)1/2

1 +
∑
θ̂∈Θcr

1

|ω̃′(θ̂)2 − c2|1/4

 .
(2.19)
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Combining both upper bounds suggests that the wave fronts with decay t−1/3 expand like t1/3

(in terms of rj(t)). In Section 3 we will see that this indeed holds and furthermore that (2.19) is
sharp.

The third important decay estimate concerns the exponential decay of g(t, c) for |c| > cmax.
Thus, ignoring exponentially small tails, this is equivalent to a finite sonic velocity. Although we
suppose that the result is known we give the statement and the full proof since we were not
able to find a citable reference. Only in [Fri03] there is a similar statement for the case of pure
nearest-neighbor interaction (with a different proof), but unfortunately this work is unpublished.
For this result we choose γ > 0 such that ωr can be holomorphically extended on the complete
stripe {θ ∈ C | 0 ≤ Im θ ≤ γ} where ωr(θ) > 0 still holds.

Proposition 2.3:
Consider the Green’s function defined in (2.9) with dispersion relation ω satisfying the stability
and non-degeneracy condition (2.3) and (2.10), respectively. Then, for all t > 0 and all c =
j
t
∈ R \ [−cmax, cmax] holds

|G(t, c)| ≤
(

1 e− sign(c)α∗(c)/2/ω∗(c)
esign(c)α∗(c)/2 ω∗(c) 1

)
e−κ(c)t (2.20a)

with

κ(c) := max
α∈[0,γ]

(
α|c|− max

θ∈[−π,π]
Im ω̃(2θ+iα)

)
> 0, (2.20b)

ω∗(c) := minθ∈[−π,π] |ωr(2θ+iα∗(c))| and ω∗(c) := maxθ∈[−π,π] |ωr(2θ+iα∗(c))|, where
α∗(c) maximizes the term defining κ(c).

Proof. According to (2.14) the components of Gj(t) are given by

g±(t, c) =
1

2π

∫ π

−π
A(θ)eit(2θc±ω̃(2θ)) dθ with c =

j

t
,

in which A(θ) = 1, eiθ

ωr(2θ)
or ωr(2θ)e

−iθ. In all cases A(θ) is analytic and 2π-periodic.

To prove the statement for c > cmax we consider g+(t, c) and continue ω̃ and A analytically to
[−π, π] + i [0, γ]. Applying Cauchy’s integral theorem we get for α > 0∫ π

−π
A(θ)eit(2θc+ω̃(2θ)) dθ =

(∫ −π+iα

−π
+

∫ π+iα

−π+iα

+

∫ π

π+iα

)
A(θ)eit(2θc+ω̃(2θ)) dθ .

Exploiting the symmetry of A(θ) we find∫ −π+iα

−π
A(θ)eit(2θc+ω̃(2θ)) dθ +

∫ π

π+iα

A(θ)eit(2θc+ω̃(2θ)) dθ

= 2

∫ α

0

A(π+iα) sin(2πct)e(−2yc+iω̃(2π+2iy))t dy = 0

11



since c = j
t
. For the remaining integral holds∣∣∣∣∫ π+iα

−π+iα

A(θ)eit(2θc+ω̃(2θ)) dθ

∣∣∣∣ = e−2αct

∣∣∣∣∫ π

−π
A(θ+iα)eit(2θc+ω̃(2θ+2iα)) dθ

∣∣∣∣
≤ e−2αct · 2π max

θ∈[−π,π]
|A(θ+iα)| etmaxθ∈[−π,π] Im ω̃(2θ+2iα) .

Now we choose α such that the overall exponent is minimized and set α∗ = 2α to obtain

|g+(t, c)| ≤ max
θ∈[−π,π]

∣∣∣A(θ+i
α∗
2

)∣∣∣ e−κ(c)t

with κ(c) defined in (2.20b) which proves (2.20a). To see κ(c) > 0 for c > cmax note that
maxθ∈[−π,π] Im ω̃(2θ+iα) = cmaxα +O(α3) as α→ 0.

To prove the statements for c < −cmax we consider the representation

g−(t, c) =
1

2π

∫ π

−π
A(θ)eit(2θ(−c)+ω̃(2θ)) dθ

with A(θ) = 1, e−iθ

ωr(2θ)
or ωr(2θ)e

iθ. Thus, the proof follows by the same arguments.

Solving condition (2.20b) locally, the decay of solutions in terms of c−cmax near the wave fronts
becomes evident: Consider 0 ≤ c − cmax ≤ ε and 0 < α ≤ α0 for ε, α0 > 0 sufficiently
small. Then there exists B = B(ω̃, α0) > 0 such that

κ(c) ≥ cα− cmaxα−B(ω̃, α0)α
3

= (1− ξ)(c− cmax)α + (1− ξ)(c− cmax)α−B(ω̃, α0)α
3

with 0 < ξ < 1. Now we claim (1 − ξ)(c − cmax)α − B(ω̃, α0)α
3 = 0. This implies α =√

ε
B(ω̃,α0)

(c− cmax). Thus, for 0 ≤ c − cmax ≤ ε with ε > 0 sufficiently small there exists κ̃

such that
∀t ≥ 0 : |G(t, c)| ≤ Cω,Ae−κ̃(c−cmax)−3/2t . (2.21)

3 Uniform asymptotic behavior

In this section we first state the main results. Namely, the uniform asymptotic expansions of
solutions of (2.5) near wave fronts where the decay rate is ∼ t−1/3 and in the inner regions
where we have a decay in time ∼ t−1/2. Here the leading order behavior as well as the Airy-
like wave fronts are well known. Our contribution is to make the dependency on c − cgr(θ̂) for

θ̂ ∈ Θcr more explicit. Afterwards we discuss the results, in particular the cross-over between
the different scales and give illustrating examples. The actual proofs are shifted out to Section 4.

12



3.1 Asymptotic expansions

Now we are in place to state the main results. The first concerns the nondegenerate case,
namely c ∈ [−cmax, cmax] \ Ccr(ε) for some ε > 0. We emphasize that the obtain we obtain
will blow up, since the expansion becomes singular as c → cgr(θ̂) for θ̂ ∈ Θcr. It would be
interesting to keep track of the blowup behavior to optimize the overall error. However we are
content with some, not necessarily optimal bound.

Theorem 3.1 (Asymptotic behavior in the nondegenerate case):
Consider Green’s function of the Hamiltonian system (2.5) and assume that the corresponding
dispersion relation ω defined in (2.4) satisfies the non-degeneracy condition (2.10). Then, for all
ε > 0 there exists a constant Cnd(ε, ω) > 0 such that for all c ∈ [−cmax, cmax] \ Ccr(ε) and
t > 0 we have the estimate

|G(t, c)− Gnon(t, c)| ≤ Cnd(ε, ω) t−1 with (3.1a)

Gnon(t, c) =
∑
θ∈θ(c)

1√
8π|ω′′(θ)|

(
1 1

ωr(θ)

ωr(θ) 1

)
cos
[
(ω(θ)+cθ)t+ signω′′(θ)π

4

]
t−1/2 .

(3.1b)

Indeed, for the constant in (3.1a) we will show the upper bound

Cin(ε, ω) = C1(ω) +
C2(ω)

ε5/2
(3.2)

as ε → 0. Note furthermore that the coefficient in (3.1b) becomes unbounded in that case.
According to Lemma 4.1 holds

√
|ω′′(θ)| ∼ ε1/4 as θ → θ̂ ∈ Θcr.

Concerning the second result, the challenge is that the dispersion relation degenerates. Thus, in
the general case the implicit function theorem is not sufficient. Here a suitable version of Weier-
strass preparation theorem is necessary. In this context a classical statement is the following.

Theorem 3.2 (Method of stationary phase, cf. [Hör90, 7.7.18]):
Let φ be a real-valued C∞ function of (θ, y) ∈ R1+n near 0 such that

φ(0, 0) = ∂θφ(0, 0) = ∂2
θφ(0, 0) = 0 and ∂3

θφ(0, 0) 6= 0 .

Then there exist C∞ real valued functions a(y) and b(y) near 0 such that a(0) = b(0) = 0
and ∫

A(θ, y)eitφ(θ,y) dθ ∼ eitb(y)

(
Ai
(
a(y)t2/3

)
t−1/3

∑
0≤j≤∞

u0,j(y)t−j

+ Ai′
(
a(y)t2/3

)
t−2/3

∑
0≤j≤∞

u1,j(y)t−j
)
,

(3.3)

provided that A ∈ C∞0 and suppA is sufficiently close to 0. Here u0,j , u1,j ∈ C∞0 .
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Figure 4: Wave fronts for the linearized FPU chain in comparison with the corresponding Airy
function approximation.

Here Ai(·) denotes Airy’s function defined by Ai(z) = 1
2

∫
R ei(u

3/3+zu)dz, see for instance
[Olv74] for basic properties. Figure 4 show wave fronts together with the correspondingly scale
Airy function.

There remain two questions. First, the result does neither state the functions a, b, u0,j and u1,j

nor the error bounds in terms explicitly. Second, these functions are not determined uniquely,
i.e. the theorem does not state that the asymptotic series (3.3) is unique. We will make these
functions and the error estimates for this expansion more explicit in Section 4.3. For this we give
a short summary on a suitable version of Weierstrass’ preparation theorem and explain that the
functions a and b can be made more explicit. This allows us to estimate the remainder terms
explicitly.

For the following result we recall that that for a degenerate wave number θcr there may be other
nondegenerate wave numbers θ having the same group velocity, namely cgr(θcr) = cgr(θ).
Thus, an Airy-type degenerate behavior may be superimposed by a nondegenerate harmonic
wave train. This is expressed in the following result by the additive structure Gdg + G0 and can
be see in the example displayed in Figure 3.

Theorem 3.3 (Asymptotic behavior near degenerate points):
Consider Green’s function of the Hamiltonian system (2.5) and assume that the corresponding
dispersion relation ω defined in (2.4) satisfies the non-degeneracy condition (2.10). Then, there
exists ε0 = ε0(ω̃) > 0, δ0 = δ0(ω̃) > 0 and Cdg(ω̃) > 0 such that for all c ∈ Ccr(ε0)∣∣G(t, c)− Gdg(t, c)− G0(t, c)

∣∣ ≤ Cdg(ω)t−1 (3.4a)

with

Gdg(t, c) =
∑

θ̂∈Θcr(c,ε0)

(
Aθ̂(c) cos

([
ω(θ̂)− ĉθ̂ − bθ̂(c)

]
t
)

Ai
(
aθ̂(c)t

2/3
)
t−1/3

− Bθ̂(c) sin
([
ω(θ̂)− ĉθ̂ − bθ̂(c)

]
t
)

Ai′
(
aθ̂(c)t

2/3
)
t−2/3

)
,

(3.4b)
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where ĉ = ω′(θ̂), and

G0(t, c) =
∑

θ∈Θ(c) and
dist(θ,Θcr(c,ε0))>δ0

1√
8π|ω′′(θ)|

(
1 1

ωr(θ)

ωr(θ) 1

)
· cos

[
(ω(θ)− cθ)t+ signω′′(θ)π

4

]
t−1/2 .

(3.4c)

The scalar-valued functions aθ̂, bθ̂ as well as the R2×2-valued functions Aθ̂ and Bθ̂ are real-

analytic on [ĉ−ε0, ĉ+ε0]. Furthermore, for (c−ω′(θ̂))ω′′′(θ̂) > 0 we have

aθ̂(c) =
(

3
4
[ς−(c)− ς+(c)]

)2/3
= − 3

√
2

ω̃′′′(θ̂)
(c− ĉ) +O

(
(c− ĉ)2

)
(3.5)

bθ̂(c) = ω̃(θ̂)− ĉθ̂ − 1
2
[ς−(c) + ς+(c)] = 2θ̂(c−ĉ) +O

(
(c−ĉ)2

)
, (3.6)

where ς±(c) := ω̃(θ±(c)) − cθ±(c) and θ+(c), θ−(c) ∈ Uδ0(θ̂) are the two wave numbers
such that c = ω̃′(θ±(c)) and θ−(c) < θ+(c). Moreover, we have

Aθ̂(c) = 1
3
√

4|ω̃′′′(θ̂)|

(
1 1

ωr(θ̂)

ωr(θ̂) 1

)
+O(c− ĉ) . (3.7)

Note that the error bound Cdg(ω) depends on ω only. If c is near the sonic wave speed cmax

the nondegenerate part G0 vanishes and the sum in (3.4b) reduces to one term (or in the
degenerated case of several wave numbers traveling with the same sonic wave speed to just as
many terms). Furthermore in case θ̂ = 0 mod π we have bθ̂ ≡ 0.

3.2 Full approximation and crossover

We are now in the position to define the full expansion that gives rise to the uniform approxi-
mation result stated in Theorem 1.1. We simply choose the ε0 according to Theorem 3.3 and
define Gexpan via

Gexpan(t, c) =


Gnon(t, c) for c ∈ [−cmax, cmax] \ Ccr(ε0),

Gdeg(t, c) + G0(t, c) for c ∈ Ccr(ε0),
0 for |c| > cmax + ε0.

(3.8)

Combining Proposition 2.3 and the Theorems 3.1 and 3.3 we have established the main The-
orem 1.1 on the uniform approximation of the exact Green’s function by Gexpan up to a uniform
error of orderO(1/t).

Now we discuss the cross-over between the three different regions of definition for the function
Gexpan. We first look at the expansions for |c| > cmax. For all such c we have exponential decay
for t → ∞, by Proposition 2.3. Thus, replacing this function by 0 will certainly keep the error
orderO(1/t).

Second we look at the overlap between the degenerate and the nondegenerate case inside
(−cmax, cmax). Certainly we can make ε0 for the degenerate as large as possible and make ε
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for the nondegenerate much smaller. Then we have an overlap of the two domains where the
expansions are valid. Since both approximations decay slower that 1/t, the theory can only be
consistent if the error between the two approximations is at most O(1/t). To understand the
cross-over between these to regimes explicitly, we consider θ̂ ∈ Θcr with ω̃′′′(θ̂) > 0, i.e. a
wave front traveling to j → +∞ as t→∞. The leading order term of (3.4b) is

gdeg(t, c) = Aθ̂(c) · cos
([
ω(θ̂)− ĉθ̂ − bθ̂(c)

]
t
)
· Ai

(
aθ̂(c)t

2/3
)
t−1/3 .

We fix c ∈ ω̃′(S1) such that −ε0 < c− ĉ < 0 and aim to determine the behavior as t→∞.
Recall the asymptotic behavior of Airy’s function,

Ai(z) ∼ 1√
π
z−1/4

(
cos
(

2
3
z3/2 − π

4

)
+O(z−3/2)

)
as z → −∞ .

Now, z = aθ̂(c)t
2/3 and (3.5) imply 2

3
z3/2 = 1

2

[
ς−(c)− ς+(c)

]
. With (3.6) we find

cos
([
ω(θ̂)− ĉθ̂ − bθ̂(c)

]
t
)

cos
(

2
3
z3/2 − π

4

)
= 1

2
cos
(
ς+(c)t− π

4

)
+ 1

2
cos
(
ς−(c)t+ π

4

)
.

Since the saddle point of order two in θ̂ splits up into the two saddle points θ±(c) of order one,
we have two oscillating terms; each corresponding to one term in (3.1b).

Concerning the amplitude we expand ω̃′′(θ) and c = ω̃′(θ) in θ̂, which implies ω̃′′(θ) =
2ω̃′′′(θ̂)(ĉ−c)+O

(
(ĉ− c)2/3

)
. Thus, using the second representation of aθ̂ from (3.5) yields

1√
π

Aθ̂(c)z
−1/4t−1/3 =

1√
2π|ω̃′′(θ)|

(
1 1

ωr(θ̂)

ωr(θ̂) 1

)
t−1/2 +O(c−ĉ) .

Combining this with the oscillating terms we obtain two terms of (3.1b).

4 Asymptotic expansions - proofs

This section is dedicated to the proofs of the asymptotic expansions stated in the last section,
namely to Theorem 3.3 and 3.1. Before starting the actual work, we outline the general strategy
followed in Section 4.2 and 4.3 to derive the asymptotic expansions.

4.1 General strategy for the proofs

Consider an oscillatory integral of the form

g(t, c) =

∫
S1

A(θ)eitφ(θ,c) dθ (4.1)

We aim to derive an asymptotic expansion which holds (locally) uniformly with respect to c, for
instance for c ∈ [c∗−ε, c∗+ε]. The procedure splits into the following four steps.
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Localization principle
As mentioned in Section 2.2, the asymptotic behavior of (4.1) for t → ∞ is dominated by
the wave numbers {θ1, ..., θK} = Θ(c∗) which fulfill the condition ∂θφ(θk, c∗) = 0. This is
due to fact to which [Ste93, VIII] refers as the first principle of oscillatory integrals, namely the
localization principle. Here the underlying idea is that, if |∂θφ(θk, c)| is uniformly bounded from
below on [θ, θ], we may apply partial integration to obtain∣∣∣∣∣

∫ θ

θ

A(θ) eitφ(θ,c) dθ

∣∣∣∣∣ =

∣∣∣∣∣ A(θ)

it∂θφ(θ, c)

∣∣∣∣θ
θ

−
∫ θ

θ

∂θ

(
A(θ)

it∂θφ(θ, c)

)
eitφ(θ,c) dθ

∣∣∣∣∣ ≤ C

t
.

If the boundary terms cancel due to periodicity or compact support we may iterate the argument
to obtain bounds∼ t−N . To utilize this fact for (4.1) we use a partition of unity {ψ1, ..., ψK , 1−

∑
k ψk}

on S1 with ψk ∈ Ck0 (Uδ(θk)) for some δk > 0 which in general might depend on k. Then
asymptotic behavior is dominated by terms of the form

Ik(t, c) =

∫ θk+δ

θk−δ
A(θ)ψk(θ)e

itφ(θ,c) dθ . (4.2)

For the localization error holds

∣∣Rloc(t, c)
∣∣ =

∣∣∣∣∣
∫
S1

A(θ)
[
1−

∑
k

ψk(θ)
]
eitφ(θ,c) dθ

∣∣∣∣∣ ≤ C
(
ω, ε,min

k
δk

)
t−N

for some N ∈ N. The bound C(ω, ε,mink δk) depends on δk via ‖ψk‖Wn,p .

Local coordinate transformation
The next step consists in rewriting (4.2) using a suitable coordinate transform u = U(θ, c).
In the simplest case with |∂2

θφ(θk, c)| = |ω′′(θk)| 6= 0, we may use the implicit function
theorem to see that locally we can achieve φ(θ, c) = ±(u2 + φ(θk, c)). This applies in case
of the inner regions, cf. Section 4.2. At the wave fronts the dispersion relation degenerates: For
θ̂ ∈ Θcr and ĉ = cgr(θ̂) holds |∂2

θφ(θ̂, ĉ)| = |ω′′(θ̂)| = 0 but |∂2
θφ(θ, c)| = |ω′′(θ)| 6= 0 for

arbitrary c (in a sufficiently small neighborhood) if θ 6= θ̂. In that case we may apply a suitable
version of Weierstrass’s Preparation theorem which is derived in appendix B. For instance, if
|∂3
θφ(θk, c)| = |ω′′′(θk)| 6= 0 we obtain φ(θ, c) = σ

3
u3 +a(c, θk)u+ b(c, θk). The asymptotic

behavior of (4.1) in this case is discussed in detail in Section 4.3. Since the preparation theorems
are quite general the theory also applies for higher order of degeneracy.

In any case we may substitute θ = Θ(u, c) := U−1(u, c) in (4.2) such that

Ik(t, c) =

∫ B

−B
f(u, c) eitp(u,c,θk) du

with f(u) = A◦Θ(u, c) · ψk◦Θ(u, c) · ∂uΘ(u, c) and p(·, c, θk) is a polynomial in a suitable
normal form.

Actual decay rate
In this step the actual leading order term of the asymptotic expansion is derived by tracing back
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Ik(t, c) to special functions. In the non-degenerated case we obtain integral of Fresnel-type, in
the degenerated case we obtain Airy’s function. In any case we basically obtain

Ik(t, c) = G(t, c) t−1/n +Rk(t, c)

with n = 2 or 3.

Estimation of the error terms
It remains to estimate the error term. We will prove that

|Rk(t, c)| ≤ C(ω, ε) t−1 .

In general, this might not be optimal with respect to the decay in t. But we focus on the depen-
dency which actually is more complicated. In fact, in the non-degenerated case C , as well as
G, becomes singular as ε→ 0. In this step we finally fix δk = δk(ε).

Thus, combining all estimates we end up with

|g(t, c)− G(t, c) t−1/n| ≤ C(ω, ε) t−1 .

4.2 Asymptotic expansion in the nondegenerate case

In this section we proof Theorem 3.1. We follow the strategy outlined in Section 4.1. The proof
splits into two parts. First we apply standard method of stationary state, cf. for instance [Won89,
Ste93] to derive the leading order term if the asymptotic expansion. Second we derive a uniform
upper bound on the error term when the expansion becomes singular as ε→ 0.

We consider Green’s function represented by (2.14). We choose a parametrization of S1 on
(2π, 2π], i.e. the components of G(t, c) are given by

g(t, c) =
1

4π

∫ 2π

−2π

A(θ) eitφ(θ,c) dθ with φ(θ, c) = cθ − ω̃(θ), c =
j

t

and A(θ) = 1, eiθ/2/ωr(θ) or ωr(θ)e
−iθ/2.

Assume ε > 0 and c ∈ ω′(S1) \ Ccr(ε). We implicitly exclude the degenerated case ω′(S1) \
Ccr(ε) = ∅ where the statement becomes meaningless, i.e. we assume ε < 2cmax. Assume
Θ(c) = {θ1, . . . , θK}.

Localization
For localization to the relevant wave numbers consider δ > 0 such that

∀ k1 6= k2 : Uδ(θk1) ∩ Uδ(θk2) = ∅ (4.3)

Without loss of generality we may assume Uδ(θk) ⊂ (−2π, 2π] for all k = 1, ..., K . Oth-
erwise we simply may shift the parametrization of S1. We choose a smooth partition of unity
{ψ1, . . . , ψK , 1−

∑
ψk} on (−2π, 2π] with ψk ∈ C2

0 (Uδ(θk)) and ψk
∣∣
Uδ/2(θk)

= 1. For later

use we record that there exist C1, C2 > 0 such that

‖ψk‖∞ = 1 , ‖ψ′k‖∞ =
C1

δ
, ‖ψ′′k‖∞ =

C2

δ2
. (4.4)
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Now, the components of Green’s function read as

g(t, c) =
1

4π

∑
k

∫ θk+δ

θk−δ
ψk(θ)A(θ) eitφ(θ,c) dθ +Rloc(t, c) (4.5)

with

Rloc(t, c) =
1

4π

∫ 2π

−2π

[
1−

∑
k

ψk(θ)
]
A(θ) eitφ(θ,c) dθ . (4.6)

Obviously, the localization error is O(t−N) for all N ∈ N. But here we want to point out the
dependency of the bound on ε. We postpone the discussion. First we derive the leading order
asymptotic behavior. To do so we consider

I(t, θk) =

∫ θk+δ

θk

ψk(θ)A(θ)eitφ(θ,c) . (4.7)

The discussion for
∫ θk
θk−δ

works analogous. Since from now on we will focus on on single integral
of the this form, we omit the index k in ψk to simplify notation.

Local coordinate transform
We introduce a new variable u by

φ(θ, c) = − sign ω̃′′(θk)u
2 + φ(θk, c)

which defines the coordinate transform

U(θ) =
√
− sign ω̃′′(θk)

(
φ(θ, c)− φ(θk, c)

)
.

The function U(θ) is smooth and monotone on [θk, θk+1) For later use we introduce

h(θ, θk) =
−2 sign ω̃′′(θk)

(
φ(θ, c)− φ(θk, c)

)
(θ − θk)2

− |ω̃′′(θk)|

= 2 sign ω̃′′(θk)
∞∑
n=1

ω̃(n+2)(θk)

(n+ 2)!
(θ − θk)n

(4.8)

such that we may write

U(θ) = 1√
2
(θ − θk)

√
|ω̃′′(θk)|+ h(θ, θk) . (4.9)

Here, the analyticity of ω̃ carries over to h. Moreover, note that h(θ, θk) = O(θ−θk) as θ → θk

and U ′(θk) =
√
|ω̃′′(θk)|

2
.

Using the implicit function theorem we invert the coordinate transform U , i.e. θ = Θ(u) :=
U−1(u) and substitute the integration variable in (4.7). Since ψ is compactly supported we may
replace the upper bound U(θk+δ) by∞ such that

I(t, θk) = eit sign ω̃′′(θk)φ(c,θk)

∫ ∞
0

f(u)eitu2

du (4.10)
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with f(u) = A◦Θ(u) · ψ◦Θ(u) ·Θ′(u). Note that, via Θ and ψ, f depends on θk.

Actual decay rate
To derive the actual asymptotic expansion we use arguments based on partial integration. We
basically follow the procedure presented in [Won89, II.3].

We define

K0(u) = eitu2

and Kn+1(u) = −
∫ u+∞eiπ/4

u

Kn(ũ) dũ .

Thus, applying partial integration to (4.10) leads to

e−it sign ω̃′′(θk)φ(c,θk)I(t, θk) = f(u)K1(u)
∣∣∣∞
u=0
−
∫ ∞

0

f ′(u)K1(u) du

= −f(0)K1(0)−
∫ ∞

0

f ′(u)K1(u) du .

Using f(0) = ψ(θk)A(θk)Θ
′(0) = A(θk)

√
|ω̃′′(θk)|

2
and

K1(0) = −
∫ ∞eiπ/4

0

eitu2

du = −
∫ ∞

0

e−
1
2
u2

du · eiπ
4

√
2t

= −
√
π

2
eiπ

4 t−1/2

we obtain the first order term of the asymptotic expansion,

I(t, θk) = eit sign ω̃′′(θk)φ(c,θk)A(θk)
√

2π
|ω̃′′(θk)|

eiπ
4 t−1/2 +R(t, θk) . (4.11)

in which, after a second partial integration

e−it sign ω̃′′(θk)φ(c,θk)R(t, θk) = −
∫ ∞

0

f ′(u)K1(u) du

= −f ′(0)K2(0) +

∫ ∞
0

f ′′(u)K2(u) du

holds for the error term. Thus we get

|R(t, θk)| ≤
1

2

(
|f ′(0)|+

∫ ∞
0

|f ′′(u)| du
)
t−1 . (4.12)

Here the right hand side depends on ψ and via A and the coordinate transform Θ on the
dispersion relation ω̃ on [θk, θk+δ].

It remains to deter min how the right hand side depends on ε.Actually, this will take the larger
part of the proof. Preliminary for that consider first the simplest example, namely the case of
pure nearest neighbor interaction. In that case we have ω̃(θ) = 1

2
sin θ

2
and ĉ = ±1 which

implies |ω̃′′(θ)| = 1
2

√
ĉ2 − c2 ∼

√
ε. The next basic lemma states that this holds in general.
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Lemma 4.1:
Consider the dispersion relation ω̃ defined in (2.13) and assume that the non-degeneracy con-
dition (2.10) is satisfied. Then there exists δ0 > 0 and constants C(ω̃), C(ω̃) > 0 such that

∀θ ∈
⋃
θ̂∈Θcr

Uδ0(θ̂) : C(ω̃)|c− ĉ|1/2 ≤ |ω̃′′(θ)| ≤ C(ω̃)|c− ĉ|1/2 (4.13)

where c = ω̃′(θ).

Proof. According to the non-degeneracy condition we have ω̃′′′(θ̂) 6= 0 for all θ̂ ∈ Θcr. We
define α := 1

2
minθ̂∈Θcr

|ω̃′′′(θ̂)| and α := maxθ∈S1 |ω̃′′′(θ)|. Since Θcr is finite, there exists
δ0 > 0 such that

∀θ ∈
⋃
θ̂∈Θcr

Uδ0(θ̂) : α ≤ |ω̃′′′(θ)| ≤ α.

As from now we assume θ ∈ Uδ0(θ̂) for some θ̂ ∈ Θcr. Due to ω̃′′(θ̂) = 0 it is straight forward
that

α|θ − θ̂| ≤ |ω̃′′(θ)| ≤ α|θ − θ̂| .
Now we consider c− ĉ = ω̃′(θ)− ω̃′(θ̂) and find |c− ĉ| ≤ |ω̃′′(θ)| · |θ − θ̂|. Thus we obtain
|c − ĉ|1/2 ≤ 1√

α
|ω̃′′(θ)| which proves the first estimate of (4.13) with C(ω̃) =

√
α. To prove

the second estimate note that, possibly after decreasing δ0, |c− ĉ| ≥ 1
2
α|θ − θ̂|2 again holds

for all θ ∈ Uδ0(θ̂). Thus we get |ω̃′′(θ)| ≤
√

2α√
α
|c− ĉ|1/2 which proves the second estimate in

(4.13) with C(ω̃) =
√

2α√
α

.

Estimation of the error term |R(t, θk)|
Now we are able to prove the second statement of Theorem 3.1. At first we determine a uniform
bound on |R(t, θk)| for ε small where the asymptotic expansion becomes singular. To do so we
first provide some formulas to express f ′(u) and f ′′(u) in (4.12), respectively, in terms of the
dispersion relation ω̃. Obviously we have

f ′ = ψAΘ′′ + (ψθA+ ψAθ) Θ′
2 (4.14)

f ′′ = ψAΘ′′′ + 3 (ψθA+ ψAθ) Θ′Θ′′ + (ψθθA+ ψAθθ + 2ψθAθ) Θ′
3 (4.15)

and, with θ = Θ(u), for the coordinate transform holds

Θ′(u) =
1

U ′(θ)
, Θ′′(u) = − U

′′(θ)

U ′(θ)3 , Θ′′′(u) =
3U ′′(θ)2 − U ′(θ)U ′′′(θ)

U ′(θ)5 . (4.16)

Finally we express the derivatives of U in terms of ω̃ and h. According to (4.9) we find

U ′ =
2(|ω̃′′(θk)|+hk) + (θ−θk)h′k

2
√

2(|ω̃′′(θk)|+hk)1/2

U ′′ =

(
4h′k + 2h′′k(θ−θk)

)
(|ω̃′′(θk)|+hk)− h′k

2(θ−θk)
4
√

2(|ω̃′′(θk)|+hk)3/2

U ′′′ =

(
12h′′k+4h′′′k (θ−θk)

)
(|ω̃′′(θk)|+hk)2

8
√

2(|ω̃′′(θk)|+hk)5/2

+
−
(
6h′k

2+8h′kh
′′
k(θ−θk)

)
(|ω̃′′(θk)|+hk) + 3h′k

3(θ−θk)
8
√

2(|ω̃′′(θk)|+hk)5/2
.

(4.17)
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Now we consider the first term on the right hand side of (4.12). Using (4.16), (4.17), (4.9) and
ψ′(Θ(0)) = ψ′(θk) = 0 we find ψθAΘ′2

∣∣
u=0

= 0, ψAθΘ′
2
∣∣
u=0

= 2A′(θk)
|ω̃′′(θk)|

and ψAΘ′′
∣∣
u=0

=
2 sign ω̃′′(θk) ω̃

′′′(θk)
3|ω̃′′(θk)|2

. Thus we have

|f ′(0)| ≤
∣∣∣∣ 2A′(θk)|ω̃′′(θk)|

+
2 sign ω̃′′(θk) ω̃

′′′(θk)

3|ω̃′′(θk)|2

∣∣∣∣ =: B1(θk) . (4.18)

Concerning the second term on the right hand side of (4.12), due to the compact support of ψ

and
∫ U(θk+δ)

0
A(θ(u))Θ′(u) du =

∫ θk+δ
θk

A(θ) dθ, (4.15) leads to∣∣∣∣∫ ∞
0

f ′′(u) du

∣∣∣∣ ≤‖A‖W 2,1(θk,θk+δ)

(∥∥∥∥Θ′′′

Θ′

∥∥∥∥
L∞(0,U(θk+δ))

+ 3
(

1+‖ψ′‖L∞(θk,θk+δ)

)
‖Θ′′‖L∞(0,U(θk+δ))

+
(

1+2‖ψ′‖L∞(θk,θk+δ)+‖ψ
′′‖L∞(θk,θk+δ)

)
‖Θ′2‖L∞(0,U(θk+δ))

)
.

Using (4.4) and (4.16) this implies

|R(t, θk)| ≤
1

2

(
B1(θk) +B2(θk, δ) +

B3(θk, δ)

δ
+
B4(θk, δ)

δ2

)
t−1 (4.19)

with

B2(θk, δ) = ‖A‖W 2,1(S1)

∥∥∥∥3U ′′2 − U ′U ′′′

U ′4

∥∥∥∥
L∞(θk,θk+δ)

B3(θk, δ) = C‖A‖W 2,1(S1)

∥∥∥∥ U ′′U ′3

∥∥∥∥
L∞(θk,θk+δ)

B4(θk, δ) = C‖A‖W 2,1(S1)

∥∥∥∥ 1

U ′2

∥∥∥∥
L∞(θk,θk+δ)

(4.20)

and B1 defined in (4.18).

Now recall the assumptions of the first part of the proof: ε > 0, c ∈ ω̃′(S1) \ Ccr(ε), θk ∈
{θ1, . . . , θK} = Θ(c) and δ > 0 such that Uδ(θk1) ∩ Uδ(θk2) 6= ∅ if k1 6= k2 (cf. (4.3)) is
fulfilled. We aim to prove that the bound on R(t, θk) is uniform with respect to c ∈ ω̃′(S1) \
Ccr(ε). To do so we express the dependency on c in terms of θk. Since ω̃′ is continuous and
Θcr finite, there exists δε > 0 such that ω̃′ (Θcr(δε)) ⊂ Ccr(ε). For later use we choose
δε maximal in the sense that there exists θ̂ ∈ Θcr such that |ω̃′(θ̂+δε) − ω̃′(θ̂)| = ε or
|ω̃′(θ̂−δε) − ω̃′(θ̂)| = ε. Thus, proving the assertion for θk ∈ Θc

cr(δε) = S1 \ Θcr(δε) is
sufficient since, due to ω̃′(S1) \ Ccr(ε) ⊂ ω̃′(Θc

cr(δε)), this includes all demanded cases.

According to Lemma 4.1 there exists δ0 > 0 such that (4.13) holds. By eventually decreasing

δ0 we may ensure furthermore that Θcr(δ0) =
⋃
θ̂∈Θcr

Uδ(θ̂) is a disjoint union. Note that this
choice of δ0 only depends on ω̃. Now, to provide an upper bound on the right hand side of
(4.19), we distinguish two cases.
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First we consider θk ∈ Θc
cr(δε) \Θcr(δ0). An upper bound on B1 defined in (4.18) is provided

by B1(θk) ≤ max
{
B1(θ)

∣∣θ ∈ S1 \Θcr(δ0)
}

:= B̄1 which only depends on ω̃. To provide

an upper bound on B2, B3 and B4 we fix δ < δ0, e.g. δ := δ0
2

. This is consistent with condition

(4.3) since dist(θk,Θcr) ≥ δ0 and the fact that there always exists θ̂ ∈ Θcr such that θk <

θ̂ < θk+1. We again have Bn(θk, δ) ≤ max
{
Bn

(
θ, δ0

2

)∣∣θ ∈ S1 \Θcr(δ0)
}

:= B̄n. Thus, in

case we proved the statement with a bound independently of ε,

∀ θk ∈ Θc
cr(δε) \Θcr(δ0) : |R(t, θk)| ≤ C(ω̃) t−1 . (4.21)

In the second case, θk ∈ Θc
cr(δε) ∩Θcr(δ0), the singularity as ε → 0 comes into play. The

choice of δ0 implies 1
|ω̃′′(θk)|

≤ 1
C(ω̃)ε1/2

. Thus we obtain

B1(θk) ≤
2|A′(θk)|
C(ω̃) ε1/2

+
2|ω̃′′′(θk)|
3C2(ω̃) ε

≤ C(ω̃)

ε
. (4.22)

For B2, B3 and B4 we have to provide lower bounds on the denominators on the right hand
side of (4.20). To do so note that according to Lemma 4.1 holds |ω̃′′(θk)| ≥ C(ω̃)ε1/2. We
introduce v(θ, θk) := h(θ, θk) + 1

2
∂1h(θ, θk)(θ − θk). Claiming that

∀θk ∈ Θc
cr(δε) ∩Θcr(δ0) ∀θ ∈ [θk, θk+δ] :

|h(θ, θk)| ≤ 1
2
C(ω̃) ε1/2 and |v(θ, θk)| ≤ 1

2
C(ω̃) ε1/2

(4.23)

we obtain

|ω̃′′(θk)|+ h(θ, θk) ≥ 1
2
C(ω̃) ε1/2 and

2
(
|ω̃′′(θk)|+ h(θ, θk)

)
+ ∂1h(θ, θk)(θ − θk) ≥ C(ω̃) ε1/2 .

(4.24)

To see that it is possible to choose δ > 0 such that (4.23) holds consider h̃(∆θ, θk) :=
h(θk+∆θ, θk) on [0, δε] × Θc

cr(δε) ∩Θcr(δ0). Since the domain is compact, h̃ continuous
and h̃(0, θk) = 0 holds for all θk, there exists δ1 ∈ (0, δε] such that

∀∆θ ∈ [0, δ1] : max
θk
|h̃(∆θ, θk)| ≤ 1

2
C(ω̃) ε1/2 .

We may choose δ1 maximal in the sense that either maxθk |h̃(∆θ, θk)| ≥ 1
2
C(ω̃) ε1/2 for

∆θ ∈ [δ1, δ̃1) with some δ̃1 > 0 or δ1 = δε. Repeating the arguments for ṽ(∆θ, θk) :=
v(θ, θk) leads to δ2 > 0. Choosing δ := min{δ1, δ2} provides (4.23). Now, using (4.17) and
ε ≤ 2 maxθ∈S1 |ω̃′(θ)| we obtain∥∥∥∥∥3U ′′(θ)2 − U ′(θ)U ′′′(θ)

U ′(θ)4

∥∥∥∥∥
L∞(θk,θk+δ)

≤ C(ω̃)

ε5/2
,

∥∥∥∥ U ′′(θ)U ′(θ)3

∥∥∥∥
L∞(θk,θk+δ)

≤ C(ω̃)

ε3/2
, and

∥∥∥∥ 1

U ′(θ)

∥∥∥∥2

L∞(θk,θk+δ)

≤ C(ω̃)

ε1/2

(4.25)

with constants C(ω̃) > 0 depending only on ω̃.

23



It remains to express δ in terms of ε. To do so we distinguish three cases, namely δ = δ1 < δε,
δ = δ2 < δε and δ = δε. In the first case we consider θ̄k := argmax |h̃(δ, θk)|. In view of (4.9)
an the fact that ω̃ is real analytic h̃ in fact is well defined and smooth on a compact domain which
is a superset of [0, δε]×Θc

cr(δε) ∩Θcr(δ0) and independent of ε, for instance [0, π]×[−π, π].
On this set there exists a global Lipschitz constant Lh̃ = Lh̃(ω̃) only depending on ω̃. We

obtain 1
2
C(ω̃) ε1/2 = |h̃(δ, θk)| ≤ Lh̃(ω̃) δ, i.e. 1

δ
≤ 2Lh̃(ω̃)

C(ω̃) ε1/2
= C(ω̃)

ε1/2
. In the second case

we again repeat the arguments for δ = δ2 and ṽ(∆θ, θk). For the third case recall that there
exists θ̂ ∈ Θcr such that |ω̃(θ̂±δε) − ω̃(θ̂)| = ε. According to Lemma 4.1 we have ε =
|ω̃(θ̂±δε)− ω̃(θ̂)| ≤ maxθ∈[θ̂,θ̂+δε]

|ω̃′′(θ)| δε ≤ C(ω̃) ε1/2 δε which leads to the same order
of decay as in the first two cases, i.e. we have

1

δ
≤ C(ω̃)

ε1/2
. (4.26)

To summarize, the terms on the right hand side of (4.19) are bounded as follows, B1(θk) ≤
C(ω̃)

ε1/2
, B2(θk) ≤ C(ω̃)

ε5/2
, B3(θk)

δ
≤ C(ω̃)

ε2
and B4(θk)

δ2
≤ C(ω̃)

ε3/2
. Thus we proved

∀ θk ∈ Θc
cr(δε) ∩Θcr(δ0) : |R(t, θk)| ≤ C(ω̃)ε−5/2 t−1 (4.27)

Combining all bounds we obtain

|R(t, θk)| ≤
1

2

(
C1(ω̃) +

C2(ω̃)

ε5/2

)
t−1 . (4.28)

Estimation of the error term |Rloc(t, c)|
Finally we consider the localization error given in (4.6). Using the notation θk < θ̂k < θk+1 we
see that the right hand side of (4.6) decomposes into terms of the form∫ θ̂k

θk+
δ
2

[
1− ψk(θ)

]
A(θ) eitφ(θ,c) dθ

Note that |φ′(θ, c)| strictly monotone on [θk, θ̂k]. Using Lemma 4.1 and (4.26) we find |φ′(θ, c)| ≥∣∣φ′ (θk+ δ
2
, c
)∣∣ ≥ minθ∈S1\Θcr(

δε
2

) |ω̃′′(θ)|
δ
2
≥ min

{
C1(ω̃), C2(ω̃) ε

}
. Thus, applying par-

tial integration we find∣∣∣∣∣
∫ θ̂k

θk+
δ
2

[
1− ψk(θ)

]
A(θ) eitφ(θ,c) dθ

∣∣∣∣∣ ≤
(
C1(ω̃) +

C2(ω̃)

ε

)
t−1 .

This decay rate is already covered by (4.28) which completes the proof.

4.3 Asymptotic expansion at the wave fronts

This section is dedicated to the proof of Theorem 3.3. Arguments presented in [Hör90, Won89,
BH86] are underlying the following considerations.
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Consider again Green’s function represented by (2.14). We choose a parametrization of S1 on
(−2π, 2π], i.e. the components of G(t, c) are given by

g(t, c) =
1

4π

∫ 2π

−2π

A(θ)eitφ(θ,c) dθ with φ(θ, c) = cθ − ω̃(θ), c =
j

t

and A(θ) = 1, ei
θ
2

ωr(θ)
or ωr(θ)e

−i θ
2 .

Localization
We aim to determine the asymptotic behavior of g(t, c) as t → ∞ for group velocities c near
caustics, i.e. |c − ĉ| = ε with ĉ = ω̃′(θ̂), θ̂ ∈ Θcr. Here, in general, the asymptotic behavior
splits up into two components. One contribution ∼ t−1/3 is made by a neighborhood of the
actual critical wave number θ̂ and one ∼ t−1/2 by further wave numbers θ ∈ Θ(c) which
are bounded away from that. The latter vanishes if we are close to the sonic wave speeds
±cmax = ±maxθ∈Θcr ω̃

′(θ̂). To formalize this define

δ0 := 1
4

min
θ̂1 6=θ̂2∈Θcr

|θ̂1 − θ̂2| and ε0 := min
θ̂∈Θcr

{
1
2

∣∣ω̃′(θ̂)− ω̃′(θ̂±δ0)∣∣} .

Note that both are uniquely determined by ω̃, i.e. bounds depending beside ω̃ on δ0 or ε0 are
according to our convention denoted by C(ω̃).

Now consider c ∈ Ccr(ε0) and {θ̂1, . . . , θ̂K} = Θcr(c, ε0). To simplify notation we as-
sume U2δ0(θ̂) ⊂ (−2π, 2π] for all k. For localization we use ψk ∈ C∞0

(
U2δ0(θ̂k)

)
with

ψ|[θ̂k−δ0,θ̂k+δ0] ≡ 1 and obtain

g(t, c) =
1

4π

∑
k

∫ θ̂k+δ0

θ̂k−δ0
A(θ) eitφ(θ,c) dθ +R0(t, c) +Rloc(t, c) (4.29)

with

R0(t, c) =
1

4π

∑
k

(∫ θ̂k−δ0

θ̂k−2δ0

+

∫ θ̂k+2δ0

θ̂k+δ0

)
ψk(θ)A(θ) eitφ(θ,c) dθ

Rloc(t, c) =
1

4π

(∫ θ̂1−δ0

−π
+

K−1∑
k=1

∫ θk+1−δ0

θ̂k+δ0

+

∫ π

θ̂K+δ0

)[
1−

∑
k

ψk(θ)
]
A(θ) eitφ(θ,c) dθ .

First we treat the error term R0. In view of our choice of δ0, |ĉ − ω̃′(θ)| is monotonically in-
creasing on [θ̂k, θ̂k+2δ0]. Utilizing the definition of ε0 we find that |∂θφ(θ, c)| ≥ −|ĉ − c| +
|ĉ − ω̃′(θ)| ≥ ε0 for θ ∈ [θ̂k+δ0, θ̂k+2δ0]. Since the same estimate holds on [θ̂k−2δ0, θ̂k],
integration by parts leads to

|R0(t, c)| ≤ C(ω̃) t−1 .

Introducing R0(t, c) would actually not have been necessary to determine the asymptotic ex-
pansion since the upcoming steps also do the job if it is merged with the remaining integral on
the right hand side of (4.29), cf. [Hör90]. But by doing so we may treat the remaining integral
in an analytic setting which makes it more easy to determine the leading order error terms ex-
plicitly. Here the pay-off are error terms ∼ t−1 at the boundary θ̂±δ0. But this is what we get

25



anyway from Rloc. We also could have used a simple cut-off, but we introduced ψk to highlight
the origin of the contribution.

Concerning the localization error Rloc we may distinguish two cases. First, assume there exists
θ ∈ Θ(c) \ {θ | dist(Θcr(c, ε0), θ) ≤ δ0}. Since we are again uniformly bounded away from
other critical wave numbers, we may use the theory presented in Section 4.2 to prove∣∣Rloc(t, c)− Gnon(t, c)t−1/2

∣∣ ≤ C(ω̃) t−1 .

Here Gnon(t, c) is defined in (3.1b), where in this case we only sum over Θ(c) \ Θcr(δ0). In
the second case, if θ ∈ Θ(c) \ {θ | dist(Θcr(c, ε0), θ) ≤ δ0} = ∅, we are obviously near
the sonic wave speed. We again have |∂θφ| ≥ ε0 but this time iterative application of partial
integration leads to

|Rloc(t, c)| ≤ CN(ω̃) t−N for all N ∈ N

since the boundary terms cancel due to periodicity and the compact support of ψk, respectively.

Local coordinate transform
Since from now on we will consider only one single integral

∫ θ̂k+δ0
θ̂k−δ0

A(θ) eitφ(θ,c) dθ we skip

the indices k and θ̂. Using the nondegeneracy condition ω′′′(θ̂) 6= 0 we can use the following
proposition summarizing all the necessary results concerning the local coordinate transform, cf.
[BH86, Won89] for a similar procedure.

Proposition 4.2 (Coordinate change for wave front):
Assume that θ 7→ ω(θ) is real analytic near θ̂ and that

ĉ := ω′(θ̂), ω′′(θ̂) = 0, and ω′′′(θ̂) 6= 0.

Then, for the function φ(θ, ĉ) = cθ − ω(θ) there exists a unique local, analytical coordinate
change u = U(θ, c) near (θ̂, ĉ) with inverse θ = Θ(u, c) satisfying U(θ̂, ĉ) = 0, ∂θU(θ̂, ĉ) >
0 and

φ(θ, c) = φ(Θ(u, c), c) = −σ
3
u3 − a(c)u+ b(c) with

σ := sign
(
ω′′′(θ̂)

)
∈ {−1, 1}, a(ĉ) = 0, σa′(ĉ) > 0, b(ĉ) = φ(θ̂, ĉ).

The functions a and b can explicitly be constructed as follows. For 0 < σ(c−ĉ) � 1 the
equation 0 = ∂θφ(θ, c) = c− ω′(θ) has exactly two solutions near θ̂, namely θ−(c) < θ+(c).
Now, for 0 < σ(c−ĉ)� 1 the functions a and b are given by

a(c) = σ
(3σ

4

[
φ(θ+(c), c)− φ(θ−(c), c)

])2/3

, b(c) =
1

2

[
φ(θ+(c), c) + φ(θ−(c), c)

]
.

In particular, if φ is odd in θ (i.e. φ(−θ, c) = −φ(θ, c) ), then b ≡ 0.

Remark 4.3:
Before we give the proof of this result, we show how the result looks like for the FPU chain
with ω(θ) = 2 sin(θ/2) with θ̂ = 0, where ĉ = 1 and ω′′′(0) = −1/4. We find θ±(c) =
±2 arccos(c) for 0 < c < ĉ = 1. By symmetry we have b ≡ 0 and find a(c) = (3[

√
1−c2 −
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c arccos c])2/3. This function can be extended analytically into a neighborhood of ĉ as follows.
With α = arccos c we have

a(c) = (3[sinα− α cosα])2/3 = α2g(α2)2/3,

where g is analytic around 0 with g(0) = 1 by using that 3[sinα − α cosα] = α3(1 +∑∞
k=1 ckα

2k). Now defining T as the inverse of C(r) =
∑∞

k=0(−r)k/((2k)!) (i.e. C(r2) =
cos r and C(−r2) = cosh r) we find a(c) = T (c)g(T (c))2/3, which is real analytic for c ∈
(−1, c∗) with c∗ ≈ 44.7, see Figure 5.

10 20 30 40 50

- 4

- 2

2

4

a(c)

c

Figure 5: Function a(c) for FPU dispersion relation ω(θ) = 2 sin(θ/2) at θ̂ = 0.

Proof. Without loss of generality we carry out the details of the proof for the case that ω̃′ takes
a local maximum at θ̂, i.e. ω̃′′′(θ̂) < 0. We introduce ε := ĉ − c. Due to c = ω̃′(θ) we have
ε ≥ 0 in the considered neighborhood of θ̂. For

φ̂(θ, ε) := φ(θ, ĉ−ε)− φ(θ̂, ĉ) = −θε− ω̃(θ) + ω̃(θ̂) + ω̃′(θ̂)(θ − θ̂)

holds
φ̂(θ̂, 0) = ∂θφ̂(θ̂, 0) = ∂2

θ φ̂(θ̂, 0) = 0 and ∂3
θ φ̂(θ̂, 0) > 0 .

Thus we are able to apply the suitable version of Weierstrass preparation theorem yielding a
normal form for φ̂. According to Theorem B.5, in a neighborhood of the critical point θ̂, there
exists a coordinate transform

u = U(θ, ε) or θ = Θ(u, ε) : φ̂(Θ(u, ε), ε) = Φ(u, ε) := 1
3
u3 − a(ε)u+ b(ε) . (4.30)

The transform U(θ, ε) as well as a(ε) and b(ε) are real analytic. Furthermore we have a(0) =
b(0) = 0.

In case φ̂ is symmetric in θ̂, we have b(ε) ≡ 0 such that the oscillatory contribution depends
on θ̂ only.

To make a and b explicit we use that, for θ 6= θ̂, the saddle point of order 2 splits up into two
saddle points of order 1. Thus, for ε > 0 there exist θ±(ε) such that ĉ− ω̃′

(
θ̂±(ε)

)
= ε, which

means ∂θφ̂(θ±(ε), ε) = 0 for all ε. We now set u±(ε) := U(θ±(ε), ε) and observe(
u±(ε)

)2 − a(ε) = ∂uΦ(u±(ε), ε) = ∂θφ̂(θ±(ε), ε) ∂uΘ(u±(ε), ε) = 0.

27



Hence, we conclude u = ±
√
a(ε), and using the definition of Φ in (4.30) we obtain

a(ε) =

(
3

4

[
φ̂
(
θ+(ε), ε

)
− φ̂(θ−(ε), ε)

])2/3

, b(ε) =
1

2

[
φ̂
(
θ+(ε), ε

)
+ φ̂
(
θ−(ε), ε

)]
.

Expanding θ±(ε) in powers of ε1/2 gives

θ±(ε) = θ̂ ±
√

2

−ω̃′′′(θ̂)
ε1/2 +

ω̃(4)(θ̂)

3ω̃′′′(θ̂)2
ε+O(ε3/2). (4.31)

Inserting this into φ̂(θ±(ε), ε) leads to the expansions

a(ε) = − 3

√
2

ω̃′′′(θ̂)
ε+O(ε2) , b(ε) = 2θ̂ ε+O(ε2) .

We derived these identities for ε ∈ [0, ε0]. But since a and b are real analytic this actually holds
at least for ε ∈ [−ε0, ε0].

Concerning the symmetric case where we have b ≡ 0 note that φ̂(θ̂−∆θ, c) = −φ̂(θ̂+∆θ, c)
implies 2θ̂c = ω̃(θ̂+∆θ) + ω̃(θ̂−∆θ). Keeping in mind that c = j/t and that fact that we
actually consider eitφ we find that the last identity needs to be valid mod 2π/t. I.e. since c is
arbitrary, we have b ≡ 0 if θ̂ = 0 modπ.

Actual decay rate

Obviously, Uδ0(θ̂) × [−ε0, ε0] is included in the neighborhood where the statement holds. In-
troducing the new variable u we may rewrite the integral on the right hand side of (4.29) as
follows,

I(t, ε) =

∫ θ̂+δ0

θ̂−δ0
A(θ) eitφ(θ,ĉ−ε) dθ

= eit[b(ε)−φ(θ̂,ĉ)]

∫ U(θ̂+δ0,ε)

U(θ̂−δ0,ε)
A
(
Θ(u, ε)

)
∂uΘ(u, ε) eit(u3/3−a(ε)u) du .

(4.32)

To calculate the actual decay rate we again apply a version of Weierstrass division theorem.
Regarding f(u, ε) := A

(
Θ(u, ε)

)
∂uΘ(u, ε), Theorem B.2 yields

f(u, ε) = q(u, ε)
[
u2 − a(ε)

]
+ β(ε)u+ α(ε) (4.33)

with real analytic functions q, β and α. Thus, (4.32) reads as

I(t, ε) = eit[b(ε)−φ(θ̂,ĉ)]

∫ U(θ̂+δ0,ε)

U(θ̂−δ0,ε)

[
β(ε)u+ α(ε)

]
eit(u3/3−a(ε)u) du+R1(t, ε) (4.34)
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with

R1(t, ε) = eit[b(ε)−φ(θ̂,ĉ)]

∫ U(θ̂+δ0,ε)

U(θ̂−δ0,ε)
q(u, ε)

[
u2 − a(ε)

]
eit(u3/3−a(ε)u) du

=
−i

t
eit[b(ε)−φ(θ̂,ĉ)]

(
q(u, ε) eit(u3/3−a(ε)u)

∣∣∣∣U(θ̂+δ0,ε)

U(θ̂−δ0,ε)

−
∫ U(θ̂+δ0,ε)

U(θ̂−δ0,ε)
∂uq(u, ε) eit(u3/3−a(ε)u) du

) (4.35)

The first two terms on the right hand side of (4.34) bear the leading order asymptotic behavior.
We have∫ U(θ̂+δ0,ε)

U(θ̂−δ0,ε)
eit(u3/3−a(ε)u) du = 2πAi

(
−a(ε)t2/3

)
t−1/3 +R2(t, ε) and

U(θ̂+δ0,ε)∫
U(θ̂−δ0,ε)

u eit(u3/3−a(ε)u) du = 2πi Ai′
(
−a(ε)t2/3

)
t−2/3 +R3(t, ε),

where Rj(t, ε) =

∫
R\[U(θ̂−δ0,ε),U(θ̂+δ0,ε)]

uj−2 eit(u3/3−a(ε)u)du for j = 2, 3 .

Here Ai(·) denotes Airy’s function Ai(z) = 1
2π

∫
R ei(u

3/3+zu)du.

Before estimating the error terms we want to make the last two functions on the right hand side
of (4.33) explicit to determine the leading order terms. To do so note that

f
(
±
√
a(ε), ε

)
= ±β(ε)

√
a(ε) + α(ε)

which implies

α(ε) =
1

2

[
f
(√

a(ε), ε
)

+ f
(
−
√
a(ε), ε

)]
, β(ε) =

1

2
√
a(ε)

[
f
(√

a(ε), ε
)
− f

(
−
√
a(ε), ε

)]
and q(u, ε) = f(u,ε)−β(ε)u−α(ε)

u2−a(ε) . The first factor of f(±
√
a(ε), ε) we have at hand explicitly.

We either have A ≡ 1 or, in view of (4.31), A
(
Θ(±

√
a(ε), ε)

)
= A

(
θ̂+∆θ±

)
= A(θ̂) ±

Ã1ε
1/2 +Ã2ε±Ã3ε

3/2 +O(ε2) withA(θ̂) 6= 0. For the second multiplier we start from identity

(4.30) and apply l’Hopital’s rule to ∂uΘ = u2−a(ε)
∂θφ̂

. This leads to

(
∂uΘ(±

√
a(ε), ε)

)2

=
2u

∂2
θ φ̂

∣∣∣∣
u=±
√
a(ε)

=
±2
√
a(ε)

−ω̃′′(θ̂+∆θ±)
=

(
2

ω̃′′′(θ̂)

)2/3

+O(ε1/2) .

Thus, we obtain
α(ε) = A(θ̂) 3

√
2

|ω̃′′′(θ̂)| +O(ε) .
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This identity again holds for ε ∈ [−ε0, ε0]. Note that the leading order term is always nonzero.

Concerning β we know by Theorem B.2 that the singularity in ε = 0 is removable. Indeed, we
have β = ∂uf(0, 0). Here we do not determine the leading order term explicitly. But note that
in general this is not nonzero. For instance, in case φ̂ and with it U are symmetric (cf. special
case of Theorem B.5) we have ∂2

uΘ(0, 0) = 0. Thus for the first component of G (i.e. A ≡ 1)
holds ∂uf(0, 0) = A′(θ̂)(∂uΘ(0, 0))2 + A(θ̂)∂2

uΘ(0, 0) = 0.

Estimation of the error terms
Now we turn to estimate the error terms. We will prove that R1 as well as R2 and R3 are at
leastO(t−1). To shorten the notion we introduce u± := U(θ̂±δ0, ε).

We start the considerations with R2 where again partial integration does the trick,∫
R\[u−,u+]

eit(u3/3−a(ε)u)du =
1

t
[
u2 − a(ε)

]∣∣∣∣u−
u+

+

∫
R\[u−,u+]

2u

t
[
u2 − a(ε)

]2 eit(u3/3−a(ε)u)du .

Recall that
∣∣∂θφ̂(θ̂±δ0, ε)

∣∣ ≥ ε0. Since ∂θφ̂ ∂uΘ = u2 − a(ε) and the fact that |∂uΘ| is

uniformly bounded from below on [θ̂−δ, θ̂+δ] × [0, ε0] we conclude
∣∣u2
± − a(ε)

∣∣ ≥ C(ω̃)ε0.
Obviously, the remaining integral on the right hand side also is uniformly bounded. Since the
same arguments apply to R3(t, ε) we obtain

|R2(t, ε)| ≤ C(ω̃) t−1 and |R3(t, ε)| ≤ C(ω̃) t−1

with C(ω̃) only depending on ω̃).

It remains to determine an upper bound on R1. In view of (4.35) this is straight forward. We find

|R1(t, ε)| ≤
(
|q(u+, ε)|+ |q(u−, ε)|+ ‖∂uq(·, ε)‖L1(u−,u+)

)
t−1 ≤ C(ω̃) t−1

which completes the proof.

We conclude the proof with two final remarks. Note first that one can not expect that the error
bounds going to zero as ε → 0. The reason is that R2 and R3, which represent the deviation
from Airy’s function due to the bounded domain of integration, as well as R1, which represents
the higher order terms of the asymptotic expansion, remain in case of a pointwise expansion
for ε = 0. Second, the bounds ∼t−1 of the error terms are again due to the cut-off. Using a
smooth partition of unity R2 and R3 would behave like t−N for all N ∈ N (cf. Rloc) and R1 like
the next term of the asymptotic expansion, namely ∼ t−4/3.

A Representations of Green’s function

Recall the formulas of the dispersion relation,

ω(θ) := 2
∣∣sin θ

2

∣∣ωr(θ) and ω̃(θ) := 2 sin θ
2
ωr(θ)
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with ωr ∈ Cω(S1) and (2.12), i.e.

∃ cr > 0 ∀ θ ∈ S1 : ωr(θ) ≥ cr

∀ θ ∈ S1 : ωr(θ) = ωr(−θ) = ωr(θ+2π).

The following different representations of Green’s function (2.8) are equivalent:

Gj(t) =
1

2π

∫
S1

(
cos(ω(θ)t) eiθ−1

ω(θ)
sin(ω(θ)t)

−ω(θ)
eiθ−1

sin(ω(θ)t) cos(ω(θ)t)

)
eij θ dθ (A.1)

Gj(t) =
1

2π

∫
S1

(
cos(ω̃(θ)t) ieiθ/2

ωr(θ)
sin(ω̃(θ)t)

ie−iθ/2ωr(θ) sin(ω̃(θ)t) cos(ω̃(θ)t)

)
eij θ dθ (A.2)

Gj(t) =
1

2π

π∫
0

(
h+(θ, t, j/t) 1

ωr(θ)
h−(θ, t, (j+1/2)/t)

ωr(θ)h−(θ, t, (j−1/2)/t) h+(θ, t, j/t)

)
dθ

where h±(θ, t, c) = cos(t(ω(θ)+θc))± cos(t(ω(θ)−θc))

(A.3)

Gj(t) =
1

2π

π∫
−π

(
cos(ω(θ)t±θj) ± sign(θ)

ωr(θ)
cos(ω(θ)t±θ(j+1/2))

±ωr(θ) sign(θ) cos(ω(θ)t±θ(j−1/2)) cos(ωrt±θj)

)
dθ

(A.4)

Gj(t) =
1

2π

∫
S1

(
eitφ±(2θ,c) ± eiθ

ωr(2θ)
eitφ±(2θ,c)

±ωr(2θ)
eiθ

eitφ±(2θ,c) eitφ±(2θ,c)

)
dθ, φ±(θ, c) = θc± ω̃(θ).

(A.5)

Proof. We only give the proof for the two componentsG1,1
j (t) andG1,2

j (t). The proof forG2,1
j (t)

is analogous to that of G1,2
j (t).

(A.1) =⇒ (A.2):
The result for the first component is obvious by cos(ω(θ)t) = cos(ω̃(θ)t). For the second
component we use sin(ω(θ)t) = sign θ sin(ω̃(θ)t), and

2 sin θ
2

= −ie−iθ/2(eiθ − 1) , i.e.
eiθ − 1

ω(θ)
=

ieiθ/2

ωr(θ)
sign θ .

(A.1) =⇒ (A.3):
For the first component we use

π∫
0

cos(ωt)eiθj dθ =
1

2

π∫
0

[
ei(ωt+θj) + e−i(ωt−θj)

]
dθ
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0∫
−π

cos(ωt)eiθj dθ =
1

2

π∫
0

[
ei(ωt−θj) + e−i(ωt+θj)

]
dθ

and for the second

π∫
0

eiθ − 1

ω
sin(ωt)eiθj dθ =

π∫
0

ieiθ/2

ωr

· 1

2i

[
ei(ωt+θj) − e−i(ωt−θj)

]
dθ

=
1

2

π∫
0

1

ωr

[
ei(ωt+θ(j+1/2)) − e−i(ωt−θ(j+1/2))

]
dθ

0∫
−π

eiθ − 1

ω
sin(ωt)eiθj dθ =

0∫
−π

−ieiθ/2

ωr

· 1

2i

[
ei(ωt+θj) − e−i(ωt−θj)

]
dθ

=
1

2

π∫
0

1

ωr

[
e−i(ωt+θ(j+1/2)) − ei(ωt−θ(j+1/2))

]
dθ .

(A.3) =⇒ (A.4):
The proof for the first component is again straight forward since

π∫
0

cos(ωt∓θj) dθ =

0∫
−π

cos(ωt±θj) dθ .

For the second component we have

π∫
0

1

ωr

cos(ωt∓θ(j+1/2)) dθ =

0∫
−π

1

ωr

cos(ωt±θ(j+1/2)) dθ

and conclude

π∫
0

1

ωr

[
cos(ω(θ)t+θ(j+1/2))− cos(ω(θ)t−θ(j+1/2))

]
dθ

=

π∫
−π

sign(θ)

ωr

cos(ω(θ)t+θ(j+1/2)) dθ = −
π∫

−π

sign(θ)

ωr

cos(ω(θ)t−θ(j+1/2)) dθ .

(A.2) =⇒ (A.5):
Due to ω̃(2π+θ) = −ω̃(θ) we have

π∫
−π

ei(∓ω̃t+θj) dθ =

−π∫
−3π

ei(±ω̃t+θj) dθ .
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Thus, using the 4π-periodicity of ω̃ we get
π∫

−π

cos(ω̃t)eiθj dθ =
1

2

π∫
−π

[
ei(ω̃t+θj) + ei(−ω̃t+θj)

]
dθ

=
1

2

π∫
−3π

ei(±ω̃t+θj) dθ =

π∫
−π

ei(±ω̃(2θ)t+2θj) dθ

which proves the result for the first component.
For the second component we use

π∫
−π

1

ωr

ei(∓ω̃t+θ(j+1/2)) dθ = −
−π∫
−3π

1

ωr

ei(±ω̃t+θ(j+1/2)) dθ

such that
π∫

−π

ieiθ/2

ωr(θ)
sin(ω̃(θ)t)eiθj dθ =

1

2

π∫
−π

1

ωr

[
ei(ω̃t+θ(j+1/2)) − ei(−ω̃t+θ(j+1/2))

]
dθ

= ±1

2

π∫
−3π

1

ωr

ei(±ω̃t+θ(j+1/2)) dθ = ±
π∫

−π

1

ωr(2θ)

ei(±ω̃(2θ)t+2θ(j+1/2)) dθ .

Finally, since tφ±(θ+2π, c) = tφ±(θ, c) + 4πk, the integrand is well defined on S1 and we
actually have

∫
S1 . . . dθ instead of

∫ π
−π . . . dθ.

Remark A.1:
We want to note the folowing observations.

� In case of ωr ≡ 1 the components of Gj(t) are Bessel-functions (cf. [Fri03]).

� ω is 2π-, but ω̃ is only 4π-periodic.

� For n ∈ N and k ∈ Z holds ω(2n)(0) = 0, ω(2n+1)(±π) = 0 and ω̃(2n)(2kπ) = 0.

� The first term of h in (A.3) corresponds to wave numbers c ≤ 0, the second to c ≥ 0.

� The kernel of (A.4) is only 4π-periodic, i.e. it is not ∈ Cω(S1) anymore and we really have∫ π
−π . . . dθ instead of

∫
S1 . . . dθ. In contrast to that the kernel of (A.5) is Cω(S1).

� In passing to the representation (A.5) the number of critical wave numbers doubles: While
the sin- and cos-terms for each wavenumber θ always involve two group velocities ±ω′(θ),
the exponential terms necessitates two different wave numbers.

B Preparation theorems

In Section 4 we derive uniform asymptotic expansions of integrals

I(t, y) =

∫ δ

−δ
A(θ)eitφ(θ,y) dθ . (B.1)
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To do so we are faced with two challenges. First, it is necessary to rewrite the phase function
φ in a suitable normal form, which is not straight forward if φ is degenerated. For instance in
Section 4.3 we have φ(θ, y) analytic with

φ(0, 0) = ∂θφ(0, 0) = ∂2
θφ(0, 0) = 0 , ∂3

θφ(0, 0) > 0 (B.2)

but ∂2
θφ(θ, y) 6= 0 for (θ, y) 6= 0 in a neighborhood on (0, 0). Second, at one point we want

to rewrite A in a suitable factorized form to be able to separate leading order terms, cf. (4.33)
and (4.34). In both cases the key ingredients are the preparation theorems of Weierstrass and
Malgrange, respectively.

To avoid confusion due to the non-uniform labeling we first recall the different versions of the
preparation theorems according to [Hör90]. Then we state and proof a special version to be
applied in Section 4.3.

Preparation theorems of Weierstrass and Malgrange

The first two theorems are the classical version in the analytic setting.

Theorem B.1 (Weierstrass preparation theorem, [Hör90, 7.5.1]):
Let g be an analytic function of (θ, z) ∈ C1+n in a neighborhood of (0, 0) such that

g(0, 0) = ∂θg(0, 0) = · · · = ∂k−1
θ g(0, 0) = 0, ∂kθ g(0, 0) 6= 0 (B.3)

Then there exists a unique factorization

g(θ, z) = h(θ, z)
(
θk + ak−1(z)θk−1 + · · ·+ a0(z)

)
where aj and h are analytic in a neighborhood of 0 and (0, 0) respectively, h(0, 0) 6= 0 and
aj(0) = 0.

Sometimes the following division theorem is referred to as Weierstrass preparation theorem. It
is a generalization of the last result and also known as Weierstrass formula.

Theorem B.2 (Weierstrass division theorem, [Hör90, 7.5.2]):
Let g and f be analytic functions of (θ, z) ∈ C1+n in a neighborhood of (0, 0) and g satisfy
(B.3). Then

f(θ, z) = q(θ, z)g(θ, z) + rk−1(z)θk−1 + · · ·+ r0(z) (B.4)

where rj and q are uniquely determined and analytic in a neighborhood of 0 and (0, 0).

Theorem B.1 is a special case of Theorem B.2 with f(θ, z) = θk.

The C∞ counterparts of the last two results are dedicated Malgrange. The analog of Theo-
rem B.1, namely the Malgrange preparation theorem is again stated and proven in [Hör90]. Here
we only state the second result which is sometimes also referred to as Malgrange preparation
theorem or Mather division theorem.
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Theorem B.3 (Malgrange division theorem, [Hör90, 7.5.6]):
Let g and f be C∞ functions of (θ, x) ∈ R1+n in a neighborhood of (0, 0) and g satisfy (B.3).
Then

f(θ, x) = q(θ, w)g(θ, x) + rk−1(x)θk−1 + · · ·+ r0(x)

where rj and q are C∞ functions in a neighborhood of 0 and (0, 0).

The proof can be deduced from the Weierstrass preparation theorem by decomposing a smooth
function as a sum of analytic functions. But note that waiving the analyticity leads to a loss of
uniqueness.

Essential in deriving a suitable normal for for φ to rewrite (B.1) is that the normal form can also
be achieved by a change of variables instead of a multiplication.

Theorem B.4 ([Hör90, 7.5.13]):
Let φ be a C∞ function of (θ, y) ∈ R1+n in a neighborhood of (0, 0) which satisfies

φ(0, 0) = ∂θφ(0, 0) = · · · = ∂k−1
θ φ(0, 0) = 0, ∂kθφ(0, 0) > 0 (B.5)

Then one can find a real valued C∞ function U(θ, w) with U(0, 0) = 0, ∂θU(0, 0) > 0 and
C∞ functions aj(y) with aj(0) = 0 such that for u = U(θ, y) holds

φ(θ, y) = 1
k
uk + ak−2(y)uk−2 + · · ·+ a0(y) .

Real-analytic coordinate transform

In view of (B.2) we may apply Theorem B.4 to introduce a new coordinate u = U(θ, y) such
that

φ(θ, y) = 1
3
u3 + a(y)u+ b(y) . (B.6)

The functions U , a and b areC∞ and U(0, 0) = a(0) = b(0) = 0. But this result is insufficient
in two ways. First it does not yield a real-analytic coordinate change. Second we claim to have
b(y) ≡ 0 in a special case. Concerning this note that the 3rd power mixes even and odd powers
of θ such that U(−θ, y) = −U(θ, y), which would imply b(y) ≡ 0, it is not obvious. Here we
give a modified version of Theorem B.4 which accounts for these two aspects.

Theorem B.5:
Let φ be real-analytic a function of (θ, y) ∈ R2 in a neighborhood of (0, 0) which satisfies

φ(0, 0) = ∂θφ(0, 0) = · · · = ∂k−1
θ φ(0, 0) = 0, ∂kθφ(0, 0) > 0 . (B.7)

Then one can find a real-analytic coordinate transform u = U(θ, y) and real-analytic functions
aj(y) such that

φ(θ, y) = 1
k
uk + ak−2(y)uk−2 + · · ·+ a1(y)u+ a0(y) (B.8)

Here U(0, 0) = 0, ∂θU(0, 0) > 0 and aj(0) = 0.

Furthermore if φ is odd w.r.t. θ, i.e. φ(−θ, y) = −φ(θ, y), then so is U and a0(y) ≡ a2(y) ≡
· · · ≡ ak−3(y) ≡ 0.
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Proof. For the general case the proof can be copied form that of Theorem B.4, see [Hör90,
7.5.13], using Weierstrass instead of Malgrange division theorem. Here we only give the proof
for the specialization to the case where φ is odd.

Due to (B.7) there exists a function φ0 such that φ(θ, 0) = 1
k
θkφ0(θ) with φ0(θ) > 0 in a

sufficiently small neighborhood of 0. Now we may introduce the new coordinate ζ := θφk0(θ),

i.e. θ = Θ(ζ), such that φ(Θ(ζ), 0) = ζk

k
holds. Note that since φ odd w.r.t. θ, k = 2J+1

with J ∈ N. We will use the notation φ̃(ζ, y) := φ(Θ(ζ), y). Here the symmetry of φ carries
over to that of Θ and φ̃ w.r.t. ζ .

We define

F (ζ, y, α) := φ̃(ζ, y) +
J−1∑
j=0

αjζ
2j+1 .

Then we have in particular F (ζ, y, 0) = φ(Θ(ζ), y). Now we want to let ζ = ζ(y) and
α = α(y) vary such that F (ζ, y, α) remains constant. Then d

dy
F = 0 would lead to(

∂φ̃

∂ζ
+

J−1∑
j=0

(2j + 1)αjζ
2j

)
dζ

dy
+
∂φ̃

∂y
+

J−1∑
j=0

dαj
dy

ζ2j+1 = 0 . (B.9)

Now we apply Weierstrass preparation theorem to justify the last equation. To do so we utilize
the the symmetry of φ̃. Note first that the function ∂F

∂ζ
is even w.r.t ζ . Thus

Λ(ξ, y, α) :=
∂F

∂ζ

∣∣∣∣
ζ2=ξ

=
∂φ̃

∂ζ

∣∣∣∣
ζ2=ξ

+
J−1∑
j=0

(2j + 1)αjξ
j

is real-analytic and satisfies (B.3) with k = J and w = (y, α). For the same reason ∂φ̃
∂y

is odd

w.r.t. ζ . Thus f(θ, y) := 1
ζ
∂φ̃
∂y

∣∣∣
ζ2=ξ

is again real-analytic. Applying Theorem B.2 to Λ and f

leads to
1

ζ

∂φ̃

∂y
= q(ζ2, y, α)

(∂φ̃
∂ζ

+
J−1∑
j=0

(2j + 1)αjζ
2j
)

+
J−1∑
j=0

rj(y, α)ζ2j (B.10)

In view of this relation (B.9) holds if

dζ

dy
= −ζq(ζ2, y, α) and

dαj
dy

= −rj(y, α) for j = 0, . . . , J − 1

does. Solving these ODE’s with initial conditions ζ(0) = u and αj(0) = aj with u and aj
sufficiently close to 0 leads to ζ = ζ(u, y, a) and αj = αj(y, aj). These functions are again
real-analytic in a neighborhood of 0.
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Since d
dy
F = 0 in a neighborhood of 0 we conclude

F (ζ, y, α) = φ
(
Θ(ζ(u, y, a)), y

)
+

J−1∑
j=0

αj(y, aj)[ζ(u, y, a)]2j+1

= φ
(
Θ(ζ(u, 0, a)), 0

)
+

J−1∑
j=0

αj(0, aj)[ζ(u, 0, a)]2j+1

=
1

k
uk +

J−1∑
j=0

aju
2j+1

Due to ∂
∂aj
αj(0, aj) = 1 and frac∂∂uζ(u, 0, a) = 1 we can locally invert the functions

αj = αj(y, aj) and ζ = ζ(u, y, a). Hence aj = aj(y, αj) and u = u(ζ, y, α), where the
dependence is again real-analytic. Thus we get

F (ζ, y, α) =
1

k
[u(ζ, y, α)]k +

J−1∑
j=0

aj(y, αj)[u(ζ, y, α)]2j+1 .

In view of the definition of F putting α = 0 leads to the desired normal form and U(θ, y) :=
u(Θ−1(θ), y, 0) is the corresponding coordinate transformation. Finally, the conditions on U
and aj in 0 as well as the symmetry of U w.r.t. θ are easily checked.
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