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AbstratWe show that many ouplings between paraboli systems for proesses in solidsan be formulated as a gradient system with respet to the total free energy orthe total entropy. This inludes Allen-Cahn, Cahn-Hilliard, and reation-di�usionsystems and the heat equation. For this, we write the oupled system as an Onsagersystem (X,Φ,K) de�ning the evolution U̇ = −K(U)DΦ(U). Here Φ is the drivingfuntional, while the Onsager operator K(U) is symmetri and positive semide�nite.If the inverse G = K−1 exists, the triple (X,Φ,G) de�nes a gradient system.Onsager systems are well suited to model bulk-interfae interations by using thedual dissipation potential Ψ∗(U,Ξ) = 1
2〈Ξ,K(U)Ξ〉. Then, the two funtionals Φ and

Ψ∗ an be written as a sum of a volume integral and a surfae integral, respetively.The latter may ontain interations of the driving fores in the interfae as well as thetraes of the driving fores from the bulk. Thus, apture and esape mehanisms likethermioni emission appear naturally in Onsager systems, namely simply throughintegration by parts.1 IntrodutionThe aim of this work is to present a unifying thermomehanial framework for the mod-eling of dissipative e�ets in solids. In partiular, this will allow us to derive thermody-namially onsistent ouplings between several e�ets usually onsidered separately. Thiswill inlude Allen-Cahn and Cahn-Hilliard systems for vetors of phase indiators and thedissipative evolution of internal variables like visoplastiity or magnetization. Moreover,reation-di�usion system of mass-ation type an also be handled. Most importantly, theoupling to the energy balane (heat equation) is disussed in detail to obtain a orretenergy balane and a positive entropy-prodution rate.The main idea of the paper is to formulate all these proesses in terms of a gradientsystem. For most of the individual systems the gradient struture is well establishedand used in di�erent oasions. For reation-di�usion system a full gradient struturewas established only reently in [Mie11b℄, inluding the non-isothermal ase with a heatequation. However, the oupling of di�erent gradient systems is nontrivial, and the mainobservation of this paper is that the oupling is largely simpli�ed if we onsider the dualformulations, whih we all Onsager systems.A gradient system is a triple (X,Φ,G), where X is the state spae, Φ : X → R is theenergy funtional driving the dynamis, and G is a metri tensor, i.e. G(U) : TUX → T∗
UXis a symmetri and positive (semi)de�nite operator, whih is alled the Riemannian tensor(if X is a �nite-dimensional manifold). The evolution equation is given by

G(U)U̇ = −DΦ(U).In many ases an Onsager system (X,Φ,K) is equivalent to a gradient system, as itsequation is
U̇ = −K(U)DΦ(U), (1.1)and now K(U) : T∗

UX → TUX is a symmetri and positive semide�nite operator. Clearly,if G and K are invertible the two notions are equivalent by setting K(U) = G(U)−1. Weall the triple (X,Φ,K) an Onsager system, beause of Onsager's fundamental symmetry1



relations, meaning K = K∗, and the Onsager priniple. The latter states that the rate U̇of a marosopi variable U is given by the produt of a symmetri matrix (the ativities)and the thermodynamially onjugate driving fore, namely −DΦ(U). The similar theoryfor �uxes (f. [Ons31℄) states that the mobility tensor M in di�usive system must besymmetri, see Setions 2.2 and 3.2.1.From the thermodynamial point of view, we will onsider two distint ases, theisothermal and the non-isothermal ase. In the former ase the free energy F(y) =
E(y, θ∗) − θ∗S(y, θ∗) is the driving potential Φ. In the non-isothermal ase we will usethe state variable (y, r) where r is a salar temperature-like variable, whih is typiallyhosen to be the temperature θ, the internal energy density e, or the entropy density s.Sine we are dealing with a losed system, we have the total energy E(y, r) as a on-served funtional while the negative total entropy −S(y, r) serves as the driving fun-tional Φ. Note that the orresponding Onsager operators Kisoth(y) and Knoniso(y, r)have di�erent physial dimensions, the former de�ning the dual dissipation potential
Ψ∗isoth(y; η) = 1

2
〈η,Kisoth(y)η〉 and the latter de�ning the dual entropy-prodution po-tential Ψ∗noniso(y, r; η, τ) = 1

2
〈
(

η

τ

)
,Knoniso(y, r)(ητ)〉.The advantages of the Onsager form over the gradient systems are manifold. First,we are used to write ordinary and partial di�erential equations as rate equations U̇ = ....,where the right-hand side is often a sum of di�erent terms relating to di�erent physiale�ets. Suh a struture an easily be mimiked in Onsager system, by writing

U̇ = −
(
K1(U) +K2(U) + · · ·+KN(U)

)
DΦ(U).Thus, we an add di�erent dissipation mehanisms as long as we use the same drivingfuntional, namely the physial free energy or the negative entropy. This provides anatural way to add di�usive and reative e�ets of hemial speies, thermal entropyprodution, or dissipation through hanging phase indiators.A seond advantage of the Onsager systems is that di�erential operators for the Kj aneasily be handled, like in the ase of the Cahn-Hilliard equation, the heat equation, or indi�usion systems. Most e�iently K is de�ned in terms of the dual dissipation potential

Ψ∗(U,Ξ) = 1
2
〈Ξ,K(U)Ξ〉 for the isothermal ase (and the dual entropy-prodution poten-tial for the non-isothermal ase), i.e. K is de�ned in terms of a nonnegative quadratiform.Third, it is easy to handle linear and nonlinear onserved quantities suh as thetotal energy E in the ase of losed non-isothermal systems. We simply have to ask

K(U)DE(U) ≡ 0 to obtain d
dt
E(U(t)) = 0 along solutions of U̇ = −K(U)DΦ(U).The struture of the paper is the following. In Setion 2 we provide de�nitions andmotivations for gradient and Onsager systems and disuss their relation. In partiular,we address the isothermal ase and the non-isothermal ases. In Setion 3 we exhibit theOnsager struture in a series of bulk models suh as the Allen-Cahn equation, the Cahn-Hilliard equation, the heat equation, and the Penrose-Fife model. In Setion 2.4 we high-light that for energy-preserving and entropy-driven systems the free entropy (rather thanthe free energy) is the quantity de�ning the e�etive driving fores. Setion 3.2 follows[Mie11b℄, where an Onsager struture for reation-di�usion systems is established for rea-tion systems satisfying the detailed balane ondition. While Setion 3.3 treats isothermalouplings between several bulk e�ets, the Onsager struture for non-isothermal ases isaddressed in Setion 3.4, in partiular for energy-reation-di�usion systems.2



Finally, in Setion 4 we study the interation between bulk e�ets and interfae e�ets,where the framework of Onsager systems proves to be very e�ient. As in [Bed86, KjB08℄we use bulk �elds z : Ω → Rm and interfae �elds zΓ : Γ → Rk and de�ne the stateas Z = (z, zΓ). We de�ne funtionals Φ and Ψ∗ that onsist of a bulk integrals andinterfae integrals. Then, the Onsager system Ż = −DΞΨ∗(Z; DΦ(Z)) an be obtained bysimple variational derivative involving suitable integrations by part. We obtain onsistentsystems with interfae dynamis oupled via boundary interfae onditions to the bulkdynamis, f. [Bed86, KjB08℄ for the physial relevane of these systems. Setion 4.4presents an appliation in photovoltais, whih is treated in more detail in [GlM11℄.2 Gradient systems versus Onsager systemsIn this setion we give some general bakground about gradient systems and Onsagersystems. All our arguments are formal and assume su�ient smoothness of the potentialsand the solutions, whih is the ommon approah in thermomehanial modeling.2.1 Gradient systemsA gradient system is a triple (X,Φ,G) where X is the state spae ontaining the states
U ∈ X. For simpliity we assume that X is a re�exive Banah spae with dual X∗.The driving funtional Φ : X → R∞ := R ∪ {∞} is assumed to be di�erentiable (in asuitable way) suh that the potential restoring fore is given by −DΦ(U) ∈ X∗. The thirdingredient is a metri tensor G, i.e. G(U) : X → X∗ is linear, symmetri and positive(semi-)de�nite.The gradient �ow assoiated with (X,Φ,G) is the (abstrat) fore balane

G(U)U̇ = −DΦ(U) ⇐⇒ U̇ = −∇GΦ(U), (2.1)where we reall that the �gradient� ∇GΦ of the funtional Φ is an element of X (inontrast to the di�erential DΦ(U) ∈ X∗) and is alulated via G(U)−1DΦ(U). We allthis equation an abstrat fore balane, sine G(U)U̇ an be seen as a visous fore arisingfrom the motion of U . In fat, the symmetry of G allows us to de�ne a dissipation potential
Ψ : X ×X → [0,∞] via

Ψ(U, V ) =
1

2
〈G(U)V, V 〉.The symmetry of G implies that DV Ψ(U, V ) = G(U)V .2.2 Onsager systemsThe importane of gradient systems has its major basis in thermodynamis (TD), namelyin Onsager's symmetry relations or more general in Onsager's priniple, see [Ons31,DeM84℄. Stritly speaking, this priniple is only derived for systems lose to thermo-dynami equilibrium and has two forms, both of whih are relevant in the present work.In the �rst ase one onsiders a spatially homogeneous system desribed by a state vetor

z, whih is a small perturbation of the equilibrium. Then, its marosopi rate ż is givenin the form Kζ , where ζ = DS(z) is the thermodynamially onjugate driving fore and3



S is the entropy. The symmetry relation states that the matrix K has to be symmetri,while the entropy prodution priniple d
dt
S(z(t) = DS(z) · KDS(z) ≥ 0 implies that Khas to be positive semide�nite.In the seond ase one onsiders a spatially extended system with densities ui > 0de�ning a vetor u = (ui)i=1,...,I : Ω → ]0,∞[I and a total entropy S(u) =

∫
Ω
S(x,u(x))dx.If the total mi :=

∫
Ω
ui(x) dx is onserved, then the densities satisfy a balane equationin the form

u̇ + div ju = 0 with a �ux vetor ju = M∇µ,where the vetor µ of the hemial potentials is given by µ = DS(u), i.e. µi(x) =
∂ui
S(x, u(x)). Again the symmetry and entropy priniple state that M is a symmetriand positive semide�nite tensor (of fourth order), see [Ons31℄.Note that in this work we will all µ = DS the thermodynami driving fore (ratherthan a potential), while others all the omponents µi of µ the hemial potentials (for thegradients ∇µj). In this work a driving fore is lying in the dual spae of the variable (here

u), while ∇µj relates to gradient in the physial domain Ω. However, more importantly,we will group the equation u̇ + div
(
M∇µ

)
= 0 with µ = DS in the form u̇ = K(u)DS,where K(u) = − div

(
M∇�

) is a symmetri operator.We ombine the thermodynami onsiderations into an abstrat form and use themeven further away from the thermodynami equilibrium, see [Ött05℄ for physial justi-�ations to use these priniples beyond the range of linear irreversible TD. In onlu-sion we all a triple (X,Φ,K) an Onsager system, if Φ : X → R∞ is a funtional and
K(U) : X∗ → X is a linear, symmetri, and positive semide�nite operator. Of ourse, Kmay also be an unbounded operator de�ned on a suitable subset of X∗. The evolution ofthe states U is given via

U̇ = −K(U)DΦ(U). (2.2)In duality to the ase of gradient systems we de�ne a dual dissipation potential
Ψ∗(U,Ξ) =

1

2
〈Ξ,K(U)Ξ〉,suh that (2.2) takes the form U̇ = DΞΨ∗(U,−DΦ(U)).Interpreting the metri G and the Onsager operator K in the appropriate way, thereis a one-to-one orrespondene between gradient systems and Onsager systems. Thisequivalene is most easily seen by using the Legendre transform for relating the dissipa-tion potential Ψ(U, U̇) of the gradient system (X,Φ,G) to the dual dissipation potential

Ψ∗(U,Ξ) of the Onsager system (X,Φ,K). For this we extend Ψ and Ψ∗ by the value ∞wherever they are not de�ned and use the relations
Ψ∗(U,Ξ) = sup{ 〈Ξ, V 〉 −Ψ(U, V ) | V ∈ X } (i.e. � K(U) = G(U)−1 �),
Ψ(U, V ) = sup{ 〈Ξ, V 〉 −Ψ∗(U,Ξ) | Ξ ∈ X∗ } (i.e. � G(U) = K(U)−1 �).A major advantage of the Onsager form is its �exibility in modeling. Quite often dif-ferential equations are written in rate form where the vetor �eld is additively deomposedinto di�erent physial phenomena. This additive split an be also used for the Onsageroperator, as long as all the di�erent e�ets are driven by the same funtional Φ. Belowwe will see that K takes the additive form

K = Kdiss +Kdi� +Kreat +Kheat,4



suh that the evolution equation reads
U̇ = −

(
KdissDΦ +Kdi�DΦ +KreatDΦ +KheatDΦ

)
= −KDΦ.A similar additive split is not possible for the metri G, as the inverse operator of a sumof operators is di�ult to express, in partiular if the individual operators Kj may not beinvertible.2.3 Isothermal and non-isothermal Onsager systemsIn appliations to thermomehanis we have to distinguish two di�erent ases. In theisothermal ase the temperature is assumed to be onstant, and the driving funtional

Φ will be the free energy F . We will start with the non-isothermal ase, where thetemperature is an independent �eld that is oupled to the other �elds olleted into thevetor y. For suh systems we have two funtionals, namely the total energy, whihis preserved during the evolution of the system, and the total entropy, whih ats as adriving fore.In the non-isothermal ase the state spae X ontains states (y, θ), (y, e), or (y, s),where e is the internal energy density and s the entropy density. In fat, sine the physisis independent from our hoie of the variable, we follow [Mie11a, Set. 2.3℄ and preferto use an arbitrary salar variable r, whih an be one of the three variables θ, e, s, oranother suitable variable for desribing the heat distribution. With x = (y, r) we onsider
E(x) =

∫

Ω

E(x,y(x),∇y(x), r(x))dx and S(x) =

∫

Ω

S(x,y(x),∇y(x), r(x))dx, (2.3)where the onstitutive funtions E and S are interonneted by the Gibbs relation, whihnow leads to a de�nition of the temperature, namely
θ = Θ(x,y,∇y, r) :=

∂rE(x,y,∇y, r)

∂rS(x,y,∇y, r)
,where we always assume (without loss of generality) that the partial derivatives ∂rE and

∂rS are positive.In the non-isothermal ase the total entropy S (with the physially orret sign) isinreasing, so stritly speaking −S is the driving potential for the gradient �ow, but wewill not make this distintion in the text, but will always use the orresponding orretsigns in the formulas. Our Onsager system (X,S,K) hene gives rise to the equation
ẋ = +K(x)DS(x). To have energy onservation we need

d

dt
E(x) = 〈DE(x), ẋ〉 = 〈E(x),K(x)DS(x)〉 = 〈S(x),K(x)DE(x)〉 ≡ 0,where we used the symmetry K = K∗ for the last identity. Hene, it is su�ient (but notneessary) to impose the ondition

K(x)DE(x) = 0 for all x ∈ X.5



2.4 Free entropy as driving funtionalWe also argue that physially relevant driving fores should not depend on the hoie of
r ∈ {θ, e, s}. Thus, introduing the Helmholtz free energy ψ = e− θs and the Helmholtzfree entropy η = −ψ/θ = s− e/θ we have the formulas

ψ = F (x, Y, r) = E(x, Y, r)−Θ(x, Y, r)S(x, Y, r) and
η = −ψ/θ = H(x, Y, r) = S(x, Y, r)−

E(x, Y, r)

Θ(x, Y, r)
,where we use the shorthand Y = (y,∇y). The free entropy η is also alled Massieupotential [Massieu 1869℄ and was in fat introdued before the free energies of Gibbs[1873℄ and Helmholtz [1882℄.At �rst sight, it seems that there is only a simple di�erene by a fator −θ, whih anbe ompensated by the Onsager operator (thus turning the dual dissipation potential intoa dual entropy prodution potential, f. [Mie11a℄). However, if gradients ∇y our, thedriving fores are alulated via variational derivatives involving integrations by parts.Then, it is essential whether an x-dependent fator is inside or outside an integration byparts. In fat, assume F(y, r) =

∫
Ω
F (x,y,∇y, r) dx and H(y, r) =

∫
Ω
H(x,y,∇y, r) dxwith F = −ΘH , then DyH(y, r) annot by replaed by −1

θ
DyF , sine

DyH(y, r) + 1
θ
DyF(y, r) = − div

(
∂∇yH) +

1

θ
div(θ∂∇yH

)
=

1

θ
∇θ · ∂∇yH 6≡ 0in general. This di�erene will be relevant in the Penrose-Fife model disussed in Setion3.1.5. Using the ∗-multipliation of variational derivatives introdued below we have

DyH(y, r) = −1
θ
∗DyF(y, r).In many appliations the Onsager operator for non-isothermal systems has a speialstruture (f. [Edw98, Ött05, Mie11a℄), namely

K(y, r) = ME

(
Ky 0

0 Kheat )M∗
E with (2.4a)

Kheatτ = − div
(
kheat(y, r)∇τ) and M∗

E =

(
I −

(
�

∂rE

)
∗DyE

0 1
∂rE

)
. (2.4b)The �∗� multipliation is a speial operation for variational derivatives. If Φ(w) =∫

Ω
F (x, w(x),∇w(x))dx, then for a su�iently smooth funtion α : Ω → R we de�ne

α∗DwΦ(w) := α∂wF (x, w,∇w)− div
(
α∂∇wF (x, w,∇w)

)
.The de�nition of ME is suh that

M∗
EDE =

(
0

1

) and M∗
EDS =

(
DyS −

1
Θ
∗DyE

1/Θ

)
=

(
DyH(y, r)

1/Θ

)
,where H(y, θ) is the total free entropy. 6



Sine Kheat1 ≡ 0, we have the desired relation KDE ≡ 0 for energy onservation.Moreover, the oupled system an be rewritten in the form
ẏ = Ky(y, r)DyH(y, r),

ṙ =
1

∂rE

(
∂yE · ẏ + ∂∇yE : ∇ẏ +Kheat(y, r)(1/Θ(y,∇y, r)

))
.Thus, we onlude that in the non-isothermal ase with onserved energy E the orretdriving potential for the non-temperature part y of the system is the free entropy H(y, θ).2.4.1 Isothermal aseThe isothermal ase is easily derived from the non-isothermal ase as follows. We assumethat the temperature is onstant as the system is embedded into a muh larger heat bath,whih absorbs or provides heat energy as needed. In this ase we an use the above theorywith r = θ and then set θ = θ∗. In partiular we set

F∗(y) := F(y, θ∗) = −θ∗H(y, θ∗) and K∗(y) =
1

θ∗
Ky(y, θ).Thus, the above Onsager system redues the triple (Y ,F∗,K∗). We refer to [Mie11a,Set. 2.6℄ for a slightly more elaborate disussion of the isothermal limit in terms of anexpliit oupling to a heat bath.2.5 Priniples of thermodynamisWe �nally want to omment on the �rst and seond law of TD for the non-isothermalsystems disussed above. Our point is that Onsager systems have enoded these priniplesautomatially.The �rst law of TD states energy onservation. From our above onstrution we haveimmediately obtained that the total energy is onserved. For systems being de�ned interms of energy density E depending loally on the �elds y, ∇y, and r as in (2.3) it isthen easy to derive loal energy balanes, see [Mie11a, Set. 4℄.The seond law of TD states that the entropy has to inrease. For the total en-tropy this follows diretly from the positive semide�niteness of K, namely d

dt
S(x) =

〈DS(x),K(x)DS(x)〉 ≥ 0. For systems being de�ned in terms of energy density S de-pending loally on the �elds y, ∇y, and r as in (2.3) it is then easy to derive loal entropybalanes with suitable entropy �ux and a positive entropy prodution rate, see [Mie11a,Set. 4℄.However, as the name �Onsager system� suggest, our systems are speial dissipativesystems ful�lling not only the two fundamental laws but in addition the Onsager priniple:Onsager priniple: rate = sym.pos.semidef. operator × TD onjugate fore.3 Bulk models for solidsIn this setion we disuss bulk models where the driving funtional and the dissipationpotential are given by pure volume integrals. We �rst ollet a few lassial paraboli7



equations used for modeling solids and reall their gradient strutures. Some of thesegradient strutures are well-known, while in other ases they are only used rarely.3.1 Five lassial systems in gradient form3.1.1 Allen-Cahn equationThe Allen-Cahn equation is given in terms of the free energy FAC(z) =
∫
Ω

α
2
|∇z|2+f(z)dxand takes the form

ż = −kACDFAC(z) = −kAC(− div
(
α∇z

)
+ f ′(z)).In partiular, the dual dissipation potential has the form Ψ∗(z, ζ) =

∫
Ω

kAC
2
|ζ |2 dx, andthe Onsager operator is the multipliation operator KAC(z)ζ = kACζ .3.1.2 Dissipative materialsIn general dissipative material models, whih are also alled generalized standard mate-rials (f. [HaN75, Ha97℄), there is a set of internal variables z : Ω → R

m that mod-els mirosopi material properties on the marosopi level. This may inlude plas-ti strains, phase transformation, magnetization, polarization, or damage properties, see[Fré02, Mie06℄. For simpliity, we neglet here the elasti deformation, whih is treatedin [Mie11a, Mie11℄. We again onsider a free energy of the form
Fdiss(z) =

∫

Ω

1

2
∇z:A:∇z + f(z)dx.Using the Onsager matrix Kdiss(z) ∈ Rm×msym ≥ 0, the equation takes the form

ż = −Kdiss(z)DFdiss(z) = Kdiss(z)( div
(
A∇z

)
− Df(z)

)
.In plastiity, the evolution equation for z is alled �ow rule, whereas in ferroeletrimaterials it is alled swithing rule. The Onsager relation ż = −Kdissζ is often generalizedto a nonlinear relation in the form ż = DζΨ

∗diss(z,−ζ), where ζ = DFdiss(z) and Ψ∗diss is anon-quadrati dual dissipation potential, e.g. in the form
Ψ∗diss(z, ζ) = σyield|ζ |+ ν

q
‖ζ‖q.For simpliity, we do not follow this generalization any further here.3.1.3 Cahn-Hilliard equationIn this ase the (vetor-valued) internal variable ϕ : Ω → R

m onsists of onserved phaseindiators with a free energy
FCH(ϕ) =

∫

Ω

α

2
|∇ϕ|2 + f(ϕ)dx.8



The equation is a paraboli system of fourth order given as
ϕ̇ = −KCH(ϕ)DFCH(ϕ) = − div

(
M(ϕ)∇

(
− div(α∇ϕ) + Df(ϕ)

))
.Hene, the Onsager operator KCH is a di�erential operator, namely

KCH(ϕ)ξ = − div
(
M(ϕ)∇ξ

)
.Note that the evolution leaves the averages ∫

Ω
ϕ(t, x)dx onstant in time t. This followsfrom the general property of KCH that for ξ = c ≡ onst we have KCHc ≡ 0.3.1.4 Heat equationThe heat equation c(θ)θ̇ = div

(
κ(θ)∇θ

) an also be written in Onsager form using thephysial entropy as the driving funtional, namely S(θ) =
∫
Ω
S(θ(x)) dx. The totalenergy E(θ) =

∫
Ω
E(θ(x)) dx has to be onserved along solutions, where c(θ) = E ′(θ) isthe spei� heat whih satis�es the Gibbs relation θS ′(θ) = E ′(θ). We de�ne the Onsageroperator

Kheat(θ)τ := −
1

E ′(θ)
div
(
k(θ)∇

τ

E ′(θ)

)
,whih gives Kheat(θ)DE(θ) ≡ 0. The Onsager struture yields the equation

θ̇ = Kheat(θ)DS(θ) = −
1

E ′(θ)
div
(
k(θ)∇

(
S ′(θ)/E′(θ)

))

= −
1

E ′(θ)
div
(
k(θ)∇(1/θ)

)
=

1

E ′(θ)
div
(k(θ)
θ2

∇θ
)
.Hene, we obtain the original heat equation if we hoose k(θ) = θ2κ(θ).3.1.5 Penrose-Fife modelThis model ouples the Allen-Cahn equation for an internal variable z : Ω → Rm and theheat equation for the absolute temperature θ : Ω → ]0,∞[. Again the energy funtional

E is onserved along the solutions, while the entropy funtional S takes the role of thedriving funtional:
E(z, θ) =

∫

Ω

E(z, θ)dx and S(z, θ) =

∫

Ω

S(z, θ)−
α

2
|∇z|2 dx..We again assume the Gibbs relation ∂θE = θ∂θS. Using the mobility matrix M(z, θ) ∈

Rm×msym > 0 and the heat ondution tensor κ(z, θ) = k(z, θ)/θ2 ∈ Rd×dsym > 0 we de�ne theOnsager operator KPF = KAC +Kheat with
KAC =

(
M − 1

∂θE
MDzE

− 1
∂θE

DzE·M
1

∂θE
DzE·MDzE

)
, Kheat =


0 0

0 − 1
∂θE

div
(
k∇
(

�

∂θE

))

 .Here KPF has the form (2.4a), where Ky = M . Hene, KPF(z, θ)DE(z, θ) ≡ 0, whihguarantees energy onservation. 9



Next we laim that the Onsager system (
ż

θ̇

)
= KPF(z, θ)DS(z, θ) gives exatly thelassial Penrose-Fife system [PeF90, PeF93℄. The gradient struture was already used,at least impliitly, in [FeS05℄ and was highlighted expliitly in [Mie11b℄. We have

(
ż

θ̇

)
= KPF(z, θ)

(
DzS

∂θS

)
=

(
M
(
DzS − α∆z − 1

θ
DzE

)

− 1
∂θE

DzE·M
(
DzS−α∆z−1

θ
DzE

)
− 1

∂θE
div
(
k∇1

θ

)
)

=

(
M
(
DzS − α∆z − 1

θ
DzE

)

− 1
∂θE

DzE·ż + 1
∂θE

div
(
κ∇θ

)
)Using the free-entropy funtional H de�ned in Setion 2.3 the Penrose-Fife assumes ashort and elegant form:

(
ż

θ̇

)
=

(
MDzH(z, θ)

− 1
∂θE

DzE ·MDzH(z, θ) + 1
∂θE

div
(
κ∇θ

)
)
,whih learly shows that the free entropy H drives the motion of the dissipative variable

z. In some works the term MDzH is replaed by −1
θ
MDzF . We emphasize that this isthermodynamially not orret, sine DzH + 1

θ
DzF = −α

θ
∇θ ·∇z 6≡ 0 in general.3.2 Reation-di�usion systemsWhile the above gradient systems are well known, the gradient/Onsager struture for awider lass of reation-di�usion systems is less known. It was used in a few partiular ases(see e.g. [ÖtG97, Yon08, Ede09℄ and the disussion in Setion 3.2.2) but only highlightedin its own right in [Mie11b℄. The entral point is that in the Onsager form we have anadditive splitting of the Onsager operator into a di�usive part and a reation part, namely

u̇ = −
(
Kdi�(u) + Kreat(u)

)
Fhem(u), where u : Ω → ]0,∞[I is the vetor of densities ofthe speies X1, ..., XI . The free-energy funtional Fhem, whih is also alled the relativeentropy with respet to the referene density u∗, takes the form

Fhem(u) =

∫

Ω

I∑

i=1

u∗iλ(ui(x)/u
∗
i )dx where λ(ν) = ν(log ν − 1). (3.1)3.2.1 Di�usion systemsFor the gradient struture of di�usion systems u̇ = div

(
M(u)∇u

) one might be temptedto use a funtional involving the gradient ∇u, however we have to use the relative entropyas a driving funtional, beause we have to use the same funtional for modeling thereations. Hene, we use the Wasserstein approah to di�usion introdued by Otto in[JKO98, Ott01℄.The di�usion system will take the form u̇ = −Kdi�(u)DF(u) with an Onsager operator
Kdi� given via

Kdi�(u)µ = − div
(
M̃(u)∇µ

)
,where M̃(u) : Rm×d → Rm×d is a symmetri and positive semi-de�nite tensor of order 4.The Onsager operator an also be impliitly de�ned via the dual dissipation potential,10



whih will be useful later:
Ψ∗Wass(u,µ) =

∫

Ω

1

2
∇µ:M̃(u):∇µdx,where µ = (µi)i=1,..,I is the vetor of hemial potentials, whih ours as the driving fore

µ = DuFhem(u) = logu− logu∗.Hene, if the referene densities µ∗ are spatially onstant (whih is usually not true inheterostrutures like semiondutors) the Onsager system leads to the di�usion system
u̇ = div

(
M̃(u)∇(logu− logu∗)

)
= div

(
M(u)∇u

)
, where M̃(u) = M(u)diag(u).We emphasize that M̃ has to be symmetri by Onsager's symmetry relations, whihleads to unsymmetri operators M, if there is ross-di�usion. E.g. assuming I = 2,

u∗ = (1, 1), and isotropy, we arrive at the oupled system
(
u̇1

u̇2

)
=

(
div
(

em1(u1,u2)
u1

∇u1 + em12(u1,u2)
u2

∇u2

)

div
(

em12(u1,u2)
u1

∇u1 + em2(u1,u2)
u2

∇u2

)
)
,where m̃1, m̃2 > 0 and m̃1m̃2−m̃

2
12 ≥ 0. Hene, m̃12 6= 0 means ross-di�usion and yieldsthe unsymmetry of M.3.2.2 Chemial reation kinetisChemial reation systems are ODE systems u̇ = R(u), where often the right-hand sideis written in terms of polynomials assoiated to the reation kinetis. It was observedin [Mie11b℄ that under the assumption of detailed balane (also alled reversibility) suhsystems have a gradient struture with the relative entropy as the driving funtional.We assume that there are R reations of mass-ation type (f. e.g. [DeM84, GiM04,KjB08℄) between the speies X1, ..., XI denoted by

αr
1X1 + · · ·+ αr

IXI

kfwr⇀↽
kbwr

βr
1X1 + · · ·+ βr

IXI ,where kbwr and kfwr are the bakward and forward reation rates, and the vetors αr, βr ∈
NI

0 ontain the stoihiometri oe�ients. For the hemial reation 2CO + 1O2 ⇀↽ 2CO2we have α = (2, 1, 0)T and β = (0, 0, 2)T.The assoiated reation system for the densities (in a spatially homogeneous system,where di�usion an be negleted) reads
u̇ = R(u) := −

R∑

r=1

(
kfwr uαr

−kbwr uβr)(
αr − βr

)
, (3.2)where we use the monomial notation uα = uα1

1 · · ·uαI

I .11



The main assumption to obtain a gradient struture is that of detailed balane, whihmeans that there exists a referene density vetor u∗ suh that allR reations are balanedindividually, namely
∃u∗ ∈ ]0,∞[I ∀ r = 1, ..., R ∀u ∈ ]0,∞[I : kfwr (u)uαr

∗ = kbwr (u)uβr

∗ =: k∗r(u). (3.3)Here we have used the freedom to allow for reation oe�ients depending on the densities(and later also on other material properties like temperature).As in [Mie11b℄ we now de�ne the Onsager matrix
H(u) =

R∑

r=1

k∗r(u)Λ
(

uαr

uαr
∗

, uβr

u
βr

∗

)(
αr−βr

)
⊗
(
αr−βr

) with Λ(a, b) =
a− b

log a− log b
(3.4)and �nd that the reation system (3.2) takes the form

u̇ = R(u) = −H(u)DFhem(u). (3.5)This follows easily by using the de�nition of Λ and the rules for logarithms, namely
(
αr−βr

)
·
(
µ−µ∗) = log

(
uαr

/uαr

∗

)
− log

(
uβr

/uβr

∗

)
.The quotient Λ(a, b) = a−b

log a−log b
(or variants of it) have ourred oasionally in themodeling of reation kinetis: In [ÖtG97, Eqn. (113)℄ the reation N2+3H2⇀↽ 2NH3 iswritten in GENERIC, whih inludes the gradient struture for the reation. In [Ede09,Def. 3.22℄ the mapping (µ, η) 7→ 1/Λ(eµ, eη) is alled the ideal resistane funtion. In[Yon08, Set.VII℄ the de�nition of ∆j ontains ∫ 1

0
eσaj dσ = (eaj − 1)/aj = Λ(eaj , 1) toshow that the reation terms have the Onsager struture displayed in (3.5).3.2.3 Coupling di�usion and reationWe summarize the previous two subsetions by stating the following general result from[Mie11b℄ for Onsager strutures for reation-di�usion system.Theorem 3.1 If the reation di�usion system u̇ = div

(
M(u)∇u) + R(u) with R(u) =

−
∑R

r=1

(
kfwr (u)uαr

−kbwr (u)uβr)(
αr−βr

) satis�es the detailed balane ondition (3.3) andif M̃(u) = M(u)diag(u) is symmetri and positive semide�nite, then it is an Onsagersystem u̇ = −KRD(u)DFchem with
Fchem(u) =

∫

Ω

I∑
i=1

u∗iλ(ui(x)/u
∗
i )dx, Ψ

∗
RD(u,µ) =

1

2

∫

Ω

∇µ:M̃(u):∇µ + µ·H(u)·µdx.We mention that many reation-di�usion systems studied in the literature (inludingsemiondutor models involving an ellipti equation for the eletrostati potential), seee.g. [GlH05, DeF06, DeF07, Gli09, BoP11℄, have the struture developed above. So far,the gradient struture was not used expliitly, only the Liapunov property of the freeenergy Fhem was exploited for deriving a priori estimates.12



3.3 Consistent isothermal oupling to general bulk systemsWe �rst disuss the isothermal ase, where the driving funtional is the free energy.Using the above Onsager strutures for the internal variables z (non-onserved) and ϕ(onserved) and the hemial densities u we are now able to write onsistent bulk systemsby simply adding the free energies and the dual dissipation funtionals:
F(z, ϕ,u) = Fdiss(z) + FCH(ϕ) + FRD(u) + Foupl(z, ϕ,u),

Ψ∗(z, ϕ,u; ζ, ξ,µ) = Ψ∗diss(z; ζ) + Ψ∗CH(ϕ; ξ) + Ψ∗RD(u; µ) + Ψ∗oupl(z, ϕ,u; ζ, ξ,µ).Negleting the oupling term Ψ∗oupl in the dual dissipation potential we are led to



ż

ϕ̇

u̇


 = −




Kdiss(z) 0 0

0 KCH(ϕ) 0

0 0 KRD(u)







DFdiss(z) + DzFoupl(z, ϕ,u)

DFCH(ϕ) + DϕFoupl(z, ϕ,u)

DFhem(u) + DuFoupl(z, ϕ,u)


 . (3.6)Of ourse, the Onsager operatorKmay be muh more general than indiated here. Stayingin the diagonal form of (3.6) we may allow that eah of the diagonal entries Kdiss, KCH, and

KRD may depend on (z, ϕ,u). Moreover, we may introdue o�-diagonal terms through
Ψ∗oupl.For the full generality, one should not think about adding three terms with a smalloupling. One should rather take one free energy like

F(z, ϕ,u) =

∫

Ω

F (x, z(x), ϕ(x),u(x)) +
γ

2
|∇z(x)|2 +

δ

2
|∇ϕ(x)|2 dx.In partiular, we may onsider the ase where the referene density vetor u∗ in thedetailed-balane ondition (3.3) depends on (z, ϕ). As an example onsider the asewithout onserved phase-�eld variables and u = (u1, u2) and let

F(z,u) =

∫

Ω

f(z) +
γ

2
|∇z|2 + w1(z)λ

(
u1/w1(z)

)
+ w2(z)λ

(
u2/w2(z)

)
dx,where the funtions wj : z 7→ wj(z) > 0 are given and λ(ν) = ν(log ν−1) as above.Together with the dual dissipation potential

Ψ∗(z,u; ζ,µ) =
1

2

∫

Ω

ζ ·kAC(z,u)ζ +m1(z,u)|∇µ1|
2 +m2(z,u)|∇µ2|

2

+ kreat(z,u)
(
(α−β) · µ

)2
dxwe �nd the following oupled system:

ż = kAC(z,u)
(

div
(
γ∇z

)
− f ′(z) +

u1

w1(z)
Dzw1(z) +

u2

w2(z)
Dzw2(z)

)
,

(
u̇1

u̇2

)
=

(
div
(
m1(z,u)∇(log u1− logw1(z))

)

div
(
m2(z,u)∇(log u2− logw2(z))

)
)

− kreat(z,u)Λ
(

uα

w(z)α ,
uβ

w(z)β

)
(α−β)⊗ (α−β) · (logu− logw(z)).13



Using the funtions Wj(z) = logwj(z) and employing the de�nition of Λ we anreformulate the system in the form
ż = kAC(z,u)

(
div
(
γ∇z

)
− f ′(z) + u1DzW1(z) + u2DzW2(z)

)
,

(
u̇1

u̇2

)
=

(
div
(

m1(z,u)
u1

∇u1 −m1(z,u)DzW1(z)∇z
)

div
(

m2(z,u)
u2

∇u2 −m2(z,u)DW2(z)∇z
)
)

− kreat(z,u)
(
uαe−α·W(z) − uβe−β·W(z)

)
(α−β).Thus, even without assuming any oupling inside the Onsager struture, we still obtain akind of ross-di�usion arising from the z-dependene of the referene densities wj(z).3.4 Non-isothermal oupled systemsWe now add to the variables y := (z, ϕ,u) the absolute temperature θ > 0 and useOnsager operators in the form (2.4), following the derivation of Setion 2.3, where now

Ky(y) =



Kdiss

KCH
KRD .As in the Penrose-Fife model (f. Setion 3.1.5) we again treat a losed systems in whihthe total energy E is onserved while the total entropy inreases and serves as a drivingfuntional. Now the Onsager operator K is given in terms of an entropy-produtionpotential

Ψ∗(y, θ; η, τ) =
1

2

〈(
η

τ

)
,K(y, θ)

(
η

τ

)〉
.3.4.1 Reation-di�usion systems with temperatureWe now restrit to a system desribed by (u, θ) with funtionals

E(u, θ) =

∫

Ω

E(x,u(x), θ(x))dx and S(u, θ) =

∫

Ω

S(x,u(x), θ(x))dx,where the integrands are stritly loal, i.e. they do not depend on ∇u and ∇θ. Asthroughout the paper, the densities may expliitly depend on the material point, but wewill omit this dependene in the sequel. The energy density E and the entropy density Ssatisfy the Gibbs relation ∂θE = θ∂θS and the positivity of the spei� heat ∂θE > 0.The dual entropy-prodution potential Ψ∗ will depend on the state (u, θ) and thethermodynamially onjugate variables (µ, τ). In priniple, Ψ∗ will ontain three parts,namely a di�usion, a reation, and a heat ondution part. However, the heat ondutionand the di�usion an be joined into one quadrati form on (∇µ,∇τ), thus allowing for�ross-di�usion� e�ets between hemial di�usion and heat transfer, whih is needed tomodel thermophili or thermophobi reations ourring e.g. in polymers, see [AWR12℄.
14



To guarantee energy onservation, we mimi the de�nition of ME in (2.4b) (see also[Mie11b, Set. 3.6℄) and onsider
Ψ∗(u, θ; µ, τ) = Ψ̃∗(u, θ; µ− τ

∂θE
∂uE,

τ
∂θE

) (3.7a)with Ψ̃∗(u, θ; µ̃, τ̃) =
1

2

∫

Ω

(∇µ̃,∇τ̃):M(u, θ)(∇µ̃,∇τ̃) + µ̃ · H(u, θ)µ̃dx, (3.7b)where H is given as in (3.4). The mobility tensor M(u, θ) : RI×d × Rd → RI×d × Rd issymmetri and positive semide�nite and has the blok struture
M(u, θ) =

(
Muu(u, θ) Muθ(u, θ)

M∗
uθ(u, θ) Mθθ(u, θ)

)
.The onstrution of Ψ∗ is suh that Ψ∗(u, θ; µ, τ) = Ψ∗(u, θ; (µ, τ)+λDE(u, θ)) for all

λ ∈ R. Hene, the assoiated Onsager operator K satis�es KDE ≡ 0. Moreover, we seethat Ψ∗ only depends on
DuS −

1

θ
DuE = ∂uS −

1

θ
∂uE = ∂uH and ∂θS

∂θE
=

1

θ
,where H = −ψ/θ = S − E/θ is the free entropy.The Onsager system d

dt

(
u

θ

)
= KDS for the evolution of (u, θ) is the oupled PDE

u̇ = − div ju + H(u, θ)
(
∂uS(u, θ)−1

θ
∂uE(u, θ)

)
,

θ̇ = − 1
∂θE

div jθ + 1
∂θE

∂uE·

(
div ju −H(u, θ)

(
∂uS(u, θ)−1

θ
∂uE(u, θ)

)
,where ju = Muu(u, θ)∇

(
∂uS(u, θ)−1

θ
∂uE(u, θ)

)
+ Muθ(u, θ)∇(1/θ)

) and
jθ = M∗

uθ(u, θ)∇
(
∂uS(u, θ)−1

θ
∂uE(u, θ)

)
+ Mθθ(u, θ)∇(1/θ)

). In the simplest isotropiase one hooses Muu(u, θ)∇µ = (miui∇µi)j=1,...,I, Muθ = 0, and Mθθ(u, θ) = θ2κ.We refer to [GiM04, Set. 2.5℄ and [Yon08, Set.VII℄ for useful representations of
s = S(u, θ), e = E(u, θ), and u∗ = w(θ).3.4.2 Reation-di�usion systems with internal energyA major advantage of gradient and Onsager systems is that it is very easy to hangeoordinates. For energy-preserving non-isothermal reation-di�usion systems it is ofteneasier to formulate the theory in terms of the density vetor u : Ω → ]0,∞[I and theinternal energy e : Ω → R. Thus, the funtionals are

Ê(u, u) =

∫

Ω

e(x)dx and Ŝ(u, e) =

∫

Ω

Ŝ(x,u(x), e(x))dx.Now the Gibbs relation leads to the de�nition of temperature as θ = Θ(u, e) := 1/∂eS(u, e),where the relation ∂eŜ(u, e) > 0 is imposed.The major advantage of the formulation in terms of (u, e) is that energy onservationis a linear onstraint. Moreover, following [AGH02℄ it is reasonable to assume that Ŝ is15



a onave funtion in (u, e). Finally, the driving fore through the free entropy is mostsimple, as ∂uH = ∂uŜ, sine using Ê(u, e) := e we have ∂uÊ ≡ 0, f. [Mie11a, Set. 2.3℄.Thus, the equations in Setion 3.4.1 an be equivalently written in (u, e) using thedual entropy-prodution potential
Ψ̂∗(u, e; µ, ε) =

1

2

∫

Ω

(∇µ,∇ε):M̂(u, e)(∇µ,∇ε) + µ·Ĥ(u, e)µ dx,where M̂ and Ĥ are obtained from M and H, respetively, by substituting θ = Θ̂(u, e).As a onsequene of the simple form of Ê , and hene of Ψ̂∗, the evolution equations for
(u, e) take the simpler form

u̇ = − div
(
M̂uu(u, e)∇

(
∂uŜ(u, e)

)
+ M̂ue(u, e)∇

(
∂eŜ(u, e)

))
+ Ĥ(u, e)∂uS(u, e),

ė = − div
(
M̂

∗
ue(u, e)∇

(
∂uS(u, e)

)
+ M̂ee(u, e)∇

(
∂eŜ(u, e)

))
.This form has the major advantage that we an read of �paraboliity� in the sense ofPetrovsky (f. [LSU68, Set.VII.8℄) for the full oupled system by assuming that M̂ ispositive de�nite and that D2S is negative de�nite. Hene, loal existene results an beobtained from [Ama93℄.Moreover, we are able to postulate suitable strongly oupled models by assuming that

Ŝ has the form
Ŝ(u, e) = s(e)− u ·

( logu− logw(e)
)
, (3.8)where u∗ = w(e) are now the referene densities in the detailed balane ondition (3.3),whih may now depend on the internal energy (i.e. on the temperature). The onavityan be heked by using

−
(

µ

ε

)
· D2Ŝ(u, e)

(
µ

ε

)
=
∑I

i=1 ui

(
µi

ui
− ε

w′
i(e)

wi(e)

)2
+ ε2

(
− s′′(e)−

∑I

i=1 ui
w′′

i (e)

wi(e)

)
.Thus, we have strit onvexity on the whole domain ]0,∞[I×]e0,∞[ if and only if s′′(e) < 0and w′′

i (e) ≤ 0 for all i. Hene, good hoies for s(e) and w(e) are given in the form
s(e) = c log e or s(e) = c eσ with c > 0 and σ ∈ ]0, 1[,

wi(e) = aie
bi for some ai > 0 and bi ∈ [0, 1].

(3.9)In the ase s(e) = c log e we �nd the simple relation 1/θ = ∂eŜ(u, e) =
(
c+b·u)/e, where

b = (bi)i=1,...,I. Hene, we obtain the simple linear relation e = E(u, θ) =
(
c+b·u) θ.4 Bulk-interfae interation4.1 General setup for interfaesWe now onsider a domain Ω ontaining an interfae Γ separating Ω into an upper part Ω+and a lower part Ω−, i.e. Ω is the disjoint union of Ω+, Γ, and Ω−. For later onvenienewe denote that part of the surfae of Ω± that oinides with Γ by Γ± (see Figure 1), suhthat for funtions z : Ω → Rm we an de�ne one-sided limits z± = z|Γ±. However, we16



Ω+

Γ+

Γ−

Ω−

Γ

Figure 1: Body Ω = Ω+ ∪ Ω− with interfae Γ.also allow for extra �elds zΓ : Γ → Rk desribing new speies or some of the speies on
Ω, i.e. we allow for k 6= m.The full state is Z = (z, zΓ) ontaining bulk funtions as well as interfae funtions.We derive our oupled system again in the Onsager form Ż = −K(Z)DΦ(Z), where nowthe driving funtional Φ as well as the dual dissipation potential Ψ∗, whih de�nes K, aregiven in terms of a bulk integral and an interfae integral:

Φ(Z) = ΦΩ(z) + ΦΓ(ẑ) with ẑ := (zΓ, z+, z−) and
Ψ∗(z, zΓ; ξ, ξΓ) = Ψ∗

Ω(z; ξ) + Ψ∗
Γ(ẑ; ξ̂) with ξ̂ = (ξΓ, ξ+, ξ−).While the bulk integrals ΦΩ and Ψ∗

Ω only depend on the bulk �elds z and the bulk fores
ξ, respetively, the interfae integrals ΦΓ and Ψ∗

Γ depend on the interfae �elds zΓ and ξΓas well as on the one-sided interfae limits z± and ξ±.The general Onsager system is now de�ned as
(

ż

żΓ

)
= D(ξ,ξΓ)Ψ

∗
(
z, zΓ , −Dz,zΓ

Φ(z, zΓ)
)
,where the derivative D(ξ,ξΓ)Ψ

∗ involves integrations by part whih give rise to nontrivialoupling onditions on Γ. We will �rst display this in a salar heat equation and thentreat a more general ase.We refer to [Bed86, KjB08℄ for areful treatments of thermohemial e�ets at inter-faes. The works also provide evidene for the physial neessity to introdue own speiesand temperature �elds on the interfae.4.2 Coupled bulk and interfae heat ondutionWe assume that the only relevant variable is the temperature, but there is a temperature
θ : Ω → ]0,∞[ in the bulk and another independent temperature θΓ : Γ → ]0,∞[ in theinterfae. This may model for instane a thin steel plate Γ inside a rubber material. Thetotal entropy and total energy are given via

S(θ, θΓ) =

∫

Ω

c log θdx+

∫

Γ

cΓ log θΓ da and E(θ, θΓ) =

∫

Ω

c θdx+

∫

Γ

cΓθΓ da,17



where c > 0 is the spei� heat of the bulk material (per unit volume) and cΓ > 0 is thespei� heat of the interfae material (per unit surfae area). These spei� heats mayalso depend on x ∈ Ω or y ∈ Γ.For the dissipation potential we assume the simplest quadrati form
Ψ∗(θ, θΓ, τ, τΓ) =

∫

Ω

k

2
|∇(

τ

c
)|2 dx+ Ψ∗

Γ(θ̂, τ̂) with
Ψ∗

Γ(θ̂, τ̂) =
∫
Γ

kΓ

2
|∇Γ( τΓ

cΓ
)|2 + mΓ

2

(
τ+
c+
− τ−

c−

)2
+ m+

2

(
τ+
c+
− τΓ

cΓ

)2
+ m−

2

(
τ−
c−
− τΓ

cΓ

)2
da,where k may depend on x ∈ Ω and θ and kΓ, mΓ, and m± may depend on y ∈ Γ and

θ̂ := (θΓ, θ+, θ−). Here kΓ denotes the heat ondution oe�ient in the interfae, mΓgives a ondition for heat transmission through the interfae, whereas m± gives heat �owfrom the bulk into the interfae.With Θ = (θ, θΓ) the Onsager system Θ̇ = K(Θ)DS(Θ) takes the formin Ω : θ̇ = −
1

c
div
(
k∇

1

θ

)
,in Γ : θ̇Γ = − 1

cΓ
divΓ

(
kΓ∇Γ

1
θΓ

)
+m+

(
1
θΓ
− 1

θ+

)
+m−

(
1
θΓ
− 1

θ−

)
,in Γ+ : 0 = 1

c+
k+∇

1
θ
· ν+ −m+

(
1
θΓ
− 1

θ+

)
−mΓ

(
1

θ−
− 1

θ+

)
,in Γ− : 0 = 1

c−
k−∇

1
θ
· ν− −m−

(
1
θΓ
− 1

θ−

)
−mΓ

(
1

θ+
− 1

θ−

)
.Reall that we are dealing with losed systems, hene we also have the no-�ux ondition

k∇(1/θ) · ν = 0 on the outer boundary ∂(Ω∪Γ). This oupled system ontains the usualbulk equation whih is oupled to the interfae by Robin-type boundary onditions thatdepend on the temperatures inside the interfae Γ and on the limit of the bulk temperatureon the other side of the interfae. Moreover, there is an own heat equation on the interfaewhere the �ux terms from the boundary appear as soure terms.The above general nonlinear system also inludes a linear system if we hoose
k(θ) = θ2κΩ, kΓ(θ̂) = θ2

Γκ
Γ, m±(θ̂) = µ±θ±θΓ, mΓ(θ̂) = µΓθ+θ−.We obtain the linear systemin Ω : cθ̇ = div
(
κΩ∇θ

)
,in Γ : cΓθ̇Γ = divΓ

(
κΓ∇ΓθΓ

)
+ cΓµ+(θ+−θΓ) + cΓµ−(θ−−θΓ),in Γ+ : 0 = 1

c+
κΩ

+∇θ · ν+ + µ+(θ+−θΓ) + µΓ(θ+−θ−),in Γ− : 0 = 1
c−
κΓ
−∇θ · ν− + µ−(θ−−θΓ) + µΓ(θ−−θ+).4.3 General struture of bulk-interfae interationWe now return to the general ase of bulk-interfae systems with the state Z = (z, zΓ)and a driving funtional spei�ed in the form

F(Z) = FΩ(z) + FΓ(ẑ) =

∫

Ω

FΩ(z,∇z)dx +

∫

Γ

FΓ(ẑ,∇ΓzΓ)da,where as before ẑ = (zΓ, z+, z−). To inlude Allen-Cahn and Cahn-Hilliard systems weallow F to depend on the gradients ∇z and ∇ΓzΓ as well.18



For the dual dissipation potential we also speify the struture more expliitly, namely
Ψ∗(Z; Ξ) = Ψ∗

Ω(z; ξ) + Ψ∗
Γ(ẑ; ξ̂) with ξ̂ = (ξΓ, ξ+, ξ−),

Ψ∗
Ω(z; ξ) =

∫

Ω

1

2
∇ξ:M(z):∇ξ +

1

2
ξ·H(z)ξdx, and

Ψ∗
Γ(ẑ, ξ̂) =

∫

Γ

1

2
∇ΓξΓ:MΓ(ẑ):∇ΓξΓ +

1

2
ξ̂·T(ẑ)ξ̂da.To write the Onsager system Ż = −DΞΨ∗(Z; DF(Z)) more expliity, we use thenatural projetions QΓ, Q+, Q− assoiated with the omponents of ẑ = (zΓ, z+, z−).Using the variational derivatives

δzFΩ := ∂zFΩ − div
(
∂∇zFΩ

) and δzΓ
FΓ := ∂zΓ

FΓ − divΓ

(
∂∇ΓzΓ

FΓ

)and suitable integrations by part the general bulk-interfae system in Onsager form readsin Ω : ż = − div
(
MΩ(z)∇

(
δzFΩ

))
−H(z)

(
δzFΩ

)
,in Γ : żΓ = − divΓ

(
MΓ(ẑ)∇

(
δzΓ

FΓ

))
−QΓT(ẑ)

(
δbzFΓ, δzFΩ|Γ+

, δzFΩ|Γ−
)
,in Γ+ : 0 = MΩ(z)∇

(
δzFΩ

)
· ν+ +Q+T(ẑ)

(
δbzFΓ, δzFΩ|Γ+

, δzFΩ|Γ−
)
,in Γ+ : 0 = MΩ(z)∇

(
δzFΩ

)
· ν− +Q−T(ẑ)

(
δbzFΓ, δzFΩ|Γ+

, δzFΩ|Γ−
)
.

(4.1)
We refer to [GlM11, Thm. 3.1℄ for a proof of the equivalene of (4.1) and the Onsagersystem Ż = −DΞΨ∗(Z; DF(Z)) with the potentials F and Ψ∗ as de�ned above.4.4 Semiondutors with interfaes for photovoltaisIn thin-�lm solar ells the interfaes strongly in�uene the overall urrents of the wholesolar ell. Hene a proper modeling of the interation between the bulk and the interfaee�ets is neessary. In addition to the previous analysis, we also need to take into aountthe eletrial harges of the speies, namely the free eletrons with density n and the holeswith density p.In the simplest ase the bulk model is the so-alled van Roosbroek system, whihouples an equation for the eletrostati potential φ = φu with the drift-di�usion-reationequations for u = (n, p):(vRS) 




− div(ε∇φu) = dΩ(x)− n+ p,

ṅ = div
(
mn

(
∇n− n∇φu

))
− k (np− 1),

ṗ = div
(
mp

(
∇p + p∇φu

))
− k (np− 1).

(4.2)The di�erent signs in �−n� and �+p� in the Poisson equation for φu and in front of thedrift term ∇φu denote the negative harge of the eletrons and the positive harge of theholes. Here ε is the eletri permittivity, and dΩ is a presribed doping pro�le of harges.The oe�ients mp and mn are the mobilities of the eletrons and holes, respetively, and
k is the reation strength. Without loss of generality, we have normalized the densities19



suh that the intrinsi density equals nin = 1. On the boundary we add no-�ux onditionsfor the harges and Dirihlet onditions for the eletrostati potential φu.It is shown in [Mie11b, Set. 4.1℄ that (4.2) forms an Onsager system for the total freeenergy FΩ and the dual dissipation potential Ψ∗
Ω given by

FΩ(n, p) =

∫

Ω

ε

2
|∇φn,p|

2 + λ(n) + λ(p)dx, (4.3a)
Ψ∗

Ω(u,µ) =
1

2

∫

Ω

mn n|∇µn|
2+mp p|∇µp|

2+kΛ(np, 1)(µn+µp)
2 dx, (4.3b)where Λ is de�ned in (3.4).Following [GlM11℄ we now onsider a domain Ω with one or several interfaes denotedby Γ ⊂ Ω. Thin-�lm solar ells have a thikness of a few hundred nanometers and ontainseveral interfaes. These are treated in partiular ways in order to make them ative inthe sense that they arry own interfaial speies whih may di�use and reat inside theinterfae or with speies from the adjaent sides Γ± from the bulk. A partiular reationis the simple apture and esape of speies from the interfae into the bulk, whih is thenalled thermioni emission.For notational simpliity we assume here that the interfae speies are simply uΓ =

(nΓ, pΓ) : Γ → ]0,∞[2 and hasten to say that uΓ is in general di�erent from the one-sidedlimits u+ = u|Γ+
. We will write U = (u,uΓ) for the full state of the bulk-interfaesystem. Moreover, the interfae may arry its own doping pro�le dΓ suh that the jointeletrostati potential φ = φU satis�es the Poisson equation
− div(ε∇φU) = dΩ − n + p+ (δΓ − nΓ + pΓ)δΓ,where δΓ denotes the two-dimensional Hausdor� measure restrited to the interfae Γ.Thus, the potential φU depends on the bulk and the interfae harges in a linear way.The total free energy now onsists of the bulk part FΩ from (4.3a) and an interfaepart, namely

F(u,uΓ) =

∫

Ω

ε

2
|∇φu,uΓ

|2 + λ(n) + λ(p)dx+

∫

Γ

λ(nΓ) + λ(pΓ)da.The orresponding di�erential DF takes the form
(

µ

µΓ

)
:= DF(u,uΓ) =

(
DuF(u,uΓ)

DuΓ
F(u,uΓ)

)
=

( logu +
(
−1
1

)
φUloguΓ +

(
−1
1

)
φU |Γ

)
.To de�ne a su�iently general dual dissipation potential Ψ∗, whih ontains the bulkpart Ψ∗

Ω from (4.3b) as well as an interfaial terms, we use again the abbreviations û :=
(uΓ,u+,u−) and µ̂ := (µΓ,µ+,µ−) and set

Ψ∗(u,uΓ; µ,µΓ) = Ψ∗
Ω(u,µ) + Ψ∗

Γ(û; µ̂) with
Ψ∗

Γ(û; µ̂) = Ψ∗in-plane(û; µ̂) + Ψ∗transfer(û; µ̂),

Ψ∗in-plane(û; µ̂) =
1

2

∫

Γ

mΓ
nnΓ|∇ΓµΓ n

|2 +mΓ
ppΓ|∇ΓµΓ p

|2 + µΓ·H
Γ(û)·µΓ da,

Ψ∗transfer(û; µ̂) =
1

2

∫

Γ

T (û)|µ+−µ−|
2 +B+(û)|µ+−µΓ|

2 +B−(û)|µ−−µΓ|
2 da.20



Here Ψ∗in-plane ontains all dissipative e�ets that solely our inside of Γ, while Ψ∗transferprovides the oe�ients for movements between Γ, Γ+, and Γ−. In partiular, T is theintensity of the transmissions between Γ+ and Γ−, and B± is the intensity for motionsbetween Γ± and Γ.As was indiated in Setion 4.3 the oupled system has the formin Ω : 0 = − div(ε∇φu,uΓ
)− (dΩ−n+p)− (dΓ−nΓ+pΓ)δΓ,in Ω : u̇ = div

(
M(u)∇µ)−H(u)µ (= van Roosbroek system)in Γ+: 0 = M+∇µ+ · ν+ − T (û)(µ+−µ−)−B+(û)(µ+−µΓ),in Γ : u̇Γ = divΓ

(
MΓ∇ΓµΓ

)
︸ ︷︷ ︸interfaial drift-di�usion− H
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