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Abstract

We consider finite-dimensional, time-continuous Markov chains satisfying the detailed balance

condition as gradient systems with the relative entropy E as driving functional. The Riemannian

metric is defined via its inverse matrix called the Onsager matrix K . We provide methods for

establishing geodesic λ-convexity of the entropy and treat several examples including some more

general nonlinear reaction systems.

1 Introduction

In this work we mainly consider reversible Markov chains with a finite state space and with continuous
time. The starting point is that the reversibility condition, also called detailed balance condition, for
Markov chains or for more general reaction systems provides a gradient structure with the relative en-
tropy as the driving functional. The associated metric gives a discrete counterpart to the Wasserstein
metric used for the Fokker-Planck equation in [JKO98, Ott01].

The present work was motivated by a generalization in [Mie11a] of the gradient structure for the
Fokker-Planck equation to general reaction-diffusion systems, where the reactions satisfy a reversibil-
ity condition. The point is that the diffusion terms and the reaction terms can be written as a gradient
system with respect to the same relative entropy. It is even possible to keep the gradient structure
when adding the physically proper energy equations for the temperature, see [Mie11a, Sect. 3.6] and
[Mie11b].

The Markov chains discussed in this paper are special cases of reversible reactions, namely “ex-
change reactions” that lead to a linear ODE system instead of the more general polynomial right-hand
side in the mass-action type reactions. Similarly, the linear Fokker-Planck equation can be seen as a
special case of more general diffusion systems. The gradient structure found in [Mie11a, Sect. 3.1] as a
special case of more general reaction-diffusion systems was found independently in [Maa11, CH∗11].
It was also used in [AM∗11] to show convergence from a Fokker-Planck equation to a simple Markov
chain in a certain scaling limit.

To explain this structure, we consider a Markov chain defined on the discrete state space {1, ..., n}
via

u̇ = Pu with P = (Pij)i,j=1,...n ∈ R
n.

Here Pij ≥ 0 is the rate for a particle moving from state j to i. For j = i we have Pjj =
−∑i6=j Pij < 0. Here

u = (u1, ..., un) ∈ Xn
def
= { u ∈ R

n | uj > 0,
∑n

i=1 ui = 1 }
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is the vector of the probabilities on the state space. The Markov chain is called reversible if there exists
a positive steady state w ∈ Xn (i.e. wi > 0) such that

πij
def
= Pijwj = Pjiwi = πji for all i, j ∈ {1, ..., n}. (1.1)

The gradient structure is given in terms of the relative entropy

E(u) =

n∑

i=1

ui log(ui/wi)

and the Onsager matrix

K(u) =
∑

i<j

πij Λ
(

ui

wi
,

uj

wj

)
(ei−ej) ⊗ (ei−ej) ∈ R

n×n
sym,≥0.

We say that the Markov chain u̇ = Pu is given by the gradient system (Xn, E, K), since

u̇ = Pu = −K(u)DE(u),

see Proposition 3.1. Here K is the inverse of the Riemannian tensor G(u) = K(u)−1 defined on
R

n
av = { v ∈ R

n | v · e = 0 }.

The function Λ : [0,∞[2 → [0,∞[ used above plays a central role in the present theory. It is the
logarithmic mean of a and b and is given by

Λ(a, b) =
a − b

log a − log b
for a 6= b and Λ(a, a) = a, (1.2)

and hence is analytic. All its relevant properties are discussed in Appendix A. Some specific properties
are encoded in the function ℓ : ]0,∞[ → ]0,∞[ given by

ℓ(ξ)
def
= max{Λ(1, r)− ξr | r > 0 }. (1.3)

As r 7→ Λ(1, r) is increasing and concave, ℓ is decreasing and convex. Moreover, it satisfies the
surprising relation

ℓ
(
∂aΛ(a, b)

)
= ∂bΛ(a, b) for all a, b > 0.

The focus of this work is to provide conditions on the matrix P such that the relative entropy E
is geodesically λ-convex with respect to the Riemannian tensor G(u) = K(u)−1. This means that
s 7→ E(γ(s)) is λ-convex for all geodesic curves γ : [sa, sb] → X , i.e.

E(γ(sθ)) ≤ (1−θ)Eγ(s0)) + θE(γ(s1)) + λ
θ(1−θ)

2
(s1−s0)

2

for all θ ∈ [0, 1] and s0, s1 ∈ [sa, sb], where sθ = (1−θ)s0 + θs1. We simply say that E is
geodesically convex, if it is geodesically 0-convex. Of course, geodesic λ-convexity implies geodesic
µ-convexity for all µ ≤ λ. Throughout this work the statement about geodesic λ-convexity never
means that the corresponding λ is optimal, i.e. as large as possible.

The important point for our analysis is that the question of geodesic convexity can be analyzed in
terms of the triple (X, E, K) without ever calculating the Riemannian tensor G or the Riemannian
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distance function dK . This is discussed in Section 2, where we display two approaches. First, we use
the implicit form of the geodesics γ and calculate the second derivative of E ◦ γ. Second, we follow
the approach in [OtW05, DaS08] where the length change of general curves during transport with the
flow is characterized. The criterion for geodesic λ-convexity for a Markov chains u̇ = Pu = −Au
reduces to the estimate

∀ u ∈ X : M(u) ≥ λK(u), where M(u) = 1
2

(
K(u)AT + AK(u) − DK(u)[Au]

)
.

Starting in Section 3.2 we provide simple results on geodesic λ-convexity. In Section 4.1 we provide
our first structural result stating that for all Markov chains there exists some λ such that E is geodesi-
cally λ-convex. However, the construction is rather implicit and does not provide useful bounds. In
Theorem 4.6 we consider the special case of reversible Markov chain with Pij > 0 for all i < j. Using
a different proof we are able to provide an explicit bound for λ in terms of all Pij and wi.

In Corollary 4.4 we provide a quantitative result for special reversible Markov chains arising from a
finite connected graph as follows. Denote the vertices by {1, ..., n} and set Pij = 1 whenever i and
j are connected by an edge and Pij = 0 otherwise. Then, w = 1

n
e with e = (1, ..., 1)T is the steady

state. Define m = max{−Pii | i = 1, ..., n }, which is the maximum possible number of neighbors
of all vertices, then the relative entropy is geodesically λm-convex where λm depends only on m but
not on n.

Section 5 is devoted to simple ordered Markov chains with nearest-neighbor transitions, as they
occur in discretizations of a one-dimensional Fokker-Planck equation u̇ = (ux + uV̂x)x. We are

motivated by the geodesic λ̂-convexity of E(u) =
∫ 1

0
u log(u/w)dx, where w(x) = e−

bV (x) and λ̂ =

inf{ V̂ ′′(x) | x ∈ [0, 1] }, see [AGS05]. For the case λ̂ ≥ 0 we are able to construct discretizations
in the form of linear Markov chains with gradient structure (Xn, En, Kn) in such a way that En is

geodesically λn-convex with λn = 2n2(1 − e−
bλ/(2n2)) → λ̂ for n → ∞.

In Section 6 we show that the techniques for estimating geodesic Λ-convexity developed for Markov
chains can also be applied to nonlinear reaction systems with the gradient structure established in
[Mie11a, Sect. 3.1].

2 Geodesic convexity

We consider for u ∈ X ⊂ R
n the gradient flow

G(u)u̇ = −DE(u) ⇐⇒ u̇ = −K(u)DE(u) = −f(u).

Here E : X → R is an energy functional and G(u) = G(u)∗ > 0 denotes the metric tensor at
the point u. We consistently use the inverse K(u) = G(u)−1. We call the symmetric and positive
semidefinite matrix K(u) the Onsager matrix, as it is used in thermodynamics to relate the rate u̇ with
the thermodynamic driving force −DE(u), which encodes the Onsager symmetry relations and the
Onsager principle, see e.g. [Ons31, OnM53, Ött05, Mie11b].

We are interested in geodesic λ-convexity of the functional E with respect to the metric G. Since
in our case G and the induced distance dK are only defined implicitly, it is desirable to characterize
the geodesic convexity via K only. We do this in two different, but equivalent ways. First, we derive the
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defining equation for the geodesic curves in terms of K and then study the convexity of E along the
curves. Second, we use the ideas from Otto-Westdickenberg [OtW05] and Daneri-Savaré [DaS08] on
the evolution of length elements along the gradient flow in our simplified ODE case, where everything
is smooth.

2.1 Geodesic curves and geodesic λ-convexity

Here we show how to characterize the geodesic curves in terms of the Onsager matrix K rather
than of the Riemannian tensor G. Throughout we assume that the space X is an open subset of
w + X0, where X0 is a finite-dimensional linear space. We assume that for all u ∈ X the matrix
K(u) : X0 → X0 is invertible, defining the metric tensor G(u) : X0 → X0. Thus, geodesic curves
u = γ(s) in X ⊂ w + X0 satisfy the classical Lagrange equation

− d

ds

( ∂

∂γ′
L(γ, γ′)

)
+

∂

∂γ
L(γ, γ′) = 0, where L(γ, γ′) =

1

2
γ′ · G(γ)γ′.

Since in our case G is only known implicit, it is more convenient to use the Hamiltonian version of the
Lagrange equation. Introducing the dual variable p = ∂

∂γ′
L(γ, γ′) = G(γ)γ′ and the Hamiltonian

H(γ, p) = 1
2
p · K(γ)p we obtain the equivalent system

γ′ =
∂

∂p
H(γ, p) = K(γ)p

p′ = − ∂

∂γ
H(γ, p) = −1

2
p · DK(γ)[�]p,

(2.1)

where b = p ·DK(γ)[�]p denotes the vector defined via b · β = p ·DK(γ)[β]p. The elimination of
γ′ via p is in fact the finite-dimensional counterpart to the famous approach by Benamou and Brenier
[BeB00] for characterizing the Wasserstein distance via geodesics.

Thus, we may characterize geodesic λ-convexity of a function E : X → R easily by asking
that the composition s 7→ E(γ(s)) is λ-convex for all geodesics u = γ(s). This property can be
characterized by local expressions using the second derivative in the form

d2

ds2
E(γ(s)) ≥ λγ′(s) · G(γ(s))γ′(s).

Using (2.1) and the relation

d2

ds2
E(γ(s)) =

d

ds

(
DE(γ(s)) · γ′(s)

)
= γ′ · D2E(γ)γ′ + DE(γ) · d

ds

(
K(γ)p

)

we find the condition

γ′ · D2E(γ)γ′ + DE(γ) ·
(
DK(γ)[γ′]p + K(γ)p′

)
≥ λγ′ · G(γ)γ′.

Substituting γ′ = K(γ)p and p′ according to (2.1) we obtain a formula in terms of γ and p only,
namely

p · M(γ(s))p ≥ λp · K(γ(s))p for all s and p ∈ X∗
0 , where

p · M(u)p
def
= p · K(u)D2E(u)K(u)p + DE(u) · DK(u)[K(u)p]p

− 1
2
p · DK(u)[K(u)DE(u)]p.

(2.2)
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Because the latter condition is quadratic in p, geodesic λ-convexity of the functional E : X → R

with respect to the metric G = K−1 is equivalent to

∀u ∈ X : M(u) ≥ λK(u) (2.3)

in the ordering sense of symmetric matrices, meaning that M(u) − λK(u) is positive semidefi-
nite. In fact, the form of M can be simplified when using the (negative) vector field u 7→ f(u) =
K(u)DE(u), namely

M(u) = 1
2

(
K(u)Df(u)T + Df(u)K(u)− DK(u)[f(u)]

)
. (2.4)

The formula is especially simple for linear vector fields f : u 7→ Au, namely

M(u) =
1

2

(
K(u)AT + AK(u) − DK(u)[Au]

)
. (2.5)

In the general case, M can be obtained as the derivative of K along the vector field u 7→ f(u) =
K(u)DE(u) in the following sense. Define Φt : X → X to be the (local) flow of u̇ = −f(u). Then,
the transport of 〈η, K(u)ξ〉 along the flow is given by 〈DΦt(u)−Tη, K(Φt(u))DΦt(u)−T〉 and we
find

2〈η, M(u)ξ〉 =
d

dt
〈DΦt(u)−Tη, K(Φt(u))DΦt(u)−T〉

∣∣∣
t=0

. (2.6)

If G and K are constant, the previous form (2.2) is more appropriate, and we recover the standard
conditions

〈KD2E(u)Kφ, φ〉 ≥ λ〈Kφ, φ〉 ⇐⇒ 〈D2E(u)v, v〉 ≥ λ〈Gv, v〉.

Remark 2.1 (Bakry-Émery conditions) Our definition has some similarities to the conditions of Bakry
and Émery [BaÉ85, Bak94]. There, two symmetric bilinear mappings Γ1 and Γ2 are defined via

Γ1(f, g) =
1

2

(
L(fg)−fLg−gLf

)
and Γ2(f, g) =

1

2

(
LΓ1(f, g)−Γ1(Lf, g)−Γ1(f, Lg)

)
,

where L is the generator of a diffusion semigroup. The analogy of the pair (Γ1, Γ2) with the pair
(K, M) is seen in (2.5) and (2.6). Moreover, the condition of λ-hypercontractivity reads

2Γ2(f, f) < λΓ1(f, f) for all sufficiently smooth f, (2.7)

which matches (2.3). However, there is a major difference because in the Bakry-Émery theory the
state space is assumed to be an ordered algebra with a product Γ0(f, g) = fg. Moreover, the
hypercontractivity condition (2.7) has to be fulfilled in the sense of this ordering <, rather than in
the sense of quadratic forms as in (2.3). Thus, our condition seems to be weaker but still sufficient
for geodesic λ-convexity. We refer to the formal calculation in Section 5.1 where the Fokker-Planck
equation is treated with the counterpart of our condition (2.3).
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2.2 The Otto-Westdickenberg characterization

The idea of Otto-Westdickenberg [OtW05] (see also Daneri-Savaré [DaS08]) uses the rate of change
of infinitesimal line elements. For this one needs the first variation along the flow in the form

v̇ = −Df(u)v = −DK(u)[v]DE(u) − K(u)D2E(u)v.

By η = 〈G(u)v, v〉 we denote the square of an infinitesimal line element. The statement of [OtW05]
is that geodesic λ-convexity of E is equivalent to the fact that the solutions v satisfy

η̇ ≤ −2λη. (2.8)

Inserting the evolution law for u and v into η̇ = 〈DG(u)[u̇]v, v〉+2〈G(u)v, v̇〉 we find the necessary
and sufficient condition

〈DG(u)[−K(u)DE(u)]v, v〉+2〈G(u)v,−DK(u)[v]DE(u)−K(u)D2E(u)v〉 ≤ −2λ〈G(u)v, v〉

for all u and v.

As the Onsager matrix K is given explicitly (in contrast to the Riemannian tensor G), the Benamou-
Brenier substitution p = G(u)v (cf. [BeB00]) is convenient.
Employing DG(u)[ξ] = −K(u)−1DK(u)[ξ]K(u)−1 we find the condition p·M(u)p ≥ λp·K(u)p,
which is exactly (2.3).

2.3 Benefits from geodesic convexity

So far we have concentrated on the triple (X, E, K) as a gradient system. However, the metric tensor
G = K−1 generates a distance dK : X × X → [0,∞[ in the usual way:

dK(u0, u1) = inf{
∫ 1

0
〈u̇, G(u)u̇〉1/2 | u ∈ C1([0, 1], X), u(0) = u0, u(1) = u1 }.

Thus, we may consider also the metric gradient system (X, E, dK) in the sense of [AGS05]. The
theory there clearly shows that systems with geodesic λ-convexity have a series of good properties.

First, we have a Lipschitz continuous dependence of the solutions uj on the initial data, namely

dK(u1(t), u2(t)) ≤ e−λtdK(u1(0), u2(0)) for all t ≥ 0.

In particular, for λ ≥ 0 we have a contraction semigroup. If λ > 0 we obtain exponential decay
towards the unique equilibrium state w, which minimizes E, i.e.

dK(u(t), w) ≤ e−λtdK(u(0), w).

Second, the time-continuous solutions u : [0,∞[ → X can be well approximated by interpolants
obtained by incremental minimizations. Fixing a time step τ > 0 we define iteratively

uτ
k+1 = Arg min

u∈X

(
E(u) + 1

2τ
dK(uk, u)2

)
.
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For geodesically λ-convex E the minimizers are unique for τ ∈ ]0, τ0[ if 1/τ0 + λ ≥ 0. Moreover, if
u is the time-continuous solution with u(0) = u0 and if uτ is the left-continuous piecewise constant
interpolant of (uτ

k)k∈N, then

dK(u(t), uτ (t)) ≤ C(u0)
√

τ e−λτ t for t ≥ 0,

see [AGS05, Thms. 4.0.9+4.0.10], where λτ = λ for λ < 0 and λτ = 1
τ

log(1+λτ) for λ > 0.

Another important reason for studying geodesic λ-convexity is the recently established connections
between the Ricci curvature, optimal transport, Wasserstein diffusion, and geodesic λ-convexity of the
relative entropy, see [vRS05, LoV09, BoS09, Maa11].

3 Reversible Markov chains

3.1 An entropic gradient structure for Markov chains

We consider general Markov chains on n states and set

Xn
def
= { u = (u1, . . . , un) ∈ R

n | ui > 0,

n∑

j=1

uj = 1 } ⊂ 1
n
e + R

n
av,

where e = (1, ..., 1)T and R
n
av = { v ∈ R

n | v · e = 0 }. The system is given by

u̇ = Pu = −Au, where Pij ≥ 0 for i 6= j and Pii = −
∑

j:j 6=i

Pji. (3.1)

Here Pij ≥ 0 is the transition rate from j to i.

We assume that there exists a unique positive steady state w ∈ Xn and define the relative entropy

E(u) =

n∑

i=1

ui log(ui/wi). (3.2)

The crucial assumption is the reversibility, also called the condition of detailed balance, namely

Pijwj = Pjiwi for i, j = 1, . . . , n. (3.3)

With W = diag(w) this means PW = (PW )T = WP T.

Obviously, the Markov chain (3.1) has two different linear gradient structures, namely

G1u̇ = −DE1(u), G2u̇ = −DE2(u), or u̇ = −K1DE1(u) = −K2DE2(u)

with

E1(u) = 1
2
〈−W−1Pu, u〉, K1 = W = G−1

1 , E2(u) = 1
2
〈W−1u, u〉, and K2 = −PW.

For these systems we obviously have geodesic convexity, as E1 and E2 are convex and G1 and G2

are constant.
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However, we are interested in the Wasserstein-type gradient structure where the Onsager matrix
K(u) is homogeneous of degree 1 in u and the driving functional is the relative entropy. This gradient
structure was introduced in [Mie11a, Sect. 3.1] in a more general nonlinear context of reaction systems
and independently in [Maa11, CH∗11].

Proposition 3.1 The Markov chain (3.1) has the gradient structure (Xn, E, K) with the relative en-
tropy E from (3.2) and the Onsager matrix

K(u) =
n∑

j=2

j−1∑

i=1

Pijwj Λ
(ui

wi

,
uj

wj

)
(ei−ej) ⊗ (ei−ej), (3.4)

where ei ∈ R
n denotes the i-th unit vector, and Λ is defined in (1.2) and discussed in Appendix A.

Proof: Equation (3.1) is easily obtained by using DE(u) = (log(ui/wi)+1)i=1,...,n. Multiplying this
vector by ei−ej we obtain the denominator of Λ

(
ui

wi
,

uj

wj

)
. Hence,

K(u)DE(u) =

n∑

j=2

j−1∑

i=1

Pijwj

(ui

wi
− uj

wj

)
(ei−ej) = −Pu,

where we used the detailed balance condition (3.3) in the last equality.

Note that E2 and K2 can be obtained via linearization of (E, K), namely

E2(u) = 1
2
D2E(w)[u, u] and K2 = K(w). (3.5)

We also want to mention that there are many more possible gradient structures. Taking Ẽ(u) =∑n
i=1 φi(ui/wi)wi for some strictly convex φ and

K̃(u) =

n∑

j=2

j−1∑

i=1

PijwjΦ
(

ui

wi
,

uj

wj

)
(ei−ej) ⊗ (ei−ej) with Φ(a, b) =

a − b

φ′(a) − φ′(b)
> 0,

it is easy to generalize Proposition 3.1. It follows that the gradient system u̇ = −K̃(u)DẼ(u) equals
the original reversible Markov chain u̇ = Pu.

The choices φ(ρ) = 1
2
ρ2 (giving Φ ≡ 1) and φ(ρ) = ρ log ρ (giving Φ = Λ) lead to the above

gradient system (Xn, E2, K2) and (Xn, E, K), respectively. The case φ(ρ) = ρ log ρ is singled out
by the fact that it is the only one giving the 1-homogeneity

K̃(γu) = γK̃(u) for all γ > 0 and u ∈ Xn.

Our main concern is the geodesic convexity of the relative entropy in Markov chains with respect
to the metric defined via K, which depends on all the transition rates and the equilibrium state w. We
first discuss a simple criterion for geodesic convexity.
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3.2 A few Markov-chain examples

By definition we have K(u)e = 0, and for the matrix M(u) defined in (2.4) this also holds as ATe =
0, i.e. we have

K(u)e = M(u)e = 0 for all u ∈ Xn, where e = (1, ..., 1)T. (3.6)

Thus, a simple criterion for positive semidefiniteness of M(u) − λK(u) is the following.

Lemma 3.2 Assume that K and M are symmetric and satisfy (3.6) as well as

∀ i 6= j ∀u ∈ Xn : Mij(u) ≤ λKij(u), (3.7)

then (2.3) holds, i.e. E is geodesically λ-convex.

Proof: The result follows simply by the fact, that all off-diagonal elements of N(u) := M(u)−λK(u)
are nonpositive. Condition (3.6) implies that the diagonal elements satisfy

Nii(u) = −
∑

j 6=i

Nij(u) =
∑

j 6=i

|Nij(u)|.

Hence N is weakly diagonal dominant and hence positive semidefinite. In fact, we can write

N(u) =
∑

i,j: i<j

|Nij(u)|(ei−ej) ⊗ (ei−ej) ≥ 0.

This proves the result.

Before developing a more general theory we show that this criterion can be applied in a few easy
cases, where it supplies geodesic λ-convexity.

Example 3.3 A special case occurs if for the Markov chain all transition rates are the same, e.g.
Pij = 1 for i 6= j. The steady state is w = 1

n
e, and we claim that E is geodesically n+2

2
-convex.

In this case we have A = −P = n I − e ⊗ e. Using u · e = 1 and K(u)e = 0 we easily obtain

M(u) = n K(u) − 1
2
DK(u)[nu−e].

In particular, for i 6= j we have Kij(u) = −Λij(u) and, with ũ = 1−ui−uj ≥ 0, we find

2nMij(u) = −2nΛij(u) + ∂iΛij(u)
(
(n−1)ui−uj−ũ

)
+ ∂jΛij(u)

(
(n−1)uj−ui−ũ)

≤ −2nΛij(u) + ∂iΛij(u)
(
(n−1)ui−uj

)
+ ∂jΛij(u)

(
(n−1)uj−ui)

= −2nΛij + nΛij − ui+uj

uiuj
Λ2

ij,

where the last identity follows by inserting the explicit relations (A.3) for the derivatives. With (A.1) we
obtain 2Mij(u) ≤ −(n+2)Λij = (n+2)Kij(u), and Lemma 3.2 yields that E is indeed geodesi-
cally n+2

2
-convex. We expect that the result is not optimal for n ≥ 3. However, for u = w = 1

n
e we

can use (3.5) to obtain the upper bound n for the maximal λ. Hence, we have λopt
n ∈ [n+2

2
, n].
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The next example shows that in general we cannot expect λ ≥ 0, in general.

Example 3.4 (Geodesic λ-convexity with λ < 0) We consider a reversible Markov chain for n = 3
with equilibrium w = (1, ε, 1) and

A = −P =




2 −1/ε −1
−1 2/ε −1
−1 −1/ε 2


 and K(u) =




Λ12 + Λ13 −Λ12 −Λ13

−Λ12 Λ12 + Λ23 −Λ23

−Λ13 −Λ23 Λ13 + Λ23




where Λij = Λ(ρi, ρj) with ρi = ui/wi. We calculate M(u) = 1
2
(K(u)AT+AK(u)−DK(u)[Au]

)

explicitly and find, for u∗ = (1, 1, 1) and ε = 1/100,

K(u∗) =




1 + Λ∗ −Λ∗ −1
−Λ∗ 2Λ∗ −Λ∗

−1 −Λ∗ 1 + Λ∗


 , M(u∗) ≈




778 −2854 2076
−2854 5708 −2854
2076 −2854 778




where Λ∗ = Λ(1, 100) ≈ 21.498. From this we see that the geodesic λ-convexity to be proved in
Theorems 4.1 and 4.6 can only hold for λ ≤ λ∗ ≈ −55.23, as M(u∗) − λK(u∗) is not positive
semidefinite for λ > λ∗.

Example 3.5 (Markov chains for n = 2) For n = 2 every nontrivial Markov chain is reversible with
w = (θ, 1−θ) and A = −P = µ

(
1−θ −θ
θ−1 θ

)
for µ > 0. We obtain

K(u) = κΛ12

(
1 −1

−1 1

)
and M(u) = m(u)

(
1 −1

−1 1

)

where κ = µθ(1−θ), Λ12 = Λ(ρ1, ρ2) with ρ = (ρ1, ρ2) = (u1/θ, u2/(1−θ)) and

m(u) = µκΛ12 −
µκ

2

(
(1−θ)∂ρ1

Λ(ρ1, ρ2) − θ∂ρ2
Λ(ρ1, ρ2)

)
(ρ1 − ρ2).

Geodesic Λ-convexity is equivalent to m ≥ λκΛ for all ρ. Using (A.3) we find

ρ1−ρ2

Λ(ρ1,ρ2)

(
(1−θ)∂ρ1

Λ(ρ1, ρ2) − θ∂ρ2
Λ(ρ1, ρ2)

)
= 1 −

(
1−θ
ρ1

+ θ
ρ2

)
Λ(ρ1, ρ2) ≤ c(θ),

where we denote by c(θ) the maximum over all ρj > 0. Using (A.1) we easily obtain 1 > c(θ) ≥
1−2

√
θ(1−θ) ≥ 0 = c(1/2). Thus, the two-dimensional Markov chain is geodesically λ-convex for

λ = µ(1 − c(θ)/2) ≥ µ/2. Taking µ = 2 and θ = 1/2 we obtain λ = 2 as in the case n = 2 of
Example 3.3.

3.3 The complete metric space (Xn, dK)

Above we have seen that any reversible Markov chain u̇ = Pu can be understood as a gradient
system (Xn, E, K), where the Onsager structure K is the inverse of the Riemannian metric G. As
explained in Section 2.3 we can introduce the distance dK : Xn × Xn → [0,∞[. We rewrite the
formula explicitly in terms of K (i.e. in the Benamou-Brenier form [BeB00]):

dK(u0, u1) = inf
{ ∫ 1

0

〈ξ(s), K(u(s))ξ(s)〉1/2 ds
∣∣∣ u̇ ∈ W1,2([0, 1]; Xn),

u(0) = u0, u(1) = u1, u̇(s) = K(u(s))ξ(s)
}
.
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So far, Xn is the open set with ui > 0 for all i. We want to show that dK can be uniquely extended
to the closure Xn = Prob({1, ..., n}), i.e. there is a unique continuous extension of dK to Xn×Xn.
Moreover, this extension turns (Xn, dK) into a complete metric space, whose topology is the same
as the standard Euclidean topology on Xn ⊂ R

n.

We need to estimate the metric G from above near the boundary of Xn. Hence, K has to be
estimated from below, and we set

π
def
= min{Pijwj | Pij > 0 } > 0 and λ(u)

def
= min{Λ(ui/wi, uj/wj) | Pij > 0 }.

Because the cotangent space to Xn is given by ξ ∈ R
n with ξ · e = 0, we have

|ξ|2 = 1
2n2

∑n
i=1

∑n
j=1(ξi − ξj)

2. (3.8)

Recall that the Markov chain (Xn, E, K) is assumed to be irreducible. Hence, for every pair (i, j)
there exists a chain i = k0, k1, ..., km = j with m ≤ n−1 such that Pkm−1km ≥ π for m = 1, ..., m.
We now estimate

(ξi−ξj)
2 ≤ m

m∑

m=1

(ξkm−1
−ξkm)2

≤ (n−1)
m∑

m=1

Pkm−1kmwkmΛ(ρkm−1
, ρkm)

π λ(u)
(ξkm−1

−ξkm)2 ≤ n − 1

π λ(u)
〈ξ, K(u)ξ〉.

Inserting this into (3.8) gives 〈ξ, K(u)ξ〉 ≥ 2n2π λ(u)|ξ|2/(n−1). Using the lower estimate Λ(a, b) ≥√
ab from (A.1) and the abbreviations u = min{ uj |j = 1, ..., n } and w = max{wj |j = 1, ..., n }

we have λ(u) ≥ u/w. As a consequence, for a given Markov generator P there exists a constant
C > 0 such that the Riemannian metric G = K−1 satisfies

〈v, G(u)v〉 ≤ C|v|2/u for all v with v · e = 0 and all u ∈ Xn. (3.9)

Consider any sequences (um)m∈N and (ũm)m∈N with

um → u and ũm → ũ in Xn,

where convergence is meant in the Euclidean sense. We will show that (dK(um, ũm))m∈N is a Cauchy
sequence such that dK(u, ũ) will be defined as limm→∞ dK(um, ũm). Then, dK : Xn × Xn → R

is continuous.

To show convergence of (dK(um, ũm))m∈N we use the triangle inequality

|dK(um, ũm)−dK(ul, ũl)| ≤ dK(ũl, ũm)+dK(um, ul).

Thus, it remains to show that dK(um, ul) converges to 0. For u ∈ Xn this is trivial, as dK(um, ul) ≤
dK(um, u) + dK(u, ul) → 0 as the Euclidean metric is equivalent to dK on compact subsets of Xn.
For u ∈ ∂Xn choose ε > 0 and take m, l ∈ N so big, that |um−u|, |ul−u| ≤ ε. Using the point
uε = (1−ε)u + ε

n
e ∈ Xn we can estimate

dK(um, ul) ≤ dK(um, uε) + dK(ul, u
ε).
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Defining the linear path U(s) = (1− s)um + suε we have U̇ = uε−um giving |U̇ | ≤ 2ε. Moreover,
for all j we have Uj(s) ≥ sε/n, and using (3.9) we obtain

dK(um, uε) ≤
∫ 1

0

〈U̇ , G(U(s))U̇〉1/2 ds ≤
∫ 1

0

(nC

εs
4ε2
)1/2

ds = 4(n C ε)1/2.

As ε > 0 was arbitrary we obtain the desired result dK(um, ul) → 0 and conclude that dK has
a well-defined continuous extension to Xn × Xn. We note that points on the boundary ∂Xn may be
connected with geodesics that lie inside Xn except for their endpoints.

4 Geodesic λ-convexity for Markov chains

4.1 A general result on geodesic λ-convexity

In this section we show that every finite-dimensional reversible Markov chain is geodesically λ-convex.
Enven though our theory is finite dimensional, this result is nontrivial: On the one hand the Onsager
matrix K, which is formed with the entries Λ(ρi, ρj) with ρi = ui/wi, is not uniformly positive definite
on the state space Xn. On the other hand, the matrix M(u) depends in a complicated manner on
ρ = (u1/w1, . . . , un/wn), in particular through the derivatives of Λ(ρi, ρj). The proof uses several
special properties of the function Λ that are discussed in Appendix A. In particular, the derivatives
∂ρi

Λ(ρi, ρj) cannot be simply estimated by Λ(ρi, ρj), but rather correct signs need to be used.

Theorem 4.1 Let u̇ = Pu be a reversible Markov chain with P ∈ R
n×n, i.e. it is reversible with

respect to the strictly positive steady state w ∈ ]0, 1[n. Then, there exists a λ ∈ R such that the
entropy E(u) =

∑N
i=1 ui log(ui/wi) is geodesically λ-convex with respect to the metric defined by

K given in (3.4).

The remainder of this subsection forms the proof of the above theorem. As the case n = 2 is trivial
(see Example 3.5), we assume n ≥ 3 for the rest of this section. While there is a much shorter proof
for the case when all transition coefficients Pij , i 6= j, are strictly positive (see Section 4.2) we have to
introduce some notation for the general result discussed here. We define the set E of transition edges
via

E = { ij | i < j, Pij > 0 } and nE = #E.

Moreover, we define a connection matrix S ∈ R
NE×n via

S i j ,k =





1 if i = k,
−1 if j = k,
0 else.

Thus, we can rewrite the matrices A = −P , K(u) and M(u) in the form

A = S∗
PSW−1, K(u) = S∗

L(u)S, M(u) = S∗
M(u)S, (4.1)
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where we use the abbreviations

W = diag w, πij = Pijwj = πji ≥ 0 for i 6= j,

P = diag(Πij) i j∈E
, L(u) = diag(πijΛ(ui/wi, uj/wj)) i j∈E

.

Reversibility of the Markov chain u̇ = Pu means that W−1 = diag(1/wi)i=1,...,n exists and that
AW = (AW )T = WAT.

For the future analysis it is more convenient to express the matrices K, L, and M in terms of the
relative densities ρi from u = Wρ via

K(ρ) = K(W−1ρ), L(ρ) = L(W−1ρ), M(ρ) = M(W−1ρ),

which gives the final formulas

L(ρ) = diag(πijΛ(ρi, ρj)) i j∈E
, M(ρ) =

1

2

(
LSP + PSL − DL(ρ)[W−1AWρ]

)
,

where S = SW−1S∗ ∈ R
NE×NE . Note that in the last term we have Au = AWρ (for the formula

(2.4)) and that there is an extra W−1 because of DL(u)[v] = DL(ρ)[W−1v].

From the special form of M = S∗MS and K = S∗LS it is obvious that it is sufficient (but by far
not necessary) for geodesic λ-convexity that

∃λ ∀ρ ∈ ]0,∞[n : N (ρ)
def
= 2M(ρ) − 2λL(ρ) ≥ 0. (4.2)

The main point of these representations is that L and P are diagonal matrices. All non-diagonal
terms are induced by the matrix S only. In particular, changing λ only changes the diagonal entries of
N in a monotone way. The structure S ∈ R

NE×NE is comparably simple, namely

S i j k l =





1
wi

+ 1
wj

if ij = k l ,
1

wm
if ij 6= k l and

(
i = k = m or j = l = m

)
,

− 1
wm

if ij 6= k l and
(
i = l = m or j = k = m

)
,

0 if {i, j} ∩ {k, l} = ∅.

Thus, all nontrivial off-diagonal terms are associated with a pair of two edges having one common
endpoint. The signs of S i j ,k l will not matter in our estimates.

Using the shorthand notations

Λij = Λ(ρi, ρj) and Λij,k = ∂ρk
Λ(ρi, ρj)

the entries N i j k l take the form

N i j ij = 2( 1
wi

+ 1
wj

)π2
ijΛij + πij

(
Λij,i

(Pρ)i

wi
+ Λij,j

(Pρ)j

wj
− 2λΛij

)
,

N i j k l = πijπklS i j k l (Λij+Λkl).

The following lemma will be used to establish positive definiteness of N .
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Lemma 4.2 Consider a symmetric matrix Γ ∈ R
µ×µ. If

∀α ∈ {1, . . . , µ} : Γαα =

µ∑

β=1

γβ
αα with γβ

αα ≥ 0, (4.3a)

∀α 6= β : Γ2
αβ ≤ γβ

ααγα
ββ, (4.3b)

then, Γ is positive semidefinite.

Proof: For all ξ ∈ R
µ we have

ξ·Γξ =
∑

α

Γααξ2
δ +

∑

α6=β

Γαβξαξβ ≥
∑

α,β

γβ
ααξ2

α −
∑

α6=β

(γβ
ααγα

ββ)1/2|ξαξβ|

≥
∑

α6=β

γβ
ααξ2

α −
(∑

α6=β

γβ
ααξ2

α

)1/2(∑

α6=β

γα
ββξ2

β

)1/2
= 0.

This proves the desired result.

To apply the above lemma, we need to find a proper splitting of N i j ij into nonnegative parts as in
(4.3a) such that the off-diagonal terms can be controlled as in (4.3b). For this we have to analyze the
occurring terms in more detail. We first split them into three groups via

N i j ij = N I
i j

+ N II
i j

+ N III
i j

,

where N I
i j

= 2π2
ij(

1
wi

+ 1
wj

)Λij + πij

(
Λij,iPiiρi + Λij,jPjjρj

)
− 2πijλΛij ,

N II
i j

= πij

∑

l 6∈{i,j}

(
Λij,i

πli

wi
+Λij,j

πlj

wj

)
ρl, and N III

i j
= π2

ij

(
Λij,i

ρj

wi
+ Λij,j

ρi

wj

)
.

(4.4)

Note that the terms involving the derivatives Λij,i and Λij,j are distributed to the three parts according
to their properties. All terms in N I

i j
have upper and lower bounds in terms of Λij by using (A.4a).

In N II
i j

we have collected the interaction with vertices l 6∈ {i, j}, while N III
i j

features an important
interaction term. The crucial estimate

N III
i j

≥ π2
ij

max{wi, wj}
(
Λ2

ij(
1
ρi

+ 1
ρj

) − Λij

)
≥ π2

ij

max{wi, wj}
Λij ≥ 0 (4.5)

follows via (A.4b). It will be important to use the first estimate from (4.5), which is much sharper for
ρi 6= ρj than the lower bound by Λij given in the second estimate.

We now define the splitting (4.3a) of the diagonal elements N i j ij =
∑

k l∈E
N

k l

ij ij
. If {i, j} ∩

{k, l} = ∅ we simply let N
k l

ij ij
= 0 = N

ij

k l k l
since the corresponding non-diagonal entry N i j k l

equals 0 as well.

Now consider ij ∈ E fixed and define n i j ∈ {1, ..., 2n − 2} as the number of edges k l such
that {i, j}∩{k, l} 6= ∅. These edges have either the common vertex i or j. Without loss of generality
we may assume j = k as the ordering of the vertices does not matter here. We further define the set

of all neighbors of j, namely Nj
def
= { k ∈ {1, ..., n} | j k ∈ E or k j ∈ E } and let n̂j = #Nj .

Since j 6∈ Nj and i, k ∈ Nj we have n̂j ∈ {2, ..., n − 1}.
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Thus, we have k l = j l for l ∈ Nj \ {i} and can set

N
j l

ij ij
= πijν i j j lΛij +

πijπjl

wj
Λij,jρl + 1

bnj−1
N III

i j
, (4.6)

where we followed the same splitting strategy as in (4.4) and used n ≥ 3. The constants ν i j j l =
νj l i j ∈ R will be chosen later and we set ν i j k l = 0 for {i, j} ∩ {k, l} = ∅.

Finally, we set N
ij

ij ij
= N i j ij −

∑
k l 6= i j N

k l

ij ij
and obtain the lower bound

N
ij

ij ij
≥ πij

(
2πij

(
1
wi

+ 1
wj

)
+ min{Pii, Pjj} − 2λ −

∑

k l 6= i j

ν i j k l

)
Λij.

After having chosen all ν i j k l , we find a desired λ via

λ = 1
2
min

{
2πij

(
1
wi

+ 1
wj

)
− max{|Pii|, |Pjj|} −

∑

k l 6= i j

ν i j k l

∣∣∣ ij ∈ E

}
. (4.7)

Thus, (4.3a) is satisfied, if all N
k l

ij ij
are nonnegative as well, and it remains to establish the estimate

(4.3b) for the non-diagonal entries. Then, Lemma 4.2 can be applied and Theorem 4.1 follows.

To estimate the nontrivial non-diagonal entries N i j k l as assumed in (4.3b), it again suffices to

consider the case k l = j l , as the other cases are analogous. The conditions in (4.3) are equivalent
to

N
i j j l def

=

(
N

j l

ij ij
N i j j l

N i j j l N
ij

j l j l

)
≥ 0

in the sense of positive semidefiniteness of the matrices. Multiplying from left and right by the diagonal
matrix diag(πijΛij , πjlΛjl)

1/2 this is equivalent to

ν i j j l

(
1 0
0 1

)
+ B i j j l (ρ) ≥ 0, where B i j j l =

(
B i j j l

11 B i j j l
12

B i j j l
12 B i j j l

22

)

with

B i j j l
11 ≥ πij

(bnj−1)max{wi,wj}

(
Λij(

1
ρi

+ 1
ρj

) − 1
)

+
πjl

wj

Λij,j

Λij
ρl,

B i j j l
12 =

(πijπjl)
1/2

wj

(
(Λij/Λjl)

1/2 + (Λjl/Λij)
1/2
)
,

B i j j l
22 ≥ πjl

(bnj−1)max{wj ,wl}

(
Λjl(

1
ρj

+ 1
ρl

) − 1
)

+
πij

wj

Λjl,j

Λjl
ρi,

where we already used the lower bound (4.5) for N III.

Thus, the validity of (4.3b) is shown if we are able to show that the eigenvalues of the symmetric
matrices B i j j l (ρ) are uniformly bounded from below for all ρ ∈ ]0,∞[n. The difficulty lies in the fact
that the entries are unbounded (while being 0-homogeneous), and the task is to control the negative
part of the eigenvalues.

Clearly, the lowest eigenvalue decreases if we decrease the diagonal entries or increase the off-
diagonal entry of B i j j l . Using Λij(

1
ρi

+ 1
ρj

) − 1 ≥ 1
2
Λij(

1
ρi

+ 1
ρj

) (cf. (A.4b)), it suffices to find an
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estimate from below for the eigenvalues of α i j j lGβ ij j l
(ρi, ρj , ρl) where

Gβ(ρi, ρj , ρl)
def
=

(
Λij(

1
ρi

+ 1
ρj

) +
Λij,j

Λij
ρl β(Λij/Λjl)

1/2 + β(Λjl/Λij)
1/2

β(Λij/Λjl)
1/2 + β(Λjl/Λij)

1/2 Λjl(
1
ρj

+ 1
ρl

) +
Λjl,j

Λjl
ρi

)
,

α i j j l = min{ πij

2(bnj−1)max{wi,wj}
,

πjl

wj
,

πjl

2(bnj−1) max{wj ,wl}
,

πij

wj
}, and β i j j l =

(πijπjl)
1/2

α ij j l wj
.

We now employ the following result, which is proved in Appendix B.

Proposition 4.3 There exists a continuous, decreasing function ĝ : [0,∞[ → R such that for all
β ≥ 0 and all r, s, t > 0 we have Gβ(r, s, t) ≥ ĝ(β)I .

Thus, we are able to conclude that the eigenvalues of B i j j l are bounded uniformly from below by
α i j j l ĝ(β i j j l ). Hence, N i j j l is positive semidefinite for all ρ if we choose ν i j j l = −α i j j l ĝ(β i j j l ).
Thus, we have established condition (4.3b) and Theorem 4.1 is proved.

In principle, the above proof for the existence of a λ for geodesic λ-convexity is constructive. How-
ever, we do not have an explicit bound for ĝ, and the above estimate is not optimized for obtaining
good lower bounds values for λ in the geodesic λ-convexity of the relative entropy E. At this stage we

are content to establish the existence of one λ ∈ R. Note that in the definition of N
j l

ij ij
we did not

use the term
πijπil

wi
Λij,iρl, which may indeed vanish if πil = 0. Note that ij , j l ∈ E does not imply

i l ∈ E. However, if all πij are strictly positive, this can be used to find a shorter proof for geodesic
λ-convexity with an explicit bound. This is the content of the next subsection.

Nevertheless, we are able to derive a nontrivial quantitative result for special reversible Markov
chains associated with a finite and connected graph with vertices {1, ..., n}. Assume that Pij = 1 if
the vertices i and j are connected by an edge and Pij = 0 else. Then, w = 1

n
e is the unique steady

state, and n̂j = −Pjj =
∑

i:i6=J Pij gives the number of neighboring vertices for the vertex j. Our
result gives a bound on the geodesic λ-convexity in terms of m = max{ n̂j | j = 1, ..., n }, which is
otherwise independent of n.

Corollary 4.4 There exists a non-increasing function f : N → R such that the following holds.
Consider a finite graph with n vertices and the special reversible Markov chain u̇ = Pu ∈ R

n with
Pij = 1 if i and j are connected and 0 else. Let w = 1

n
eT and

m = max{−Pjj | j = 1, ..., n },

then the relative entropy E is geodesically λ-convex for some λ = f(m).

Proof: We just go through the above proof and simplify all expressions using wi = 1/n and πij ∈
{0, 1/n}. We obtain α i j j l = 1/(n̂j − 1), β i j j l = n̂j−1, and note that at most for 2m−2 edges

k l we have ν i j k l 6= 0. With Proposition 4.3 the lower estimate (4.7) yields

λ = f(m)
def
=

1

2

(
4 − m + 2 ĝ(m−1)

)
,

which is the desired result.
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As an example consider the infinite d-dimensional lattice of vertices z ∈ Z
d with edges between z

and z̃ if and only if |z−z̃| = 1 such that n̂
z

= 2d for all z. Now take any finite subgraph with n vertices
and construct the special Markov chains as described above, then the Onsager system (Xn, E, K)
is geodesically λ-convex with λ = f(2d), independently of n.

4.2 Geodesic λ-convexity if all Pij > 0

Here we give a shorter proof of a weakened version of Theorem 4.1. The point is to establish a
more explicit bound and to provide a potential method for deriving sharper bounds for Markov chains
with suitable additional structures. We use Lemma 3.2 for showing positive definiteness of N(u) =
M(u) − λK(u), which cannot be strictly positive definite because of N(u)e = 0. Thus, we have to
establish Mij(u) ≤ λKij(u) for i < j and u ∈ Xn. Good estimates on Mij will be obtained via
the following Proposition 4.5, which replaces the more technical Proposition 4.3. In the latter the two
partial derivatives ∂rΛ(r, t) and ∂tΛ(r, t) have to be collected from two different diagonal elements,
while here they occur directly as sum. The result is formulated in terms of the function ℓ defined in
(1.3).

Proposition 4.5 Define g̃(β) = 2β for β ∈ [0, 1/2] and g̃(β) = 4βℓ(1/(4β)) for β ≥ 1/2. Then,
for all β ≥ 0 we have the estimate

∀ r, s, t > 0 : β
(
Λ(r, s)+Λ(s, t)

)
−
(
∂rΛ(r, t)+∂tΛ(r, t)

)
s ≤ g̃(β)Λ(r, t).

Proof: We abbreviate Λrs = Λ(r, s) and Λrs,r = ∂rΛ(r, s).

Defining γβ(r, s, t) = β Λrs+Λst

Λrt
− Λrt

rt
s we have to show γβ(r, s, t) ≤ g̃(β), where we used

(A.4c). By the symmetry r ↔ t and the 1-homogeneity we may assume 0 < r ≤ t = 1 giving
Λrs ≤ Λs1. Hence, it suffices to estimate

sup
0<r≤1, s>0

(
2β Λ1s

Λ1r
− Λ1r

r
s
)

= sup
0<r≤1

2β
Λ1r

ℓ
( Λ2

1r

2β r

)
≤ 2β sup

0<r≤1

ℓ(Λ1r,r/(2β))

ℓ(Λ1r,r)
,

where the last estimate follows from Λ1r,r ≥ Λ2
1r/r (cf. (A.4c)) and Λ1r ≥ Λar,a|a=1 = ℓ(Λ1r,r), cf.

(A.4a) and (A.7c).

Since ξ = Λ1r,r ranges through [1/2,∞[ for r ∈ ]0, 1], it suffices to establish

g(β) = sup{ ℓβ(ξ) | ξ ≥ 1/2 } =

{
1 for β ≤ 1,

2ℓ(1/(2β)) for β ≥ 1;
where ℓβ(ξ) = ℓ(ξ/β)

ℓ(ξ)
.

Then, g̃(β) = 2β g(2β) gives the desired result.

To calculate g(β) we first consider β ≤ 1. Because ℓ is decreasing we easily find ℓβ(ξ) ≤ 1.
Moreover, ℓβ(ξ) → 1 for ξ → ∞ implies g(β) = 1.

For β ≥ 1 there exists a unique ξβ ∈ ]1/2, β/2[ such that ξβ = βℓ(ξβ). According to (A.7a) for
each ξ ≥ 1/2 there exist κ, σ ∈ R such that

ℓ̃(κ) = ξ/β, ℓ̃(σ) = ξ, ℓ̃(−κ) = ℓ(ξ/β), ℓ̃(−σ) = ℓ(ξ).
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Since ℓ̃ is increasing and β ≥ 1, we have σ ≥ 0 and σ ≥ κ. For ξ ≥ ξβ we have ℓ̃(κ) = ξ/β ≥
ℓ(ξ) = ℓ̃(−σ) yielding κ ≥ −σ. Hence, we have

ℓβ(ξ) = ℓ(ξ/β)
ℓ(ξ)

=
eℓ(−κ)
eℓ(−σ)

= β m(κ)
m(σ)

≤ β, where m(κ)
def
= ℓ̃(κ)ℓ̃(−κ).

For the last estimate we used that |κ| ≤ σ implies m(κ) ≤ m(σ). This follows from the fact that m
is even and m′(κ) > 0 for κ > 0.

For ξ ∈ [0, ξβ] we define σβ > 0 such that ξβ = ℓ̃(σβ) (or ℓ(ξβ) = ℓ̃(−σβ)) and kβ :

[0, σβ] → R via ℓ̃(σ) = βℓ̃(kβ(σ)). Hence, kβ is increasing and has range [kβ(0),−σβ], be-

cause of ℓ̃(kβ(σβ)) = ℓ̃(σβ)/β = ξβ/β = ℓ(ξβ) = ℓ̃(−σβ). Using m′(kβ) ≤ 0 and m′(σ) ≥ 0 it
follows that σ 7→ m(kβ(σ))/m(σ) is decreasing on [0, σβ] and the maximum is attained at σ = 0,
which corresponds to ξ = 1/2:

ℓβ(ξ) = β
m(kβ (σ))

m(σ)
≤ β

m(kβ(0))

m(0)
= 2 ℓ(1/(2β)) = g(β).

From ξℓ(ξ) = m(σ) ≥ 1/4 we find β ≤ g(β) for β ≥ 1. Hence, g is calculated, and the desired
estimate is established.

To establish geodesic λ-convexity we use a similar notation as in Section 4.1, namely

πij = Pijwj = πji, A = −P, Λij = Λ(ρi, ρj), Λij,k = ∂ρk
Λ(ρi, ρj),

where ρk = uk/wk. Using the definition of M and the identities

Kij = −πijΛij, Kii = −
∑

l 6=i

Kil, Aij = −Pij , Aii =
∑

l 6=i

Pli > 0, µijl =
πilπjl

wl
,

where i 6= j, we find the explicit representation

2Mij =
∑

l

(KilAjl + AilKlj) + πij

(
1
wi

Λij,i(Au)i + 1
wj

Λij,j(Au)j

)

=
∑

l 6∈{i,j}

µijl(Λil+Λjl) − πijΛij(Aii + Ajj)

− πij

(
1
wi

∑

l 6=i

πilΛil + 1
wj

∑

l 6=j

πjlΛjl

)
+ πij

(
1
wi

Λij,i(Au)i + 1
wj

Λij,j(Au)j

)
.

For applying condition (3.7) for positive semidefiniteness, we observe that Kij = −πijΛij only
depends on ρi and ρj , whereas Mij(u) may depend on all ρ1, ..., ρn. Thus, we rewrite Mij(u) in the
form that highlights the dependencies on (ρi, ρj) and on all the others ρl, namely

Mij(u) = 1
2
M ij(ρi, ρj) + 1

2

∑

l 6∈{i,j}

M̃ijl(ρi, ρj , ρl), where (4.8)

M ij(ρi, ρj) = −πij

(
Aii + Ajj + Pij + Pji

)
Λil

+ πij

(
ρiΛij,iAii + ρjΛij,jAjj − ρjΛij,iPji − ρiΛij,jPij

)
,

M̃ijl(ρi, ρj , ρl) = πil(Pjl−Pji)Λil + πjl(Pil−Pij)Λjl − πij

(
PliΛij,i + PljΛij,j) ρl.
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Using (A.4) and Proposition 4.5 both terms can be estimated in terms of Λij via

M ij ≤ µijπijΛij with µij = −min{Aii, Ajj} − Pij − Pji − min{Pij, Pji},
M̃ijl ≤ µ̃ijlπijΛij with µ̃ijl = πij min{Pli, Plj} g̃(βijl)

and βijl = max{0, πli(Pjl−Pji), πlj(Pil−Pij)}/(πij min{Pli, Plj}).
(4.9)

Thus, together with criterion (3.7) we can summarize and obtain the following result.

Theorem 4.6 Assume that u̇ = Pu is a reversible Markov chain where all transition rates are positive,
i.e. Pij > 0 for all i < j. Consider the gradient structure (Xn, E, K) given in Proposition 3.1, then
E is geodesically λ-convex for

λ = −1

2
max{µij +

∑

l 6∈{i,j}

µ̃ijl | 1 ≤ i < j ≤ n },

where µij and µ̃ijl are given in (4.9).

We observe that the above arguments do not apply if πij = 0 and πil > 0 for some i 6= j and
l 6∈ {i, j}. For that case, we need the more complicated and less explicit approach of Theorem 4.1.

Example 4.7 The above result allows for another simple example, where the convexity can be esti-
mated. Take any vector w ∈ Xn with w · e = 1 and let

P = κw ⊗ e − κI, then PTe = 0 = Pw and Pijwj = κwiwj.

Hence, w is the steady state of the reversible Markov chain. Applying the above theorem we see that
µ̃ijl = 0 as Pij = Pil by construction. Since µij = −κ − 2κ min{wi, wj} we conclude geodesic
λ-convexity for E in (Xn, E, K) with λ = κ/2 + κ min{wi | i = 1, ..., n }.

Taking w = 1
n
e and κ = n we recover the result of Example 3.3.

5 Discretization of a 1D Fokker-Planck equation

In this section we discuss a special Markov chain, which occurs as a discretization of a one-dimensional
Fokker-Planck equation. The points 1, ..., n are aligned and transitions only occur to the nearest neigh-
bor, i.e. P is a tridiagonal matrix. Before investigating this situation we show how for the associated
diffusion equation the geodesic convexity can be established. The proof involves several integrations
by part that are a guideline for the discrete setting.

5.1 Geodesic convexity for the Fokker-Planck equation

We consider the Fokker-Planck equation u̇ = div(∇u + u∇V̂ ) on Ω = R
d. Here we only give a

formal argument motivating the geodesic λ̂-convexity of the relative entropy under the assumption that
the potential V̂ is λ̂-convex, i.e. in the smooth case we have

ξ · D2V̂ (x)ξ ≥ λ̂|ξ|2 for all x ∈ Ω and ξ ∈ R
d.
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First, we apply the approach of Section 2 in a formal way by assuming that all functions are sufficiently
smooth and decay fast enough at infinity. The gradient structure of the Fokker-Planck equation is given
via

u̇ = −K(u)DE(u) with E(u) =

∫

Ω

u logu + V̂ udx and K(u)ξ = − div
(
u∇ξ), (5.1)

see [JKO98, Ott01]. To calculate the corresponding quadratic form M we use that the vector field
F(u) is linear with

F(u) = Au = −∆u − div(u∇V̂ ) and DF(u)∗φ = A∗φ = −∆φ + ∇φ · ∇V̂ .

Hence, using (2.4) and ∆(1
2
|∇φ|2) = |D2φ|2 + ∇φ · ∇(∆φ) we obtain

〈M(u)φ, φ〉 = 〈DF(u)∗φ,K(u)φ〉 − 1
2
〈φ, DK(u)[F(u)]φ〉

=

∫

Ω

(
−∆φ+∇φ·∇V̂

)(
− div(u∇φ)

)
− 1

2

(
−∆u− div(u∇V̂ )

)
|∇φ|2 dx

=

∫

Ω

u
(
∇
(
−∆φ+∇φ·∇V̂

)
·∇φ + ∆(1

2
|∇φ|2) −∇V̂ ·∇(1

2
|∇φ|2)

)
dx

=

∫

Ω

u
(
|D2φ|2 + ∇φ·D2V̂ ∇φ

)
dx ≥

∫

Ω

u λ̂|∇φ|2dx = λ̂〈φ,K(u)φ〉.

Second, we emphasize that the above calculation can be turned into a full proof of geodesic λ̂-
convexity following the analysis developed in [DaS08]. However, there are several other approaches
to geodesic λ̂-convexity, also called displacement convexity in this context, see [McC97, AGS05]. We
also refer to Remark 2.1 to compare with the stronger pointwise Bakry-Émery condition (2.7).

In the next section we will use the above formal calculation as a guide line for arranging terms. In
particular, the fact that 〈M(u)φ, φ〉 and 〈K(u)φ, φ〉 depend on ∇φ only, will be mirrored in the fact
that in the discrete Markov chain the corresponding forms depend on the differences uj+1−uj only.

5.2 Uniform geodesic λ-convexity for the discretization

We now return to the one-dimensional case with constant mobility. Our aim is to find a spatial dis-
cretization of the corresponding Fokker-Planck equation that keeps the geodesic convexity-properties.
In particular, the discretization will be geodesically λn-convex with λn → λ̂, and λ̂ is the best value
for geodesic λ-convexity of the Fokker-Planck equation

u̇ =
(
ux + uV̂x(x))x, ux(t, 0) = ux(t, 1) = 0,

∫ 1

0

u(t, x)dx = 1. (5.2)

This equation is given by the gradient system (Xn, E ,K) with

E(u) =

∫ 1

0

u log(u/ŵ)dx and K(u) = − div(u∇�), (5.3)

where ŵ(x) = ce−
bV (x) with 1/c =

∫ 1

0
e−

bV (x) dx. It is geodesically λ̂-convex where

λ̂ = inf{ V̂ ′′(x) | x ∈ ]0, 1[ }.
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Our discretization should be again a gradient system with a discrete relative entropy and an On-
sager matrix K such the gradient system is again a Markov process. On the state space Xn ⊂ R

n

we define the energy functional E and the Onsager matrix K as

E(u) =

n∑

i=1

ui log(ui/wi) and K(u) = S∗
L(u)S, (5.4a)

where S =




1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1


 ∈ R

(n−1)×n (5.4b)

and S∗ ∈ R
n×(n−1) is the transposed of S. The diagonal matrix L = diag(L) ∈ R

(n−1)×(n−1) is
given via

L(u) = (Li(u))i=1,...,n−1 with Li(u) = κiΛ( ui

wi
, ui+1

wi+1
), (5.4c)

where the vector κ = (κi)i=1,...,n−1 is still to be chosen and Λ : ]0,∞[2 → ]0,∞[ is given in (1.2).
As in Proposition 3.1 the gradient system (Xn, E, K) leads to

u̇ = −S∗
L(u)SDE(u) = −S∗ diag(κ)S(ui/wi)i=1,...,n = −Au,

where A ∈ R
n×n has the form

A = S∗ diag(κ)S diag(w)−1 =




κ1

w1
− κ1

w2
0 · · · 0

− κ1

w1

κ1+κ2

w2
− κ2

w3

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . κn−2+κn−1

wn−1
−κn−1

wn

0 · · · 0 − κn−1

wn−1

κn−1

wn




∈ R
n×n.

Clearly, we have the equilibrium condition Aw = 0 and the conservation of total mass ATeT = 0.
We recall that in the continuous case K(u) is independent of the steady state w, which is not the
case for the discrete system. Nevertheless, we want to choose K(u) such that it converges to K in
the discrete-to-continuous limit. For this, one has to choose κi suitably. The 1-homogeneity (A.5) of
Λ suggests to choose κi such that it is 1-homogeneous in w. Then, K(u) will be 0-homogenous
in w. Since κi corresponds to the transfer between the nodes i and i+1, it is natural to choose the
symmetric variant

κi =
√

wi wi+1. (5.5)

Theorem 5.1 If (5.5) is satisfied and if for some β ≥ 0 the concavity condition

wi ≥ eβ√wi−1wi+1 for i = 2, . . . , n − 1, (5.6)

holds, then the gradient system (Xn, E, K) given in (5.4) and leading to the Markov chain u̇ = −Au
is geodesically λ-convex with λ = 2(1−e−β) ≥ 0.
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If the special choice (5.5) holds it is useful to introduce the quotients

qi =
√

wi+1/wi for i = 1, . . . n − 1.

We observe that the concavity condition (5.6) is equivalent to

qi ≥ eβ qi+1 for i = 1, . . . , n−2. (5.7)

Relating wj to a potential V via Vj = γ − log wj , we also see that (5.6) corresponds to a classical
convexity for V , namely

Vi ≤ 1
2
(Vi−1 + Vi+1) − β for i = 2, . . . , n − 1. (5.8)

Moreover, K(u) and A can be expressed in terms of qj only. For K(u) simply note that Li(u) =
Λ(qiui,

1
qi

ui+1). For A we find

A =




0+q1 − 1
q1

0 · · · 0

−q1
1
q1

+q2 − 1
q2

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 1
qn−2

+qn−1 − 1
qn−1

0 · · · 0 −qn−1
1

qn−1
+0




∈ R
n×n. (5.9)

We also see that the case w = 1
n
(1, . . . , 1)T leads to the simple matrix A having +1 and +2 on

the diagonal and −1 on the two secondary diagonals, which is the standard discretization scheme of
the one-dimensional diffusion equation ut = uxx. In this case our ODE u̇ = −Au satisfies (5.6) with
β = 0, and we conclude geodesic convexity.

In the following proof we do the first part of the calculations for general κj for possible future
generalizations. The proof relies on lengthy but elementary calculations and uses specific properties
of the function Λ derived in Appendix A. The final proof of M(u) ≥ λK(u) then uses the special
choice (5.5) and the concavity (5.6).

To see the relation between the discretization and the Fokker-Planck equation (5.2) we consider
the smooth and λ̂-convex potential V̂ : [0, 1] → R, i.e. V̂ ′′(x) ≥ λ̂ ≥ 0. For the discretization we let

Vi = V̂ (i/n), which implies that (5.8) holds with βn = λ̂/(2n2). Moreover, for a proper discretization
of (5.2) we need to rescale the time or set An = n2A with A from (5.9). As the matrix Mn depends
quadratically on An whereas Kn depends linearly on An, we find that the properly scaled systems
(Xn, En, Kn) are geodesically λn-convex with

λn = 2 n2
(
1 − e−

bλ/(2n2)
)
.

Obviously, we have λn → λ̂ for n → ∞, which shows that the discretization is such that we have an
asymptotically sharp lower bound for the geodesic λ-convexity for n → ∞.

Remark 5.2 While we have only considered the one-dimensional case, we expect that it is possi-
ble to find suitable generalization for higher dimensions as well. In fact, the numerical finite-volume
discretizations constructed in [Gli08, GlG09] obviously lead to reversible Markov chains, but their
geodesic λ-convexity needs to be investigated.
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5.3 Proof of Theorem 5.1

Inserting the specific forms of K = S∗
L(u)S and A = S∗ diag κS diag(w)−1 into the definition of

M we arrive at

M(u) = 1
2
S∗N (u)S with

N (u) = diag L S(diag w)−1S∗ diag κ + diag κ S(diag w)−1S∗ diag L − diag(DL(u)[Au]).

By the special structure of M and K, the theorem is established if we show

N (u) ≥ 2λL(u) for all u ∈ Xn. (5.10)

To shorten the following calculations we introduce the following abbreviations:

ρi = ui/wi, Λi = Λ(ρi, ρi+1), Λi,1 = ∂ρi
Λ(ρi, ρi+1), and Λi,2 = ∂ρi+1

Λ(ρi, ρi+1)

Obviously, N(u) ∈ R
(n−1)×(n−1) is the symmetric tridiagonal matrix given by

N (u) =




a1 b1 0 · · · 0

b1 a2 b2
. . .

...

0
. . .

. . .
. . . 0

...
. . . bn−3 an−1 bn−2

0 · · · 0 bn−2 an−1




∈ R
(n−1)×(n−1).

with

a1 = 2κ1L1(
1

w1
+ 1

w2
) − κ1

w1
Λ1,1κ1(ρ1−ρ2) − κ1

w2
Λ1,2

(
κ1(ρ2−ρ1) + κ2(ρ2−ρ3)

)
,

ai = 2κiLi

(
1
wi

+ 1
wi+1

)
− κi

wi
Λi,1

(
κi−1(ρi−ρi−1) + κi(ρi−ρi+1)

)

− κi

wi+1
Λi,2

(
κi(ρi+1−ρi) + κi+1(ρi+1−ρi+2)

)
for i = 2, . . . , n − 2;

an−1 = 2κn−1Ln−1

(
1

wn−1
+ 1

wn

)
− κn−1

wn−1
Λn−1,1

(
κn−2(ρn−1−ρn−2) + κn−1(ρn−1−ρn)

)

− κn−1

wn
Λn−1,2κn−1(ρn−ρn−1)

bi = − 1
wi+1

(Liκi+1 + Li+1κi) = −κiκi+1

wi+1

(
Λi+Λi+1

)
≤ 0.

The desired positive semi-definiteness of N (u) − 2λL(u) (cf. (5.10)) will follow from diagonal
dominance, which reads in this case

A1 = a1 + b1 − 2λL1 ≥ 0, (5.11a)

Ai := ai + bi−1 + bi − 2λLi ≥ 0 for i = 2, ..., n − 2, (5.11b)

An−1 := an−1 + bn−2 − 2λLn−1 ≥ 0. (5.11c)

Indeed, using bi ≤ 0 these conditions yield the desired positive semi-definiteness

N (u) − 2λL(u) = diag(A1, ..., An−1) +
∑n−2

i=1 |bi| (ei−ei+1)⊗(ei−ei+1) ≥ 0.
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To establish the estimates (5.11) we first treat the case i = 2, . . . , n − 2. Inspecting the formula
for Ai we find

Ai = κi

(
Ãi(ρi, ρi+1) − κi−1

wi

(
Λ(ρi−1, ρi)−Λi,1ρi−1

)
− κi+1

wi+1

(
Λ(ρi+1, ρi+2)−Λi,2ρi+2

))

with Ãi(ρi, ρi+1) = Λi

(
2κi

wi
+ 2κi

wi+1
− κi−1

wi
− κi+1

wi+1
− 2λ

)

− Λi,1

wi

(
(κi−1+κi)ρi − κiρi+1

)
− Λi,2

wi+1

(
−κiρi + (κi+κi+1)ρi+1

)
.

We note that ρi−1 and ρi+2 occur only twice, such that minimization with respect to ρi−1 and ρi+2 is
easily possible. By employing the crucial estimate (A.6) for ρi−1 and ρi+2 separately, we find

Ai ≥ κiΓi with Γi := Ãi(ρi, ρi+1) − κi−1

wi
ρiΛi,2 − κi+1

wi+1
ρi+1Λi,1.

Reinserting the definition of Ãi and expressing the partial derivatives Λi,j in terms of Λi via (A.3) we
obtain, after some rearrangements, cancellations, and using (A.4a) the identity

Γi = Λi

(κi

wi
+

κi

wi+1
− κi−1

wi
−κi+1

wi+1
− 2λ + Σi)

with Σi := Λ(ρi, ρi+1)
(( κi

wi
−κi+1

wi+1

) 1

ρi
+
( κi

wi+1
−κi−1

wi

) 1

ρi+1

)
.

To show Γi ≥ 0, we need to find a lower bound on Σi. Since Λ(a, b)/a is not bounded, lower
bound exists if and only if

κi

wi
− κi+1

wi+1
≥ 0 and

κi

wi+1
− κi−1

wi
≥ 0. (5.12)

Under these conditions we can use (A.1) to find

Σi ≥ √
ρiρi+1

((
κi

wi
− κi+1

wi+1

)
1
ρi

+
(

κi

wi+1
−κi−1

wi

)
1

ρi+1

)
≥ 2
((

κi

wi
− κi+1

wi+1

)(
κi

wi+1
−κi−1

wi

))1/2

.

Putting everything together we see that Γi ≥ 0, and hence Ai ≥ 0 follows from

λ ≤ γi := G
(κi

wi
− κi+1

wi+1
,

κi

wi+1
−κi−1

wi

)
for i = 2, ..., n−2,

where the function G is defined as

G : R
2 → [0,∞]; (a, b) 7→

{
1
2
(a+b) +

√
ab for a, b ≥ 0,

∞ otherwise.

For the case i = 1 and i = n−1 we proceed analogously with the only difference to the general
case that the left or right neighbor is missing. All the above calculations for Ai remain valid for A1 and
An−1, if we set κ0 = 0 and κn = 0, respectively. Thus, we obtain the additional conditions

λ ≤ γ1 := G
(

κ1

w1
− κ2

w2
, κ1

w2

)
and λ ≤ γn−1 := G

(
κn−1

wn−1
, κn−1

wn
− κn−2

wn−1

)
.
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All these estimates hold for general coefficients κi and wi. We now reduce to the special choice
(5.5) for κj and use qi =

√
wi+1/wi satisfying (5.7). Since the function G is monotone increasing in

both arguments and 1-homogeneous, we can estimate γi from below as follows

γi = G(qi − qi+1,
1
qi
− 1

qi−1
) ≥ G(qi−e−βqi,

1
qi
−e−β 1

qi−1
) = (1−e−β)G(qi,

1
qi

) ≥ 2(1−e−β),

where we set 1
q0

= 0 = qn to cover the cases i = 1 and i = n − 1.

Since now (5.11) is established with λ = 2(1−e−β), we have N (u) ≥ 2λL(u) for all u ∈ Xn.
This implies M(u) ≥ λK(u), and our desired result on geodesic λ-convexity follows. Thus, Theorem
5.1 is proved.

Remark 5.3 The case κi = 1
2
(wi + wi+1) can also be handled. Using q2

i = wi+1/wi we have the
relation

λ ≤ min{ 1
2
G(q2

i+1−q2
i ,

1
q2
i
− 1

q2
i−1

) | i = 1, ..., n − 1 },

where 1
q2
0

= 0 = q2
n. We obtain geodesic λ-convexity with λ = (1 − e−2β), which is smaller than

2(1−e−β) obtained above.

6 Nonlinear reaction systems

We give here some preliminary results for geodesic λ-convexity for reversible reaction systems of
mass-action type. We refer to [GlG09, Mie11a, Mie11b] and the references therein for more details
and motivation. Consider again a vector u ∈ ]0,∞[n of densities and a polynomial reaction system
with R reactions:

u̇ = −
R∑

r=1

kr(u)
( uαr

wαr
− uβr

wβr

)(
αr − βr

)
, where uαr

= Πn
i=1u

αr
i

i . (6.1)

Here w ∈ ]0,∞[n is a fixed reference density, which is obviously a steady state and satisfies the
detailed balance condition (reversibility), since for u = w all R reactions are balanced simultaneously.
The index r is the reaction number, kr(u) ≥ 0 is the reaction coefficient (normalized with respect to
w), and the vectors αr, βr ∈ [0,∞[r are called the stoichiometric vectors for the forward and back-
ward reaction. Usually the entries are assumed to be nonnegative integers, but this is not necessary
here. A typical example is

2CO + O2
⇀
↽ 2CO2 giving u̇ = −k(u)

( u2
1u2

w2
1w2

− u2
3

w2
3

)


2

1

−2


, (6.2)

where u = (u1, u2, u3) = (uCO, uO2
, uCO2

), α = (2, 1, 0), and β = (0, 0, 2).

It was shown in [Mie11a] that (6.1) is generated by the gradient system (]0,∞[n , E, K) with

E(u) =

n∑

i=1

ui

(
log(ui/wi)−1

)
and K(u) =

R∑

r=1

kr(u)Λ
(

uαr

wαr , uβr

wβr

)(
αr−βr

)
⊗
(
αr−βr

)
.
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In fact, the result follows as in Proposition 3.1 by using the definition of Λ in (1.2) and

DE(u) = (log(ui/wi))i and DE(u) ·
(
αr − βr

)
= log

(
uαr

wαr

)
− log

(
uβr

wβr

)
.

Of course, the above Markov chains are special cases where all the vectors αr and βr are unit vectors,
which corresponds to simple exchange reactions.

We want to study a few simple cases and discuss the possibility of geodesic λ-convexity. The
fundamental difference to the case of the Markov chains is that the vector field f(u) = K(u)DE(u)
is no longer linear and that the matrices K(u) and M(u) have no homogeneity properties any more.

For R = 1 we drop the reaction number r and write γ = α−β. Moreover, we write ρ = (ui/wi)i.
Then,

f(u) = φ(u)γ with φ(u) = k(u)(ρα − ρβ), K(u) = κ(u)γ ⊗ γ with κ(u) = k(u)Λ(ρα, ρβ).

Hence we find

M(u) = m(u)γ ⊗ γ with m(u) = κ(u)Dφ(u) · γ − 1
2
φ(u)Dκ(u) · γ.

The general case seems too difficult to be analyzed, hence we reduce to the case k(u) ≡ 1. Intro-
ducing the matrix V = diag(1/ui)i we have Du(u

α)[γ] = uαα · V γ, and after some elementary
calculations involving (A.3) we find

m(u) = 1
2
Λ(ρα, ρβ)

(
ραα − ρββ + Λ(ρα, ρβ)(α−β)

)
· V (α−β).

For geodesic λ-convexity we have to show m(u) ≥ λΛ(ρα, ρβ), which leads to the formula

λ = 1
2
inf{∑n

i=1
(αi−βi)

wiρi

[
ρααi − ρββi + Λ(ρα, ρβ)(αi−βi)

]
| ρ ∈ ]0,∞[n }.

To analyze the formula for λ we consider the case αiβi = 0 for all i, which holds for (6.2). Then,

λ = 1
2
inf{∑n

1
1

wiρi

(
α2

i ρ
α+β2

i ρ
β+Λ(ρα, ρβ)(α2

i +β2
i )
)
| ρ ∈ ]0,∞[n } ≥ 0.

Thus, in the case of a single reaction with αiβi = 0 for all i we always have geodesic convexity.
If additionally min{|α|1, |β|1} > 1 (as for the reaction in (6.2)), we always have λ = 0 by taking
ρ → 0. In the case |α|1 = 1 = |β|1 (as for Markov chains) we have homogeneity of degree 0 and
may even obtain λ > 0.

We finally discuss the annihilation-creation reaction, which is used to model the generation and
recombination of electron-hole pairs in semiconductors, cf. [Gli08, GlG09, Mie11a]. We have

u̇ = −κ
( u1u2

w1w2
−1
)(1

1

)
, where α =

(
1

1

)
and β =

(
0

0

)
.

Using κ = wj = 1 for simplicity we obtain

λ = 1
2
inf{

(
1
u1

+ 1
u2

)(
u1u2+Λ(u1u2, 1)

)
| u1, u2 > 0 } = cosh(1) = 1.53408...
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A Properties of the function Λ

In this section we collect the essential properties of the function Λ defined in (1.2). The value Λ(a, b)
can also be seen as the logarithmic average of a and b defined via

Λ(a, b) =

∫ 1

θ=0

aθ b1−θ dθ.

Other useful representations of Λ are for the inverse, namely

1

Λ(a, b)
=

∫ 1

θ=0

dθ

(1−θ)a + θb
=

∫ ∞

t=0

dt

(a+t) (b+t)
.

We have the obvious estimates

2ab
a+b

≤
√

ab ≤ Λ(a, b) ≤ 1
2
(a + b). (A.1)

The lower estimate for Λ can be generalized to

∀ θ ∈ [0, 1] ∀ a, b ≥ 0 : Λ(a, b) ≥ 2 min{θ, 1−θ} aθb1−θ. (A.2)

This estimate follows from the convexity of f : s 7→ asb1−s via integration of f(s) ≥ f(θ) +
f ′(θ)(s−θ) over [0, 2θ] or [2−2θ, 1], respectively. Elementary calculations give

∂aΛ(a, b) = 1
log a− log b

(
1 − Λ(a,b)

a

)
> 0, ∂bΛ(a, b) = 1

log b− log a

(
1 − Λ(a,b)

b

)
> 0, (A.3)

which implies

a∂aΛ(a, b) + b∂bΛ(a, b) = Λ(a, b), (A.4a)

b∂aΛ(a, b) + a∂bΛ(a, b) = Λ(a, b)2
(

1
a
+1

b

)
− Λ(a, b) ≥ Λ(a, b), (A.4b)

∂aΛ(a, b) + ∂bΛ(a, b) = Λ(a,b)2

ab
≥ 1, (A.4c)

(∂aΛ(a, b) − ∂bΛ(a, b))(a − b) = Λ(a, b)
(
2 − a+b

ab
Λ(a, b)

)
≤ 0. (A.4d)

Note that (A.4a) is also a consequence of the following 1-homogeneity:

Λ(γ a, γ b) = γ Λ(a, b) for all a, b, γ > 0. (A.5)

A nontrivial estimate and identity is the following:

max{Λ(r, a) − ∂aΛ(a, b)r | r > 0 } = a∂bΛ(a, b). (A.6)

The result uses somehow hidden properties of Λ and is crucial for our analysis of geodesic λ-convexity
of (Xn, E, K). Using the homogeneity (A.5), this identity follows from (A.7c), which is established
below using the auxiliary function ℓ defined in (1.3).

Proposition A.1 We define the function ℓ̃(κ) = (eκ−1−κ)/κ2 > 0. The function ℓ satisfies the
following properties:

l = ℓ(ξ) ⇐⇒
(
∃κ ∈ R : l = ℓ̃(κ) and ξ = ℓ̃(−κ)

)
, (A.7a)

∀ ξ > 0 : ℓ(ℓ(ξ)) = ξ, (A.7b)

∀ a, b > 0 : ℓ(∂aΛ(a, b)) = ∂bΛ(a, b). (A.7c)
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Proof: We first observe that Λ(·, 1) is strictly concave and that it has sublinear growth as Λ(r, 1) ∼
r/ log r for r ≫ 1. Hence, the maximum in the definition (1.3) of ℓ is attained a unique value r. We

find ℓ(ξ) = ℓ̃(κ), where κ = κ̂(ξ) is the unique solution of ξ = (κ− 1 + e−κ)/κ2 and r = eκ is the
maximizer of r 7→ Λ(r, 1) − ξr. Thus, (A.7a) is established.

Identity (A.7b) follows directly from (A.7a), because l and ξ can be interchanged, when κ is multi-
plied by −1.

Finally, the partial derivatives ∂aΛ(a, b) and ∂bΛ(a, b) are 0-homogeneous and depend only on

σ = log(a/b), namely ∂aΛ(a, b) = ℓ̃(−σ) and ∂bΛ(a, b) = ℓ̃(σ). Using κ = −σ this gives (A.7c).

The important identity (A.7b) follows also directly for any ℓ defined via ℓ(ξ) = sup{ λ(r)−ξr |r > 0 }
if λ(r) = rλ(1/r), which in our case follows from Λ(1, r) = rΛ(1/r, 1) = rΛ(1, 1/r).

B Proof of Proposition 4.3

Here we provide the lower bound for the eigenvalues of the matrix

Gβ(r, s, t)
def
=

(
Λrs(

1
r
+1

s
) + Λrs,s

Λrs
t β(Λrs/Λst)

1/2 + β(Λst/Λrs)
1/2

β(Λrs/Λst)
1/2 + β(Λst/Λrs)

1/2 Λst(
1
s
+1

t
) + Λst,s

Λst
r

)
,

where again Λab = Λ(a, b) and Λab,a = ∂aΛ(a, b). By homogeneity of degree 0 it is sufficient to
consider

(r, s, t) ∈ ∆
def
= { (r, s, t) ∈ ]0, 1[3 | r + s + t = 1 }.

Since Gβ is continuous on ∆ its lowest eigenvalue depends continuously on (r, s, t) ∈ ∆ as well. To
prove boundedness from below it hence suffices to show a lower bound near the boundary of ∆. In
fact, we prove that Gβ is positive semidefinite near the boundary of ∆. For this, it is sufficient to show
that the determinant of Gβ is nonnegative, as the diagonal entries are bigger than 1.

The sign of the determinant of Gβ is controlled by the auxiliary function γ̂ via

det Gβ(r, s, t) ≥ 0 ⇐⇒ γ̂(r, s, t) ≤ 1/β2,

where γ̂(r, s, t)
def
=

Λrs

Λst
+ 2 + Λst

Λrs(
Λrs(

1
r
+1

s
) + Λrs,s

Λrs
t
)(

Λst(
1
s
+1

t
) + Λst,s

Λst
r
) .

Using (A.1) it is not difficult to show γ̂(r, s, t) ≤ 1 which implies that Gβ(r, s, t) is positive semidefinite
for |β| ≤ 1 and all (r, s, t).

To prove our statement for all β ≥ 0, we have to show that γ̂(r, s, t) → 0 if (r, s, t) approaches
the boundary of the two-dimensional triangle ∆. We do this by discussing the three corners and the
three sides of ∆ separately. For proving convergence of γ̂ to 0, it is obviously sufficient to omit the “2”
in the nominator, so that we estimate the function γ with γ̂ ≤ 2γ and

γ(r, s, t)
def
=

Λ2
rs + Λ2

st(
Λ2

rs(
1
r
+1

s
) + Λrs,s t

)(
Λ2

st(
1
s
+1

t
) + Λst,s r

) .
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Case 1: s → 1 and r, t → 0. We have

γ ≤ Λ2
rs+Λ2

st(
Λ2

rs/r
)(

Λ2
st/t
) = rt

(
1

Λ2
rs

+ 1
Λ2

rs

)
≤ rt( 4

r2/3 + 4
t2/3

)
= 4(rt)1/3

(
r2/3+t2/3) → 0,

where we used (A.2) in the form Λrs ≥ 2
3
r1/3s2/3 ≥ r1/3/2 for s ≈ 1.

Case 2: t → 1 and r, s → 0. Using r < t we have Λrs < Λst and obtain

γ ≤ 2Λ2
st(

Λ2
rs(

1
r
+1

s
) + Λrs,s t

)(
Λ2

st/s
) =

2s

Λ2
rs(

1
r
+1

s
) + Λrs,s t

To proceed we need a good lower bound for Λrs,s, namely

Λrs,s = Λrs
Λrs−s
s(r−s)

≥ Λrs
Λrs+s
3s(r+s)

≥ Λrs/(3r+3s).

We continue via

γ ≤ 6rs2

Λ2
rs(r+s) + Λrsrs/(r+s)

≤ 6rs2

Λ2
rs max{r, s} + Λrs min{r, s} .

Hence, for 0 < r ≤ s ≪ 1 we obtain

γ ≤ 6rs2

Λ2
rss + Λrsr

≤ 6 min{ rs
Λ2

rs
, s2

Λrs
} ≤ 14 min{r1/3s−1/3, r−1/2s3/2} ≤ 14s2/5.

where we used (A.2) with θ = 1/3. For 0 < s < r ≪ 1 we use (A.1) to obtain

γ ≤ 6rs2

Λ2
rsr + Λrss

≤ 6
rs

Λrs
≤ 6

√
rs ≤ 6r.

Thus, γ(r, s, t) → 0 follows for r, s → 0.

Case 3: r → 1 and t, s → 0. This case is the same as Case 2 via interchanging r and t.

Case 4: s → 0, r → r∗ > 0, and t → t∗ = 1−r∗ > 0. We have

γ(r, s, t) ≤ Λ2
rs + Λ2

st(
Λ2

rs
1
s

)(
Λ2

st
1
s

) = s2
( 1

Λ2
rs

+
1

Λ2
st

)2

≤ s2
( 1

rs
+

1

st

)
≤ 2s(1/r∗ + 1/t∗) → 0.

Case 5: r → 0, s → s∗ > 0, and t → t∗ = 1−s∗ > 0. Since the nominator of γ converges to
Λ(s∗, t∗)

2 > 0 it suffices to show that the denominator tens to +∞. Indeed,

(
Λ2

st(
1
s
+1

t
) + Λst,s r

)
→ n∗ > 0 and

(
Λ2

rs(
1
r
+1

s
) + Λrs,s t

)
≥ Λ2

rs/r → +∞.

Thus, γ(r, s, t) → 0 follows also for r → 0.

Case 6: t → 0, s → s∗ > 0, and r → r∗ = 1−s∗ > 0. This case is the same as Case 5 via inter-
changing r and t.

This finishes the proof of Proposition 4.3.
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