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ABSTRACT. We provide a rigorous justification of the classical linearization approach in plas-
ticity. By taking the small-deformations limit, we prove via Γ-convergence for rate-independent
processes that energetic solutions of the quasi-static finite-strain elastoplasticity system con-
verge to the unique strong solution of linearized elastoplasticity.

1. INTRODUCTION

This paper is devoted to the rigorous justification of the classical linearization approach in
finite-strain elastoplasticity. When restricting to the small-deformation realm it is indeed cus-
tomary to leave the nonlinear finite-strain frame and resort to linearized theories instead. This
reduction is usually motivated by means of heuristic Taylor expansion arguments. Here, we aim
at complement these formal motivations by providing a rigorous linearization proof by means
of an evolutionary Γ-convergence analysis of rate-independent processes. In particular, we ad-
dress the general time-dependent case, which e.g. allows for cyclic loading.

In the stationary framework, the pioneering contribution in this context goes back to DAL

MASO, NEGRI, & PERCIVALE [DNP02] who devised a convergence proof of finite-strain elastic-
ity to linearized elasticity. Later, the argument was extended to multi-well energies by SCHMIDT

[Sch08] and to residually stressed materials by PARONI & TOMASSETTI [PT09, PT11]. The
reader is also referred to [GN10, MN11, Neu10] for some related results in the direction of ho-
mogenization, to [AD11] for an application to the study of nematic elastomers, to [BSV07, Sch09]
in the context of convergence of atomistic models, and to [SZ11] in relation with dislocation the-
ory.

To our knowledge, this is the first result in the evolutionary case. With respect to the stationary
case of [DNP02], the evolution situation is quite more involved. Indeed, the argument in [DNP02]
relies on the Γ-convergence proof of the small-deformation energy functional to its linearization
limit. Here, we are instead forced to cope with the occurrence of dissipative plastic evolution
by means of a delicate recovery sequence construction relating energy and dissipation. We
emphasize that finite-strain elastoplasticity is based on the multiplicative decomposition of the
strain tensors. Moreover, the plastic tensor is to be considered as an element of a multiplicative
matrix group. We have to control these noncommutative multiplicative structures in linear func-
tion spaces and to establish their convergence to the corresponding linear additive structures. In
order to give some details in this direction we cannot avoid introducing some minimal notation.

Finite-strain elastoplasticity is usually based on the multiplicative decomposition∇ϕ = FelFpl

[Lee69]. Here ϕ : Ω → R
d is the deformation of the body with respect to the reference con-

figuration Ω ⊂ Rd (d = 2, 3) while Fel and Fpl ∈ SL(d) stand for the elastic and the plastic
strain, respectively. Then, the stored energy in the body is written as�

Ω

Wel(∇ϕF
−1
pl ) dx+

�
Ω

Wh(Fpl) dx

where Wel is a frame-indifferent elastic stored-energy density and Wh describes hardening.
The plastic flow rule is expressed by means of a suitably defined dissipation distance D :
SL(d) × SL(d) → [0,∞]. In particular D(Fpl, F̂pl) represents the minimal dissipated energy

for an evolution from the plastic strain Fpl to F̂pl and is given via a positively 1-homogeneous
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dissipation function R by

D(Fpl, F̂pl) = D(I, F̂plF
−1
pl ) = inf

�
Ω

� 1

0

R(ṖP−1) dt dx,

the infimum being taken among all smooth trajectories P : [0, 1] → Rd×d connecting Fpl to

F̂pl. Staring from these functionals, by specifying loadings, boundary, and initial conditions, suit-
ably weak solutions of the quasi-static finite-plasticity system (see Section 2) can be defined.
We refer to [Mie03] for more information on the mathematical modeling of finite-strain elasto-
plasticity. There also models with additional hardening variables are given. Here we however
refrain from maximal generality in order to emphasize the main features of the limiting process.

Let now the deformation and the plastic strain be small. In particular, for ε > 0 let ϕε =
id+εu and Fpl,ε = I+εz where u is a small displacement and z is a small plastic strain.
Correspondingly, we have that Fel,ε = ∇ϕεF

−1
pl,ε = (id+ε∇u)(I+εz)−1 and we are lead to

the consideration of the small-deformation finite-strain elastoplasticity energy and dissipation
functionals

1

ε2

�
Ω

Wel

(
(I+ε∇u)(I+εz)−1

)
dx+

1

ε2

�
Ω

Wh(I+εz) dx,

1

ε
D((I+εz), (I+εẑ)).

Note that the rescalings above are such that, by assuming Wel and Wh to admit a quadratic
expansion around identity, one can check that

1

ε2

�
Ω

Wel

(
(I+ε∇u)(I+εz)−1

)
dx →

1

2

�
Ω

(∇u−z):C(∇u−z) dx,

1

ε2

�
Ω

Wh(I+εz) dx →
1

2

�
Ω

z:Hz dx

1

ε
D((I+εz), (I+εẑ)) →

�
Ω

R(ẑ−z) dx.

This pointwise convergence is the classical justification of linearization in plasticity. On the other
hand, it is not sufficient in itself for proving that finite-strain elastoplasticity trajectories actually
convergence to a solution of the linearized-plasticity system.

Before going on let us mention that the solution concept which is here under consideration
is that of energetic solutions. Starting from [MT04], this solution notion has been extensively
applied in many different rate-independent contexts. We shall however record that one of the
main motivations for introducing energetic solutions was exactly that of targeting existence the-
ories for finite-strain elastoplasticity. In this respect, note that the only available existence result
for finite-strain elastoplastic evolution has been recently obtained within the energetic solvability
frame in [MM09] after adding the regularizing term |∇Fpl|

r for r > 1 (see also [MM06] for some
preliminary result),

Our result consists in proving the convergence of energetic solutions of the finite-strain elasto-
plasticity system to linearized-plasticity solutions. In order to prove this convergence we follow
the abstract evolutionary Γ-convergence theory for energetic solutions of rate-independent pro-
cesses developed in [MRS08]. We shall mention that this evolutionary Γ-convergence method
has recently attracted attention and has been successfully considered in connection with nu-
merical approximations [KMR05, MR09, GP06a], damage [BRM09, TM10], fracture [GP06b],
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delamination [RSZ09], dimension reduction [FPZ10, LM11], homogenization [Tim09], and opti-
mal control [Rin08, Rin09].

According to [MRS08], the convergence of the trajectories (uε, zε) follows by proving two
separate Γ–liminf inequalities for energy and dissipation and constructing of a mutual recov-
ery sequence relating both. Note that separate Γ-convergence for energy and dissipation is
not sufficient to pass to the limit within rate-independent processes. Apart from the additional
technicalities due to the presence of the plastic strain and the dissipation functional, it is the
delicate construction of the mutual recovery sequence that distinguishes our argument from all
the already developed stationary analyses in the spirit of [DNP02].

2. PROBLEM SETUP AND RESULTS

Let the reference configuration Ω ⊂ Rd be an open set with Lipschitz boundary. Moreover,
let Γ ⊂ ∂Ω be relatively open with Hd−1(Γ) > 0. We define the state space as

Q := U × Z :=
{
u ∈ H1(Ω; Rd) | u = 0 on Γ

}
× L2(Ω; Rd×d).

Note that the choice of the homogeneous Dirichlet condition on the displacement u is just mo-
tivated by the sake of simplicity. In particular, different boundary conditions may be considered
as well.

For all given A ∈ Rd×d we denote its symmetric and antisymmetric parts as Asym :=
(A+A⊤)/2 and Aanti = A−Asym. We indicate by Rd×d

sym and R
d×d
anti the subspaces of symmet-

ric and antisymmetric tensors, respectively, whereas R
d×d
dev stands for the subspace of symmetric

and trace-free tensors, also called deviatoric tensors. The standard Euclidian tensor norm is de-
noted by | · | and, for all A ∈ Rd×d and τ > 0, Bτ (A) indicates the ball Bτ (A) := {B ∈
Rd×d | |A− B| < τ}. Moreover, the symbol | · |T stands for the seminorm

|A|2
T

:=
1

2
A:TA

where the 4-tensor T ∈ Rd×d×d×d is symmetric (Tijkℓ = Tkℓij) and positive semidefinite. For
finite-strain elastoplasticity we use the classical notations

SL(d) := {P ∈ R
d×d | detP = 1},

SO(d) := {R ∈ R
d×d | R⊤R = RR⊤ = I},

GL+(d) := {Q ∈ R
d×d | detQ > 0}.

We assume that the elastic energy density functional Wel fulfills

Wel ∈ C1(GL+(d)),(2.1a)

∀F ∈ GL+(d) ∀R ∈ SO(d) : Wel(RF ) = Wel(F ),(2.1b)

∀F ∈ GL+(d) : Wel(F ) ≥ c1dist2(F,SO(d)),(2.1c)

∀F ∈ GL+(d) : |F⊤∂FWel(F )| ≤ c2(Wel(F ) + c3),(2.1d)

∃C ≥ 0 ∀δ > 0 ∃cel(δ) > 0 ∀A ∈ Bcel(δ)(0) :
∣∣Wel(I+A) − |A|2

C

∣∣ ≤ δ|A|2
C
,(2.1e)

for some positive c1, c2. Assumption (2.1b) is nothing but frame indifference and the nondegen-
eracy requirement (2.1c) is quite classical. Assumption (2.1d) entails the controllability of the
Mandel tensor F⊤∂FWel(F ) by means of the energy. This is a crucial condition in finite-strain
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elastoplasticity (cf. [Bal84b, Bal02]) and was used in the context of rate-independent processes
in [FM06, MM09]. Condition, (2.1e) encodes the local quadratic character ofWel around identity.
More precisely, (2.1e) states that | · |C is the second order Taylor expansion ofWel at I , and may
be reformulated by saying that A 7→ Wel(I+A) is locally restrained between two multiples of
| · |2

C
, namely,

∀δ > 0 ∀A ∈ Bcel(δ)(0) : (1−δ)|A|2C ≤Wel(I+A) ≤ (1+δ)|A|2C.

Moreover, (2.1e) entails

(2.2) Wel(I) = 0, ∂FWel(I) = 0, ∂2
FWel(I) = C,

which, in particular, yields that the reference state is stress free. On the other hand, by assuming
(2.2) and letting Wel ∈ C2 in neighborhood of I , relation (2.1e) follows.

Note that the symmetry of the elastic tensor C (implicitly assumed in the notation | · |C) may
be directly obtained from the last of (2.2) by assuming additional smoothness onWel. Moreover,
letting A ∈ R

d×d be given, as we have that exp(Aanti) ∈ SO(d), the frame indifference (2.1b)
entails that the function t 7→ ∂FWel(exp(tAanti)) is constantly equal to ∂FWel(I) = 0. Hence,
by taking its derivative with respect to t and evaluating it at t = 0 we get CAanti = 0. Namely,
C necessarily fulfills also the so called minor symmetries Cijkℓ = Cjikℓ = Cijℓk and we have

(2.3) ∀A ∈ R
d×d : CA = CAsym.

On the other hand, as effect of the nondegeneracy (2.1c) and assumption (2.1e) we have
that C is positive definite on Rd×d

sym . Indeed, by linearizing d(·,SO(d)) around identity we have
[FJM02, (3.21)]

(2.4) ∀B ∈ R
d×d : d(B,SO(d)) = |Bsym−I| +O(|B−I|2).

Hence, given A ∈ Rd×d and η, δ > 0, by choosing B = I+ηA in the latter we have

c1|A
sym|2

(2.4)
= lim

η→0

c1
η2
d2(I+ηA,SO(d))

(2.1c)

≤ lim
η→0

1

η2
Wel(I+ηA)

(2.1e)

≤ (1+δ)|A|2
C

so that, by taking δ → 0, we have

(2.5) ∀A ∈ R
d×d : c1|A

sym|2 ≤ |A|2
C

= |Asym|2
C
.

Note that all assumptions (2.1a)-(2.1e) are consistent with the usual polyconvexity framework

F 7→Wel(F ) polyconvex,

Wel(F ) → ∞ for detF → 0.
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Our assumptions on the hardening functional Wh : Rd×d → [0,∞] read

Wh(P ) :=

{
W̃h(P ) if P ∈ K,
∞ if P ∈ Rd×d \K,

(2.6a)

where K is compact in SL(d) and contains a neighborhood of I ,(2.6b)

W̃h : R
d×d → R is locally Lipschitz continuous and(2.6c)

∃H ≥ 0 ∀δ > 0 ∃ch(δ) > 0 ∀A ∈ Bch(δ)(0) :
∣∣W̃h(I+A) − |A|2

H

∣∣ ≤ δ|A|2
H
,(2.6d)

∃c3 > 0 ∀A ∈ R
d×d : Wh(I+A) ≥ c3|A|

2.(2.6e)

Note that by assumption (2.6b) we can find a constant cK > 0 such that

P ∈ K ⇒ |P | + |P−1| ≤ cK ,(2.7)

P ∈ SL(d) \K ⇒ |P − I| ≥
1

cK
.(2.8)

The rather strong technical assumption onWh that its effective domainK = {P ∈ SL(d) |Wh(P ) <
∞} fulfills (2.7) is crucial as it will provide L∞-bounds that are essential in order to control the
multiplicative terms (I+ε∇u)(I+εz)−1. Moreover, by combining (2.6d) and (2.6e) we check
that

(2.9) ∀A ∈ R
d×d : c3|A|

2 ≤ |A|2H.

As for the dissipation we assume that

Rdev : R
d×d
dev → [0,∞] convex and positively 1-homogeneous,(2.10a)

∀P ∈ R
d×d
dev : c4|P | ≤ Rdev(P ) ≤ c5|P |,(2.10b)

R : R
d×d → [0,∞]; R(z) :=

{
Rdev(z) if z ∈ R

d×d
dev ,

∞ else,
(2.10c)

for positive c4, c5. Moreover, we define

D : R
d×d × R

d×d → [0,∞], with D(P, P̂ ) = D(I, P̂P−1) given by

D(I, P̂ ) := inf

{ � 1

0

R(ṖP−1) dt
∣∣∣

P ∈ C1(0, 1; Rd×d), P (0) = I, P (1) = P̂

}
.(2.11)

Note in particular that D(I, P ) < ∞ implies detP = 1. Moreover, one can prove that there
exists c6 > 0 such that

(2.12) ∀P, Q ∈ SL(d) : D(P,Q) ≤ c6
(
1+|P |+|Q|

)
, D(I, P ) ≤ c6|P−I|.

The quasistatic evolution of the finite-strain and linearized elastoplasticity systems are driven
by the energy functionals Wε, W0 : Q → (−∞,∞] given by

Wε(u, z) :=
1

ε2

�
Ω

Wel

(
(I+ε∇u)(I+εz)−1

)
dx+

1

ε2

�
Ω

Wh(I+εz) dx,

W0(u, z) :=

�
Ω

|∇usym−zsym|2
C

dx+

�
Ω

|z|2
H

dx.
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We prescribe the generalized loading as

(2.13) ℓ ∈W 1,1(0, T ;U ′)

and, by letting ℓε := εℓ, we introduce some notation for the total energy functionals Eε, E0 :
[0, T ] ×Q → (−∞,∞] as

Eε(t, u, z) := Wε(u, z) −
1

ε
〈ℓε(t), u〉 = Wε(u, z) − 〈ℓ(t), u〉

E0(t, u, z) := W0(u, z) − 〈ℓ(t), u〉,

Eventually, the dissipative character of the evolution is encoded into the dissipation functions
Dε, D0 : R

d×d × R
d×d → [0,∞] and functionals Dε,D0 : (L1(Ω; Rd×d))2 → [0,∞] given

by

Dε(z1, z2) :=
1

ε
D(I+εz1, I+εz2), D0(z1, z2) := R(z2−z1),

Dε(z1, z2) :=

�
Ω

Dε(z1, z2) dx, D0(z1, z2) :=

�
Ω

D0(z1, z2) dx.

The total dissipation of the process over the time interval [0, t] ⊂ [0, T ] will be given by

DissDε
(z; [0, t]) := sup

{
N∑

i=1

Dε(z(t
i), z(ti−1)) | {0 = t0 < · · · < tN = t}

}

where the sup is taken over all partitions of [0, t].

From here on, we term Rate-Independent System (RIS) the triple (Q, Eε,Dε) given by the
choice of the state space Q and the energy and dissipation functionals Eε andDε. The term evo-
lutionary Γ-convergence refers to a suitable notion of convergence for rate-independent systems
in the spirit of [MRS08] which in particular entails the convergence of the respective energetic
solutions.

A crucial structure in the energetic formulation of RIS is the set Sε(t) of stable states at time
t ∈ [0, T ], which is defined via

Sε(t) :=
{

(u, z) ∈ Q | Eε(t, u, z) <∞ and

Eε(t, u, z) ≤ Eε(t, û, ẑ) + Dε(z(t), ẑ)
}
.

Our assumption on the initial data reads

Sε(0) ∋ (u0
ε, z

0
ε) → (u0

0, z
0
0) weakly in Q, z0

0 ∈ R
d×d
dev ,

Eε(0, u
0
ε, z

0
ε ) → E0(0, u

0
0, z

0
0).(2.14)

Note that the latter assumption is not empty as it is fulfilled at least by the natural choice
(u0, z0) = (0, 0) if ℓ(0) = 0.

Definition 2.1 (Energetic solutions). Let ε ≥ 0. We say that a trajectory qε : [0, T ] →
(uε, zε) ∈ Q is an energetic solution (related to the RIS (Q, Eε,Dε)) if (uε(0), zε(0)) =



7

(u0
ε, z

0
ε ), the map t 7→ 〈ℓ̇, uε〉 is integrable, and, for all t ∈ [0, T ],

(uε(t), zε(t)) ∈ Sε(t),(2.15)

Eε(t, uε(t), zε(t)) + DissDε
(zε; [0, t]) = Eε(0, u

0
ε, z

0
ε ) −

� t

0

〈ℓ̇, uε〉 ds.(2.16)

An energetic solution will be called a finite-plasticity solution if ε > 0 and a linearized-plasticity
solution for ε = 0.

Note that linearized-plasticity solutions (u0, z0) are unique as effect of the quadratic and
uniformly convex character of W0. Moreover, from assumption (2.13) we get that (u0, z0) ∈
W1,1(0, T ;Q) and

∀t ∈ [0, T ] : DissD0
(z0; [0, t]) =

� t

0

R(ż0) ds.

The reader is referred to [Hil50, Lub90, Mar75] for some general introduction to plasticity and to
[HR99, Joh76, Suq81] for the classical well-posedness theory for linearized elastoplasticity.

Our main result reads as follows and will be proved in Section 3 as a special instance of the
general theory of [MRS08].

Theorem 2.2 (Finite plasticity Γ-converges to linearized plasticity). Assume (2.1)-(2.6), (2.10),
and (2.13)-(2.14). Let (uε, zε) be a finite-plasticity solution. Then, (uε(t), zε(t)) → (u0(t), z0(t))
weakly in Q for all t ∈ [0, T ] where (u0, z0) is the unique linearized-plasticity solution.

Theorem 2.2 is exclusively a convergence result. In particular, we assume that finite-plasticity
solutions exist. Note however that the existence of finite-plasticity solutions is presently not
known within our minimal assumption frame. A possibility here would be that of considering
directly some more regular situations including extra compactifying terms like |∇Fpl|

r (r > 1)
such that finite-plasticity solutions exist [MM09]. We shall not follow this line here but rather
present a second result based on approximate minimizers of the related incremental prob-
lems. Indeed, given the time partitions {0 = tiε < · · · < tNε

ε = T} with diameters τε :=
maxi=1,...,Nε

(tiε − ti−1
ε ) → 0 as ε→ 0, the (iterative) incremental problem

(ui
ε, z

i
ε) ∈ Arg min

(u,v)∈Q

(
Eε(t

i
ε, u, z) + Dε(z

i−1
ε , z)

)
for i = 1, . . . , Nε

may not be solvable (cf. [CHM02], still see [Mie04, MM06] for some additional discussion).
Hence, following [MRS08, Sec. 4] we fix a sequence 0 < αε → 0 in order to control the
tolerances for the minimizations and consider the following approximate incremental problem

(2.17)
Find iteratively (ui

ε, z
i
ε) ∈ Q such that

Eε(t
i
ε, u

i
ε, z

i
ε) + Dε(z

i−1
ε , zi

ε)
≤ (tiε − ti−1

ε )αε + inf(u,v)∈Q

(
Eε(t

i
ε, u, z) + Dε(z

i−1
ε , z)

)
.

By the definition of infimum the latter always admits solutions and we will show the following
convergence result.

Theorem 2.3 (Convergence of approximate incremental minimizers). Under the assumptions
of Theorem 2.2 let (ui

ε, z
i
ε) be approximate incremental minimizers and (uε, zε) be the corre-

sponding right-continuous, piecewise-constant interpolants on the time partitions. Then, (uε, zε) →
(u0, z0) pointwise weakly in Q where (u0, z0) is the unique linearized-plasticity solution.
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In the finite-elasticity case (stationary), using ideas from [DNP02] the convergence of approx-
imate minimizers has been considered in [PT09].

3. PROOFS

The argument basically follows the lines of the abstract analysis of [MRS08]. Still, our setting
cannot be completely recovered from the application of the above-mentioned abstract theory
as extra care is needed for the treatment of the multiplicative nonlinearities. We hence resort in
providing here an independent proof. After establishing the coercivity of the energy in Subsec-
tion 3.1, the proof strategy relies in providing two separate Γ–liminf inequalities for Eε and Dε

and a mutual recovery sequence argument relating both. This is done in Subsections 3.2 and
3.3 below. Eventually, the proofs of Theorems 2.2 and 2.3 are outlined in Subsections 3.4 and
3.5, respectively.

A caveat on notation: henceforth the symbol c stands for any positive constant independent
of ε and δ but possibly depending on the fixed data. In particular, note that c may change from
line to line. Moreover, in the following we use the short-hand notation, for all A ∈ Rd×d,

W ε
el(A) :=

1

ε2
Wel(I+εA), W ε

h(A) :=
1

ε2
Wh(I+εA), W̃ ε

h(A) :=
1

ε2
W̃h(I+εA).

3.1. Energy coercivity. We start by providing a uniform coercivity result for the energy. It fol-
lows the ideas in [DNP02] and relies on the Rigidity Lemma [FJM02, Thm. 3.1].

Lemma 3.1 (Coercivity). There exists c > 0 such that, for all (u, z) ∈ Q

(3.1) ‖∇u‖2
L2 + ‖z‖2

L2 + ‖εz‖2
L∞ ≤ c

(
1+Wε(u, z)

)
.

Proof. Let us assume with no loss of generality that Wε(u, z) < ∞. Hence, |I+εz| ≤ cK
almost everywhere from property (2.7). Thus, we have that ‖εz‖L∞ ≤ c. Moreover, one readily
checks from the coercivity (2.6e) that

(3.2) c3‖z‖
2
L2 ≤

�
Ω

W ε
h(z) dx ≤ Wε(u, z).

For the displacement u we follow ideas from [DNP02]. Given any Q ∈ SO(d) by letting
ϕ = id+εu and Fel = ∇ϕ(I+εz)−1 we have

|∇ϕ−Q|2 = |∇ϕ−Q(I+εz) + εQz|2 = |(Fel−Q)(I+εz) + εQz|2

≤ c
(
|Fel−Q|

2|I+εz|2 + ε2|z|2
)
≤ c
(
|Fel−Q|

2 + ε2|z|2
)
.

In particular, by passing to the infimum for Q ∈ SO(d) we have checked that

dist2(∇ϕ,SO(d)) ≤ c
(
dist2(Fel,SO(d)) + ε2|z|2

)
.

By taking the integral in space and using the nondegeneracy condition (2.1c) we obtain that�
Ω

dist2(∇ϕ,SO(d)) dx ≤ c

�
Ω

dist2(Fel,SO(d)) dx+ cε2

�
Ω

|z|2 dx

(3.2)

≤ ε2c
(
1+Wε(u, z)

)
.

Hence, the Rigidity Lemma [FJM02, Thm. 3.1] ensures that

‖∇ϕ−Q̂‖2
L2 ≤ ε2c(1+Wε(u, z))
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for some constant rotation Q̂ ∈ SO(d). Finally, using [DNP02, Prop. 3.4] and ϕ|Γ = id as

u ∈ U , we conclude |Q̂−I|2 ≤ ε2c(1+Wε(u, z)). Then, we have

‖∇u‖2
L2 =

1

ε2
‖∇ϕ−I‖2

L2 ≤
2

ε2
‖∇ϕ−Q̂‖2

L2 +
2

ε2
‖Q̂−I‖2

L2 ≤ c(1+Wε(u, z))

and the bound (3.1) follows. �

3.2. Γ–liminf inequalities. Next, we turn our attention to the proof of the separate Γ–liminf
inequalities for energy and dissipation. Let us start with a statement concerning the energy
densities.

Lemma 3.2. Under assumptions (2.1e) and (2.6d), we have

(3.3) W ε
el → | · |2

C
and W̃ ε

h → | · |2
H

locally uniformly.

Moreover, we have

(3.4) |z|2H ≤ inf
{

lim inf
ε→0

W ε
h (zε)

∣∣ zε → z
}
.

Proof. Let K0 ⋐ Rd×d, fix δ > 0 and find the corresponding cel(δ) > 0 from condition (2.1e).
As εK0 ⊂ Bcel(δ)(0) for ε sufficiently small we have that

lim sup
ε→0

sup
K0

∣∣W ε
el − | · |2

C

∣∣ ≤ δ sup
K0

| · |2 ≤ δc

and local uniform convergence follows from δ > 0 being arbitrary. The same argument applies

to W̃ ε
h .

As for the Γ–liminf inequality (3.4), let zε → z and assume with no loss of generality that

supεW
ε
h (zε) < ∞. Hence, W ε

h (zε) = W̃ ε
h(zε) and the inequality follows from the above

proved uniform convergence. �

We are now in the position of proving the Γ–liminf estimate for the energy. It follows indeed
from (3.3) and the lower-semicontinuity result of Lemma 4.2.

Lemma 3.3 (Γ–liminf for the energy). For all (u, z) ∈ Q we have

W0(u, z) ≤ inf
{

lim inf
ε→0

Wε(uε, zε)
∣∣ (uε, zε) → (u0, z0) weakly in Q

}
.

Proof. Let (uε, zε) → (u, z) weakly in Q. We can assume with no loss of generality that
supε Wε(uε, zε) < ∞. Owing to the Γ–liminf inequality (3.4) and the lower semicontinuity
Lemma 4.2 we readily conclude that

(3.5)

�
Ω

|z|2
H
≤ lim inf

ε→0

�
Ω

W ε
h (zε) dx = lim inf

ε→0

1

ε2

�
Ω

Wh(I+εzε) dx.

Moreover, Wε(uε, zε) < ∞ implies εzε ∈ K−I almost everywhere. In particular, εzε are
bounded in L∞. The same holds for (I+εzε)

−1 as

(I+εzε)
−1 = det(I+εzε) cof(I+εzε) = cof(I+εzε).
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We define the auxiliary tensors

(3.6) wε :=
1

ε

(
(I+εzε)

−1 − I + εzε

)
= ε(I+εzε)

−1z2
ε ,

so that (I+εzε)
−1 = I−εzε+εwε. By the first equality in (3.6) we have ‖εwε‖L∞ ≤ c, while

the second gives

‖wε‖L1 = ε‖(I+εzε)
−1z2

ε‖L1 ≤ cε‖zε‖
2
L2 ≤ cε

where we have also used the boundedness in L2 of zε from (3.1). Thus, by interpolation, wε is
bounded in L2 as well, so that wε → 0 weakly in L2.

Given Aε := (Fel,ε−I)/ε we want to show the weak L2 convergence Aε → ∇u−z. From

(3.7) Aε =
1

ε

(
(I+ε∇uε)(I+εzε)

−1 − I
)

we find I+εAε = (I+ε∇uε)(I+εzε)
−1 and compute that

Aε =
1

ε

(
(I+ε∇uε)(I−εzε+εwε) − I

)
= ∇uε − zε + wε − ε

(
∇uεzε−∇uεwε

)
.

Hence, as we have that ∇uε−zε → ∇u−z and wε → 0 weakly in L2, we have to show
vε := ∇uε(εzε−εwε) → 0 weakly in L2 as well. Indeed, the boundedness in L2 of vε follows
from ‖∇uε‖L2 ≤ c (see (3.1)) and the L∞-boundedness of εzε and εwε. Moreover, since zε

and wε are bounded in L2 we have ‖vε‖L1 ≤ cε and conclude vε → 0 weakly in L2.

Eventually, owing to Lemma 3.2, we are in the position of exploiting the lower semicontinuity
Lemma 4.2 in order to obtain that�

Ω

|∇u−z|2
C
≤ lim inf

ε→0

�
Ω

W ε
el(Aε) dx

= lim inf
ε→0

1

ε2

�
Ω

Wel

(
(I+ε∇uε)(I+εzε)

−1
)

dx.

Finally, by recalling relation (2.3) and the already established (3.5) the assertion follows. �

Before moving to the Γ–liminf inequality for the dissipation functionals Dε, we prepare here
a preliminary result on the functions Dε.

Lemma 3.4 (Γ-convergence of Dε). Dε → D0 in the sense of Γ-convergence.

Proof. Γ–liminf inequality. Let (zε, ẑε) → (z, ẑ) and assume with no loss of generality that
supε Dε(zε, ẑε) <∞. In particular, we have that (I+εẑε)(I+εzε)

−1 ∈ SL(d). By defining

ζε :=
1

ε

(
(I+εẑε)(I+εzε)

−1 − I
)

= ẑε − zε + wε − εẑεzε + ẑεwε

where wε is given in (3.6), we readily check that I+εζ ∈ SL(d) and ζε → ẑ − z.

Let now t 7→ Pε(t) ∈ C1(0, 1; Rd×d) be such that Pε(0) = I , Pε(1) = I+εζε, and

D(I, I+εζε) ≥ (1−ε)

� 1

0

R(ṖεP
−1
ε ) dt.
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Such function Pε exists by the very definition of D. By possibly reparametrizing Pε and using
assumption (2.10b) and the bound (2.12) we can assume that

(3.8) c4|Ṗε(t)P
−1
ε (t)|

(2.10b)

≤ R(Ṗε(t)P
−1
ε (t)) ≤ 2D(I, I+εζε)

(2.12)

≤ cε.

Hence, Pε → I uniformly as

|Pε(t)−I| ≤

� t

0

|ṖεP
−1
ε | |Pε| ds ≤ cε

� t

0

|Pε| ds ≤ cε

(
1 +

� t

0

|Pε−I| ds

)
.

By defining P̂ε(t) = I + (Pε(t)−I)/ε one has that P̂ε(0) = I and P̂ε(1) = I+ζε.

Moreover, as ε
˙̂
Pε = Ṗε and R is positively 1-homogeneous (2.10a), we have that

1

ε
D(I, I+εζε) ≥ (1−ε)

� 1

0

R(
˙̂
PεP

−1
ε ) dt.

Owing now to bound (3.8), by possibly extracting not relabeled subsequences, we have that
˙̂
Pε → Q weakly-star in L∞(0, 1; Rd×d) and

lim inf
ε→0

Dε(zε, ẑε) = lim inf
ε→0

1

ε
D(I, I+εζε)

≥ lim inf
ε→0

� 1

0

R(
˙̂
PεP

−1
ε ) dt ≥

� 1

0

R(Q) dt ≥ R(Q̃)

where we have exploited the lower semicontinuity tool of Lemma 4.2 and used Jensen’s inequal-

ity with Q̃ =
� 1

0
Q dt.

Finally, by integrating we have that

Q̃ =

� 1

0

Q dt = lim
ε→0

� 1

0

˙̂
Pε dt = lim

ε→0
ζε = ẑ − z

so that we have checked

lim inf
ε→0

Dε(zε, ẑε) ≥ R(ẑ−z).

Recovery sequence. Given ζ ∈ R
d×d
dev we have that exp(ζ) ∈ SL(d) and, by taking P (t) :=

exp(tζ) into the definition of D, we readily check that D(I, exp(ζ)) ≤ R(ζ).

Let now z, ẑ ∈ R
d×d
dev be given and define

ẑε =
1

ε

(
exp(ε(ẑ−z))(I+εz) − I

)
.

As (I+εẑε)(I+εz)
−1 = exp(ε(ẑ−z)), we have that

lim sup
ε→0

Dε(z, ẑε) = lim sup
ε→0

1

ε
D(I, exp(ε(ẑ−z))) ≤ R(ẑ−z) = D0(z, ẑ)

so that (z, ẑε) is a recovery sequence. �

Owing to Lemma 3.4, it suffices now to apply the lower semicontinuity result in Lemma 4.2
in order to establish the Γ–liminf inequality for the dissipation functionals. More precisely, we
have following.
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Lemma 3.5 (Γ–liminf for the dissipation).

D0(z, ẑ) ≤ inf
{

lim inf
ε→0

Dε(zε, ẑε)
∣∣

(zε, ẑε) → (z, ẑ) weakly in (L2(Ω; Rd×d))2
}
.(3.9)

3.3. Mutual recovery sequence. We now come to the construction of a mutual recovery se-
quence. Let us recall from [MRS08] that indeed two separate Γ–limsup inequalities for energy
and dissipation generally do not suffice for passing to the limit in RIS. In particular, the construc-
tion of recovery sequences for energy and dissipation has to be mutually coordinated.

Lemma 3.6 (Mutual recovery sequence). Let t ∈ [0, T ], (uε, zε) → (u0, z0) weakly in Q, and

(3.10) sup
ε

Eε(t, uε, zε) <∞.

Moreover, let (û0, ẑ0) := (u0, z0) + (ũ, z̃) with (ũ, z̃) smooth and compactly supported in Ω
and z̃ ∈ R

d×d
dev everywhere. Then, there exist (ûε, ẑε) ∈ Q such that

(ûε, ẑε) → (û0, ẑ0) weakly in Q and

lim sup
ε→0

(
Eε(t, ûε, ẑε) − Eε(t, uε, zε) + Dε(zε, ẑε)

)

≤
(
E0(t, û0, ẑ0) − E0(t, u0, z0) + D0(z0, ẑ0)

)
.(3.11)

Proof. For the sake of clarity, we decompose this argument into subsequent steps. The general
strategy of the proof is to choose (ûε, ẑε) and show convergence to (û0, ẑ0),

lim sup
ε→0

Dε(zε, ẑε) ≤ D0(z0, ẑ0) = R(z̃),

and

lim sup
ε→0

(
Eε(t, ûε, ẑε) − Eε(t, uε, zε)

)
≤ E0(t, û0, ẑ0) − E0(t, u0, z0).

Note that in order to establish the latter we cannot argue on individual terms but rather aim
at exploiting certain cancellations. This resembles the situation of the so-called quadratic trick
(see, e.g., [MT05]) and crucially uses (2.1d) as well as the smoothness of (ũ, z̃). In particular,
note that within this proof the constant c may depend on ũ and z̃ as well.

Step 1: Choice of the mutual recovery sequence. By defining the functions ψε := id + εũ
and ϕε := id + εuε and the set

Kε :=
{
x ∈ Ω

∣∣ exp(εz̃(x))(I+εzε(x)) ∈ K
}
,

the proof of the lemma follows by checking that the choices

ûε :=
1

ε

(
ψε ◦ ϕε−id

)
,

ẑε :=

{
1

ε

(
exp(εz̃)(I+εzε) − I

)
on Kε

zε else,

fulfill (3.11). The construction of ûε via a composition and of ẑε via matrix exponential and multi-
plication is necessary in order to deal with the multiplicative nature of finite-strain elastoplasticity.
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From the bound (3.10) we readily have that I+εzε ∈ SL(d) almost everywhere. Hence,
upon noting that

I+εẑε =

{
exp(εz̃)(I+εzε) on Kε

I+εzε else,

we immediately check that (I+εẑε) ∈ K ⊂ SL(d) almost everywhere and is bounded
in L∞. Using the fact that tr z̃ = 0 we have det exp(εz̃) = exp(tr z̃) = 1 and hence
exp(εz̃)(I+εzε) ∈ SL(d) almost everywhere.

Next, note that the measure of the complement of Kε can be controlled by means of a
Chebyshev estimate. Indeed, relation (2.8) gives

|Ω \Kε| =

�
Ω\Kε

1 dx ≤ c2K

�
Ω

∣∣ exp(εz̃)(I+εzε) − I
∣∣2 dx

= c2K

�
Ω

∣∣ exp(εz̃) − I + ε exp(εz̃)zε

∣∣2 dx ≤ cε2

(
1+

�
Ω

z2
ε dx

)
≤ cε2.

Now, one has that

ẑε − zε =
1

ε

(
exp(εz̃)(I+εzε) − I

)
− zε =

1

ε
(exp(εz̃)−I)(I+εzε) on Kε,

ẑε − zε = 0 on Ω \Kε,

the convergence |Ω\Kε| → 0, and that ẑε and zε are bounded in L2. Hence, we readily check
that

ẑε + zε → ẑ0 + z0 weakly in L2(Ω; Rd×d),(3.12)

ẑε − zε → z̃ strongly in L2(Ω; Rd×d).(3.13)

From the energy bound (3.10) and the coercivity Lemma 3.1 we have that uε is bounded in
H1 and εuε → 0 strongly in L2. Hence, one has that ‖ϕε−id‖L2 = ε‖uε‖L2 ≤ cε and, by the
Lipschitz continuity of ∇ũ, we conclude that

(3.14) ‖∇ũ(ϕε) −∇ũ‖L2 ≤ c‖ϕε−id‖L2 = cε‖uε‖L2 ≤ cε.

Moreover, by computing

∇ûε =
1

ε

(
∇ψε(ϕε)∇ϕε−I

)
=

1

ε

(
(I+ε∇ũ)(ϕε)∇ϕε−I

)

=
1

ε

(
∇ϕε+ε∇ũ(ϕε)∇ϕε−I

)
= ∇uε + ∇ũ(ϕε) + ε∇ũ(ϕε)∇uε

we obtain that

‖(∇ûε−∇uε) −∇ũ‖L2 ≤ ‖∇ũ(ϕε)−∇ũ‖L2 + ‖ε∇ũ(ϕε)∇uε‖L2

(3.14)

≤ cε+ cε‖∇uε‖L2 ≤ cε.(3.15)

The tensors Aε = (Fel,ε−I)/ε and Âε = (F̂el,ε−I)/ε fulfill

Aε =
1

ε

(
(I+ε∇uε)(I+εzε)

−1 − I
)
, Âε =

1

ε

(
(I+ε∇ûε)(I+εẑε)

−1 − I
)

and are hence both bounded in L2.
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Fix now δ and let cel(δ) and ch(δ) be given by conditions (2.1e) and (2.6d), respectively. For
all ε > 0 we define the sets

U δ
ε :=

{
x ∈ Ω

∣∣ |εAε(x)| + |εÂε(x)| ≤ cel(δ)
}
,

Zδ
ε :=

{
x ∈ Ω

∣∣ |εzε(x)| + |εẑε(x)| ≤ ch(δ)
}
,

We refer to the latter as good sets as strains are there under control and we can replace the
nonlinear densitiesWel andWh by their quadratic expansions via (2.1e) and (2.6d). In particular,
on the good sets the quadratic character of the expansions will entail the control of the difference
of the energy contributions by means of a suitable cancellation (quadratic trick). On the other
hand, we term bad sets the corresponding complements Ω\U δ

ε and Ω\Zδ
ε where the quadratic

expansions are a priori not available. Using some nontrivial cancellations, we will show that the
difference of the energy contributions on the bad sets is infinitesimal. Note preliminarily that the
integrands on the bad sets blow up while the bad sets have small measure. Indeed,

|Ω \ U δ
ε | =

�
Ω\Uδ

ε

1 dx ≤
1

c2el(δ)

�
Ω

(|Aε| + |Âε|)
2 dx ≤

cε2

c2el(δ)
,(3.16)

|Ω \ Zδ
ε | =

�
Ω\Zδ

ε

1 dx ≤
1

c2h(δ)

�
Ω

(|zε| + |ẑε|)
2 dx ≤

cε2

c2h(δ)
.(3.17)

Step 2: Treatment of the dissipation term. As ẑε = zε on Ω \Kε one has that

Dε(zε, ẑε) =

�
Kε

Dε(I, exp(εz̃)) dx ≤

�
Ω

Dε(I, exp(εz̃)) dx.(3.18)

By recalling the construction of the recovery sequence in the proof of Lemma 3.4 we conclude
that

(3.19) Dε(I, exp(εz̃)) → R(z̃) in C0(Ω).

Eventually, by taking the lim sup in relation (3.18) and using (3.19) we have proved that

lim sup
ε→0

Dε(zε, ẑε) ≤ lim
ε→0

�
Ω

Dε(I, exp(εz̃)) dx =

�
Ω

R(z̃) dx = D0(z0, ẑ0).(3.20)

Step 3: Limsup for the differences of the elastic energy terms. Let us start by rewriting the
tensors Aε as

Aε = ∇uε − zε + wε − ε∇uεzε + ε∇uεwε.

On the other hand, as regards the tensors Âε we have that

Âε =
1

ε

(
(I + ε∇ûε)(I−εzε+wε) exp(−εz̃) − I

)

=
(
∇ûε−zε+wε−ε∇ûεzε + ε∇ûεwε

)
exp(−εz̃)

+
1

ε

(
exp(−εz̃)−I

)
on Kε

Âε =
1

ε

(
(I + ε∇ûε)(I−εzε+wε) − I

)

= ∇ûε−zε+wε−ε∇ûεzε+ε∇ûεwε on Ω \Kε.
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Hence, one can compute that

Âε − Aε = (∇ûε−∇uε)(I−εzε+εwε) +
1

ε

(
exp(−εz̃)−I

)

+ (∇ûε−zε+wε−ε∇ûεzε+ε∇ûεwε)(exp(−εz̃)−I) on Kε

Âε − Aε = (∇ûε−∇uε)(I−εzε+εwε) on Ω \Kε.

In particular, owing to convergence (3.15) we have that (∇ûε−∇uε)(I−εzε+εwε) converges
to ∇ũ strongly in L2. Thus, it is a standard matter to check that

Âε + Aε → (∇û0−ẑ0) + (∇u0−z0) weakly in L2(Ω; Rd×d),(3.21)

Âε −Aε → ∇ũ− z̃ strongly in L2(Ω; Rd×d).(3.22)

On the good set U δ
ε we will use the assumption (2.1e) in order to have that

W ε
el(Âε) −W ε

el(Aε) ≤ |Âε|
2
C
− |Aε|

2
C

+ 2cδc2el(δ)

=
1

2
(Âε−Aε):C(Âε+Aε) + 2cδc2el(δ).(3.23)

Let us now argue on the bad set Ω \ U δ
ε by defining

G1,ε := (I+ε∇ûε)(I+ε∇uε)
−1, G2,ε := (I+εzε)(I+εẑε)

−1.

Note that G1,ε and G2,ε are chosen in such a way that F̂el,ε = G1,εFel,εG2,ε. We readily
compute that

G1,ε − I = ∇ψε(ϕε)∇ϕε(I+ε∇uε)
−1 − I = ∇ψε(ϕε) − I = ε∇ũ(ϕε)

so that ‖G1,ε−I‖L∞(Ω\Uδ
ε ;Rd×d) = ε‖∇ũ(ϕε)‖L∞(Ω\Uδ

ε ;Rd×d) ≤ cε. Moreover, one has that

G2,ε =

{
exp(−εz̃) on (Ω \ U δ

ε ) ∩Kε,
I elsewhere in Ω \ U δ

ε .

Hence, ‖G2,ε − I‖L∞(Ω\Uδ
ε ;Rd×d

dev
) ≤ cε as well. Next, estimate (4.1) and bound (3.10) allow us

to control the elastic part of the energy on the bad set Ω \U δ
ε (where ∇uε and zε are not under

control) by cancellation. For this we employ the multiplicative estimate (2.1d) provided in (4.1):�
Ω\Uδ

ε

(
W ε

el(Âε) −W ε
el(Aε)

)
dx =

1

ε2

�
Ω\Uδ

ε

(
Wel(F̂el,ε) −Wel(Fel,ε)

)
dx

=
1

ε2

�
Ω\Uδ

ε

|Wel(G1,εFel,εG2,ε) −Wel(Fel,ε)| dx

(4.1)

≤
c7
ε2

�
Ω\Uδ

ε

(
Wel(Fel,ε) + c8

)(
|G1,ε−I| + |G2,ε−I|

)
dx

≤ c7

(
1

ε2

�
Ω

Wel(Fel,ε) dx+
c8
ε2
|Ω \ U δ

ε |

)(
‖G1,ε−I‖L∞ + ‖G2,ε−I‖L∞

)

(3.16)

≤ cε.(3.24)

Thus, we have controlled the difference of the energy contributions in the bad set Ω \U δ
ε where

the gradients are big.
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Finally, by using convergences (3.21)-(3.22), equation (3.23) on the good set U δ
ε , and relation

(3.24) on the bad set Ω \ U δ
ε , we conclude that

lim sup
ε→0

(�
Ω

W ε
el(Âε) dx−

�
Ω

W ε
el(Aε) dx

)

(3.23)

≤ lim sup
ε→0

(
1

2ε2

�
Uδ

ε

(
Âε−Aε

)
:C
(
Âε+Aε

)
dx+ 2c|Ω|δc2el(δ)

+

�
Ω\Uδ

ε

(
W ε

el(Âε) −W ε
el(Aε)

)
dx

)

(3.24)
= lim sup

ε→ε

(
1

2ε2

�
Uδ

ε

(
Âε−Aε

)
:C
(
Âε+Aε

)
dx+ 2c|Ω|δc2el(δ) + cε

)

=
1

2

�
Ω

(
∇ũ− z̃

)
:C
(
∇(û0+u0) − (ẑ0+z0)

)
dx+ 2c|Ω|δc2el(δ)

=

�
Ω

|∇ûsym
0 −ẑsym

0 |2
C

dx−
�

Ω

|∇usym
0 −zsym

0 |2
C

dx+ 2c|Ω|δc2el(δ)(3.25)

where we have made use of relation (2.3).

Step 4: Upper bound on the hardening energy term. Let us now turn our attention to the
hardening part of the energy. On the good set Zδ

ε we have that

W ε
h (ẑε) −W ε

h (zε) ≤ |ẑε|
2
H
− |zε|

2
H

+ 2cδc2h(δ)

=
1

2
(ẑε−zε):H(ẑε+zε) + 2cδc2h(δ).(3.26)

As regards the bad set Ω \ Zδ
ε one has that

W ε
h(ẑε)−W

ε
h(zε) =

{
1

ε2
W̃h(exp(εz̃)(I+εzε)) −

1

ε2
W̃h(I+εzε) on (Ω \ Zδ

ε ) ∩Kε

0 on Ω \ (Zδ
ε ∪Kε).

Hence, by exploiting the local Lipschitz continuity of W̃h we have that�
Ω\Zδ

ε

(
W ε

h(ẑε) −W ε
h(zε)

)
dx ≤

c

ε2

�
Ω\Zδ

ε

| exp(εz̃) − I| |I+εzε| dx

≤
c

ε2
|Ω \ Zδ

ε | cε
(3.17)

≤ cε.(3.27)
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Eventually, owing to convergences (3.12)-(3.13) we compute that

lim sup
ε→0

(�
Ω

W ε
h (ẑε) dx−

�
Ω

W ε
h (zε) dx

)

(3.26)

≤ lim sup
ε→0

( �
Zδ

ε

1

2
(ẑε−zε):H(ẑε+zε) dx+ 2c|Ω|δc2h(δ)

+

�
Ω\Zδ

ε

(
W ε

h(ẑε) −W ε
h(zε)

)
dx

)

(3.27)
= lim sup

ε→0

(�
Zδ

ε

1

2
(ẑε−zε):H(ẑε+zε) dx+ 2c|Ω|δc2h(δ) + cε

)

=

�
Ω

1

2
z̃:H(ẑ0+z0) dx+ 2c|Ω|δc2h(δ)

=

�
Ω

|ẑ0|
2
H dx−

�
Ω

|z0|
2
H dx+ 2c|Ω|δc2h(δ).(3.28)

Step 5: Conclusion of the proof. By collecting relations (3.25) and (3.28), and recalling that
〈ℓ(t), uε − ûε〉 → 〈ℓ(t), u0 − û0〉 we have proved that

lim sup
ε→0

(
Eε(t, ûε, ẑε)−Eε(t, uε, zε)

)

≤
(
E0(t, û0, ẑ0)−E0(t, u0, z0)

)
+ cδ(c2el(δ)+c

2
h(δ)).

Finally, the assertion (3.11) follows by taking δ → 0 and employing (3.20). �

Remark 3.7. Note that the construction of the mutual recovery sequence is compatible with
the standard constraint det(I+ε∇ûε) > 0. Indeed, by letting ε be small enough we have that
I+ε∇ũ is everywhere positive definite, hence det(I+ε∇ũ) > 0. In particular, as det(I+ε∇uε) >
0 almost everywhere, we have that

det(I+ε∇ûε) = det(∇ψε(ϕε)∇ϕε) = det(I+ε∇ũ(ϕε)) det(I+ε∇uε) > 0

almost everywhere as well. That is, I+ε∇ûε ∈ GL+(d) almost everywhere.

3.4. Proof of Theorem 2.2. Owing to the the above-obtained Γ–liminf and mutual-recovery-
sequence results, the proof of Theorem 2.2 now follows along the lines of the general theory of
[MRS08]. We limit ourselves in sketching the main points of the argument and refer the reader
to [MRS08] for the details.

Let (uε, zε) be a sequence of finite-plasticity solutions. The coercivity of the energy (3.1)
entails an a priori bound on (uε, zε). In particular, we have the following.

Corollary 3.8 (A priori bound). There exists c > 0 such that all finite-plasticity solutions (uε, zε)
fulfill

(3.29) ∀t ∈ [0, T ] : ‖uε(t)‖H1 + ‖zε(t)‖L2 + ‖εzε(t)‖L∞ + DissDε
(zε; [0, t]) ≤ c.
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Proof. We exploit the energy balance (2.16) and the bound (3.1) in order to get that, for all
t ∈ [0, T ],

‖∇uε(t)‖
2
L2 + ‖zε(t)‖

2
L2 + ‖εzε(t)‖

2
L∞ + DissDε

(zε; [0, t])

(3.1)

≤ c
(
1+Wε(uε(t), zε(t))

)
+ DissDε

(zε; [0, t])

≤ c
(
1 + Eε(t, uε(t), zε(t)) + 〈ℓ(t), u(t)〉 + DissDε

(zε; [0, t])
)

(2.16)
= c

(
1 + Eε(0, u

0
ε, z

0
ε) + 〈ℓ(t), u(t)〉 −

� t

0

〈ℓ̇, u〉 ds

)

≤ c

(
1 + Eε(0, u

0
ε, z

0
ε) + ‖ℓ(t)‖H−1‖u(t)‖H1 +

� t

0

‖ℓ̇‖H−1‖u‖H1 ds

)

so that the assertion follows by Gronwall’s Lemma. �

Owing to the a priori bound (3.29), we may now exploit the generalized version of Helly’s
Selection Principle in [MRS08, Thm. A.1] (consider also the comments thereafter) and deduce
that, at least for some nonrelabeled subsequence, and all s, t ∈ [0, T ] with s < t,

δ0(t) := lim
ε→0

DissDε
(zε; [0, t]),

zε(t) → z0(t) weakly in Z,

DissD0
(z0; [s, t]) ≤ δ0(t) − δ0(s),

Moreover, by letting t ∈ [0, T ] be fixed we may extract a further subsequence (still not
relabeled, possibly depending on t) such that uε(t) → u∗ weakly in U . We now check that
indeed (u∗, z0(t)) ∈ S0(t). To this aim, by density it suffices to consider competitors (û0, ẑ0) =
(u∗, z0(t)) + (ũ, z̃) with (ũ, z̃) smooth and compactly supported. By applying Lemma 3.6 we
find a mutual recovery sequence (ûε, ẑε) such that

E0(t, û0, ẑ0) − E0(t, u∗, z0(t)) + D0(z0(t), ẑ0)

≥ lim sup
ε→0

(Eε(t, ûε, ẑε) − Eε(t, uε(t), zε(t)) + Dε(zε(t), ẑε)) ≥ 0(3.30)

where the last inequality follows from the stability (2.15) of (uε(t), zε(t)). Hence, we have
proved that (u∗, z0(t)) ∈ S0(t). Note that, given z0(t) ∈ Z , as the functional u ∈ U 7→
E0(t, u, z0(t)) is uniformly convex there exists a unique u0(t) ∈ U such that (u0(t), z0(t)) ∈
S0(t). From the fact that (u∗, z0(t)) ∈ S0(t) we conclude that u∗ ≡ u0(t). In particular
uε(t) → u0(t) weakly in U for all t ∈ [0, T ] and the whole sequence converges.

Let now be given a partition {0 = t0 < t1 < · · · < tN = t}. By passing to the lim inf in
the energy balance (2.16) and using Lemmas 3.3 and 3.5 we get that

E0(t, u0(t), z0(t)) +
N∑

i=1

D0(z0(ti), z0(ti−1))

≤ lim inf
ε→0

(
Eε(t, uε(t), zε(t)) +

N∑

i=1

Dε(zε(ti), zε(ti−1))

)

≤ lim inf
ε→0

(
Eε(0, u

0
ε, z

0
ε ) −

� t

0

〈ℓ̇, uε〉 ds

)
= E0(0, u

0
0, z

0
0) −

� t

0

〈ℓ̇, u0〉 ds
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where for the last equality we have used (2.14) and the convergence of uε. Hence, the upper
energy estimate follows by taking the sup among all partitions of the interval [0, t]. The lower
energy estimate can classically recovered from stability as in [Mie05, Prop. 2.7]. This proves
that (u0, z0) is a linearized-plasticity solution. In particular, as linearized-plasticity solutions are
unique, the whole sequence (uε, zε) converges and no extraction of subsequences is actually
needed.

Along the lines of the proof of Theorem 2.2 (see also [MRS08, Thm. 3.1]) we also obtain the
following convergences.

Corollary 3.9 (Improved convergences). Under the assumptions of Theorem 2.2 we have that,
for all t ∈ [0, T ],�

Ω

(
W ε

el(Aε) +W ε
h(zε)

)
dx→

�
Ω

(
|∇u0−z0|

2
C

+ |z0|
2
H

)
dx,(3.31)

DissDε
(zε; [0, t]) →

� t

0

R(ż) ds.(3.32)

In particular, owing to the energy convergence (3.31) we are in the position of deducing some
strong convergence of finite-plasticity solutions to linearized-plasticity solutions.

Corollary 3.10 (Strong convergence). Under the assumptions of Theorem 2.2 for all t ∈ [0, T ]
we have that (uε(t), zε(t)) → (u0(t), z0(t)) strongly in W1,p(Ω; Rd) × Lp(Ω; Rd×d) for all
p ∈ [1, 2).

Proof. Let ν denote the Young measure generated by the sequence (Aε, zε) and define the
measure νsym(As, Z) := ν(As⊕R

d×d
anti , Z) for all Borel sets (As, Z) ⊂ R

d×d
sym × R

d×d. Note
that νsym is indeed the Young measure generated by (Asym

ε , zε). By using the lower semiconti-
nuity Lemma 4.2 and the energy convergence (3.31) we deduce that�

Ω

(�
R

d×d
sym×Rd×d

(
|Asym|2C + |z|2H

)
dνsym

x (Asym, z)

)
dx

=

�
Ω

(�
Rd×d×Rd×d

(
|A|2

C
+ |z|2

H

)
dνx(A, z)

)
dx

≤ lim inf
ε→0

�
Ω

(
W ε

el(Aε) +W ε
h(zε)

)
dx

(3.31)
=

�
Ω

(
|∇u0−z0|

2
C + |z0|

2
H

)
dx.(3.33)

Recall from (3.7) that

Asym
ε = ∇usym

ε − zsym
ε − ε(∇uεzε−∇uεwε)

sym

where the remainder term ε(∇uεzε−∇uεwε)
sym converges strongly to 0 in Lp for all p ∈

[1, 2). Hence, the barycenter of νsym is clearly (∇usym
0 −zsym

0 , z0).

We readily check that the measure νsym is concentrated in its barycenter. Indeed, if this was
not the case, by uniform convexity we would have that�

Ω

(
|∇usym

0 −zsym
0 |2

C
+ |z0|

2
H

)
dx

<

�
Ω

(�
R

d×d
sym×Rd×d

(
|Asym|2C + |z|2H

)
dνsym

x (Asym, z)

)
dx
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contradicting relation (3.33). Here we have used positive definiteness from (2.5) and (2.9). As
νsym is concentrated, we exploit [AGS08, Thm. 5.4.4.iii, p. 127] and deduce that�

Ω

f(x,Asym
ε (x), zε(x)) dx→

�
Ω

(�
R

d×d
sym×Rd×d

f(x,Asym, z)dνsym
x (Asym, z)

)
dx

along with the choice

f(x,Asym, z) :=
∣∣(∇usym

0 (x)−zsym
0 (x), zsym

0 (x)) − (Asym−zsym, z)
∣∣p.

Hence, we have that (Asym
ε , zε) → (∇usym

0 −zsym
0 , z0) strongly in Lp(Ω; Rd×d

sym)×Lp(Ω; Rd×d)
for all p ∈ [1, 2). In particular,

∇usym
ε = Asym

ε + zsym
ε + ε(∇uεzε−∇uεwε)

sym → ∇usym
0 strongly in Lp

for all p ∈ [1, 2) and the assertion follows by Korn’s inequality. �

3.5. Sketch of the proof of Theorem 2.3. The argument for Theorem 2.2 can be adapted to
prove Theorem 2.3 as well. The only notable difference is that one has to cope with the fact that
the piecewise constant interpolants (uε, zε) of the approximate incremental minimizers need
not be stable but rather just approximately stable. More precisely, from (2.17) and the triangle
inequality we have that

∀(û, ẑ) ∈ Q : Eε(t, û, ẑ) − Eε(t, uε(t), zε(t)) + Dε(zε(t), ẑ) ≥ −τεαε.

By coordinating to the sequence (uε(t), zε(t)) a mutual recovery sequence (ûε, ẑε) via Lemma
3.6 (with (uε(t), zε(t)) instead of (uε(t), zε(t))) the lower bound (3.30) still follows as τεαε →
0. Hence, the stability of the limit can be recovered. Finally, improved and strong convergences
in the spirit of Corollaries 3.9-3.10 can be established as well.

4. APPENDIX

4.1. Estimate on left and right multiplication. In the proof of Theorems 2.2-2.3 we have
made use of the following estimate combining left and right multiplication.

Lemma 4.1. Assume (2.1a) and (2.1d). Then,

∃c7, c8, γ > 0 ∀G1, G2 ∈ Bγ(I) ∀F ∈ GL+(d) :

|Wel(G1FG2) −Wel(F )| ≤ c7(W (F ) + c8)
(
|G1−I| + |G2−I|

)
.(4.1)

Proof. Following [Bal02, Lemma 2.5], we find positive constants c0, ĉ0, γ such that, for all G ∈
Bγ(I) and all F ∈ GL+(d), one has that

Wel(GF ) ≤ ĉ0Wel(F ) + c0, Wel(FG) ≤ ĉ0Wel(F ) + c0,(4.2)

|∂FW (GF )F⊤| ≤ ĉ0Wel(F ) + c0,(4.3)

|F⊤∂FW (FG)| ≤ ĉ0Wel(F ) + c0.(4.4)



21

For s ∈ [0, 1], let now Hj(s) := (1−s)I + sGj for j = 1, 2, and note that Hj ∈ Bγ(I). As
H ′

j = Gj − I is constant we can compute that

Wel(G1FG2) −Wel(F ) =

� 1

0

d

ds
Wel(H1(s)FH2(s)) ds

=

� 1

0

∂FWel(H1FH2)(H
′
1FH2+H1FH

′
2) ds

=

� 1

0

∂FWel(H1FH2)(FH2)
⊤ ds : H ′

1 +

� 1

0

(H1F )⊤Wel(H1FH2) ds : H ′
2.

We control the above right-hand side as
∣∣∣∣
� 1

0

∂FWel(H1FH2)(FH2)
⊤ ds : H ′

1

∣∣∣∣
(4.3)

≤

(� 1

0

(
ĉ0Wel(FH2)+c0

)
ds

)
|G1−I|

(4.2)

≤
(
ĉ20Wel(F )+c0ĉ0+c0

)
|G1−I|,∣∣∣∣

� 1

0

(H1F )⊤Wel(H1FH2) ds : H ′
2

∣∣∣∣
(4.4)

≤

(� 1

0

(
ĉ0Wel(H1F )+c0

)
ds

)
|G2−I|

(4.2)

≤
(
ĉ20Wel(F )+c0ĉ0+c0

)
|G2−I|,

whence the assertion follows. �

4.2. Lower semicontinuity tool. In Section 3 the following lower-semicontinuity lemma is
used.

Lemma 4.2 (Lower-semicontinuity). Let f0, fε : Rn → [0,∞] be lower semicontinuous,

∀v0 ∈ R
n : f0(v0) ≤ inf

{
lim inf

ε→0
fε(vε) | vε → v0

}
,

and wn → w0 weakly in L1(Ω; Rn). Denoting by ν the Young measure generated by wn we
have that �

Ω

(�
Rn

f0(w)dνx(w)

)
dx ≤ lim inf

ε→0

�
Ω

fε(wε) dx.

In particular, if f0 is convex we have�
Ω

f0(w0) dx ≤ lim inf
ε→0

�
Ω

fε(wε) dx.

This lemma is in the same spirit of the results by BALDER [Bal84a, Thm. 1] and IOFFE [Iof77]
and can be proved via augmenting the variables by including the parameter ε. The reader is
referred to [Ste08, Thm 4.3, Cor. 4.4] or [MRS09, Lemma 3.1] for a proof in the case d = 1. In
case of local uniform convergence, a proof can be found in [Li96].
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