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ABSTRACT. In this paper we analyze a broad class of abstract doubly nonlinear evolution equa-
tions in Banach spaces, driven by nonsmooth and nonconvex energies. We provide some gen-
eral sufficient conditions, on the dissipation potential and the energy functional, for existence
of solutions to the related Cauchy problem. We prove our main existence result by passing
to the limit in a time-discretization scheme with variational techniques. Finally, we discuss an
application to a material model in finite-strain elasticity

1. INTRODUCTION

In this paper we investigate (the Cauchy problem for) the doubly nonlinear evolution equation

(1.1) ∂Ψ(u′(t)) + Ft(u(t)) ∋ 0 in V ∗ for a.a. t ∈ (0, T ).

Here,

V is a (separable) reflexive Banach space,

and

(1.2) Ψ : V → [0,+∞) is a convex potential with Ψ(0) = 0, lim
‖v‖↑+∞

Ψ(v)

‖v‖
= +∞,

∂Ψ : V ⇉ V ∗ is its usual (convex analysis) subdifferential, and F : [0, T ] × V ⇉ V ∗ is a
time-dependent family of multivalued maps which are induced by a suitable “(sub)differential”
(with respect to the variable u), of a lower semicontinuous time-dependent

energy functional E : (t, u) ∈ [0, T ] × V 7→ Et(u) ∈ (−∞,+∞].

The quadruple (V,E,Ψ,F) indeed generates what will be later on referred to as generalized
gradient system. The aim of this paper is to study existence, stability and approximation results
for solutions to generalized gradient systems, for a large family of quadruples (V,E,Ψ,F). Be-
side the generality of the convex dissipation potential Ψ (our main assumption is that it exhibits
superlinear growth at infinity), we aim to tackle a class of multivalued operators F as broad as
possible. Furthermore, we consider a general dependence of the energy functional E on time
(we refer in particular to the properties of the map t 7→ Et(u) and the related notion ∂tE of
derivative with respect to time).

To highlight these issues, let us consider some motivating examples, in an increasing order of
generality.

1. Finite dimensional ODE’s. The simplest example of gradient system is provided by a finite-
dimensional space V = R

d and an energy functional E ∈ C1([0, T ] × V ); in this case we
take

Ft(u) = DEt(u), with DEt the standard differential of the energy u 7→ Et(u),

and (1.1) reads

(1.3) ∂Ψ(u′(t)) + DEt(u(t)) ∋ 0 for a.a. t ∈ (0, T ).

In the quadratic case Ψ(v) := 1
2
|v|2, | · | being the usual Euclidean norm on R

d, (1.3) is the
Gradient Flow generated by E

(1.4) u′(t) + DEt(u(t)) = 0 for a.a. t ∈ (0, T ).
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2. λ-convex functionals, C1-perturbation. More generally, one can consider energies of the
form

(1.5) Et(v) := E(v) − 〈ℓ(t), v〉 with ℓ : [0, T ] → V ∗ an external loading,

and E : V → (−∞,+∞] a λ-convex functional for some λ ∈ R, i.e. it satisfies
(1.6)

E((1−θ)u0 +θu1) ≤ (1−θ)E(u0)+θE(u1)−
λ

2
θ(1−θ)‖u0−u1‖

2
V for all u0, u1 ∈ D.

In this case, F admits the representation

(1.7) Ft(u) = F(u) − ℓ(t), F(u) = ∂E(v) for all u ∈ V,

with ∂E the Fréchet subdifferential of E, defined at u ∈ D := dom(E) by
(1.8)
ξ ∈ F(u) = ∂E(u) ⊂ V ∗ ⇔ E(v)−E(u)−〈ξ, v−u〉 ≥ o(‖v−u‖) as v → u in V.

It is well known that for all u ∈ D the (possibly empty) set ∂E(u) ⊂ V ∗ is weakly∗ closed,
and it reduces to the singleton {DE(u)} if the functional E is Gâteaux-differentiable at u.
Furthermore, if E is convex, then ∂E(u) coincides with the subdifferential of E in the sense
of convex analysis. In such a framework, existence and approximation results for the gener-
alized gradient system (V,E,Ψ, ∂E), with V a reflexive space and Ψ a general dissipation
potential as in (1.2), have been proved by [16, 15], while in [52] the long-time behavior of the
solutions to (V,E,Ψ, ∂E) has been addressed. Notice that, when E is a C1-perturbation of
a convex functional E0, i.e.

(1.9) E(u) := E0(u) + E1(u), E0 convex, E1 of class C1,

then one has the natural decomposition

(1.10) ∂E(u) = ∂E0(u) + DE1(u),

which has been exploited in [51] to prove well-posedness (for the Cauchy problem) for the
gradient system (V,E,Ψ, ∂E), and existence of the global attractor for the related dynamical
system.

It is worthwhile mentioning that, in cases 1–2, the pair (E,F) satisfies a crucial closedness
property: the graph of the multivalued map u 7→ (E(u),F(u)), i.e. the set {(u,E(u), ξ) :
u ∈ D, ξ ∈ F(u)} ⊂ V × R × V ∗, is strongly-strongly-weakly closed, meaning that, if
sequences un ∈ V, En ∈ R, ξn ∈ V ∗ are given, then
(1.11)(
ξn ∈ F(un), En = E(un), un → u, En → E , ξn ⇀ ξ

)
⇒ E = E(u), ξ ∈ F(u).

Let us also emphasize that, in cases 1–2, under standard conditions on the external loading
ℓ as a function of time, the energy functional Et(v) = E(v) − 〈ℓ(t), v〉 fulfills the following
chain rule: for all u ∈ AC([0, T ];V ) and ξ ∈ L1(0, T ;V ∗) with ξ(t) ∈ Ft(u(t)) for almost
all t ∈ (0, T ) (where AC([0, T ];V ) denotes the space of absolutely continuous functions on

[0, T ] with values in V ), and such that
∫ T

0
Ψ(u′(t))dt < +∞,

∫ T

0
Ψ∗(−ξ(t))dt < +∞, and

supt∈[0,T ] |Et(u(t))| < +∞, then

(1.12)

the map t 7→ Et(u(t)) is absolutely continuous and

d

dt
Et(u(t)) = 〈ξ(t), u′(t)〉 + ∂tEt(u(t)) for a.a. t ∈ (0, T ) .
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3 Marginal functionals. There are examples when the Fréchet subdifferential does not satisfy
the closedness property (1.11), see also [44]. A typical one, which we analyze in Section 3
in more detail, is given by the so-called marginal functions, which are defined via an infimum
operation. Let us still consider a finite-dimensional case V = R

d and a functional

(1.13) Et(u) = min
η∈C

It(η, u),

where C is a compact topological space and I ∈ C0([0, T ] × C × V ; R) is such that the
functional (t, u) 7→ It(η, u) is of class C1 for every η ∈ C. Being C compact, for every
(t, u) ∈ [0, T ] × V the set

(1.14) M(t, u) := Argmin It(·, u) =
{
η ∈ C : Et(u) = It(η, u)

}

is not empty. If in addition the map (t, η, u) 7→ DuIt(η, u) is continuous on [0, T ]× C × V ,
it is not difficult to check that, if ξ belongs to the Fréchet subdifferential ∂Et(u), then

(1.15) ξ = DuIt(η, u) for all η ∈M(t, u).

On the other hand, simple examples show that a limit ξ = limn→∞ ξn of sequences ξn
satisfying (1.15) will only obey the relaxed property

(1.16) ξ = DuIt(η, u) for some η ∈M(t, u).

In view of property (1.16), it appears that, for reduced functionals of the type (1.13), the
appropriate subdifferential is

(1.17) ∂̂Et(u) := {DuIt(η, u) : η ∈M(t, u)},

which will be referred to as the marginal subdifferential of E. We examine this notion with
some detail in Section 3, with the help of significant examples. The latter also highlight that, in
the case of marginal energies E like (1.13), smoothness of the function t 7→ Et(u) for u ∈ V
fixed is no longer to be expected. That is why, one has to recur to a surrogate for the partial
derivative ∂tE, tailored to the marginal case (1.13). In Examples 3.3 and 3.4, we develop
some heuristics for such a generalization of ∂tE, and motivate the fact that this object should
be also conditioned to the (marginal) subdifferential of the energy with respect to the variable

u, and therefore depend on the additional variable ξ ∈ ∂̂Et(u). This leads to a generalized

derivative with respect to time P = Pt(u, ξ), where ξ ∈ ∂̂Et(u). For the marginal functional
in (1.13), P is defined by

Pt(u, ξ) := sup {∂tIt(η, u) : η ∈M(t, u), ξ = DuIt(η, u)} .

4 General nonhomogeneous dissipation potentials. Last but not least, we emphasize that,
beside tackling the above-mentioned nonsmoothness and nonconvexity of the energy, at the
same time we treat general convex dissipation potentials.

First of all, we extend the existence results of [43], which also addressed doubly nonlin-
ear evolution equations driven by nonconvex energies. Moving from the analysis of gradi-
ent systems in a metric setting, the latter paper examines the case of nonconvex energy
functionals, albeit smoothly depending on time, but with dissipation potentials of the form
Ψ(v) = ψ(‖v‖), where ψ : [0,+∞) → [0,+∞) is convex, l.s.c., and with superlinear
growth at infinity. However, in view of applications it is also interesting to deal with dissipation
potentials like

(1.18) Ψ(v) = c1|v|
p1 + c2‖v‖

p2, with p1 ∈ [1,∞), p2 ∈ (1,∞),
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with | · | a second norm on V . In particular, dissipations of the type (1.18) arise in the vanish-
ing viscosity approximation of rate-independent evolutions described by the doubly nonlinear
equation

(1.19) ∂Ψhom(u′(t)) + Ft(u(t)) ∋ 0 in V ∗ for a.a. t ∈ (0, T ),

featuring the 1-positively homogeneous dissipation potential Ψhom(v) = |v|. The natural
viscous approximation of (1.19) is indeed the gradient system

(1.20) ∂Ψε(u
′(t))+Ft(u(t)) ∋ 0 in V ∗ for a.a. t ∈ (0, T ), with Ψε(v) = |v|+

ε

2
‖v‖2.

We mention that the vanishing viscosity limit of (1.20) as ε ց 0 has been studied in [34] in
the case of a finite-dimensional ambient space V . Moving from the existence results for vis-
cous doubly nonlinear equations of the present paper, we are going to address the vanishing
viscosity analysis of (1.20) in an infinite-dimensional context in the forthcoming paper [35].

Secondly, we consider dissipation potentials Ψ = Ψu(v) also depending on the state
variable u, hence address the doubly nonlinear equation

(1.21) ∂Ψu(t)(u
′(t)) + Ft(u(t)) ∋ 0 in V ∗ for a.a. t ∈ (0, T ).

A significant example for potentials of this type will be provided in Section 5, focusing on a
model in finite-strain elasticity. In fact, state-dependent dissipations naturally occur in various
plasticity models, see for example [31, 30, 5].

The discussion developed throughout Examples 1–4 motivates the analysis of generalized gra-
dient systems (V,E,Ψ,F,P) which is developed in this paper. As a main goal, we will prove
an existence and approximation result for the Cauchy problem for (1.21), under suitable con-
ditions on E,Ψ,F,P. To be more precise, we will call a function u : [0, T ] → V solution
for the generalized gradient system (V,E,Ψ,F,P), if u ∈ AC([0, T ];V ), and there exists
ξ ∈ L1(0, T ;V ∗) such that

∂Ψu(t)(u
′(t)) + ξ(t) ∋ 0 for a.a. t ∈ (0, T ),(1.22a)

ξ(t) ∈ Ft(u(t)) for a.a. t ∈ (0, T ),(1.22b)

and (u, ξ) fulfill the energy identity

∫ T

0

Ψu(t)(u
′(t)) + Ψ∗

u(t)(−ξ(t))dt+ ET (u(T )) = E0(u(0)) +

∫ T

0

Pt(u(t), ξ(t))dt.

(1.22c)

Let us point out that the energy identity (1.22c) is a crucial item in our definition of solution to
(V,E,Ψ,F,P). On the one hand, (1.22c) is a consequence of (1.22a)–(1.22b) and of the chain
rule (1.12), as it can be checked by testing (1.22a) by u′(t) and integrating on (0, T ). On the
other hand, as mentioned below, for proving existence of solutions to (1.21), in fact we are going
to first derive (1.22b) and (1.22c), and then combine them to obtain (1.22a).

The plan of the paper is as follows: in Section 2 we address the analysis of the doubly non-
linear evolution equation (1.1) in a simplified setting: the dissipation potential is independent
of the variable u, and the energy E = Et(u) is possibly nonsmooth and nonconvex with re-
spect to u, but smoothly depending on time. Thus, throughout Sec. 2, the multivalued map
F : [0, T ]×V ⇉ V ∗ is given by the Fréchet subdifferential of the energy, i.e. Ft(u) = ∂Et(u)
for all (t, u) ∈ [0, T ] × V , while Pt(u, ξ) reduces to the usual partial time-derivative ∂tEt(u).
Nonetheless, the analysis of this case still highlights the most significant difficulties arising for
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nonconvex energies. In such a context, we enucleate the main conditions on the energy func-
tional for proving existence for (1.1). First, we require some suitable coercivity property, which
amounts to asking that the sublevels of the energy are compact. Second, we impose that the
energy E : [0, T ] × V → R and the Fréchet subdifferential ∂E : [0, T ] × V ⇉ V ∗ fulfill
a (joint) closedness property, cf. (1.11). Third, we require that a suitable form of the chain rule
(1.12) holds.

Then, we state an existence result for the Cauchy problem for equation (1.1), and outline
the steps of its proof, viz. approximation by time-discretization, a priori estimates on the ap-
proximate solutions, compactness arguments, and the final passage to the limit of the time-
discrete scheme. In developing the proof, we highlight the role played at each step by the afore-
mentioned conditions on the energy functional. Namely, the incremental minimization leads to
a discretized version of (1.22a)–(1.22b) and, using the variational interpolant of the discrete
solutions, we obtain a discrete upper energy estimate, corresponding to the inequality ≤ in
(1.22c). Exploiting lower semicontinuity arguments and the closedness of the graph of the map
(t, u) 7→ {(Et(u), ξ, ∂tEt(u)) : ξ ∈ Ft(u)}, the passage to the limit yields (1.22b) and
(1.22c) with ≤ instead of =. Hence, we employ a suitable lower chain-rule estimate to conclude
that (1.22c) holds with equality. From this argument, we also have (1.22a).

In Section 3 we discuss finite-dimensional examples of marginal energy functionals. In this
way, we motivate and develop some heuristics for new notions of subdifferential of the energy
with respect to the variables t and to u, tailored to the case of marginal functionals, viz. the

aforementioned marginal subdifferential ∂̂E and the generalized partial time-derivative P. We
emphasize that, even in finite-dimensional cases, the nonsmoothness of E forces us to make
Pt(u, ·) dependent on ξ ∈ Ft(u).

From Section 4 on, we examine the generalized gradient system (V,E,Ψ,F,P), with a state-
dependent dissipation potential Ψ = Ψu(v). In such a context we state our main existence
and approximation result for (1.21). We also give an upper semicontinuity result for the set of
solutions to (1.21) with respect to perturbations of the dissipation potential and of the energy
functional.

In Section 5 we present an application of our existence theorem to a PDE system for material
models with finite-strain elasticity. Indeed, we consider dissipative material models (also called
generalized standard materials, cf. [25, 33]) with an internal variable z : Ω → K ⊂ R

m, while
the elastic deformation ϕ : Ω → R

d is quasistatically minimized at each time instant. Thus, we
are in the realm of marginal functionals

Et(z) = min
ϕ∈F

It(ϕ, z), where It(ϕ, z) = E
1(z) +

∫

Ω

W (∇ϕ, z)dx− 〈ℓ(t), ϕ〉,

with E1 a convex functional with compact sublevels. Here, W (·, z) is polyconvex to guarantee
that the set of minimizers M(t, z) is compact and nonempty. We use the technical assumption
|DzW (F, z)| ≤ κ1(W (F, z) + κ2)

1/2.

All the proofs of our abstract results are developed in Section 6, relying on some technical tools
and auxiliary results collected in the Appendix.

Basic set-up and notation. Hereafter, we will set our analysis in the framework of

a reflexive separable Banach space V
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with norm ‖ · ‖. We denote by 〈·, ·〉 the duality pairing between V ∗ and V and by ‖ · ‖∗ the
norm on V ∗.

Our basic assumption on the energy functional E : [0, T ] × V → (−∞,+∞] is that there
exists D ⊂ V such that
(E0)

dom(E) = [0, T ] ×D, the map u 7→ Et(u) is lower semicontinuous for all t ∈ [0, T ],

∃C0 > 0 ∀ (t, u) ∈ [0, T ] ×D : Et(u) ≥ C0.

Indeed, if the functionals Et are bounded from below by some constant independent of t, up to
a translation it is not restrictive to assume such a constant to be strictly positive.

Hereafter, we will use the following notation

(1.23) G(u) := sup
t∈[0,T ]

Et(u) for every u ∈ D.

Furthermore, we will denote by F : [0, T ] × D ⇉ V ∗ a time-dependent family of multivalued
maps, such that for t ∈ [0, T ] the mapping Ft is a (suitable notion of) subdifferential of the
functional u 7→ Et(u). We use the notation

dom(F) = {(t, u) ∈ [0, T ] ×D : Ft(u) 6= ∅} ,

graph(F) = {(t, u, ξ) ∈ [0, T ] ×D × V ∗ : ξ ∈ Ft(u)}

for the domain and the graph of the multivalued mapping F : [0, T ] × D ⇉ V ∗, respectively.
The basic measurability requirement on F is that graph(F) is a Borel set of [0, T ] × V × V ∗.

In the framework of the space R
m, we will denote by | · | the Euclidean norm and by Br(0)

the ball centered at 0 and of radius r. The symbol ⇀ will indicate weak convergence both in V
and in V ∗. Finally, throughout the paper we will use the symbols C and C ′ for various positive
constants depending only on known quantities.

2. ANALYSIS IN A SIMPLIFIED SETTING

In this section, we deal with a single dissipation potential Ψ, independent of the state variable,
and an energy functional E : [0, T ] × V → (−∞,+∞] as in (E0) with a smooth time-
dependence (see for instance [32, §3], [36] for analogous assumptions within the analysis of
abstract doubly nonlinear and rate-independent problems). The focus of this section is on the
nonsmoothness and nonconvexity of the map u 7→ Et(u). We leave the questions arising from
nonsmooth time-dependence and state-dependent dissipation potentials to later sections.

In the present framework, it is natural to work with the Fréchet subdifferential of the functionals
Et : V → (−∞,+∞], defined in (1.8). Hence, we address the Cauchy problem

(2.1) ∂Ψ(u′(t)) + ∂Et(u(t)) ∋ 0 in V ∗ for a.a. t ∈ (0, T ); u(0) = u0,

which is a particular case of (1.1), with Ft(u) = ∂Et(u) for all (t, u) ∈ [0, T ] ×D. In Section
2.1 we enucleate the abstract assumptions for Theorem 2.2 below that yield existence for prob-
lem (2.1). Next, we give an outline of its proof, highlighting the role played by the aforementioned
assumptions. Then, in Section 2.2 we discuss sufficient conditions for the latter. We conclude
with some PDE applications in Section 2.3.

2.1. An existence result.
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Assumptions on the dissipation potential Ψ. Throughout this section we will suppose that

(2.Ψ1) Ψ : V → [0,+∞) is l.s.c. and convex,

(2.Ψ2) Ψ(0) = 0, lim
‖v‖↑+∞

Ψ(v)

‖v‖
= +∞, lim

‖ξ‖∗↑+∞

Ψ∗(ξ)

‖ξ‖∗
= +∞, and

(2.Ψ3) ∀w1, w2 ∈ ∂Ψ(v) : Ψ∗(w1) = Ψ∗(w2),

where Ψ∗ denotes the Fenchel-Moreau conjugate of Ψ. Hereafter, we will call any Ψ : V →
[0,+∞) complying with (2.Ψ1)–(2.Ψ3) an admissible dissipation potential.

We emphasize that, in this paper we only consider dissipation potentials Ψ with dom(Ψ) = V .
From this it follows (see, e.g., [23, Chap. I, Cor. 2.5]), that Ψ is continuous on V , and that Ψ∗ has
superlinear growth at infinity. Hence, the third of (2.Ψ2) could be omitted, and has been stated
here just for the sake of analogy with condition (4.Ψ2) later on, for state-dependent dissipation
potentials Ψ = Ψu(v).

In fact, our analysis can be extended to the case in which dom(Ψ) is an open subset of V
(i.e., it contains one continuity point). However, this rules out dissipation potentials enforcing
irreversible evolution, like for example in damage models, see e.g. [37].

Remark 2.1. 1 We point out that, since Ψ(0) = 0, we have

(2.2) Ψ∗(ξ) ≥ 0 for all ξ ∈ V ∗.

Furthermore, it follows from the superlinear growth of Ψ and Ψ∗ that

(2.3) ∂Ψ : V ⇉ V ∗ is a bounded operator, and ∂Ψ(v) 6= ∅ for all v ∈ V .

2 Let us now get some further insight into condition (2.Ψ3): a lower semicontinuous and
convex potential Ψ : V → [0,+∞) satisfies (2.Ψ3) if and only if

(2.4) the mapping λ 7→ Ψ(λv) is differentiable at λ = 1.

Indeed, let v ∈ V be such that ∂Ψ(v) 6= ∅. The convexity of Ψ gives

lim inf
λ↓0

Ψ(v + λv) − Ψ(v)

λ
≥ 〈w, v〉 ≥ lim sup

λ↑0

Ψ(v + λv) − Ψ(v)

λ

for all w ∈ ∂Ψ(v). Hence, (2.4) holds if and only if 〈w1, v〉 = 〈w2, v〉 for all w1, w2 ∈
∂Ψ(v), which is obviously equivalent to (2.Ψ3).

Therefore, condition (2.Ψ3) is satisfied for example when Ψ is a linear combination of
(positively) homogeneous, or differentiable, convex potentials.

Assumptions on the energy functional E.

Coercivity:

(2.E1) ∃ τo > 0 ∀ t ∈ [0, T ] : u 7→ Et(u) + τoΨ(u/τo) has compact sublevels.

Variational sum rule: If for some uo ∈ V and τ > 0 the point ū is a minimizer of u 7→
Et(u)+τΨ((u−uo)/τ), then ū satisfies the Euler-Lagrange equation ∂Ψ((ū−uo)/τ)+
∂Et(ū) ∋ 0, viz.

(2.E2) ∃ ξ ∈ ∂Et(ū) : −ξ ∈ ∂Ψ((ū− uo)/τ).
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Time-dependence:

(2.E3)
∀u ∈ D : (t 7→ Et(u)) is differentiable on (0, T ), with derivative ∂tEt(u);

∃C1 > 0 ∀ (t, u) ∈ [0, T ] ×D : |∂tEt(u)| ≤ C1Et(u).

Chain rule: For every u ∈ AC([0, T ];V ) and ξ ∈ L1(0, T ;V ∗) with

(2.5)

sup
t∈[0,T ]

|Et(u(t))| < +∞, ξ(t) ∈ ∂Et(u(t)) for a.a. t ∈ (0, T ), and

∫ T

0

Ψ(u′(t)) dt < +∞,

∫ T

0

Ψ∗(−ξ(t)) dt < +∞,

the map t 7→ Et(u(t)) is absolutely continuous and

(2.E4)
d

dt
Et(u(t)) = 〈ξ(t), u′(t)〉 + ∂tEt(u(t)) for a.a. t ∈ (0, T ) .

Weak closedness of (E, ∂E): For all t ∈ [0, T ] and for all sequences (un) ⊂ V and
(ξn) ⊂ V ∗ we have the following condition:

(2.E5)
if un → u in V, ξn ∈ ∂Et(un), ξn ⇀ ξ in V ∗, ∂tEt(un) → p, Et(un) → E in R,

then ξ ∈ ∂Et(u), p ≤ ∂tEt(u), E = Et(u).

A few comments on the above abstract conditions are in order:

1 in Proposition 4.2 we are going to show that the variational sum rule (2.E2) is indeed a
consequence of the closedness property (2.E5);

2 in Section 2.2 we discuss sufficient conditions for (2.E5) and the chain rule (2.E4), show-
ing in particular that they are valid if the functionals Et(·) are λ-convex;

3 (2.E3) and the Gronwall Lemma yield the following estimate

(2.6) Et(u) ≤ exp(C1|t− s|)Es(u) for all t, s ∈ [0, T ], u ∈ D,

whence, in particular,

(2.7) G(u) ≤ exp(C1T )Et(u) for all t ∈ [0, T ].

Existence theorem and outline of the proof. We are now in the position to state the main
result of this section.

Theorem 2.2. Let us assume that (V,E,Ψ, ∂E, ∂tE) comply with (2.Ψ1)–(2.Ψ3) and (E0),
(2.E1)–(2.E4). Then, for every u0 ∈ D there exists a curve u ∈ AC([0, T ];V ) solving the
Cauchy problem (2.1). In fact, there exists a function ξ ∈ L1(0, T ;V ∗) fulfilling

ξ(t) ∈ ∂Et(u(t)) ∩ (−∂Ψ(u′(t))) for a.a. t ∈ (0, T ),

and the energy identity for all 0 ≤ s ≤ t ≤ T

(2.8)

∫ t

s

(
Ψ(u′(r))+Ψ∗(−ξ(r))

)
dr + Et(u(t)) = Es(u(s)) +

∫ t

s

∂tEr(u(r)) dr.

Theorem 2.2 is a direct consequence of the more general Theorem 4.4, which is proved in
Section 6. Nonetheless, in order to provide some heuristics for conditions (2.E1)–(2.E4), in the
following lines we enucleate the main steps of the proof, heavily simplifying most of the technical
points and referring to Section 6 for all details.
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Sketch of the proof. We split the proof in four steps.

Time-discretization. Following a well-established routine for gradient flows (cf., e.g., [17, 12,
6, 1, 47, 48, 41, 2, 44]), and in general doubly nonlinear equations [16, 15, 52, 51, 36], we
approximate (2.1) with the implicit Euler scheme

(2.9) U0
τ := u0, ∂Ψ

(
Un

τ − Un−1
τ

τ

)
+ ∂Etn(Un

τ ) ∋ 0 n = 1, . . . , N,

where τ = T/N is the time step, inducing a partition of [0, T ] with nodes (tn := nτ)N
n=0.

Since (2.9) is the Euler-Lagrange equation for the minimum problem

Un
τ ∈ Argmin

U∈D

{
τΨ

(
U − Un−1

τ

τ

)
+ Etn(U)

}
n = 1, · · · , N,

we look for (Un
τ )N

n=1 solving the above family of variational problems. Assumption (2.E1) yields,
via the direct method in the Calculus of Variations, the existence of solutions (Un

τ )N
n=1. The

variational sum rule (2.E2) ensures that for every Un
τ fulfills (2.9) for all n = 1, . . . , N . Hence,

we construct approximate solutions to (2.1) by introducing the left-continuous piecewise con-
stant (Uτ )τ and the piecewise linear (Uτ )τ interpolants of the discrete solutions (Un

τ )N
n=1 (cf.

Sec. 4.2), which clearly fulfill the approximate equation

(2.10) ∂Ψ (U ′
τ (t)) + ∂Etτ (t)(Uτ (t)) ∋ 0 for a.a. t ∈ (0, T ),

where tτ is the left-continuous piecewise constant interpolant associated with the partition
(nτ)N

n=0 of (0, T ).

Approximate energy inequality and a priori estimates . In the present nonconvex setting,
(2.10) does not yield sufficient information to pass to the limit and conclude existence for (2.1).
One needs the finer information provided by the approximate energy inequality involving the
Fenchel-Moreau conjugate Ψ∗ of Ψ, namely
(2.11)∫ T

0

Ψ (U ′
τ (t)) dt+

∫ T

0

Ψ∗
(
−ξ̃τ(t)

)
dt+ ET (Uτ (T )) ≤ E0(u0) +

∫ T

0

∂tEt(Ũτ (t))dt,

with ξ̃τ (t) ∈ ∂Et(Ũτ (t))) for a.a. t ∈ (0, T ).

Here Ũτ is the so-called De Giorgi variational interpolant of the discrete solutions (Un
τ )N

n=1 (see
(4.12) for its definition, and Lemma 6.1 for its properties). Relying on the positivity of Ψ and of
Ψ∗ (cf. (2.2)), on (2.Ψ1)–(2.Ψ3), on (2.E1), and on estimate (2.E3), from inequality (2.11) it is

possible to deduce suitable a priori estimates on the sequences (Uτ ), (Uτ ), (Ũτ ), and (ξ̃τ ).
Then, one infers that, there exist u ∈ AC([0, T ];V ) and ξ ∈ L1(0, T ;V ∗) such that, up to a
subsequence,

Uτ , Uτ , Ũτ → u in L∞(0, T ;V ),
U ′

τ ⇀ u′ in L1(0, T ;V ),

ξ̃τ ⇀ ξ in L1(0, T ;V ∗).

Passage to the limit and proof of the upper energy estimate. Using that Ψ and Ψ∗ are
convex, it is possible to pass to the limit by lower semicontinuity in (2.11) and conclude that the
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functions u and ξ fulfill the upper energy estimate

(2.12)

∫ T

0

Ψ(u′(t))dt+

∫ T

0

Ψ∗(−ξ(t))dt+ ET (u(T )) ≤ E0(u0) +

∫ T

0

∂tEt(u(t))dt .

Furthermore, the closedness property (2.E5) and an argument combining Young measures and
measurable selection tools yield that there exists ξ ∈ L1(0, T ;V ∗) such that

(2.13) ξ(t) ∈ ∂Et(u(t)) for a.a. t ∈ (0, T ).

Proof of the energy identity and conclusion. The chain rule (2.E4) entails

E0(u0) +

∫ T

0

∂tEt(u(t))dt = ET (u(T )) +

∫ T

0

〈−ξ(t), u′(t)〉dt.

Combining this with (2.12), we ultimately deduce

∫ T

0

(
Ψ(u′(t)) + Ψ∗(−ξ(t)) − 〈−ξ(t), u′(t)〉

)
dt ≤ 0.

Using the Fenchel-Young inequality Ψ(v) + Ψ∗(w) ≥ 〈w, v〉, we arrive at

(2.14) Ψ(u′(t)) + Ψ∗(−ξ(t)) − 〈−ξ(t), u′(t)〉 = 0 for a.a. t ∈ (0, T ),

whence −ξ(t) ∈ ∂Ψ(u′(t)) for almost all t ∈ (0, T ). Combining this with (2.13), we conclude
that u is a solution of (2.1).

Remark 2.3 (Chain-rule inequality). In view of the discussion developed in Section 4, let us
anticipate that the chain-rule condition (2.E4) could be weakened. In fact, a close perusal at
the argument for the proof of Theorem 2.2 reveals that, it is sufficient to require the chain-rule
inequality

(2.15)
d

dt
Et(u(t))〉 ≥ 〈ξ(t), u′(t)〉 + ∂tEt(u(t)) for a.a. t ∈ (0, T ) .

Indeed, (2.15) yields the lower energy estimate

ET (u(T )) − E0(u0) ≥

∫ T

0

〈ξ(t), u′(t)〉dt+

∫ T

0

∂tEt(u(t))dt,

which, combined with the upper energy estimate (2.12), ultimately yields (2.14). In turn, the
upper energy estimate (2.12) is a consequence of the time-discretization scheme (in particular,
of the approximate energy inequality (2.11)), and of classical lower semicontinuity results.

2.2. Sufficient conditions for closedness and chain rule. In this section we revisit the ab-
stract assumptions of Theorem 2.2, and in particular we provide sufficient conditions of λ-
convexity type on the energy functional E for the closedness property (2.E5) and for the chain
rule (2.E4).

Throughout the following discussion, we will suppose that E complies with the time-dependence
condition (2.E3).
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Uniformly (Fréchet-)subdifferentiable functionals. A first sufficient condition for (2.E5) and
(2.E4) is some sort of uniform subdifferentiability of the functionals Et on their sublevels, cf.
(2.16) below.

For every R > 0 we set
DR = {u ∈ D : G(u) ≤ R} .

In view of (2.7), every u ∈ D satisfies u ∈ DR for some R > 0.

Proposition 2.4. Let E : [0, T ]× V → (−∞,+∞] be a family of time-dependent functionals
as in (E0), complying with (2.E3). Moreover assume that for all R > 0 there exists a modulus
of subdifferentiability ωR : [0, T ] ×DR ×DR → [0,+∞) such that for all t ∈ [0, T ]:
(2.16)

ωR
t (u, u) = 0 for every u ∈ DR,

the map (t, u, v) 7→ ωR
t (u, v) is upper semicontinuous, and

Et(v) − Et(u) − 〈ξ, v − u〉 ≥ −ωR
t (u, v)‖v − u‖ for all u, v ∈ DR and ξ ∈ ∂Et(u).

Then, E complies with the closedness condition (2.E5) and with the chain rule (2.E4).

Proof: Ad (2.E5). Let v ∈ D be fixed, and let (un), u, (ξn) and ξ be like in (2.E5). It follows
from estimate (2.7) that there exists some R > 0 such that v, un ∈ DR for all n ∈ N. Thanks
to (2.16), we have

(2.17) Et(v) − Et(un) − 〈ξn, v − un〉 ≥ −ωR
t (un, v)‖v − un‖ for all n ∈ N.

Since the functionals Et and ωR
t are respectively lower and upper semicontinuous, we can pass

to the limit in (2.17), obtaining

Et(v) − Et(u) − 〈ξ, v − u〉 ≥ −ωR
t (u, v)‖v − u‖ .

It is not difficult to check that this inequality yields ξ ∈ ∂Et(u): indeed, notice that, in the defini-
tion (1.8) of Fréchet subdifferential, it is not restrictive to consider sequences (vk)k converging
to u, such that lim supk→∞ Et(vk) ≤ Et(u). Furthermore, choosing v = u in (2.17) (notice
that u ∈ DR by lower semicontinuity), and exploiting the properties of ωR

t , we have the following
chain of inequalities

0 ≤ lim sup
n→∞

(Et(un)−Et(u)) ≤ lim
n→∞

〈ξn, un−u〉 + lim sup
n→∞

ωR
t (un, u)‖u− un‖ = 0,

whence Et(un) → Et(u), which concludes the proof of (2.E5).
Ad (2.E4). Let u ∈ AC([0, T ];V ) and ξ ∈ L1(0, T ;V ∗) fulfill (2.5). Up to a suitable repar-
ametrization (cf. [2, Lemma 1.1.4]), it is possible to assume that the curve u is 1-Lipschitz.
Furthermore, due to supt∈[0,T ] Et(u(t)) < +∞ there exists R > 0 such that u(t) ∈ DR for

all t ∈ [0, T ]. In order to show the absolute continuity of the map t 7→ Et(u(t)), we estimate
for 0 ≤ s ≤ t ≤ T the difference

Et(u(t)) − Es(u(s)) = Et(u(t)) − Es(u(t)) + Es(u(t)) − Es(u(s)).

First, due to (2.E3), for all 0 ≤ s ≤ t ≤ T there holds

(2.18) Et(u(t)) − Es(u(t)) =

∫ t

s

∂tEr(u(t)) dr ≤ C1G(u(t))(t− s) ≤ C1R(t− s).

Second, in view of (2.16) we have

(2.19) Es(u(t)) − Es(u(s)) ≥ 〈ξ(s), u(t)− u(s)〉 − ωR
s (u(s), u(t))‖u(t)− u(s)‖.
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Combining (2.18) and (2.19), inverting the role of s and t, and using the 1-Lipschitz continuity
of u, we conclude
(2.20)
|Et(u(t))−Es(u(s))| ≤ (C1R+‖ξ(t)‖∗+‖ξ(s)‖∗+ω

R
t (u(s), u(t))+ωR

s (u(s), u(t)))|t−s|.

Now, the upper semicontinuity of (t, u, v) 7→ ωR
t (u, v), joint with the fact that u ∈ C0([0, T ];V ),

yield that there exists C > 0 such that there holds ωR
t (u(s), u(t)), ωR

s (u(s), u(t)) ≤ C for
all s, t ∈ [0, T ]. Therefore, arguing as in [2, Thm. 1.2.5], we conclude that t 7→ Et(u(t)) is ab-
solutely continuous. Let us now fix a point t ∈ (0, T ) such that u′(t), d

dt
Et(u(t)) exist: arguing

throughout (2.18)–(2.19), it is not difficult to deduce that

Et+h(u(t+ h)) − Et(u(t)) ≥

∫ t+h

t

∂tEr(u(t)) dr + 〈ξ(t), u(t+ h) − u(t)〉

− ωR
t (u(t), u(t+ h))‖u(t+ h) − u(t)‖.

Dividing by h > 0 and h < 0 and taking the limit as h ↓ 0 and h ↑ 0, we prove the chain rule
(2.E4).

Remark 2.5 (λ-convex functionals). A sufficient condition yielding (2.16) in the case of an en-
ergy functional E : [0, T ] × V → (−∞,+∞] complying with (E0) and (2.E3), is that the map
u 7→ Et(u) is λ-convex uniformly in t ∈ [0, T ], namely
(2.21)
∃λ ∈ R ∀ t ∈ [0, T ] ∀u0, u1 ∈ D ∀ θ ∈ [0, 1] :

Et((1 − θ)u0 + θu1) ≤ (1 − θ)Et(u0) + θEt(u1) −
λ

2
θ(1 − θ)‖u0 − u1‖

2 .

Indeed, given u, v ∈ D, (2.21) and the very definition (1.8) of Fréchet subdifferential yield for
any ξ ∈ ∂Et(u) and θ ↓ 0

θ (Et(v) − Et(u)) ≥
λ

2
θ(1 − θ)‖v − u‖2 + Et((1 − θ)u+ θv) − Et(u)

≥ θ

(
λ

2
(1 − θ)‖v − u‖2 + 〈ξ, v − u〉 + o(1)

)
.

Upon diving by θ, we conclude inequality (2.16) with the choice ωt(u, v) := λ−

2
‖u− v‖.

Remark 2.6 (Perturbations of λ-convex functionals). In [43] a broad family of time-dependent
energies, which for instance encompasses λ-convex functionals, was tackled. However, as
hinted in the Introduction, [43] focuses on the analysis (from a metric viewpoint) of doubly non-
linear equations driven by a less general class of dissipation potentials than those considered
in the present paper. While referring to [43] for details, here we recall that the energies therein
considered are given by the sum of two time-dependent functionals E1, E2 : [0, T ] × V →
(−∞,+∞], such that the functionals E1

t are λ-convex, uniformly with respect to t ∈ [0, T ],
and the functionals E2

t are dominated concave perturbations of E1
t (cf. [43, Definitions 5.4, 5.10],

as well as [44] for an analogous class of functionals). In [43, Propositions 5.6, 5.10] it was shown
that, under the above conditions, the energy E = E1+E2 fulfills the closedness condition (2.E5)
and the chain rule (2.E4).
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2.3. Examples and applications.

Example 2.7 (A model in ferro-magnetism). We take Ω ⊂ R
3 a bounded sufficiently smooth

domain, and let

V = L2(Ω; R3) and Ψ(v) =

∫

Ω

|v| +
1

2
|v|2 dx = ‖v‖L1(Ω;R3) +

1

2
‖v‖2

L2(Ω;R3).

We consider a simplified model for ferro-magnetism, in which the interplay between the elas-
tic and the magnetic effects is neglected (see [32, Sec. 7.4] for a rate-independent model
accounting for both features). In this framework, the relevant energy functional E : [0, T ] ×
L2(Ω; R3) → (−∞,+∞] is given by
(2.22)

Et(m)=

{∫
Ω

(
α
2
|∇m|2+W (m)

)
dx+

∫
R3 |∇Φm|

2 dx− 〈Hext(t), m〉H1 if m ∈ H1(Ω; R3),

+∞ otherwise.

Here, 〈·, ·〉H1 is a short-hand notation for the duality pairing betweenH1(Ω; R3)∗ andH1(Ω; R3),
m : Ω → R

3 is the magnetization,

(2.23)
W ∈ C1(R3; R) a λW -convex potential for some λW ∈ R, such that

∃ cW , CW > 0 ∀m ∈ R
3 : W (r) ≥ cW |m|2 − CW

(e.g., W (m) = (1 − |m|2)2), and the external magnetic field Hext fulfills

(2.24) Hext ∈ C1([0, T ];H1(Ω; R3)∗), div(Hext(t)) ≡ 0,

the latter equation meaning that
∫
Ω
Hext(t) · ∇v dx = 0 for all v ∈ H1(Ω; R3). In (2.22),

the potential Φm describes the field induced by the magnetization inside the body. Hence, the
magnetic flux is J = (Hext −∇Φm + EΩ(m)), EΩ(m) denoting the trivial extension of m to
all of Ω by 0. Thus, div J = 0 and (2.24) yield that Φm is the solution of

div (−∇Φm + EΩ(m)) = 0 in R
3.

Note that the operator J : L2(Ω; R3) → L2(R3; R3) mapping m 7→ ∇Φm is bounded and
linear; it was proved in [20] that m 7→ J(m)|Ω is an orthogonal projection on L2(Ω; R3),
satisfying

(2.25)

∫

R3

|∇Φm|
2 dx =

∫

Ω

m · J(m)|Ω dx for all m ∈ L2(Ω; R3) .

One can see that for all (t,m) ∈ [0, T ] ×H1(Ω; R3) such that ∂Et(m) 6= ∅ there holds

∂Et(m) =
{
−∆m+ DW (m) + J(m)|Ω

}
.

Therefore, with the present choices of Ψ and E, the Cauchy problem (2.1) translates into

(2.26) Sign(ṁ)+ṁ−α∆m+DW (m)+J(m)|Ω = Hext a.e. in Ω × (0, T ); m(0) = m0,

with variational boundary conditions; here

Sign : R
3

⇉ R
3 is given by Sign(v) =





v

|v|
if v 6= 0,

B1(0) if v = 0.

Now, combining (2.23)–(2.24), it is easy to see that E complies with (2.E1) and (2.E3). Also
using (2.25) and arguing as in [43, Sec. 7.2], we further check that for some λ ∈ R the energy
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E is λ-convex (uniformly in t ∈ [0, T ]), with respect to the L2(Ω; R3)-norm. Therefore, the
closedness property (2.E5) and, a fortiori, the variational sum rule (2.E2) (cf. Proposition 4.2)
hold, as well as the chain rule (2.E4). Thus, it follows from Theorem 2.2 that the Cauchy problem
(2.26) admits a solution.

Example 2.8 (Doubly nonlinear evolutions of Allen-Cahn type). Let us consider the following
class of evolution equations

(2.27) ̺Sign(u̇) + |u̇|p−2u̇− div(β(∇u)) +W ′(u) = ℓ in Ω × (0, T ),

with ̺ > 0, 1 < p < ∞, and u : [0, T ] × Ω → R, where Ω ⊂ R
d, d ≥ 1, is a sufficiently

smooth bounded domain. In (2.27), β : R
d → R

d is the gradient of some smooth function j
on R

d, W : R → R a differentiable function and ℓ : Ω × (0, T ) → R some source term. To
fix ideas (cf. [43, Sec. 8.2] for the precise statement of the assumptions on j and W ), we may
think of the case in which j(ζ) = 1

q
|ζ |q for some q > 1 (hence β(ζ) = |ζ |q−2ζ and the elliptic

operator in (2.27) is indeed the q-Laplacian), and W is given by the sum of a convex function,
perturbed by a nonconvex nonlinearity which complies with suitable growth conditions (like for
instance in the classical, double-well potential case W (u) := (u2 − 1)2/4).

We supplement equation (2.27) with homogeneous Dirichlet boundary conditions, and notice
that this boundary-value problem can be written in the abstract form (2.1), in the framework of
the ambient space

(2.28) V = Lp(Ω), with the dissipation potential Ψ(v) = ̺ ‖v‖L1(Ω) +
1

p
‖v‖p

Lp(Ω)

and the driving energy functional
(2.29)

Et(u)=

{ ∫
Ω

(j(∇u(x))+W (u(x))) dx− 〈ℓ(t), u〉W 1,q
0

if u ∈ W 1,q
0 (Ω), W (u) ∈ L1(Ω),

+∞ otherwise,

where 〈·, ·〉W 1,q
0

stands for the duality pairing between W−1,q′(Ω) and W 1,q
0 (Ω), with q′ =

q/(q − 1).

In [43, Sec. 8.2], under suitable conditions on j and W the existence of a solution for the initial-
boundary value problem for (2.27) was proved for ̺ = 0. Namely, in [43] only the case of a
dissipation potential Ψ induced by the single norm ‖ · ‖Lp(Ω) was considered, which does not
include the more physical form (2.28).

Relying on the analysis of [43], it can be checked that, if ℓ ∈ C1([0, T ];W−1,q′(Ω)), then the
energy functional E (2.29) complies with (2.E1)–(2.E5). Hence, Theorem 2.2 applies, yielding
the existence of a solution u ∈ L∞(0, T ;W 1,q

0 (Ω))∩W 1,p(0, T ;Lp(Ω)) to the initial-boundary
value problem for (2.27).

3. MOTIVATING EXAMPLES FOR MARGINAL SUBDIFFERENTIALS

In this section, we restrict to a finite-dimensional setting and give an outlook to a twofold gener-
alization of the set-up considered in Section 2. Such an extension is motivated by the analysis
of abstract evolutionary systems of the form
(3.1)

∂Ψ(u′(t)) + ∂E1(u(t)) + DuIt(η(t), u(t)) ∋ ℓ(t) in V ∗

DηIt(η(t), u(t)) = 0 in X∗

}
for a.a. t ∈ (0, T ),
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where E1 : V → (−∞,+∞] is a convex energy, perturbed by some smooth functional I :
[0, T ]×X×V → R (whereX is a second Banach space), and ℓ : [0, T ] → V ∗ is the external
loading. Couplings like (3.1) arise in the modeling of physical systems described in terms of two
variables (η, u), such that energy dissipation only occurs through the internal variable u, and η
fulfills some stationary law. PDE systems of the type (3.1) typically arise in connection with rate-
independent behavior (cf. [32] and the references therein). Nonetheless, they can also occur
in the modeling of rate-dependent evolutions, like for instance in the case of quasistationary
phase-field models, cf. [29, 50, 55, 44]. In Section 5 later on, we analyze a PDE system of the
type (3.1) in finite-strain elasticity.

Let us observe that the second stationary relation in (3.1) is the Euler-Lagrange equation for the
minimum problem infη∈X It(u(t), η), and suppose that

M(t, u) := Argmin
η∈X

It(η, u) 6= ∅ for all (t, u) ∈ [0, T ] × V .

Hence, we introduce the reduced energy functionals E2, E : [0, T ] × V → (−∞,+∞]

(3.2)

{
E2

t (u) := minη∈X It(η, u),
Et(u) := E1(u) + E2

t (u) − 〈ℓ(t), u〉 = minη∈X (E1(u) + It(η, u) − 〈ℓ(t), u〉) .

In this setting, it is natural to introduce the following subdifferential notion for energy E2, tailored
to its reduced form.

Definition 3.1 (Marginal subdifferential). The marginal subdifferential (with respect to the vari-
able u) of the reduced functional E2 : [0, T ] × V → (−∞,+∞] at (t, u) ∈ [0, T ] × V
is

(3.3) ∂̂E2
t (u) := {DuIt(η, u) : η ∈M(t, u)}.

Hereafter, we will address the doubly nonlinear evolution equation

(3.4) ∂Ψ(u′(t)) + ∂E1(u(t)) + ∂̂E2
t (u(t)) ∋ ℓ(t) in V ∗ for a.a. t ∈ (0, T ).

Clearly, solutions to (3.4) are in fact solutions to the quasi-stationary evolution system (3.1).

Notice that (3.4) may be viewed as a generalization of the doubly nonlinear equations, featuring
the Fréchet subdifferential, examined in Section 2. Indeed, under quite standard assumptions
there holds

(3.5) ∂Et(u) ⊂ ∂E1(u) + ∂̂E2
t (u) − ℓ(t) for all (t, u) ∈ [0, T ] × V,

while the converse inclusion is not true, in general.

This fact is illustrated in Example 3.2: for a specific choice of the functional E1 and for a time-
independent marginal functional E2, it is shown that the Fréchet subdifferential of the energy
Et(u) = E1(u) + E2(u) − 〈ℓ(t), u〉 in (3.2) does not comply with the closedness property
(2.E5). Furthermore, the closure of ∂E in the sense of graphs coincides for all (t, u) ∈ [0, T ]×

V with the set ∂E1(u) + ∂̂E2(u) − ℓ(t).

Another important feature which sets aside reduced energy functionals from the class of ener-
gies examined in Section 2 is that, even if the function t 7→ It(η, u) is smooth, the resulting
reduced functionals E2 and E (cf. (3.2)) may be nonsmooth with respect to time, see Examples
3.3 and 3.4. Therein, we suggest the usage of a generalized time-derivative, defined in such a
way as to comply with a suitable chain-rule inequality.
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Example 3.2. For simplicity we restrict to the one-dimensional case V = X = R, and to
gradient flows, hence taking Ψ(v) = 1

2
|v|2. As in [44, Ex. 2], we choose

E
1(u) =

1

2
|u|2, It(η, u) = I(η, u) =

1

2
|η|2 − uη + W(η),

where W : R → R is the (piecewise quadratic) double well potential
(3.6)

W(η) :=





(η + 1)2 η < −1
2
,

−η2 + 1
2

|η| ≤ 1
2
,

(η − 1)2 η > 1
2
,

with derivative W′(η) =





2(η + 1) η < −1
2
,

−2η |η| < 1
2
,

2(η − 1) η > 1
2
.

In this setting, given some smooth external loading ℓ : [0, T ] → R, the coupled system (3.1)
reads {

u′(t) + u(t) − η(t) = ℓ(t),
W′(η(t)) + η(t) = u(t)

for a.a. t ∈ (0, T ),

which may be viewed as the one-dimensional caricature of the quasistationary phase-field sys-
tem (cf. [29, 50, 55]).

It was observed in [44, Sec. 2.1] that the Fréchet subdifferential of the energy functional E

defined in (3.2) satisfies (3.5). More precisely,
(3.7)

∂Et(u) 6= ∅ ⇒

{
∂Et(u) and M(t, u) reduce to a singleton, and

∂Et(u) = ∂E1(u) + ∂̂E2(u) − ℓ(t) = ∂E1(u) −M(t, u) − ℓ(t).

Now, since the subdifferential mapping ∂Et : R ⇉ R is not closed in the sense of graphs, it
is natural to introduce its closure, i.e. the limiting subdifferential (cf. [39, 40], and [44, 45, 46]
for some analysis of gradient flow and doubly nonlinear equations featuring such a notion of
subdifferential), defined by

∂limEt(u) := {ξ ∈ R : ∃ (un), (ξn) ⊂ R, un → u, ξn → ξ, Et(un) → Et(u)}.

From the closedness of the graph of the multivalued mapping M(t, ·) : R ⇉ R we infer that a
weaker form of (3.7) passes to the limit, i.e.
(3.8)

∂limEt(u)⊂∂E
1(u)−M(t, u)−ℓ(t) = ∂E1(u)+∂̂E2(u)−ℓ(t) for every (t, u) ∈ [0, T ] × R.

In fact, in the case of (3.6) we even have ∂limEt(u) = ∂E1(u)+ ∂̂E2(u)−ℓ(t). Relations (3.7)

and (3.8) suggest the choice of the subdifferential notion Ft(u) := ∂E1(u) + ∂̂E2(u) − ℓ(t)
for reduced energies of the type (3.2). We explore this viewpoint in Section 5.

Example 3.3. We take V = R, Ψ(v) = 1
2
|v|2 and, we set

Et(u) = −α|u− βt| for all u ∈ R, t ∈ (0, T ), with α > β > 0, β < 1 .

Note that E is a marginal function: indeed,

Et(u) = min
η∈{0,1}

It(η, u), with It(η, u) =

{
−αu+ αβt if η = 0,
αu− αβt if η = 1.

In this case, E does not comply with the smooth time-dependence condition (2.E3), and it is
only Lipschitz continuous with respect to both variables t and u. It is then natural to consider
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the Clarke subdifferentials of the energy E with respect to u and t, which are easily calculated:
(3.9)

∂Clarke
u Et(u) =






{−α} if u > βt,
[−α, α] if u = βt,
{α} if u < βt,

∂Clarke
t Et(u) =






{αβ} if u > βt,
[−αβ, αβ] if u = βt,
{−αβ} if u < βt.

Notice that ∂Et(u) ⊂ ∂Clarke
u Et(u) for all (t, u) ∈ [0, T ] × R. Furthermore, the multivalued

mapping ∂Clarke
u Et : R ⇉ R is closed in the sense of graphs. We may choose Ft(u) :=

∂Clarke
u Et(u) and consider the gradient flow

(3.10) u′(t) + ∂Clarke
u Et(u(t)) ∋ 0 for a.a. t ∈ (0, T ) .

We immediately verify that the curve ū : [0, T ] → R defined by ū(t) = βt is a solution of
(3.10). Now, we aim to get some insight into a possible surrogate notion of chain rule in this
nonsmooth setting. Imposing that the chain-rule inequality (2.15) holds along the curve ū, with
the Clarke subdifferentials (3.9), we arrive at
(3.11)
d

dt
Et(ū(t)) ≥ ξū′(t) + p for all ξ ∈ Ft(ū(t)), p ∈ ∂Clarke

t Et(ū(t)), and for a.a. t ∈ (0, T ).

Since Et(ū(t)) ≡ 0 and ū′(t) ≡ β, this amounts to checking if

0 ≥ ξβ + p for all ξ ∈ [−α, α], p ∈ [−αβ, αβ],

which does not hold.

However, it is true that for a fixed ξ ∈ Ft(ū(t)) there exists a set P̂t(ū(t), ξ) such that inequal-

ity (3.11) holds for ξ and all elements p ∈ P̂t(ū(t), ξ), namely

(3.12) P̂t(ū(t), ξ) = [−αβ,−ξβ] .

Finally, we may observe that, if we ask for an equality sign in (3.11) for a fixed ξ ∈ Ft(ū(t)),

then the corresponding set P̂t(ū(t), ξ) reduces to the singleton {−ξβ}, cf. also Remarks 4.1
and 4.5 for further related comments.

Example 3.4. We reconsider the triple (V,Et(u),Ψ) = (R,minη∈{0,1} It(η, u),
1
2
| · |2) of

Example 3.3, but choose for F the marginal subdifferential of E (cf. Definition 3.1), viz.

Ft(u) = ∂̂Et(u) =






{−α} if u > βt
{−α, α} if u = βt
{α} if u < βt.

Notice that, in this case, the curve ū : [0, T ] → R defined by ū(t) = βt is not a solution

of the gradient flow u′(t) + ∂̂Et(u(t)) ∋ 0 on (0, T ). Imposing that the chain-rule inequal-
ity (2.15) holds along the curve ū, for the marginal subdifferential with respect to u and the
Clarke subdifferential with respect to t, yields

0 ≥ ξβ + p for all ξ ∈ {−α, α}, p ∈ [−αβ, αβ].

Thus, referring to notation (3.12), we conclude that, in this case,

P̂t(ū(t), ξ) = [−αβ,−ξβ] =

{
{−αβ} if ξ = α
[−αβ, αβ] if ξ = −α.
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Examples 3.3 and 3.4 seem to suggest that, to deal with marginal functions, one should use a
notion of time-derivative P conditioned, via the chain rule, to elements ξ of the subdifferential.
This means that, in addition to the (t, u)-dependence, such a notion P also depends on the
elements ξ ∈ Ft(u). This is the point of view we are going to adopt in what follows.

4. MAIN RESULTS

4.1. Assumptions. We recall that V is a reflexive separable Banach space. Below we enlist
our general assumptions on the state-dependent dissipation Ψ = Ψu(v), and on the energy
functional E : [0, T ] × V → (−∞,+∞], with domain [0, T ] × D. We emphasize that the
conditions on E involve both its subdifferential F : [0, T ] × D ⇉ V ∗ (with domain and graph
dom(F) and graph(F), respectively), and its generalized partial time-derivative P = Pt(u, ξ),
for (t, u, ξ) ∈ graph(F), since we encompass a nonsmooth dependence of the energy E on
the time variable.

A (Finsler) family of dissipation potentials. We consider a family

(4.Ψ1) Ψu : V → [0,+∞), u ∈ D, of admissible dissipation potentials

i.e. Ψu complies with (2.Ψ1)–(2.Ψ3) for all u ∈ D. We now require that the potentials (Ψu)u∈D

and (Ψ∗
u)u∈D have a superlinear growth, uniformly with respect to u in sublevels of the energy

E, viz.

(4.Ψ2) ∀R > 0 :





lim
‖v‖→+∞

1

‖v‖
inf

G(u)≤R
Ψu(v) = +∞,

lim
‖ξ‖∗→+∞

1

‖ξ‖∗
inf

G(u)≤R
Ψ∗

u(ξ) = +∞,

where we have used the notation G(u) = supt∈[0,T ] Et(u). Furthermore, we require that the
dependence u 7→ Ψu is continuous, on sublevels of the energy, in the sense of MOSCO-
convergence (see, e.g, [3, § 3.3, p. 295]), i.e.
(4.Ψ3)
∀R > 0 : un → u, G(un) ≤ R, vn ⇀ v in V ⇒ lim infn→∞ Ψun

(vn) ≥ Ψu(v)

∀R > 0 : un → u, G(un) ≤ R, v ∈ V ⇒

{
∃ vn → v :
limn→∞ Ψun

(vn) = Ψu(v).

For later use, we explicitly remark that assumption (4.Ψ2) means that
(4.1)
∀R > 0, M > 0
{

∃K > 0 ∀u ∈ D with G(u) ≤ R ∀ v ∈ V : ‖v‖ ≥ K ⇒ Ψu(v) ≥M‖v‖,
∃K∗ > 0 ∀u ∈ D with G(u) ≤ R ∀ ξ ∈ V : ‖ξ‖∗ ≥ K∗ ⇒ Ψ∗

u(ξ) ≥M‖ξ‖∗.

We also recall an important consequence of assumption (4.Ψ3) (see [3, Chap. 3]): for all R > 0

(4.2) un → u in V , G(un) ≤ R, ξn ⇀ ξ in V ∗ ⇒ lim inf
n→∞

Ψ∗
un

(ξn) ≥ Ψ∗
u(ξ).

Indeed, it has been proved in [53, Lemma 4.1] that the first condition in (4.Ψ3), combined with
(4.2), is in fact equivalent to (4.Ψ3).
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Assumptions on the energy functional. We now formulate our assumptions on the functional
E. We recall the basic condition
(4.E0)
u 7→ Et(u) is l.s.c. for all t ∈ [0, T ], ∃C0 > 0 ∀ (t, u) ∈ [0, T ] ×D : Et(u) ≥ C0 and

graph(F) is a Borel set of [0, T ] × V × V ∗.

Coercivity: For all t ∈ [0, T ]

(4.E1) the map u 7→ Et(u) has compact sublevels.

Variational sum rule: If for some uo ∈ V and τ > 0 the point ū is a minimizer of u 7→
Et(u) + τΨuo

((u− uo)/τ), then ū fulfills the Euler-Lagrange equation

(4.E2) ∃ ξ ∈ Ft(ū) : −ξ ∈ ∂Ψuo
((ū− uo)/τ).

Lipschitz continuity:

(4.E3) ∃C1 > 0 ∀u ∈ D ∀ t, s ∈ [0, T ] : |Et(u) − Es(u)| ≤ C1Et(u)|t− s|.

Conditioned one-sided time-differentiability:
(4.E4)

there exists a Borel function P : graph(F) → R and a constant C2 > 0 such that

∀ (t, u, ξ) ∈ graph(F) : lim inf
h↓0

Et+h(u) − Et(u)

h
≤ Pt(u, ξ) ≤ C2G(u) .

Chain-rule inequality: E satisfies the chain-rule inequality with respect to the triple (Ψ,F,P),
i.e. for every absolutely continuous curve u ∈ AC([0, T ];V ) and for all ξ ∈ L1(0, T ;V ∗)
such that

(4.3) sup
t∈(0,T )

|Et(u(t))| < +∞, ξ(t) ∈ Ft(u(t)) for a.a. t ∈ (0, T ),

(4.4)

∫ T

0

Ψu(t)(u
′(t)) dt < +∞, and

∫ T

0

Ψ∗
u(t)(−ξ(t)) dt < +∞,

(4.E5)

the map t 7→ Et(u(t)) is absolutely continuous and

d

dt
Et(u(t)) ≥ 〈ξ(t), u′(t)〉 + Pt(u(t), ξ(t)) for a.a. t ∈ (0, T ).

Weak closedness of (E,F,P): For all t ∈ [0, T ] and for all sequences {un} ⊂ V , ξn ∈
Ft(un), En = Et(un), pn = Pt(un, ξn) fulfilling

un → u in V , ξn ⇀ ξ weakly in V ∗, pn → p and En → E in R,

there holds

(4.E6) (t, u) ∈ dom(F ), ξ ∈ Ft(u), p ≤ Pt(u, ξ), E = Et(u).

For later use, we point out that (4.E3) yields the following estimate

(4.5) ∃C3 > 0 ∀u ∈ D : G(u) ≤ C3 inf
t∈[0,T ]

Et(u) .

Notice that, under the above conditions (cf. (4.E3)), for fixed u ∈ D the function t 7→ Et(u)
is Lipschitz continuous, hence a.e. differentiable. Still, it may happen that, along some curve
u ∈ AC([0, T ];V ), the energy Et(u) is not differentiable at (t, u(t)), for any t ∈ [0, T ], cf.
e.g. Example 3.3. Hence, one needs to recur to the generalized notion P.
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Example 4.1 (Example 3.3 revisited). Let us refer to the setting of Example 3.3, and to the
subdifferential Ft(u) = ∂Clarke

u Et(u), explicitly calculated in (3.9) (analogous considerations

can be developed in the case Ft(u) = ∂̂Et(u) examined in Example 3.4). Since ∂Et(u) ⊂
∂Clarke

u Et(u), in view of the forthcoming Proposition 4.2, condition (4.E2) is satisfied. As for the
choice of the function P : graph(F) → R in such a way that chain-rule inequality holds, it
follows from (3.9) that

{
u > βt ⇒ Ft(u) = {−α}, Pt(u,−α) = αβ,
u < βt ⇒ Ft(u) = {α}, Pt(u, α) = −αβ.

Asking for the chain-rule inequality (3.11) along the curve ū(t) = βt only needs, for every ξ ∈
Ft(ū(t)) = [−α, α], that Pt(ū(t), ξ) is a selection in the set [−αβ,−ξβ] of the admissible
p’s. However, the closedness condition (4.E6) is fulfilled only for the choice Pt(ū(t), ξ) = −ξβ.

We conclude this section with a result providing sufficient conditions for the variational sum rule
(4.E2). As in the case of sum rules for convex functionals, we use that Ψuo

is locally Lipschitz,
since its domain is the whole space V . Our proof relies on [40, Lemma 2.32].

Proposition 4.2. Let {Ψu} be a family of admissible dissipation potentials on the reflexive
space V , and E : [0, T ] × V → (−∞,+∞] an energy functional complying with (4.E0), with
subdifferential F : [0, T ] × V ⇉ V ∗. Suppose that

(4.6) ∂Et(u) ⊂ Ft(u) for every (t, u) ∈ [0, T ] ×D,

and that (E,F) comply with the weak closedness condition (4.E6).

Then, the variational sum rule (4.E2) holds.

Proof: Let ū be a minimizer of u 7→ Et(u) + τΨuo
((u − uo)/τ). It follows from [40, Lemma

2.32, p. 214] that

(4.7) ∀ η > 0 ∃u1
η ∈ V, u2

η ∈ D :






‖u1
η − ū‖ + ‖u2

η − ū‖ ≤ η ,

|Ψuo

(u1
η−uo

τ

)
− Ψuo

(
ū−uo

τ

)
| ≤ η ,

|Et(u
2
η) − Et(ū)| ≤ η ,

and
(4.8)

∃wη ∈ ∂Ψuo

(
u1

η − uo

τ

)
, ξη ∈ ∂Et(u

2
η), ζη ∈ V ∗ : ‖ζη‖∗ ≤ η, and wη+ξη+ζη = 0 .

Due to (4.6), we have ξη ∈ Ft(u
2
η). Choosing η = 1/n, we find sequences (u1

n), (u2
n), (wn),

(ξn), and (ζn) such that ζn → 0 in V ∗, u1
n → ū and u2

n → ū in V , with Et(u
2
n) → Et(ū).

Since wn ∈ ∂Ψuo

(
u1

n−uo

τ

)
and ∂Ψuo

: V ⇉ V ∗ is a bounded operator, we also deduce that

supn ‖wn‖∗ < +∞. Hence, in view of (4.8), we ultimately have that (ξn) is bounded in V ∗.
Thus, there exists ξ ∈ V ∗ such that, up to a (not relabeled) subsequence, ξn ⇀ ξ in V ∗. Due
to (4.E6), we conclude that ξ ∈ Ft(ū). On the other hand, passing to the limit in (4.8) and using
the well-known strong-weak closedness property of ∂Ψuo

gives −ξ ∈ ∂Ψuo
((ū−uo)/τ), and

(4.E2) ensues.
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4.2. Approximation. For a fixed initial datum u0 ∈ D and a time step τ > 0, we consider a
uniform partition Pτ = {0 = t0 < t1 < t2 < · · · < tN−1 < T ≤ tN} with tn := nτ ,
U0

τ = u0, and construct a sequence (Un
τ )N

n=1 by recursively solving

(4.9) Un
τ ∈ Argmin

U∈D

{
τΨUn−1

τ

(
U − Un−1

τ

τ

)
+ Etn(U)

}
n = 1, · · · , N.

Using the direct method in the Calculus of Variations and exploiting assumption (4.E1), one
sees (cf. Lemma 6.1) that for all u0 ∈ D and τ ∈ (0, τo) there exists at least one solu-
tion (Un

τ )N
n=1 to the time-incremental minimization problem (4.9). We denote by Uτ and U τ ,

respectively, the left-continuous and right-continuous piecewise constant interpolants of the val-
ues (Un

τ )N
n=1, i.e.,

(4.10)
Uτ (t) := Un

τ for t ∈ (tn−1, tn], U τ (t) := Un−1
τ for t ∈ [tn−1, tn), n = 1, . . . , N,

and by Uτ the piecewise linear interpolant

(4.11) Uτ (t) :=
t− tn−1

τ
Un

τ +
tn − t

τ
Un−1

τ for t ∈ [tn−1, tn), n = 1, . . . , N.

Thanks to (4.E2), for all n = 1, . . . , N there exists ξn
τ ∈ Ftn(Un

τ )∩(−∂ΨUn−1
τ

(Un
τ − Un−1

τ /τ)).

We denote by ξτ the (left-continuous) piecewise constant interpolant of the family (ξn
τ )N

n=1 ⊂
V ∗.

Furthermore, we also consider the variational interpolant Ũτ of the discrete values (Un
τ )N

n=1,
which was first introduced by E. DE GIORGI within the Minimizing Movements theory (see [19,

18, 1]). It is defined in the following way: the map t 7→ Ũτ (t) is Lebesgue measurable in (0, T )
and satisfies

(4.12)





Ũτ (0) = u0, and, for t = tn−1 + r ∈ (tn−1, tn],

Ũτ (t) ∈ ArgminU∈D

{
rΨUn−1

τ

(
U−Un−1

τ

r

)
+ Et(U)

}
,

The existence of such a measurable selection is ensured by [14, Cor. III.3, Thm. III.6], see
also [43, Rem. 3.4]. When t = tn, the minimization problems (4.9) and (4.12) coincide, so
that we may assume

(4.13) Uτ (tn) = U τ (tn) = Uτ (tn) = Ũτ (tn), for every n = 1, . . . , N.

Then, Ũτ contains all the information on Uτ , Uτ , and U τ . Furthermore, again by (4.E2) and

the measurable selection result [4, Thm. 8.2.9], with Ũτ we can associate a measurable function

ξ̃τ : (0, T ) → V ∗ fulfilling the Euler equation for the minimization problem (4.12), i.e.
(4.14)

ξ̃τ(t) ∈ Ft(Ũτ (t))∩

(
−∂ΨU τ (t)

(
Ũτ (t) − U τ (t)

t− tn−1

))
∀ t ∈ [tn−1, tn), n = 1, . . . , N.

For later notational convenience, we also introduce the piecewise constants interpolants tτ and
t τ associated with the partition Pτ , namely
(4.15)
tτ (0) = t τ (0) := 0, tτ (t) := tk for t ∈ (tk−1, tk], t τ (t) := tk−1 for t ∈ [tk−1, tk).

Of course, for every t ∈ [0, T ] we have tτ (t) ↓ t and t τ (t) ↑ t as τ ↓ 0.
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4.3. Main existence result. Before stating our main existence result, let us first specify the
notion of solution we are interested in.

Definition 4.3. Let E : [0, T ] × V → (−∞,+∞] be an energy functional fulfilling (4.E0)
and {Ψu}u∈D a family of admissible dissipation potentials. Suppose that E complies with the
chain rule (4.E5). We say that (u, ξ) ∈ AC([0, T ];V ) ×L1(0, T ;V ∗) is a solution pair to the
generalized gradient system (V,E,Ψ,F,P) if

1 (u, ξ) fulfills the doubly nonlinear equation

(4.16) ξ(t) ∈ Ft(u(t)), ∂Ψu(t)(u
′(t)) + ξ(t) ∋ 0 for a.a. t ∈ (0, T ),

2 (u, ξ) complies with the energy identity
(4.17)∫ t

s

(
Ψu(r)(u

′(r))+Ψ∗
u(r)(−ξ(r))

)
dr + Et(u(t)) = Es(u(s)) +

∫ t

s

Pr(u(r), ξ(r))dr

for every 0 ≤ s ≤ t ≤ T .

We shortly say that u ∈ AC([0, T ];V ) is a solution to the generalized gradient system
(V,E,Ψ,F,P), if there exists ξ ∈ L1(0, T ;V ∗) such that (u, ξ) is a solution pair to
(V,E,F,P,Ψ).

Theorem 4.4 (Existence). Assume that the generalized gradient system (V,E,Ψ,F,P) comply
with (4.Ψ1)–(4.Ψ3) and with (4.E0)–(4.E6).

Then, for every u0 ∈ D there exists a solution u ∈ AC([0, T ];V ) to the doubly nonlinear
equation (1.21), fulfilling the initial condition u(0) = u0.

In fact, for any family of approximate solutions (Ũτ , ξ̃τ)τ>0 there exist a sequence τk ↓ 0 as
k → ∞, and ξ ∈ L1(0, T ;V ∗) such that the following convergences hold as k → ∞

Uτk
, Uτk

, Ũτk
→ u in L∞(0, T ;V ),(4.18a)

Uτk
⇀ u in W 1,1(0, T ;V ),(4.18b)

Et(Uτk
(t)) → Et(u(t)) for all t ∈ [0, T ],(4.18c)

∫ t

s

ΨU τk
(r)(U

′
τk

(r)) dr →

∫ t

s

Ψu(r)(u
′(r)) dr for all 0 ≤ s ≤ t ≤ T,(4.18d)

∫ t

s

Ψ∗
U τk

(r)(−ξ̃τk
(r)) dr →

∫ t

s

Ψ∗
u(r)(−ξ(r)) dr for all 0 ≤ s ≤ t ≤ T,(4.18e)

and (u, ξ) is a solution pair to the generalized gradient system (V,E,Ψ,F,P).

Furthermore, if

(4.19) Ψ∗
u is strictly convex for all u ∈ V ,

we have the additional convergence

ξ̃τk
⇀ ξ in L1(0, T ;V ∗).(4.20)

The proof of Theorem 4.4 is developed throughout Section 6.
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Remark 4.5. The considerations set forth in Remark 2.3 for energies smoothly depending on
time extend to the present setting. Namely, the proof of Theorem 4.4 reveals that the one-sided
chain-rule inequality (4.E5) is sufficient to conclude the existence of solutions to the Cauchy
problem for (1.21), in that it is combined with the upper energy estimate following from the
discretization scheme.

Clearly, in order to enforce the energy identity (4.17) for any solution to (1.21), it would be nec-
essary to impose (4.E5) as an equality. As shown by Example 3.3, this may lead to restrictions
on the admissible functions P.

Weakened assumptions. The two ensuing remarks explore the possibility of refining our re-
quirements on the chain rule (4.E5), and on the properties of the dissipation potentials.

Remark 4.6 (A weaker chain rule). Like in the gradient flow case (cf. [44, Thm. 2], and [2,
Thm. 2.3.1] in the metric setting), it is possible to state our existence result for the Cauchy
problem for (1.21) under a (slightly) weaker form of the chain rule (4.E5), which requires that for
every absolutely continuous curve u ∈ AC([0, T ];V ) and ξ ∈ L1(0, T ;V ∗) satisfying (4.3),
as well as
(4.21) ∫ T

0

Ψu(t)(u
′(t)) dt < +∞,

∫ T

0

Ψ∗
u(t)(−ξ(t)) dt < +∞,

and such that the map t 7→ Et(u(t)) is a.e. equal to a function E of bounded variation,

there holds

(CHAINweak)
d

dt
E (t) ≥ 〈ξ(t), u′(t)〉 + Pt(u(t), ξ(t)) for a.a. t ∈ (0, T ).

In this case, suitably adapting the proof of [44, Thm. 2] to the doubly nonlinear case, one ob-
tains that there exist u ∈ AC([0, T ];V ) and ξ ∈ L1(0, T ;V ∗) fulfilling the differential inclu-
sion (4.16) and the following energy inequality (compare with the energy identity (4.17) under
the chain rule (4.E5))
(4.22)∫ t

s

(
Ψu(r)(u

′(r))+Ψ∗
u(r)(−ξ(r))

)
dr + Et(u(t)) ≤ Es(u(s)) +

∫ t

s

Pr(u(r), ξ(r))dr

for all t ∈ [0, T ] and almost all s ∈ (0, t).

Remark 4.7 (Weaker conditions on the dissipation). In fact, condition (2.Ψ3) in the definition
of the dissipation potentials (Ψu)u∈V , is only used in the proof of the forthcoming Lemma 6.1,
which is the crucial technical result for the a priori estimates on the approximate solutions (Uτ ),

(Uτ ) and (Ũτ ). As shown in Remark 6.2 later on, it is possible to dispense with (2.Ψ3) if the
following condition, involving the energy E : [0, T ] × V → (−∞,+∞] and its subdifferential
mapping F : [0, T ] × V ⇉ V ∗, holds:
(4.23)

for all u, v ∈ V the directional derivative δEt(u; v) := lim
h↓0

1

h
(Et(u+ hv)−Et(u)) exists,

and 〈ξ, v〉 ≥ δEt(u; v) for all ξ ∈ Ft(u) and v ∈ V .
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Condition (4.23) has to be coupled with a strengthened version of the first inequality in (4.E4),
namely

(4.24)

for every (t, u, ξ) ∈ graph(F) and (uh) ⊂ V such that uh → u as h ↓ 0,

there holds lim inf
h↓0

Et+h(uh) − Et(uh)

h
≤ Pt(u, ξ).

Notice that (4.23) holds for marginal functionals which are λ-concave.

4.4. Upper semicontinuity of the set of solutions. We now address the issue of upper semi-
continuity of the set of solutions to the Cauchy problem for (1.21), with respect to convergence of
the initial data and (a suitable kind of) variational convergence for the driving energy functionals.

We consider sequences (V,En,Ψn,Fn,Pn) of generalized gradient systems, and impose the
following.

Assumption (H1). Let (En)n∈N be a sequence of lower semicontinuous energy functionals
En : [0, T ]×V → (−∞,+∞], with domains dom(En) = [0, T ]×Dn for someDn ⊂ V , and
with subdifferentials Fn : [0, T ] ×Dn ⇉ V ∗; we use the notation Gn(u) := supt∈[0,T ] E

n
t (u)

for u ∈ Dn. We suppose that the functionals (En)n∈N comply with (4.E0), (4.E1), (4.E3),
and (4.E4), with constants uniform with respect to n ∈ N. We also require that there exists a
generalized gradient system (V,E,Ψ,F,P), such that the energy

E : [0, T ] × V → (−∞,+∞] complies with (4.E0) and the chain rule (4.E5),

and the functionals (En)n converge to E in the following sense: for all t ∈ [0, T ] and for all
sequences {un} ⊂ V , ξn ∈ Fn

t (un), fulfilling

un → u in V , ξn ⇀ ξ weakly in V ∗, Pn
t (un, ξn) → p,

there holds

(4.25)
(t, u) ∈ dom(F ), ξ ∈ Ft(u), p ≤ Pt(u, ξ),

and, if En
t (un) converges to some E ∈ R, then E = Et(u).

Assumption (H2). Let {Ψn
u}u∈Dn

be a family of admissible dissipation potentials, satisfying
conditions of superlinear growth on sublevels of the energies En, uniformly with respect to n
(i.e., (4.1) holds for constants independent of n). We also suppose that the potentials (Ψn

u)u∈Dn

Mosco converge on sublevels of the energies to a family (Ψu)u∈D of admissible potentials, viz.
(4.26)
∀R > 0 : un → u, supn∈N Gn(un) ≤ R, vn ⇀ v in V ⇒ lim infn→∞ Ψn

un
(vn) ≥ Ψu(v)

∀R > 0 : un → u, supn∈N
Gn(un) ≤ R, v ∈ V ⇒

{
∃ vn → v :
limn→∞ Ψn

un
(vn) = Ψu(v).

Theorem 4.8 (Upper semicontinuity). Let (V,En,Ψn,Fn,Pn) be a family of generalized gradi-
ent systems complying with Assumption (H1) and Assumption (H2). Let (un

0 )n be a sequence
of initial data, with un

0 ∈ Dn for all n ∈ N, such that

(4.27) un
0 ⇀ u0 in V and En

0(u
n
0 ) → E0(u0),

and let (un, ξn)n∈N a sequence of solution pairs to the Cauchy problems

(4.28) ∂Ψu(t)(u
′(t)) + Fn

t (u(t)) ∋ 0 in V ∗, for a.a. t ∈ (0, T ); u(0) = un
0
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(in particular, complying with the energy identity (4.17) for all n ∈ N). Then, there exist a
subsequence (unk

, ξnk
)k∈N and functions (u, ξ) ∈ AC([0, T ];V ) × L1(0, T ;V ∗) such that

(u, ξ) is a solution pair of the Cauchy problem for (1.21), and the following convergences hold
as k → ∞

unk
→ u in C0([0, T ];V ), unk

⇀ u in W 1,1(0, T ;V ),(4.29a)

E
nk
t (unk

(t)) → Et(u(t)) for all t ∈ [0, T ],(4.29b)
{ ∫ t

s
Ψnk

unk
(r)(u

′
nk

(r)) dr →
∫ t

s
Ψu(r)(u

′(r)) dr,
∫ t

s
(Ψnk

unk
(r))

∗(−ξnk
(r)) dr →

∫ t

s
Ψ∗

u(r)(−ξ(r)) dr
for all 0 ≤ s ≤ t ≤ T .(4.29c)

The proof of this result is outlined at the end of Section 6.

Remark 4.9. Suppose that the energy functionals En have the special form

En
t (u) = En(u) − 〈ℓn(t), u〉, with En : V → (−∞,+∞] convex functionals and

(ℓn) ⊂ C1([0, T ];V ∗).

Hence, if the functionals (En) Mosco-converge to some convex functionalE : V→(−∞,+∞],
and if the functions (ℓn) suitably converge to some ℓ ∈ C1([0, T ];V ∗), then the energies (En)
converge to Et(u) := E(u) − 〈ℓ(t), u〉 in the sense specified by Assumption (H1) . Indeed,
Theorem 4.8 might be viewed as an extension, to the doubly nonlinear case, of the result on
stability of gradient flows (with V a Hilbert space and Ψ(u) = 1

2
‖u‖2

V ), with respect to Mosco-
convergence of the (convex) energies, stated in [3, Thm. 3.74(2), p. 388]. The reader may also
consult [53] and the references therein.

5. APPLICATION: EVOLUTIONS DRIVEN BY MARGINAL FUNCTIONALS IN FINITE-STRAIN

ELASTICITY

In this section we examine a mechanical model for finite-strain elasticity, described in terms
of the elastic deformation and of some internal, dissipative variable z. Its analysis has already
been developed in [24], in the case of a rate-independent evolution for z. Therein, existence of
energetic solutions to the (Cauchy problem for the) related PDE system has been proved. Here,
we address the case in which the evolution of z is driven by viscous dissipation.

5.1. Problem set-up and existence result. We consider an elastic body occupying a bounded
domain Ω ⊂ R

d, d ≥ 1, with Lipschitz boundary Γ. We denote by φ : Ω → R
d the elastic

deformation field, and assume that the inelasticity of Ω is described by an internal variable
z : Ω → R

m, m ≥ 1, which we may envisage as a mesoscopic averaged phase variable.

Energy functional. The stored energy I = It(φ, z) has the form

(5.1) It(φ, z) = E1(z) + I2
t (φ, z) + E0,

with E0 ∈ R to be precised later on (cf. Lemma 5.5).

In (5.1), E1 : V → (−∞,+∞] is the convex functional

(5.2)
E1(z) :=

{ ∫
Ω

(
1
q
|∇z|q + IK(z)

)
dx if z ∈W 1,q(Ω; Rm),

+∞ otherwise,

where q > d, and K is a compact subset of R
m,
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and we consider the Fröbenius norm |∇z| =
(∑d

j=1

∑m
i=1 |∂xj

zi|2
)1/2

of the matrix ∇z.

The nonconvex contribution I2 : [0, T ]×W 1,p(Ω; Rd)×L2(Ω; Rm) → (−∞,+∞] is given
by

I2
t (φ, z) :=

∫

Ω

W (∇φ(x), z(x)) dx− 〈ℓ(t), φ〉W 1,p,

where p > d, 〈·, ·〉W 1,p denotes the duality pairing between W 1,p(Ω; Rd)∗ and W 1,p(Ω; Rd),
and we suppose that

(5.3) ℓ ∈ C1([0, T ];W 1,p(Ω; Rd)∗).

The stored energy densityW : R
d×d×K′ → (−∞,+∞] has domain dom(W ) = DW ×K′,

where K′ is a compact subset of R
m containing K. We neglect the dependence of W on the

variable x for the sake of simplicity and with no loss of generality. We impose the following
conditions on W :

(W1) ∃κ1, κ2 > 0 ∀ (F, z) ∈ R
d×d × K′ : W (F, z) ≥ κ1|F |

p − κ2 with p > d;

(W2)

∃W : R
µd × K′ → (−∞,+∞] such that

(i) W is lower semicontinuous,

(ii) ∀ (F, z) ∈ R
d×d × K′ : W (F, z) = W(M(F ), z),

(iii) ∀z ∈ K′ : W(·, z) : R
µd → (−∞,+∞] is convex;

(W3)
for all F ∈ DW the map W (F, ·) is continuous and Gâteau-differentiable on K′, and

(i) ∃κ3, κ4 > 0 ∀ (F, z) ∈ DW × K′ : |DzW (F, z)| ≤ κ3(W (F, z) + κ4)
1/2;

(ii)∃κ5, κ6 > 0, ∃α ∈ (0, 1] ∀F ∈ DW ∀ z1, z2 ∈ K′ :

|DzW (F, z1) − DzW (F, z2)| ≤ κ5|z1 − z2|
α(W (F, z1) + κ6)

1/2.

In (W2), we have used the notation µd =
∑d

s=1

(
d
s

)2
, and M : R

d×d → R
µd is the function

which maps a matrix to all its minors (subdeterminants). Hence, (W2) states that for all z ∈ K′

the map W (·, z) is polyconvex.

Dissipation. We consider a measurable (dissipation density) functionψ : K×R
m → [0,+∞)

(again, we omit the dependence of ψ on the variable x with no loss of generality), fulfilling

(ψ1) ψ : K × R
m → [0,+∞) is continuous;

(ψ2)
∀ z ∈ K : ψ(z, ·) : R

m → [0,+∞) is convex, with ψ(z, 0) = 0, and

ψ∗(z, w1) = ψ∗(z, w2) for all w1, w2 ∈ ∂vψ(z, v) and all v ∈ R
m;

(ψ3) ∃κ7, κ8, κ9 > 0 ∀ z ∈ K ∀ v, ξ ∈ R
m :

{
ψ(z, v) ≥ κ7|v|

2 − κ9,
ψ∗(z, ξ) ≥ κ8|ξ|

2 − κ9.

In (ψ2) the symbols ∂vψ and ψ∗ respectively denote the subdifferential and the Fenchel-Moreau
conjugate of the function ψ(z, ·). Let us point out that there is a crucial interplay between the
exponent 1/2 in (W3)(ii), and the exponents 2 in (ψ3), see also Remark 5.4 later on.
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PDE system and existence theorem. Within this setting, we address the analysis of the doubly
nonlinear evolution equation

(5.4a)
∂vψ(z(t, x), ż(t, x)) − ∆qz(t, x) + ∂IK(z(t, x))+DzW (∇φ(t, x), z(t, x)) ∋ 0

for a.a. (t, x) ∈ (0, T ) × Ω,

(where ∆qz = div(|∇z|q−2∇z)), supplemented with homogeneous Neumann boundary con-
ditions, and coupled with the minimum problem

(5.4b) φ(t, x) ∈ Argmin{It(φ, z(t, x)) : φ ∈ F} for a.a. (t, x) ∈ (0, T ) × Ω,

where F denotes the set of the kinematically admissible deformation fields, viz.

F =
{
φ ∈ W 1,p(Ω; Rd) : φ = φDir on ΓDir

}
,

for some ΓDir ⊂ Γ, ΓDir 6= ∅ with positive Hausdorff measure, and

(5.5) φDir ∈W 1,p(Ω; Rd), such that the map x 7→ max
z∈K

W (∇φDir(x), z) is in L1(Ω).

Theorem 5.1. Under assumptions (5.3), (W1)–(W3), (ψ1)–(ψ3), and (5.5), for every

(5.6) z0 ∈W 1,q(Ω; Rm) with z0(x) ∈ K for all x ∈ Ω,

there exist functions z ∈ L∞(0, T ;W 1,q(Ω; Rm)) ∩ H1(0, T ;L2(Ω; Rm)) and
φ ∈ L∞(0, T ;W 1,p(Ω; Rd)) fulfilling (5.4a), supplemented with homogeneous Neumann
boundary conditions and the initial condition z(0, x) = z0(x) for a.a.x ∈ Ω, and (5.4b). In
particular, there exists ξ ∈ L2(0, T ;L2(Ω; Rm)) satisfying, for almost all (t, x) ∈ (0, T )×Ω,
the inclusions

(5.7)

{
∂vψ(z(t, x), ż(t, x)) + ξ(t, x) ∋ 0,
ξ(t, x) ∈ −∆qz(t, x) + ∂IK(z(t, x)) + DzW (∇φ(t, x), z(t, x))

and such that (z, φ, ξ) fulfill the energy identity for all 0 ≤ s ≤ t ≤ T

(5.8)

∫ t

s

∫

Ω

(
ψ(z(r, x), ż(r, x)) + ψ∗(z(r, x),−ξ(r, x))

)
dxdr + It(φ(t), z(t))

= Is(φ(s), z(s)) −

∫ t

s

〈ℓ′(r), φ(r)〉W 1,p dr.

Example 5.2. In finite-strain elasticity there are two main conditions, namely (i) frame indiffer-
ence and (ii) local invertibility:

i) W (RF, z) = W (F, z) for all R ∈ SO(d), F ∈ DW , z ∈ K′,

ii) W (F, z) = ∞ for all det(F ) ≤ 0.

These conditions are compatible with polyconvexity, e.g. by choosing functions of the type

W (F, z) = C|F |p + wco(F, z) + h(det(F )),

where h : R → (−∞,+∞] is continuous, convex, and satisfies h(y) = ∞ for y ≤ 0. Thus,
DW = {F : det(F ) > 0} ⊂ R

d×d is the nonconvex domain. Recall that the Fröbenius norm
|F | = (tr(F TF ))1/2 satisfies |RF | = |F |. Conditions (W2)–(W3) can be now satisfied if the
coupling energy wco satisfies wco ∈ C1(Rd×d × K′; R), and

wco(F, z) ≥ 0, wco(RF, z) = wco(F, z), wco(·, z) is polyconvex,

|Dzwco(F, z)| ≤ κ(|F | + 1)p/2,

|Dzwco(F, z1) − Dzwco(F, z2)| ≤ κ|z1 − z2|
α(|F | + 1)p/2
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for all arguments.

In magnetism (see [33]), z denotes the magnetization (with respect to material coordinates),
and we have z ∈ R

d and K = {z ∈ R
d : |z| ≤ zsat}, where the subscript “sat” stands for

saturation. A choice for the coupling energy for p ≥ 4 is wco(F, z) = C|Fz|2 + w̃(z), where
w̃ ∈ C2(K′) gives the anisotropy of magnetization, as well as the saturation term 1

4δ
(|z|2 −

z2
sat)

2, with δ > 0.

For shape memory alloys, z may denote volume fractions of m different phases, such that
K = {z = (z1, z2, . . . , zm) ∈ R

m : zj ≤ 0,
∑m

k=1 zk = 1}. Denoting by cofF ∈ R
d×d the

cofactor matrix det(F )F−T (which is contained in M(F )), and by Cn(z), n = 1, . . . , N the
z-dependent, effective transformation Cauchy strains, we may use

wco(F, z) =

N∑

n=1

αn|FCn(z)
−1 − cofF |2 + wmix(z),

with α1, . . . , αN > 0 and a mixture energy wmix ∈ C2(K′), see [28, 26]. Here we need
p ≥ 2d, because |Dzwco(F, z)| ≤ C(|F |+1)d, as the highest power |cofF |2 ∼ O(|F |2d−2)
is independent of z. Note that we follow the ideas in [26, 38], whereW (·, z) is considered to be
a polyconvex relaxation, under given volume fractions of the different phases.

Example 5.3. Most commonly, the dissipation potentials ψ are assumed to be independent of
the state z, i.e. ψ(z, v) = ψ(v), which simplifies the analysis considerably. However, there are
cases where ψ must depend on z, like in finite-strain elasticity where the internal variable is the

plastic tensor P ∈ SL(d) = {P ∈ R
d×d : det(P ) = 1}, and ψP (Ṗ ) = ψ̂(ṖP−1). In

the framework of the modeling for magnetization illustrated in Example 5.2, we may consider
ψ : R

d × R
d → [0,∞) of the form

ψ(z, v) = ψrad(z · v) + ψtang

((
I − 1

|z|2
z ⊗ z

)
v
)
,

to account for different dissipations for enlarging the magnetization or changing its orientation.

5.2. Proof of Theorem 5.1.

Outline of the proof. We follow an abstract approach to the analysis of (5.4), by rephrasing it
as a doubly nonlinear equation of the type (1.21), generated by the generalized gradient system
(V,E,Ψ,F,P) specified in the following lines.

Space V : We choose

the ambient space V = L2(Ω; Rm).

Energy E: We consider the reduced functional E : [0, T ] × W 1,q(Ω; Rm) → (−∞,+∞]
obtained by minimizing out the displacements from I , i.e.

Et(z) := inf{It(φ, z) : φ ∈ F} with domain [0, T ] ×D, where

D = {z ∈W 1,q(Ω; Rm) : z(x) ∈ K for a.a.x ∈ Ω}.
(5.9)

We often use the decomposition of E as a sum of a convex and of a nonconvex, reduced
functional

(5.10) Et(z) = E1(z) + inf{I2
t ( , φ) : φ ∈ F}

.
= E1(z) + E2

t (z) for (t, z) ∈ [0, T ] ×D.
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Indeed, in Lemma 5.5 below we prove that for all (t, z) ∈ [0, T ] ×D, the set

(5.11) M(t, z) := Argmin
φ∈F

{It(φ, z)} is nonempty and weakly compact in W 1,p(Ω; Rd).

Subdifferential F: Reflecting (5.10), we use the following subdifferential notion

(5.12) Ft(z) := ∂E1(z) + ∂̂E2
t (z) for all (t, z) ∈ [0, T ] ×D,

where, as in Section 3, ∂̂E2
t (z) is the marginal subdifferential of the reduced energy E2, viz.

∂̂E2
t (z) =

{
DzI

2
t (φ, z) : φ ∈M(t, z)

}
,

with DzI
2
t (φ, ·) the Gâteau derivative of the functional I2

t (φ, ·).

Generalized time-derivative P: We set

R(t, z, ξ) := {ϕ ∈M(t, z) : ξ ∈ ∂E1(z) + DzI
2
t (ϕ, z)} for all (t, z, ξ) ∈ graph(F)

and define

(5.13) Pt(z, ξ) := max
ϕ∈R(t,z,ξ)

〈−ℓ′(t), ϕ〉W 1,p .

Dissipation potential Ψ: We consider the Finsler family (Ψz)z∈D of dissipation potentials

(5.14) Ψz : V → [0,+∞) defined by Ψz(v) :=

∫

Ω

ψ(z(x), v(x))dx.

In what follows, throughout Lemmas 5.5–5.10 we check that the above generalized gradient
system (V,E,Ψ,F,P) complies with the abstract assumptions (4.Ψ1)–(4.Ψ3), (4.E0)–(4.E6)
of Theorem 4.4. The latter result yields the existence of a pair (u, ξ) fulfilling the Cauchy problem
for (4.16), and the energy identity (4.17). The forthcoming calculations show that, in the present
setting, (4.16) and (4.17) entail (5.4) and (5.8).

Remark 5.4. As it will be clear from the ensuing calculations, it is possible to generalize the
theory to the case where, in place of (ψ3), we have for some r ∈ (1,∞)

ψ(z, v) ≥ κ7|v|
r − κ9, ψ(z, v) ≥ κ8|v|

r′ − κ9

(where r′ = r/(r − 1) is the conjugate exponent of r), and the growth conditions in (W3) are
replaced by

|DzW (F, z)| ≤ κ3(W (F, z) + κ4)
1−1/r,

|DzW (F, z1) − DzW (F, z2)| ≤ κ5|z1 − z2|
α(W (F, z1) + κ6)

1−1/r.

Under these assumptions, it is again possible to develop the abstract approach of Section 4.
The natural ambient space is now V = Lr(Ω; Rm) and, as in Theorem 5.1, one concludes the
existence of a pair (z, ξ) fulfilling ż ∈ Lr(0, T ;Lr(Ω; Rm)), ξ ∈ Lr′(0, T ;Lr′(Ω; Rm)), and
satisfying (5.7) and (5.8).
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Coercivity and time-dependence of E.

Lemma 5.5. Assume (5.3), (W1)–(W3), and (5.5). Then (5.11) holds. Moreover, there exist
positive constants c1, . . . , c6 > 0 such that for all (t, z) ∈ [0, T ] ×D and all ϕ ∈M(t, z) we
have

c1‖ϕ‖
p
W 1,p(Ω;Rd)

− c2 ≤ E2
t (z) ≤ c3,(5.15)

∫

Ω

W (∇ϕ(x), z(x))dx ≤ c4,(5.16)

Et(z) ≥ c5‖z‖
q
W 1,q(Ω;Rm) − c6 .(5.17)

Further, for a sufficiently large constant E0 (cf. (5.1)), the energy functional E is bounded from
below by a positive constant, it complies with (4.E0) and (4.E1), and for every (zn), z ⊂
L2(Ω; Rm) we have

(5.18)

(
zn ⇀ z in L2(Ω; Rm) and sup

n
E1(zn) < +∞

)
⇒ zn → z in C0(Ω; Rm).

Moreover,

(5.19) ∃ c7 > 0 ∀ t, s ∈ [0, T ] ∀ z ∈ D : |Et(z) − Es(z)| ≤ c7|t− s|.

Hence, E fulfills (4.E3).

Proof: We have for every (t, φ, z) ∈ [0, T ] × F × L2(Ω; Rm)

(5.20)
It(φ, z) ≥ κ1

∫

Ω

|∇φ(x)|p dx− κ2|Ω| − ‖ℓ(t)‖W 1,p(Ω;Rd)∗ ‖φ‖W 1,p(Ω;Rd)

≥ c1‖φ‖
p
W 1,p(Ω;Rd)

− κ2|Ω| − C ′‖ℓ‖p′

L∞(0,T ;W 1,p(Ω;Rd)∗
,

where the first inequality follows from the positivity of the functional E1 and from (W2), and the
second one from Poincaré’s and Young’s inequalities. Taking into account (5.3), we deduce the
lower estimate in (5.15). Hence, it is sufficient to choose E0 := 2c2 in order to have E bounded
from below by a positive constant.

Next, we remark that the functional It(·, z) is (sequentially) lower semicontinuous with re-
spect to the weak topology of W 1,p(Ω; Rd). Indeed, let (φk)k weakly converge to some φ ∈
W 1,p(Ω; Rd) as k → ∞. Then, by the weak continuity of minors of gradients (cf. [10, 42]),
M(∇φk) ⇀ M(∇φ) inLp/d(Ω; Rµd). Taking into account the polyconvexity assumption (W2),
we ultimately have lim infk→∞ It(φk, z) ≥ It(φ, z). We combine this weak lower semicontinu-
ity property with the coercivity estimate (5.20), and thus we conclude that the set of minimizers
(5.11) is not empty via the direct method of the calculus of variations.

Secondly, we observe that

E2
t (z) = min

φ∈F
I2
t (φ, z) ≤

∫

Ω

W (∇φDir(x), z(x)) dx − 〈ℓ(t), φDir〉W 1,p

≤

∫

Ω

max
z∈K

W (∇φDir(x), z) dx + C
.
= c3
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where the last inequality follows from (5.3) and (5.5). Hence, the upper estimate in (5.15) en-
sues. Then, (5.16) follows from

∫

Ω

W (∇ϕ, z)dx ≤ E2
t (z) + κ2|Ω| + C‖ℓ‖L∞(0,T ;W 1,p(Ω;Rd)∗)‖ϕ‖W 1,p(Ω;Rd)

≤ c3 + κ2|Ω| +

(
c3 + c2
c1

)1/p

‖ℓ‖L∞(0,T ;W 1,p(Ω;Rd)∗),

where the first inequality is due to (5.20) and (5.3), and the second one to (5.15).

Next, in view of (5.20) we have for all (t, z) ∈ [0, T ] × L2(Ω; Rm) and for every ϕ ∈ M(t, z)

Et(z) ≥
1

q
‖∇z‖q

Lq(Ω) +

∫

Ω

IK(z(x))dx + c1‖ϕ‖
p
W 1,p(Ω;Rd)

− C.

Then, (5.17) ensues from the Poincaré inequality, and (5.18) follows from (5.17) and the fact
that q > d, hence W 1,q(Ω; Rm) ⋐ C0(Ω; Rm).

To prove (4.E3), we observe that for all z ∈ D, for every 0 ≤ s ≤ t ≤ T and every ϕt ∈
M(t, z) and ϕs ∈M(s, z) there holds

Et(z) − Es(z) = E2
t (z) − E2

s(z) = I2
t (ϕt, z) − I2

s (ϕs, z)
≤ I2

t (ϕs, z) − I2
s (ϕs, z)

≤ − 〈ℓ(t) − ℓ(s), ϕs〉W 1,p

≤ C‖ℓ(t) − ℓ(s)‖W 1,p(Ω;Rd)∗‖ϕs‖W 1,p(Ω;Rd)

≤ C‖ℓ′‖L∞(0,T ;W 1,p(Ω;Rd)∗) |t− s| c
−1/p
1 (E2

s(z) + c2)
1/p

≤ c7|t− s|

where we have used (5.3) and (5.15). Exchanging the roles of s and t, we infer (5.19).

Properties of the dissipation potentials (Ψz)z∈D.

Lemma 5.6. Assume (5.3), (W1)–(W3), and (ψ1)–(ψ3). Then, the dissipation potentials (Ψz)z∈D

satisfy (4.Ψ1), (4.Ψ3), and for every z ∈ D we have

(5.21)

{
Ψz(v) ≥ κ7‖v‖

2
L2(Ω;Rm) − κ9|Ω|

Ψ∗
z(w) ≥ κ8‖w‖

2
L2(Ω;Rm) − κ9|Ω|

for every v, w ∈ L2(Ω; Rm),

where κ7, κ8 and κ9 are the same constants as in (ψ3). Thus, (4.Ψ2) is fulfilled.

Proof: It follows from [12, Prop. 2.16, p. 47] that, for every z ∈ D the subdifferential and conju-
gate of the potential Ψz are given for all v, w ∈ L2(Ω; Rm) by

(5.22)

{
w ∈ ∂Ψz(v) ⇔ w(x) ∈ ∂vψ(z(x), v(x)) for a.a.x ∈ Ω,
Ψ∗

z(w) =
∫
Ω
ψ∗(z(x), w(x))dx.

Hence, (ψ2) yields that (Ψz)z∈D is a family of admissible dissipation potentials on L2(Ω; Rm)
in the sense of (2.Ψ1)–(2.Ψ3), and (ψ3) obviously implies (5.21). Finally, exploiting (ψ1), (ψ2),
(5.18), and relying on Ioffe’s theorem [27], it is not difficult to check that the first of (4.Ψ3) and
(4.2) are fulfilled. This implies (4.Ψ3).
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Closedness and variational sum rule. We need the following preliminary result.

Lemma 5.7 (Subdifferentials). Assume (5.3), (W1)–(W3), and (5.5). Then:

(1) the subdifferential of E1 is

(5.23) ∂E1(z) = −∆qz + ∂IK(z) for all z ∈ dom(∂E1),

with domain described by the following conditions

(5.24) z ∈ dom(∂E1) ⇔

{
z ∈ D ⊂W 1,q(Ω; Rm),
−∆qz ∈ L2(Ω; Rm),

hence

(5.25) dom(∂E1) ⊂W ν,q(Ω; Rm) for all ν ∈
[
1, 1 + 1

q

)
.

(2) There exists a constant c8 such that for every (t, z) ∈ [0, T ] ×D and ϕ ∈ M(t, z) we
have DzW (∇ϕ, z) ∈ L2(Ω; Rm), with

(5.26) ‖DzW (∇ϕ, z)‖L2(Ω;Rm) ≤ c8.

Hence the marginal subdifferential

(5.27) ∂̂E2
t (z) = {DzW (∇ϕ, z) : ϕ ∈M(t, z)} is bounded in L2(Ω; Rm).

(3) For all t ∈ [0, T ] and all z1, z2 ∈ D with z1(x), z2(x) ∈ K′ for all x ∈ Ω, and for every
ϕ1 ∈M(t, z1) there holds

(5.28)

E2
t (z2) − E2

t (z1) −

∫

Ω

DzW (∇ϕ1, z1)(z2 − z1)dx

≤ κ5‖z1 − z2‖
α
L∞(Ω;Rm)

(∫

Ω

W (∇ϕ1, z1)dx+ κ6|Ω|

)1/2

‖z1 − z2‖L2(Ω;Rm)

where κ5, κ6, and α are the same constants as in (W3).
(4) For every (t, z) ∈ [0, T ] ×D the Fréchet subdifferential ∂Et satisfies

(5.29) ∂Et(z) ⊂ Ft(z) = −∆qz + ∂IK(z) + {DzW (∇ϕ, z) : ϕ ∈M(t, z)} .

Proof: Formulae (5.23) and (5.24) can be obtained by adapting the proof of [51, Lemma 2.4],
see also [12, Prop. 2.17]. Notice that (5.25) ensues from (5.24) and the regularity results in [49],
cf. also [22]. We conclude (5.26) combining condition (W3)(i) with estimate (5.16), and then
(5.27) follows from trivial calculations.

Estimate (5.28) is a consequence of the following chain of inequalities

(5.30)

E2
t (z2) − E2

t (z1) ≤

∫

Ω

(W (∇ϕ1, z2) −W (∇ϕ1, z1)) dx

=

∫

Ω

∫ 1

0

DzW (∇ϕ1, (1 − θ)z1 + θz2)(z2 − z1)dθdx

≤ I +

∫

Ω

DzW (∇ϕ1, z1)(z2 − z1)dx
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where, relying on condition (W3)(ii), we estimate

(5.31)

I =

∫ 1

0

∫

Ω

|DzW (∇ϕ1, (1 − θ)z1 + θz2) − DzW (∇ϕ1, z1)||z2 − z1|dxdθ

≤

∫ 1

0

∫

Ω

κ5θ
α|z2 − z1|

α (W (∇ϕ1, z1) + κ6)
1/2 |z2 − z1|dxdθ.

Then, (5.28) follows upon using Hölder’s inequality.

Finally, we prove (5.29), in fact in the following stronger form

if ∂Et(z) 6= ∅, then ξ − DzW (∇ϕ, z) ∈ ∂E1(z) for every ξ ∈ ∂Et(z) and ϕ ∈M(t, z).

which in particular yields (5.29). Indeed, we show that for every ξ ∈ ∂Et(z) and ϕ ∈ M(t, z),
and for every zn → z in L2(Ω; Rm), there holds

(5.32) 0 ≤ lim inf
n→∞

E1(zn) − E1(z) −
∫
Ω

(ξ − DzW (∇ϕ, z)) (zn − z) dx

‖zn − z‖L2(Ω;Rm)

.
= Λ.

To this aim, we observe that

(5.33)

Λ ≥ lim inf
n→∞

Et(zn) − Et(z) −
∫
Ω
ξ(zn − z) dx

‖zn − z‖L2(Ω;Rm)

+ lim inf
n→∞

E2
t (z) − E2

t (zn) +
∫
Ω

DzW (∇ϕ, z)(zn − z) dx

‖zn − z‖L2(Ω;Rm)

.

Since the first summand on the right-hand side of the above inequality is nonnegative by defini-
tion of the Fréchet subdifferential ∂Et(z), it remains to prove that the second term is nonnega-
tive. Now, it is not restrictive to suppose for the sequence (zn) in (5.32) that sup E1(zn) < +∞.
Then, zn(x) ∈ K for all x ∈ Ω and n ∈ N. Hence, estimate (5.28) with the choices z1 = z
and z2 = zn yields

lim inf
n→∞

E2
t (z) − E2

t (zn) +
∫
Ω

DzW (∇ϕ, z)(zn − z) dx

‖zn − z‖L2(Ω;Rm)

≥ −κ5 lim
n→∞

‖zn − z‖α
L∞(Ω;Rm)

(∫
Ω
W (∇ϕ, z)dx+ κ6

)1/2
‖zn − z‖L2(Ω;Rm)

‖zn − z‖L2(Ω;Rm)

= 0,

and the last limit follows from (5.18) and the bound (5.16). Ultimately, (5.32) ensues.

Lemma 5.8 (Closedness). Assume (5.3), (W1)–(W3), and (5.5). Then, for all {tn} ⊂ [0, T ],
{zn} ⊂ L2(Ω; Rm), and {ξn} ⊂ L2(Ω; Rm) with ξn ∈ Ftn(zn) for all n ∈ N, we have
(5.34)(

tn → t, zn ⇀ z in L2(Ω; Rm), ξn ⇀ ξ in L2(Ω; Rm), Etn(zn) → E as n→ ∞
)

=⇒ ξ ∈ Ft(z) and E = Et(z).

In particular, graph(F) is a Borel set of [0, T ] × L2(Ω; Rm) × L2(Ω; Rm).

Proof: From supn Etn(zn) < +∞ and from (5.15), (5.17), and (5.18), we deduce that zn ⇀ z
in W 1,q(Ω; Rm) and zn → z in C0(Ω; Rm), and that there exist φ ∈ F and a (not re-
labeled) subsequence (ϕn) such that ϕn ⇀ φ in W 1,p(Ω; Rd) as n → ∞. Hence, we
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argue in the same way as in the proof of Lemma 5.5: combining the polyconvexity assump-
tion (W2) with the continuity of the map z 7→ W (F, z), we apply Ioffe’s theorem [27] to find
lim infn→∞

∫
Ω
W (∇ϕn, zn)dx ≥

∫
Ω
W (∇φ, z)dx. Therefore, in view of (5.3) we have

(5.35)

lim inf
n→∞

E2
tn(zn) = lim inf

n→∞

(∫

Ω

W (∇ϕn, zn)dx− 〈ℓ(tn), ϕn〉W 1,p

)

≥

∫

Ω

W (∇φ, z)dx− 〈ℓ(t), φ〉W 1,p ≥ E2
t (z).

On the other hand, ϕn ∈M(tn, zn) gives

(5.36) E2
tn(zn) = I2

tn(ϕn, zn) ≤ I2
tn(ϕ, zn) → I2

t (ϕ, z) = E2
t (z),

where ϕ is any element in M(t, z), and we have exploited (5.3) to take the limit as n → ∞.
Combining (5.35) and (5.36), we ultimately have E2

tn(zn) → E2
t (z), and the weak limit φ of the

sequence (ϕn) is in fact an element in M(t, z), which we will hereafter denote with ϕ.

Now, it follows from (5.12), (5.23), and (5.27) that the sequence ξn ∈ Ftn(zn) in (5.34) is given,
for every n ∈ N, by ξn = −∆qzn + ζn + DzW (∇ϕn, zn), for some ζn ∈ ∂IK(zn) and
ϕn ∈ M(tn, zn). Arguing by comparison and relying on the aforementioned [12, Prop. 2.17],
from the boundedness of ξn in L2(Ω; Rm) we infer that

(5.37) sup
n

(
‖∆qzn‖L2(Ω;Rm) + ‖ζn‖L2(Ω;Rm)

)
< +∞.

Relying on [49], we find that for every ν ∈ [1, 1 + 1/q) there holds supn ‖zn‖W ν,q(Ω;Rm) <
+∞. Since W ν,q(Ω; Rm) ⋐ W 1,q(Ω; Rm) for all ν ∈ (1, 1 + 1/q), we conclude that, indeed,
the weak convergence of (zn) in L2(Ω; Rm) improves to

(5.38) zn → z in W 1,q(Ω; Rm).

Therefore, E1(zn) → E1(z). On account of the previously proved convergence of E2
tn(zn),

we obtain Etn(zn) → Et(z). Finally, combining estimate (5.37) with (5.38), and exploiting the
monotonicity of the operator −∆q (cf. [12]), we find

(5.39) −∆qzn ⇀ −∆qz in L2(Ω; Rm).

Furthermore, from (5.37) we also deduce that, up to a not relabeled subsequence,

(5.40) ζn ⇀ ζ in L2(Ω; Rm), with ζ ∈ ∂IK(z)

(the latter fact follows from the strong-weak closedness of the graph of ∂IK in L2(Ω; Rm) ×
L2(Ω; Rm)).

Estimate (5.26) yields

(5.41) sup
n

‖DzW (∇ϕn, zn)‖L2(Ω;Rm) ≤ c8.

Then, along some (not relabeled) subsequence, the sequence (DzW (∇ϕn, zn))n is weakly
converging in L2(Ω; Rm). It remains to prove that

(5.42) DzW (∇ϕn, zn) ⇀ DzW (∇ϕ, z) in L2(Ω; Rm).

To this aim, we mimick the argument in the proof of [24, Prop. 3.3]. We fix η ∈ W 1,q(Ω; Rm) and
h > 0, and apply (W3)(ii) with the choices z1 = zn and z2 = zn +hη. Indeed, zn(x) ∈ K and
(5.38) ensure that, for sufficiently large n and sufficiently small h, we have zn, zn + hη ∈ K′.
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Arguing like in (5.30)–(5.31) and exploiting estimate (5.16), there exist constants C > 0 and
α ∈ (0, 1] such that for every n ∈ N

(5.43)

∣∣∣
1

h

∫

Ω

(
W (∇ϕn, zn ± hη) −W (∇ϕn, zn) ∓ hDzW (∇ϕn, zn)η

)
dx
∣∣∣

≤ Chα‖η‖α
L∞(Ω;Rm)‖η‖L2(Ω;Rm)

.
= ω(h).

On the other hand, again combining (5.38) and the weak convergence ofϕn with Ioffe’s theorem,
we conclude that for (sufficiently small) h > 0 there holds

lim inf
n→∞

∫

Ω

(
W (∇ϕn, zn±hη)−W (∇ϕn, zn)

)
dx ≥

1

h

∫

Ω

(
W (∇ϕ, z±hη)−W (∇ϕ, z)

)
dx.

Estimate (5.43) and the above inequality yield

(5.44)

lim sup
n→∞

∫

Ω

DzW (∇ϕn, zn)ηdx

≤ lim sup
n→∞

1

h

∫

Ω

(
W (∇ϕn, zn) −W (∇ϕn, zn − hη)

)
dx+ ω(h)

≤ −
1

h

∫

Ω

(
W (∇ϕ, z−hη) −W (∇ϕ, z)

)
dx+ω(h)

≤

∫

Ω

DzW (∇ϕ, z)ηdx+ 2ω(h),

where the last inequality follows from (5.43) written for (∇ϕ, z). Analogously, we infer that

lim inf
n→∞

∫

Ω

DzW (∇ϕn, zn)ηdx ≥

∫

Ω

DzW (∇ϕ, z)ηdx− 2ω(h).

Since h > 0 is arbitrary, we conclude that

lim
n→∞

∫

Ω

DzW (∇ϕn, zn)ηdx =

∫

Ω

DzW (∇ϕ, z)ηdx for every η ∈W 1,q(Ω; Rm).

In view of (5.41), (5.42) follows. Thus, (5.39), (5.40) and (5.42) entail that the weak limit ξ of
(ξn) fulfills ξ ∈ Ft(z), and (5.34) ensues.

Finally, let us observe that graph(F) = ∪m∈NG
m, with

Gm =
{
(t, u, ξ) ∈ [0, T ] × L2(Ω; Rm) × L2(Ω; Rm) : ξ ∈ Ft(u), |Et(u)| ≤ m

}
.

Now, it follows from the closedness property (5.34) that every Gm is a closed, hence Borelian,
set. Hence, graph(F) is a Borel set.

Corollary 5.9 (Variational sum rule). Assume (5.3), (W1)–(W3), (ψ1)–(ψ3), and (5.5). Then, the
dissipation potentials (Ψz)z∈D and the reduced energy functional E comply with the variational
sum rule (4.E2).

Proof: This follows from Lemmas 5.6, 5.7, and 5.7, combined with Proposition 4.2.
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Chain rule.

Lemma 5.10 (Chain rule). Assume (5.3), (W1)–(W3), (ψ1)–(ψ3), and (5.5). Then, the function
P : graph(F) → R defined in (5.13) complies with (4.E4). Moreover, the system (V,E,Ψ,F,P)
fulfills the closedness condition (4.E6), and the chain-rule inequality (4.E5).

Proof: We first observe that
(5.45)
R(t, z, ξ) is weakly sequentially compact in W 1,p(Ω; Rd) for every (t, z, ξ) ∈ graph(F).

Indeed, every sequence (ϕn)n ⊂ R(t, z, ξ) is bounded in W 1,p(Ω; Rd) thanks to (5.15).
Hence, up to a subsequence it converges to some ϕ. From the arguments in Lemma 5.8 it
follows that ϕ ∈ R(t, z, ξ). Thus, it is immediate to see that the maximum in formula (5.13) is
attained.

For every (t, z) ∈ [0, T ] ×W 1,q(Ω), h ∈ (0, T − t], and ϕ(t) ∈M(t, z) there holds

Et+h(z) − Et(z)

h
=

E2
t+h(z) − E2

t (z)

h
≤

1

h
〈−ℓ(t+ h) + ℓ(t), ϕ(t)〉W 1,p,

whence lim suph↓0
Et+h(z)−Et(z)

h
≤ Pt(z, ξ). On the other hand, it follows from (5.3) and (5.15)

that |Pt(z, ξ)| ≤ ‖ℓ′(t)‖W 1,p(Ω;Rd)∗ · supϕ∈M(t,z) ‖ϕ‖W 1,p(Ω;Rd) ≤ C . Therefore, (4.E4) is
fulfilled.

Combining the previously proved closedness property (5.34) with arguments analogous to those
developed for (5.45), it is possible to check that (4.E6) holds in a slightly stronger form, viz.

(
tn → t, un → u in V , Ftn(un) ∋ ξn ⇀ ξ in V ∗, Ptn(un, ξn) → p, Etn(un) → E

)

=⇒ (t, u) ∈ dom(F ), ξ ∈ Ft(u), p ≤ Pt(u, ξ), E = Et(u).

Hence, mimicking the argument at the end of the proof of Lemma 5.8, it is possible to check
that for every λ ∈ R, the set P−1([λ,+∞)) is a Borel set of [0, T ] × V × V ∗. Therefore,
P : graph(F) → R defined by (5.13) is a Borel function.

Finally, in order to prove that the chain rule (4.E5) is fulfilled, let us fix a curve
z ∈ AC([0, T ];L2(Ω)) and a function ξ ∈ L1(0, T ;L2(Ω)) fulfilling (4.3) and (4.4). Taking
into account (5.17) and (5.21), we have a fortiori that

(5.46)
z ∈ L∞(0, T ;W 1,q(Ω; Rm)) ∩H1(0, T ;L2(Ω; Rm)) ⊂ C0([0, T ];L∞(Ω; Rm)),

ξ ∈ L2(0, T ;L2(Ω; Rm)).

Furthermore, there exist measurable selections t 7→ ζ(t) ∈ ∂IK(z(t)) and t 7→ ϕ(t) ∈
M(t, z(t)) such that

(5.47) ξ(t) = −∆qz(t) + ζ(t) + DzW (∇ϕ(t), z(t)) for a.a. t ∈ (0, T ).

Arguing as in the proof of Lemma 5.8, from ξ ∈ L2(0, T ;L2(Ω; Rm)) we deduce that
(5.48)
‖∆qz(t)‖L2(0,T ;L2(Ω;Rm))+‖ζ(t)‖L2(0,T ;L2(Ω;Rm))+‖DzW (∇ϕ(t), z(t))‖L∞(0,T ;L2(Ω;Rm))≤C,
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where the latter estimate follows from (5.26). Thus, the chain rule for the convex functional E1

(see [12]) yields that

(5.49)

the map t 7→ E1(z(t)) is absolutely continuous, and

d

dt
E

1(z(t)) =

∫

Ω

(−∆qz(t) + ζ(t))z′(t)dx for a.a. t ∈ (0, T ).

As for the map t 7→ E2
t (z(t)), there exist constants C > 0, α ∈ (0, 1] such that for every

0 ≤ s ≤ t ≤ T we have

E2
t (z(t)) − E2

s(z(s))

= E2
t (z(t)) − E2

t (z(s)) + E2
t (z(s)) − E2

s(z(s))

≤ E
2
t (z(t)) − E

2
t (z(s)) + I2

t (ϕ(s), z(s)) − I2
s (ϕ(s), z(s))

≤ C‖z(t) − z(s)‖α
L∞(Ω;Rm)‖z(t) − z(s)‖L2(Ω;Rm)

+

∫

Ω

DzW (∇ϕ(s)), z(s))(z(t) − z(s))dx− 〈ℓ(t) − ℓ(s), ϕ(s)〉W 1,p .

where the second inequality follows from estimate (5.28) with z1 = z(s) and z2 = z(t),
also taking into account (5.16). Exchanging the role of s and t, we thus conclude for every
0 ≤ s ≤ t ≤ T

|E2
t (z(t))−E2

s(z(s))|

≤ C‖z(t)−z(s)‖L2(Ω;Rm)

(
‖z(t)−z(s)‖α

L∞(Ω;Rm)+2 sup
t∈(0,T )

‖DzW (∇ϕ(t), z(t))‖L2(Ω;Rm)

)

+ ‖ℓ(t) − ℓ(s)‖W 1,p(Ω;Rd)∗(‖ϕ(t)‖W 1,p(Ω;Rd) + ‖ϕ(s)‖W 1,p(Ω;Rd))

≤ C ′
(
‖z(t) − z(s)‖L2(Ω;Rm) + |t− s|

)
,

where the second inequality follows from (5.46), (5.3), and estimates (5.15) and (5.48). Thus,
the map t 7→ E2

t (z(t)) is absolutely continuous.

Finally, let us fix t ∈ (0, T ), such that formula (5.49) for d
dt

E1(z(t)) holds, z(t+h)−z(t)
h

→ z′(t)

in L2(Ω), ℓ(t+ h)− ℓ(t) → ℓ′(t) in W 1,p(Ω; Rd)∗, and d
dt

E2
t (z(t)) exists (the set of such t’s

has full measure). Now, in view of (5.28), and again taking into account (5.46) and (5.16), for all
h ∈ (−t, 0] and ϕ̃(t) ∈ R(t, z(t), ξ(t)) there holds

1

h
(E2

t+h(z(t+ h)) − E
2
t (z(t)))

≥ C‖z(t+ h) − z(t)‖α
L∞(Ω;Rm)

‖z(t+ h) − z(t)‖L2(Ω;Rm)

h

+
1

h

∫

Ω

DzW (∇ϕ̃(t), z(t))(z(t + h) − z(t))dx−
1

h
〈ℓ(t+ h) − ℓ(t), ϕ̃(t)〉W 1,p .

Taking the limh↑0 in the above inequality and using that z ∈ C0([0, T ];L∞(Ω; Rm)) by (5.46),
we conclude that for every ϕ̃(t) ∈ R(t, z(t), ξ(t))

(5.50)
d

dt
E2

t (z(t)) ≥

∫

Ω

DzW (∇ϕ̃(t), z(t))z′(t)dx− 〈ℓ′(t), ϕ̃(t)〉W 1,p .

Now, from the definition of R(t, z(t), ξ(t)) it follows that, in correspondence to the map t 7→
ϕ̃(t), there exists a selection t 7→ ζ̃(t) ∈ ∂IK(z(t)) such that ζ̃(t) + DzW (∇ϕ̃(t), z(t)) =
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ζ(t) + DzW (∇ϕ(t), z(t)) for almost all t ∈ (0, T ) (where ζ and ϕ are the selections in
(5.47)). Thus, using the chain rule for IK, we have

∫

Ω

DzW (∇ϕ̃(t), z(t))z′(t)dx =

∫

Ω

DzW (∇ϕ(t), z(t))z′(t)dx

+

∫

Ω

ζ(t)z′(t)dx−

∫

Ω

˜ζ(t)z′(t)dx

︸ ︷︷ ︸
=0

.

Since the selection t 7→ ϕ̃(t) ∈ R(t, z(t), ξ(t)) in (5.50) is arbitrary, from the above equality
we ultimately conclude

(5.51)
d

dt
E2

t (z(t)) ≥

∫

Ω

DzW (∇ϕ(t), z(t))z′(t)dx+ Pt(z(t), ξ(t)) for a.a. t ∈ (0, T ).

Combining (5.49) and (5.51), we obtain (4.E5).

Thus, we have shown that all the abstract assumptions of Section 4.1 are fulfilled, which implies
that Theorem 5.1 follows from Theorem 4.4.

6. PROOFS

Plan of the proof of Theorem 4.4. First, in Section 6.1 we provide some “stationary estimates”
on every single step of the incremental minimization scheme. In particular, in Lemma 6.1 we
prove the crucial energy inequality (6.7), which is the starting point for the a priori estimates on
the approximate solutions. We prove the latter estimates in Proposition 6.3. Hence we deduce in
Proposition 6.4 that, along some subsequence, the approximate solutions converge to a curve
u ∈ AC([0, T ];V ). In Section 6.3 we conclude the proof of Theorem 4.4, showing that u is in
fact a solution of the Cauchy problem for (1.21). In doing so, we rely on some technical results
proved in the Appendix.

6.1. Discrete energy inequality. In the following, we gain further insight into problems (4.9)
and (4.12) (which give rise to approximate solutions), by fixing some crucial properties of the
general minimization problem
(6.1)

It,r(u) := inf
v∈D

{
rΨu

(
v − u

r

)
+ Et+r(v)

}
for given t ∈ [0, T ], u ∈ D, 0 < r < T − t.

The following result is the Banach-space counterpart to [43, Lemmas 4.4,4.5] (see also [1, 2,
44]).

Lemma 6.1. Assume (4.Ψ1), and (4.E0)–(4.E4). Then, for every t ∈ [0, T ], u ∈ D, and for all
0 < r < T − t

(6.2) the set At,r(u) := Argmin
v∈D

{
rΨu

(
v − u

r

)
+ Et+r(v)

}
is nonempty.

Moreover, for all t ∈ [0, T ] there exists a measurable selection r 7→ ur ∈ At,r(u) such that

(6.3) 0 ∈ ∂Ψu

(
ur − u

r

)
+ Ft+r(ur).
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Further, there holds

∀ t ∈ [0, T ], u ∈ D, 0 < r < T − t, ur ∈ At,r(u) : G(ur) ≤ C3G(u),(6.4)

lim
r↓0

sup
ur∈At,r(u)

‖ur − u‖ = 0, lim
r↓0

It,r(u) = Et(u) for all t ∈ [0, T ], u ∈ D ,(6.5)

with C3 the constant in (4.5). Finally,

(6.6) the map (0, T − t) ∋ r 7→ It,r(u) is a.e. differentiable in (0, T − t)

and for every r0 ∈ (0, T − t) and every measurable selection r ∈ (0, r0] 7→ ur ∈ At,r(u)
there holds
(6.7)

r0Ψu

(
ur0

− u

r0

)
+

∫ r0

0

Ψ∗
u (−ξr) dr + Et+r0

(ur0
) ≤ Et(u) +

∫ r0

0

Pt+r(ur, ξr)dr

where ξr is any selection in Ft+r(ur) ∩
(
−∂Ψu(

ur−u
r

)
)
.

Proof: The direct method of the calculus of variations gives (6.2) because of the coercivity
condition (4.E1). Further, [14, Cor. III.3, Thm. III.6] guarantee the existence of a measurable
selection (0,+∞) ∋ r 7→ ur ∈ At,r(u), which complies with the Euler equation (6.3) thanks
to (4.E2).

Estimate (6.4) follows from the chain of inequalities

(6.8) G(u) ≥ rΨu

(
v − u

r

)
+ Et+r(ur) ≥ Et+r(ur) ≥

1

C3
G(ur),

where the first one is due to the minimality of ur, and the third one to (4.5). We refer to [43,
Lemma 4.4] for the proof of (6.5), only pointing out that the first limit in (6.5) follows from the
superlinear growth of Ψu.

Then, to check (6.6) we fix 0 < r1 < r2 and remark that

It,r2
(u) − It,r1

(u) − (Et+r2
(ur1

)−Et+r1
(ur1

))

≤ r2Ψu

(
ur1

− u

r2

)
− r1Ψu

(
ur1

− u

r1

)

≤ (r2 − r1)Ψu

(
ur1

− u

r2

)
+ r1

(
Ψu

(
ur1

− u

r2

)
− Ψu

(
ur1

− u

r1

))

≤ (r2 − r1)

(
Ψu

(
ur1

− u

r2

)
−

〈
w1

2,
ur1

− u

r2

〉)
= −(r2 − r1)Ψ

∗
u(w

1
2)

(6.9)

where the first inequality follows from (6.1), the second one from algebraic manipulations, the
third one by choosing some w1

2 ∈ ∂Ψu((ur1
− u)/r2) (which is nonempty, cf. (2.3)), and the

last passage from an elementary convex analysis identity. Since −(r2 − r1)Ψ
∗
u(w

1
2) ≤ 0 by

(2.2), we conclude that

(6.10)
It,r2

(u) ≤ It,r1
(u) + Et+r2

(ur1
) − Et+r1

(ur1
)

≤ It,r1
(u) + C1(r2 − r1)G(ur1

) ≤ It,r1
(u) + C1(r2 − r1)C3G(u) ,

the second inequality thanks to (4.E3), and the third one to (6.4). Therefore, the map r 7→
It,r(u) is given by the sum of a nonincreasing and of an absolutely continuous function, whence
we deduce that it is almost everywhere differentiable, viz. (6.6). In order to conclude (6.7), we
fix r ∈ (0, T − t), outside a negligible set, such that r is a differentiability point of the map
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r 7→ It,r(u), and we consider a selection wr
h ∈ ∂Ψu((ur − u)/(r + h)) for h > 0 sufficiently

small. We also fix a sequence hk ↓ 0 such that

(6.11) lim inf
hk↓0

Et+r+hk
(ur) − Et+r(ur)

hk

= lim inf
h↓0

Et+r+h(ur) − Et+r(ur)

h
.

Since ∂Ψu : V ⇉ V ∗ is a bounded operator, from (6.5) we easily deduce that ‖wr
hk
‖∗ ≤ C ,

so that there exist wr ∈ ∂Ψ((ur − u)/r) and a subsequence such that wr
hj
⇀ wr in V ∗.

Then, we find that

Ψ∗
u(wr) ≤ lim inf

hj↓0
Ψ∗

u(w
r
hj

) ≤ lim sup
hj↓0

Ψ∗
u(w

r
hj

)

≤ lim
hj↓0

〈
wr

hj
,
ur − u

r + hj

〉
− lim inf

hj↓0
Ψu

(
ur − u

r + hj

)

≤

〈
wr,

ur − u

r

〉
− Ψu

(
ur − u

r

)
= Ψ∗

u(wr) ,

using an elementary convex analysis identity and that both Ψ∗
u is weakly lower semicontinuous

on V ∗ and Ψu weakly lower semicontinuous on V . Therefore limj Ψ∗
u(w

r
hj

) = Ψ∗
u(wr). Since

the limit is independent of the subsequence, we conclude that, for the whole sequence wr
hk

there holds

lim
hk↓0

Ψ∗
u(w

r
hk

) = Ψ∗
u(wr) = Ψ∗

u(−ξr) for all ξr ∈ Ft+r(ur) ∩

(
−∂Ψu

(
ur − u

r

))
,

the last identity thanks to condition (2.Ψ3). Then, from (6.9) we deduce

d
dr

It,r(u)|r=r + Ψ∗
u(−ξr) = lim

hk↓0

(
It,r+hk

(u) − It,r(u)

hk
+ Ψ∗

u(w
r
hk

)

)

≤ lim inf
hk↓0

Et+r+hk
(ur) − Et+r(ur)

hk
≤ Pt+r(ur, ξr) ,

the latter inequality due to (6.11) and (4.E4). Since r is arbitrary, we ultimately find

(6.12) d
dr

It,r(u)|r=r + Ψ∗
u(−ξr) ≤ Pt+r(ur, ξr) for a.a. r ∈ (0, T − t) .

Hence, (6.7) follows from integrating (6.12) on the interval (0, r0), also using the second of
(6.5).

Remark 6.2. Under assumption (4.23) as a replacement of (2.Ψ3), it is possible to prove in-
equality (6.12) in the following way. We obtain the differentiability property (6.6) in the same way
as throughout (6.9)–(6.11) and then we observe that, for a fixed r ∈ (0, T − t) outside a neg-
ligible set, such that r is a differentiability point of the map r 7→ It,r(u), we have the following
chain of inequalities for all h > 0 (in which we have set ũr,h = u+ r+h

r
(ur − u)):

It,r+h(u)−It,r(u) ≤ Et+r+h(ũr,h)−Et+r(ur)+(r + h)Ψu

(
ũr,h−u

r + h

)
−rΨu

(
ur−u

r

)

= Et+r+h(ũr,h)−Et+r(ũr,h)+Et+r(ũr,h) − Et+r(ur)+hΨu

(
ur−u

r

)
,

where in the second passage we have used that Ψu(
ũr,h−u

r+h
)=Ψu(

ur−u
r

). Then, upon dividing
the above inequality by h > 0 and taking the lim sup as h ↓ 0, (4.23) and (4.24) yield (recall
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that δEt(u; v) = limh↓0
1
h
(Et(u+ hv)−Et(u)))

d
dr

It,r(u)|r=r≤ lim inf
h↓0

1

h
(Et+r+h(ũr,h)−Et+r(ũr,h)) +δEt+r

(
ur;

ur−u

r

)
+Ψu

(
ur−u

r

)

≤Pt+r(ur, ξr) +

〈
−ξr,

ur − u

r

〉
+ Ψu

(
ur − u

r

)

=Pt+r(ur, ξr) − Ψ∗
u (−ξr) for all ξr ∈ Ft+r(ur) ∩

(
−∂Ψu

(
ur − u

r

))
.

6.2. A priori estimates and compactness for the approximate solu tions.

Proposition 6.3 (A priori estimates). Assume (4.Ψ1)–(4.Ψ2), and (4.E0)–(4.E4) for the gener-

alized gradient system (V,E,Ψ,F,P). Let Uτ , U τ , Uτ , Ũτ , and ξ̃τ be the interpolants defined
by (4.10)–(4.12) and (4.14). Then, the discrete upper energy estimate

(6.13)

∫
tτ (t)

tτ (s)

ΨU τ (r) (U ′
τ (r)) dr +

∫
tτ (t)

tτ (s)

Ψ∗
U τ (r)(−ξ̃τ (r))dr + Etτ (t)(Uτ (t))

≤ Etτ (s)(Uτ (s)) +

∫
tτ (t)

tτ (s)

Pr(Ũτ (r), ξ̃τ(r))dr

holds for every 0 ≤ s ≤ t ≤ T . Moreover, there exists a positive constant S such that the
following estimates are valid for every τ > 0:

sup
t∈(0,T )

|Et(Uτ (t))| ≤ S, sup
t∈(0,T )

|Et(Ũτ (t))| ≤ S, sup
t∈(0,T )

∣∣∣Pt(Ũτ (t), ξ̃τ (t))
∣∣∣ ≤ S,

(6.14)

∫ T

0

ΨU τ (s) (U ′
τ (s)) ds ≤ S,

∫ T

0

Ψ∗
U τ (s)(−ξ̃τ (s))ds ≤ S,

(6.15)

the families (U ′
τ ) ⊂ L1(0, T ;V ) and (ξ̃τ ) ⊂ L1(0, T ;V ∗) are uniformly integrable, and

(6.16)

sup
t∈(0,T )

‖Uτ (t)−U τ (t)‖ + sup
t∈(0,T )

‖Uτ(t)−Uτ (t)‖ + sup
t∈(0,T )

‖Ũτ (t)−U τ (t)‖ = o(1)

(6.17)

as τ ↓ 0.

Proof: The proof of Proposition 6.3 closely follows the argument for [43, Prop. 4.7]. For the
reader’s convenience we just outline its main steps here, referring to [43] for the details.

Let tn−1, tn be two consecutive nodes of the partition Pτ and let t ∈ (tn−1, tn] : applying

inequality (6.7) with the choices t = tn−1, u = Un−1
τ , r0 = t − tn−1, ur0

= Ũτ (t), ur =

Ũτ (r) and ξr = ξ̃τ (r) for r ∈ (tn−1, t) (where Ũτ and ξ̃τ are defined by (4.12) and (4.14),
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respectively), we easily obtain

(6.18)

(t− tn−1)ΨU τ (t)

(
Ũτ (t) − U τ (t)

t− tn−1

)
+

∫ t

tn−1

Ψ∗
U τ (r)(−ξ̃τ (r))dr

+ Et(Ũτ (t)) ≤ Etn−1
(Uτ (tn−1)) +

∫ t

tn−1

Pr(Ũτ (r), ξ̃τ(r))dr .

Writing (6.18) for t = tn yields

(6.19)

∫ tn

tn−1

ΨU τ (r) (U ′
τ (r)) dr +

∫ tn

tn−1

Ψ∗
U τ (r)(−ξ̃τ (r))dr + Etn(Uτ (tn))

≤ Etn−1
(Uτ (tn−1)) +

∫ tn

tn−1

Pr(Ũτ (r), ξ̃τ(r))dr .

Upon summing up on the subintervals of the partition, we obtain (6.13). Now, we estimate the
right-hand side of (6.19) via

Etn−1
(Uτ (tn−1))+

∫ tn

tn−1

Ps(Ũτ (s), ξ̃τ(s))ds ≤ Etn−1
(Uτ (tn−1))+C2

∫ tn

tn−1

G(Ũτ (s))ds

≤ Etn−1
(Uτ (tn−1))+C2C3

∫ tn

tn−1

G(U τ (s))ds ,

the first inequality due to (4.E4) and the second one to (6.4). On the other hand, condition
(4.5) yields Etn(Uτ (tn)) ≥ C−1

3 G(Uτ (tn)). Taking into account the positivity of the two other
integral terms on the left-hand side of (6.19) (cf. (2.2)), and summing it up on the intervals of the
partition, we obtain the following inequality

(6.20) G(Uτ (tk)) ≤ C

(
E0(u0) +

∫ tk

0

G(U τ (s))ds+ 1

)
.

Then, the first estimate in (6.14) follows from applying to (6.20) a discrete version of the Gron-
wall lemma (see, e.g., [44, Lemma 4.5]), and the second of (6.14) is a consequence of (6.4).

The bound in (6.14) for the sequence {Pt(Ũτ (t), ξ̃τ(t))} again follows from the estimate for

Et(Ũτ (t)), via (4.E4).

Ultimately, the right-hand side in the discrete energy inequality (6.13) is bounded. Thus, we
conclude (6.15). From (6.18) we also deduce

(6.21) sup
t∈[0,T ]

(t− t τ (t))ΨU τ (t)

(
Ũτ (t) − U τ (t)

t− t τ (t)

)
≤ C

Now, combining this information with (6.14) and (4.Ψ2) (cf. (4.1)), we infer that

∀M > 0 ∃S > 0 ∀ τ > 0, t ∈ [0, T ] :

‖Ũτ(t) − U τ (t)‖ ≤ (t− t τ (t))S +
1

M
(t− t τ (t))ΨU τ (t)

(
Ũτ (t) − U τ (t)

t− t τ (t)

)
.

Estimates (6.15) and, again, the superlinear growth condition (4.Ψ2), yield the uniform integra-

bility of (ξ̃τ ) and (U ′
τ ), and the latter in turn implies (6.17).
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Hereafter, we will use the short-hand notation

(6.22) Pτ (t) := Pt(Ũτ (t), ξ̃τ(t)).

The following result subsumes all compactness information on the approximate solutions. Some
of the convergences below are stated in terms of a (limit) Young measure associated with the

family (U ′
τ , ξ̃τ , Pτ )τ ⊂ V × V ∗ × R, the latter space endowed with the weak topology. The

definition of Young measure, and related results, are recalled in Appendix A. Without going
into details, we may just mention here that the aforementioned limit Young measure allows to

express the limit as τ ↓ 0 of the sequence (J(U ′
τ , ξ̃τ , Pτ ))τ for any weakly continuous functional

J on V × V ∗ × R (and the lim inf as τ ↓ 0 of the sequence (H(U ′
τ , ξ̃τ , Pτ ))τ for any weakly

lower semicontinuous functional H on V × V ∗ × R).

Proposition 6.4 (Compactness). Assume (4.Ψ1)–(4.Ψ3), and (4.E0)–(4.E6). Then, for every
vanishing sequence (τk) of time-steps there exist a (not relabeled) subsequence, a curve u ∈
AC([0, T ];V ), a function E : [0, T ] → R of bounded variation, and a time-dependent Young
measure µ = {µt}t∈(0,T ) ∈ Y (0, T ;V × V ∗ × R), such that as k ↑ +∞

Uτk
, U τk

, Uτk
, Ũτk

→ u in L∞(0, T ;V ),(6.23)

U ′
τk
⇀ u′ weakly in L1(0, T ;V ),(6.24)






Et(Uτ (t)) → E (t) for all t ∈ [0, T ], E (0) = E0(u0),

E (t) ≥ Et(u(t)) for all t ∈ [0, T ],

E (t) = Et(u(t)) for a.a. t ∈ (0, T ),

(6.25)

and, moreover, µ is the limit Young measure associated with (U ′
τk
, ξ̃τk

, Pτk
) in the space V ×

V ∗ × R (endowed with the weak topology), which implies

u′(t) =

∫

V ×V ∗×R

v dµt(v, ζ, p) for a.a. t ∈ (0, T ),

(6.26a)

ξ̃τk
⇀ ξ̃ in L1(0, T ;V ∗) with ξ̃(t) :=

∫

V ×V ∗×R

ζ dµt(v, ζ, p) for a.a. t ∈ (0, T ),

(6.26b)

Pτk
⇀∗P in L∞(0, T ) with

P (t) :=

∫

V ×V ∗×R

p dµt(v, ζ, p) ≤

∫

V ×V ∗×R

Pt(u(t), ζ) dµt(v, ζ, p) for a.a. t ∈ (0, T ).

(6.26c)

Finally, the following energy inequality holds for all 0 ≤ s ≤ t ≤ T :
∫ t

s

∫

V ×V ∗×R

(
Ψu(r)(v) + Ψ∗

u(r)(−ζ)
)

dµr(v, ζ, p) dr + E (t)

≤ E (s) +

∫ t

s

P (r) dr ≤ E (s) +

∫ t

s

∫

V ×V ∗×R

Pr(u(r), ζ) dµr(v, ζ, p) dr .

(6.27)

Proof: Let (τk) be a vanishing sequence of time-steps. It follows from the uniform integrabil-
ity (6.16) of the sequence (U ′

τk
) that (Uτk

) is equicontinuous on V . Furthermore, (6.14) and



44

assumption (4.E1) give that Ũτk
is contained in some compact subset of V . Hence Uτk

is con-
tained in its convex hull, which is also compact. Therefore, with the Arzelà-Ascoli theorem we
conclude that there exists u ∈ C0([0, T ];V ) such that, up to a subsequence,

(6.28) Uτk
→ u in C0([0, T ];V ).

Combining this with (6.17), we conclude convergences (6.23). Next, (6.24) ensues from the
aforementioned uniform integrability of (U ′

τk
) via the Dunford-Pettis criterion (see, e.g., [21,

Cor. IV.8.11]).

Secondly, from the third of (6.14) we have that, up to a further subsequence,

(6.29) Pτk
converges weakly∗ in L∞(0, T ) to some P ∈ L∞(0, T ).

Thus, to prove (6.25) we proceed in the same way as for [44, Prop. 4.7], viz. we deduce from
the discrete energy inequality (6.13) that the map

t 7→ ητ (t) := Etτ (t)(Uτ (t)) −

∫
tτ (t)

0

Pτ (r)dr is nonincreasing on [0, T ].

Therefore by Helly’s theorem there exists η : [0, T ] → R, nonincreasing, such that, up to a
subsequence, ητk

(t) → η(t) for all t ∈ R. In view of (6.29), we conclude that

(6.30) Etτk
(t)(Uτk

(t)) → E (t) := η(t) +

∫ t

0

P (r)dr ∀ t ∈ [0, T ].

This ultimately yields the first of (6.25) via (4.E3) and (6.14), which give
(6.31)∣∣Etτ (t)(Uτ (t))−Et(Uτ (t))

∣∣ ≤ C1|tτ (t)−t|G(Uτ (t)) ≤ SC1 |tτ (t)−t| → 0 as τ ↓ 0.

Then, the second of (6.25) is a straightforward consequence of the lower semicontinuity of Et(·),
while the third of (6.25) follows from assumption (4.E6).

In view of estimates (6.14) and (6.15) (which imply the uniform integrability of the sequence

{ξ̃τ} in L1(0, T ;V ∗) as well), we are in the position of applying the Young measure result in

Theorem A.2 to the sequence (U ′
τk
, ξ̃τk

, Pτk
), with which we associate a limit Young measure

µ = {µt}t∈(0,T ) such that for a.a. t ∈ (0, T )

(6.32)
µt is concentrated on the set L(t) of the limit points of (U ′

τk
(t), ξ̃τk

(t), Pτk
(t))

with respect to the weak-weak-strong topology of V × V ∗ × R,

(cf. (A.4)), and there hold (A.5) and (A.6). Note that the latter relations imply (6.26a), (6.26b),
and (6.26c). Then, from Jensen’s inequality we have

{ ∫
V ×V ∗×R

Ψu(t)(v) dµt(v, ζ, p) ≥ Ψu(t)(u
′(t)),∫

V ×V ∗×R
Ψ∗

u(t)(−ζ) dµt(v, ζ, p) ≥ Ψ∗
u(t)(−ξ̃(t))

for a.a. t ∈ (0, T ) .(6.33)

Passing to the limit in the Euler equation (4.14), we deduce from (4.E6), from convergence

(6.23) for (Ũτk
), and from the first of (6.25), that for a.a. t ∈ (0, T ) the set L(t) has the

following property

(6.34) for all (v, ζ, p) ∈ L(t) there holds ζ ∈ Ft(u(t)), p ≤ Pt(u(t), ζ).

Hence, from the latter inequality and (A.6) we also deduce the inequality in (6.26c). Furthermore,
we apply the Γ-lim inf inequality (A.5) with the choice Hk(t, v, ζ, p) = ΨU τk

(t)(v) (notice that
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(A.3) is fulfilled in view of assumption (4.Ψ3), of (6.14), and of (6.23)). Thus, we obtain for all
0 ≤ s ≤ t ≤ T

(6.35) lim inf
k→∞

∫
tτk

(t)

tτk
(s)

ΨU τk
(r)

(
U ′

τk
(r)
)

dr ≥

∫ t

s

∫

V ×V ∗×R

Ψu(r)(v)dµr(v, ζ, p)dr

The choice Hk(t, v, ζ, p) = Ψ∗
U τ (t)(ζ) (which complies with (A.3) thanks to (4.2) and again

(6.14)) obviously gives

(6.36) lim inf
k→∞

∫
tτk

(t)

tτk
(s)

Ψ∗
U τk

(r)(−ξ̃τk
(r))dr ≥

∫ t

s

∫

V ×V ∗×R

Ψ∗
u(r)(−ζ)dµr(v, ζ, p)dr.

Therefore, we pass to the limit in the discrete energy inequality (6.13). Using (6.25), (6.26c),
(6.29), (6.35), and (6.36), we conclude inequality (6.27). This completes the proof.

6.3. Proof of Theorem 4.4.

Step 1: a Young measure argument. It follows from the a priori estimates (6.14)–(6.15) and
from (6.25), (6.32)–(6.35) that the curve u ∈ AC([0, T ;V ) and the Young measure {µt}t∈(0,T )

comply with assumptions (B.1)–(B.4) of Theorem B.1. Therefore, the map t 7→ Et(u(t)) is
absolutely continuous and we have the following chain of inequalities
(6.37)∫ t

0

∫

V ×V ∗×R

(
Ψu(r)(v)+Ψ∗

u(r)(−ζ)
)

dµr(v, ζ, p) dr + Et(u(t))

≤ E0(u(0)) +

∫ t

0

P (r) dr ≤ Et(u(t)) +

∫ t

0

∫

V ×V ∗×R

〈−ζ, u′(r)〉 dµr(v, ζ, p) dr

where the first inequality follows from (6.27) (written for t ∈ (0, T ] and s = 0) and from the
second of (6.25), while the second inequality is a consequence of the Young measure chain-rule
inequality (B.5). Taking into account inequality (6.33), we thus conclude

∫ t

0

∫

V ×V ∗×R

(
Ψu(r)(u

′(r))+Ψ∗
u(r)(−ζ)−〈−ζ, u′(r)〉

)
dµr(v, ζ, p) dr ≤ 0.

Since the integrand is nonnegative, we find
(6.38)∫

V ×V ∗×R

(
Ψu(t)(u

′(t))+Ψ∗
u(t)(−ζ)−〈−ζ, u′(t)〉

)
dµt(v, ζ, p) = 0 for a.a. t ∈ (0, T ).

Now, it follows from the above discussion that all inequalities in (6.37) indeed hold as equalities.
Again using the chain-rule inequality (B.5), it is easy to deduce that, for almost all t ∈ (0, T ),
we have

(6.39)

∫

V ×V ∗×R

(
Ψu(t)(u

′(t))+Ψ∗
u(t)(−ζ)−p

)
dµt(v, ζ, p)

=

∫

V ×V ∗×R

(〈−ζ, u′(t)〉−p) dµt(v, ζ, p) = −
d

dt
Et(u(t))

Thus, we conclude for every 0 ≤ s ≤ t ≤ T the energy identity

(6.40)

∫ t

s

∫

V ×V ∗×R

(
Ψu(r)(v)+Ψ∗

u(r)(−ζ)−p
)

dµr(v, ζ, p) dr = Es(u(s)) − Et(u(t)) .
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Step 2: a measurable selection. Let us consider the measure νt := (π2,3)#(µt), i.e. the mar-
ginal of µt with respect to the (ζ, p)-component, defined by (π2,3)#(µt)(B) = µt(π

−1
2,3(B)) for

all B ∈ B(V ∗ × R) (the Borel σ-algebra of V ∗ × R). As a consequence of (6.34) and (6.38),
for almost all t ∈ (0, T ) the measure νt is concentrated on the set
(6.41)
S(t, u(t), u′(t)) :=

{
(ζ, p) ∈ V ∗ × R : ζ ∈ Ft(u(t)) ∩ (−∂Ψu(t)(u

′(t)), p ≤ Pt(u(t), ζ)
}
,

namely

(6.42) νt((V
∗ × R) \ S(t, u(t), u′(t))) = 0 for a.a. t ∈ (0, T ).

In particular, for almost all t ∈ (0, T ) the set S(t, u(t), u′(t)) is nonempty. Then, Lemma
B.2 in the appendix below guarantees that there exists a measurable selection t ∈ (0, T ) 7→
(ξ(t), p(t)) ∈ S(t, u(t), u′(t)) such that
(6.43)

Ψ∗
u(t)(−ξ(t)) − p(t) = min

(ζ,p)∈S(t,u(t),u′(t))
{Ψ∗

u(t)(−ζ) − p}
.
= M∗(t) for a.a. t ∈ (0, T ).

In particular, ξ satisfies equation (4.16), hence we conclude that u solves the Cauchy problem
for (1.21). In fact, we have

(6.44)

∫ T

0

Ψ∗
u(t)(−ξ(t)) dt < +∞,

which in particular yields ξ ∈ L1(0, T ;V ∗) via (4.Ψ2). To check (6.44), it is sufficient to observe
that
∫ T

0

Ψ∗
u(t)(−ξ(t)) dt ≤

∫ T

0

M∗(t) + p(t) dt

≤

∫ T

0

∫

V ∗×R

(
Ψ∗

u(r)(−ζ) − p
)

dνr(ζ, p) dr +

∫ T

0

Pr(u(r), ξ(r)) dr

≤

∫ T

0

∫

V ×V ∗×R

(
Ψ∗

u(r)(−ζ) − p
)

dµr(v, ζ, p) dr + C2

∫ T

0

G(u(r)) dr

≤ C

where the second inequality ensues from (6.42) and the fact that p(t) ≤ Pt(u(t), ξ(t)) for
almost all t ∈ (0, T ), the third inequality from (4.E4), and the last one from (6.40) and the fact
that supt∈(0,T ) G(u(t)) < +∞.

Step 3: proof of the energy identity (4.17). On the one hand, we observe that for every 0 ≤
s ≤ t ≤ T there holds

(6.45)

∫ t

s

(
Ψu(r)(u

′(r))+Ψ∗
u(r)(−ξ(r))−Pr(u(r), ξ(r))

)
dr

≤

∫ t

s

Ψu(r)(u
′(r))+Ψ∗

u(r)(−ξ(r))−p(r) dr ≤ Es(u(s)) − Et(u(t)),

where the first estimate follows from p(t) ≤ Pt(u(t), ξ(t)) for almost all t ∈ (0, T ) by definition
of S(t, u(t), u′(t)), and the second estimate is due to (6.40), combined with (6.42) and (6.43).
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On the other hand, applying the chain-rule inequality (4.E5) to the pair (u, ξ) we have
(6.46)

Et(u(t)) − Es(u(s)) ≥

∫ t

s

(〈ξ(r), u′(r)〉+Pr(u(r), ξ(r))) dr for every 0 ≤ s ≤ t ≤ T .

Combining (6.45) and (6.46) and arguing in the same way as throughout (6.37)–(6.38), we ob-
tain that all inequalities in (6.45) ultimately hold as equalities; in particular, p(t) = Pt(u(t), ξ(t))
for almost all t ∈ (0, T ). We have thus proved that the pair (u, ξ) satisfies the energy iden-
tity (4.17). A comparison between the latter and the Young-measure energy identity (6.40) also
reveals that, for almost all t ∈ (0, T ),

Ψu(t)(u
′(t)) =

∫

V ×V ∗×R

Ψu(t)(v) dµt(v, ζ, p),(6.47)

Ψ∗
u(t)(−ξ(t)) − Pt(u(t), ξ(t)) = min

(ζ,p)∈S(t,u(t),u′(t))
{Ψ∗

u(t)(−ζ) − p}

= Ψ∗
u(t)(−ζ)−p for νt-almost all (ζ, p) ∈ V ∗ × R.

(6.48)

Taking into account that Ψ∗
u(t)(−ζ) = Ψ∗

u(t)(−ξ(t)) due to condition (2.Ψ3), we thus conclude
the maximum selection principle

(6.49) Pt(u(t), ξ(t)) = max{p : (ζ, p) ∈ S(t, u(t), u′(t))}.

Step 4: enhanced convergences. Convergences (4.18c)–(4.18d) and (4.18e) are proved by
passing to the limit in (6.13), written for s = 0 and t ∈ [0, T ]. We use the short-hand notation
(6.22), as well as

Ak(t) =

∫
tτk

(t)

0

ΨU τk
(r)

(
U ′

τk
(r)
)

dr,

Bk(t) =

∫
tτk

(t)

0

Ψ∗
U τk

(r)(−ξ̃τk
(r))dr,

Ck(t) =Etτk
(t)(Uτk

(t)).

For all t ∈ [0, T ] we find

(6.50)

∫ t

0
Ψu(r)(u

′(r)) dr +
∫ t

0
Ψ∗

u(r)(−ξ(r)) dr + Et(u(t))

=
∫ t

0
Ψu(r)(u

′(r)) dr +
∫ t

0

∫
V ×V ∗×R

Ψ∗
u(r)(−ζ) dνr(v, ζ, p) dr + Et(u(t))

≤ lim infk→∞Ak(t) + lim infk→∞Bk(t) + lim infk→∞Ck(t)
≤ lim supk→∞ (Ak(t) +Bk(t) + Ck(t))

≤ lim supk→∞ E0(Uτk
(0)) + lim supk→∞

∫
tτk

(t)

0
Pτ (r)dr

≤ E0(u(0)) +
∫ t

0
Pr(u(r), ξ(r)) dr

=
∫ t

0
Ψu(r)(u

′(r)) dr +
∫ t

0
Ψ∗

u(r)(−ξ(r)) dr + Et(u(t))

where the first identity follows from (6.48), the second estimate from (6.25), (6.30)–(6.31), and
(6.35)–(6.36), the third estimate is trivial and the fourth one ensues from inequality (6.13),
whereas the fifth estimate is a consequence of (6.26c), and the sixth identity is due to (4.17).
Altogether, all inequalities in (6.50) turn out to be equalities, and with an elementary argument
we conclude (4.18c), (4.18d), as well as (4.18e).
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Step 5: the strictly convex case. Finally, if we further assume (4.19), from (6.47), (6.48), and
the strict convexity of Ψ∗

u(t)(·) we infer

(6.51) (π2)#(µt) = δξ(t) for a.a. t ∈ (0, T ).

Hence, from (6.26b) we deduce convergence (4.20). This concludes the proof of Theorem 4.4.

Remark 6.5. Notice that, if in addition we assume Ψu to be strictly convex for all u, then we
also have (π1)#(µt) = δu′(t). The latter relation, joint with (6.51), yields

U ′
τk

(t) ⇀ u′(t), ξ̃τk
(t) ⇀ ξ(t) for a.a. t ∈ (0, T ).

Sketch of the proof of Theorem 4.8. For every n ∈ N, the solution pair (un, ξn) fulfills the
energy identity associated with the Cauchy problem (4.28), namely there holds
(6.52)∫ t

0

(
Ψn

un(r)(u
′
n(r))+(Ψn

un(r))
∗(−ξn(r))

)
dr+En

t (un(t)) = En
0(u

n
0 )+

∫ t

0

Pn
r (un(r), ξn(r))dr

for all t ∈ [0, T ]. From (6.52) we deduce all the a priori estimates on the sequence (un, ξn),
with the very same arguments as in the proof of Proposition 6.3. Indeed, we exploit condition
(4.27) on En

0(u
n
0 ), and use (4.E4) (for a constant uniform with respect to n ∈ N), to estimate the

terms on the right-hand side of (6.52). Then, all of the terms on the left-hand side are estimated
as well. Combining this with the coercivity properties of the potentials (Ψn

u), viz.

∀R > 0, M > 0
{
∃K > 0 ∀u ∈ D with supn∈N

Gn(u) ≤ R∀ v ∈ V :‖v‖ ≥ K ⇒Ψn
u(v) ≥M‖v‖,

∃K∗ > 0∀u ∈ D with supn∈N
Gn(u) ≤ R∀ ξ ∈ V ∗ :‖ξ‖∗ ≥ K∗⇒(Ψn

u)∗(ξ) ≥M‖ξ‖∗,

we have that the sequence (u′n) ⊂ L1(0, T ;V ) is uniformly integrable. Furthermore, the es-
timate supn∈N

supt∈[0,T ] E
n
t (un(t)) yields compactness which, combined with uniform integra-

bility, ensures convergences (4.29a), along a subsequence, to some curve u ∈ AC([0, T ];V ).
Like in Proposition 6.4, up to a subsequence we also find some limit Young measure for the
sequence (u′n, ξn, Pn), with Pn(t) := Pn

t (un(t), ξn(t)).

Finally, in order to pass to the limit as n → ∞, we reproduce on the time-continuous level the
arguments developed in Steps 1–4 of the proof of Theorem 4.4. Namely, combining semiconti-
nuity arguments with properties (4.25) and (4.26), we take the limit as n → ∞ of (6.52), and
deduce that the curve u fulfills the upper energy estimate. We obtain the lower energy estimate
from the chain rule, and in this way we conclude that u is a solution to the Cauchy problem for
(1.21).

APPENDIX A. YOUNG MEASURE TOOLS

In this section, we collect some results on parametrized (or Young) measures with values in
infinite-dimensional spaces, see e.g. [7, 8, 11, 9, 13, 54]. In particular, we shall focus on Young
measures with values in a reflexive Banach space V. The definitions and results we are going
to recall below, apply in Section 6.2 (cf. Proposition 6.4), to the space V = V × V ∗ × R.
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Notation. Given an interval I ⊂ R, we denote by LI the σ-algebra of the Lebesgue measur-
able subsets of I and, given a reflexive Banach space V, by B(V) its Borel σ-algebra. We
use the symbol ⊗ for product σ-algebrae. We recall that a LI ⊗ B(V)-measurable function
h : I × V → (−∞,+∞] is a normal integrand if for a.a. t ∈ (0, T ) the map x 7→ ht(x) =
h(t, x) is lower semicontinuous on V.

We consider the space V endowed with the weak topology, and say that a L(0,T ) ⊗ B(V)–
measurable functional H : (0, T ) × V → (−∞,+∞] is a weakly-normal integrand if for a.a.
t ∈ (0, T ) the map

(A.1) w 7→ h(t, w) is sequentially lower semicontinuous on V w.r.t. the weak topology.

We denote by M (0, T ; V) the set of all L(0,T )-measurable functions y : (0, T ) → V. A se-
quence (wn) ⊂ M (0, T ; V) is said to be weakly-tight if there exists a weakly-normal integrand
H : (0, T ) × V → (−∞,+∞] such that the map

w 7→ Ht(w) has compact sublevels w.r.t. the weak topology of V, and

sup
n

∫ T

0

H(t, wn(t))dt <∞.

Definition A.1 ((Time-dependent) Young measures). A Young measure in the space V is a
family µ := {µt}t∈(0,T ) of Borel probability measures on V such that the map on (0, T )

(A.2) t 7→ µt(B) is L(0,T )-measurable for all B ∈ B(V).

We denote by Y (0, T ; V) the set of all Young measures in V.

The following Γ-lim inf result is a straightforward consequence of [53, Thm. 4.2].

Theorem A.2. Let {Hn}, H : (0, T ) × V → (−∞,+∞] be weakly-normal integrands such
that for all w ∈ V and for a.a. t ∈ (0, T )

(A.3) H(t, w) ≤ inf
{

lim inf
n→∞

Hn(t, wn) : wn ⇀ w in V

}
.

Let (wn) ⊂ M (0, T ; V) be a weakly-tight sequence. Then, there exist a subsequence (wnk
)

and a Young measure µ = {µt}t∈(0,T ) such that for a.a. t ∈ (0, T )

(A.4) µt is concentrated on the set L(t) :=
⋂∞

p=1

{
wnk

(t) : k ≥ p
}w

of the limit points of the sequence (wnk
(t)) with respect to the weak topology of V and, if the

sequence t 7→ H−
nk

(t, wnk
(t)) is uniformly integrable, there holds

(A.5) lim inf
k→+∞

∫ T

0

Hnk
(t, wnk

(t)) dt ≥

∫ T

0

∫

V

H(t, w) dµt(w) dt .

As a corollary (the reader is referred to the discussion in [53] for more details), we have a
generalization of the so-called Fundamental Theorem of Young measures, see [44, Thm. 3.2]
for the case of the weak topology in Hilbert spaces, and the classical results [7, Thm. 1], [8,
Thm. 2.2], [9, Thm. 4.2], [54, Thm. 16].

Theorem A.3 (The Fundamental Theorem for strong-weak-weak topologies ). Let 1 ≤ p ≤
∞ and let (wn) ⊂ Lp(0, T ; V) be a bounded sequence. If p = 1, suppose further that (wn)
is uniformly integrable in L1(0, T ; V). Then, there exists a subsequence (wnk

) and a Young
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measure µ = {µt}t∈(0,T ) ∈ Y (0, T ; V) such that for a.a. t ∈ (0, T ) relation (A.4) holds and,
setting

w(t) :=

∫

V

w dµt(w) for a.a. t ∈ (0, T ) ,

there holds

(A.6) wnk
⇀ w in Lp(0, T ;V ),

with ⇀ replaced by ⇀∗ if p = ∞.

In fact, in Section 6.2 (cf. Proposition 6.4), Theorem A.3 applies to the sequence wk(t) :=

(U ′
τk

(t), ξ̃τk
(t), Pτk

(t)) ⊂ V × V ∗ × R.

APPENDIX B. EXTENSION OF THE CHAIN RULE TO YOUNG MEASURES

From now on, we work with Young measures valued in the reflexive space V := V × V ∗ × R,
whose elements are denoted by (v, ζ, p). The main result of this section is a Young measure
version of the chain-rule inequality (4.E5).

Proposition B.1. In the framework of (4.Ψ1)–(4.Ψ2), suppose that E complies with (4.E0)–
(4.E6). Let u ∈ AC([0, T ];V ) be an absolutely continuous curve such that

(B.1) (t, u(t)) ∈ dom(F) for a.a. t ∈ (0, T ), and sup
t∈(0,T )

Et(u(t)) < +∞.

Let µ = {µt}t∈(0,T ) be a Young measure in V × V ∗ × R such that

∫ T

0

∫

V ×V ∗×R

(
Ψu(t)(v) + Ψ∗

u(t)(−ζ)
)

dµt(v, ζ, p)dt < +∞,

(B.2)

for a.a. t ∈ (0, T ) u′(t) =

∫

V ×V ∗×R

v dµt(v, ζ, p),

(B.3)

for a.a. t ∈ (0, T ) for all (v, ξ, p) ∈ supp(µt) there holds ξ ∈ Ft(u(t)), p ≤ Pt(u(t), ξ).
(B.4)

Then,

(B.5)

the map t 7→ Et(u(t)) is absolutely continuous on (0, T ), and

d

dt
Et(u(t)) ≥

∫

V ×V ∗×R

(〈u′(t), ζ〉 + p) dµt(v, ζ, p) for a.a. t ∈ (0, T ).

The proof of this result closely follows the argument for [44, Thm. 3.3], to which we constantly
refer the reader.
Proof: We split the argument in three claims.

Claim 1: let us set for almost all t ∈ (0, T )

(B.6) K(t, u(t)) := {(ξ, p) ∈ V ∗ × R : ξ ∈ Ft(u(t)), p ≤ Pt(u(t), ξ)} .

There exists a sequence of strongly measurable maps (ξn, pn) : (0, T ) → V ∗ × R such that

(B.7) {(ξn(t), pn(t)) : n ∈ N} ⊂ K(t, u(t)) ⊂ {(ξn(t), pn(t)) : n ∈ N},
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(A denoting the closure, with respect to the topology of V ∗ × R, of a subset A ⊂ V ∗ × R).
First of all, let us observe that the set

(B.8)
K := {(t, u, ξ, p) ∈ [0, T ] × V × V ∗ × R : ξ ∈ Ft(u), p ≤ Pt(u, ξ)}

is a Borel set of [0, T ] × V × V ∗ × R.

This follows from the fact that graph(F) is a Borel set of [0, T ]×V ×V ∗, and P : graph(F) →
R a Borel function. Now, it follows from (B.1) and (B.3)–(B.4) that there exists a subset T ⊂
(0, T ) of full measure such that K(t, u(t)) 6= ∅ for all t ∈ [0, T ]. Let us then consider the
graph of the multivalued function t ∈ T 7→ K(t, u(t)) ⊂ V ∗ × R, i.e. the set

K = {(t, ξ, p) ∈ T × V ∗ × R : (ξ, p) ∈ K(t, u(t))}

= {(t, ξ, p) ∈ T × V ∗ × R : (t, u(t), ξ, p) ∈ K} .

Due to the latter representation, to (B.8) and to the fact that the function u : [0, T ] → V is
Borelian, we can conclude that K is a Borel set of T × V ∗ × R. Therefore, (B.7) ensues from
[14, Thm. III.22].

Claim 2: it is possible to choose the measurable maps ξn : (0, T ) → V ∗ fulfilling (B.7) in such
a way that

(B.9) ξn ∈ L1(0, T ;V ∗) for every n ∈ N and sup
n

∫ T

0

Ψ∗
u(t)(−ξn(t)) dt < +∞.

We set
M∗(t) := min

(ξ,p)∈K(t,u(t))
Ψ∗

u(t)(−ξ) for almost all t ∈ (0, T ).

It follows from (B.7) that

(B.10) the map t 7→ M∗(t) = min
n

Ψ∗
u(t)(−ξn(t)) is measurable on (0, T ).

Moreover, (B.2) and (B.3) yield that

(B.11)

∫ T

0

M∗(t) dt ≤

∫ T

0

∫

V ∗

Ψ∗
u(t)(−ζ) dµt(v, ζ, p) dt < +∞.

Arguing as the proof of [44, Lemma 3.4], we recursively define the following family of subsets of
T, i.e.

A0 := ∅, Ak :=
{
t ∈ T : Ψ∗

u(t)(−ξk(t)) ≤ M∗(t) + 1
}
\

k−1⋃

j=0

Aj .

Due to (B.10), for every k ∈ N the set Ak is measurable and, by construction, the family
{Ak}k∈N is disjoint with

⋃
k∈N

Ak = T. Hence, we set

ξ̄(t) :=

+∞∑

k=1

ξk(t)χAk
(t) p̄(t) :=

+∞∑

k=1

pk(t)χAk
(t) for all t ∈ T.

Notice that the map t 7→ (ξ̄(t), p̄(t)) is a measurable selection of K(t, u(t)), and that

(B.12) Ψ∗
u(t)(−ξ̄(t)) ≤ M∗(t) + 1 for every t ∈ T.

In particular, it follows from (4.Ψ2) that ξ̄ ∈ L1(0, T ;V ∗). Then, we use (ξ̄, p̄) to construct a
new countable family of functions, setting

(ξn,k(t), pnk
(t)) :=

{
(ξn(t), pn(t)) if Ψ∗

u(t)(−ξn(t)) ≤ k,

(ξ̄(t), p̄(t)) otherwise,
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such that the functions ξn,k belong to L1(0, T ;V ∗), and the pairs (ξn,k, pnk
) satisfy

(ξn,k(t), pnk
(t)) ∈ K(t, u(t)),

{(ξn(t), pn(t)) : n ∈ N} ⊂ {(ξn,k(t), pnk
(t)) : n, k ∈ N} if t ∈ T, �

as well as estimate (B.9), in view of (B.11).

Claim 3: inequality (B.5) holds.
Indeed, it follows from Claims 1 and 2 that we can apply the chain rule (4.E5) to the pairs (u, ξn)

for all n ∈ N (indeed, estimate (B.2) and the first of (B.3) yield
∫ T

0
Ψu(t)(u

′(t)) dt < +∞).
Therefore, we conclude for all n ∈ N that there exists a set of full measure Tn ⊂ T

the map t 7→ Et(u(t)) is absolutely continuous and

d

dt
Et(u(t)) ≥ 〈ξn(t), u′(t)〉 + Pt(u(t), ξn(t)) ≥ 〈ξn(t), u

′(t)〉 + pn(t) for all t ∈ Tn.

Thus, we infer

(B.13)
d

dt
Et(u(t)) ≥ 〈ξ, u′(t)〉 + p for all (ξ, p) ∈ conv(K(t, u(t))), for all t ∈ T∞,

with conv(K(t, u(t))) the closed convex hull of K(t, u(t)) and T∞ =
⋂

n∈N
Tn (note that

T∞ is a subset of (0, T ) of full measure, too). Then, (B.5) follows upon integrating (B.13) with
respect to the measure µt, again taking into account (B.4) and (B.3).

We conclude with the following

Lemma B.2 (Measurable selection). In the framework of (4.Ψ1)–(4.Ψ2), suppose that E com-
plies with (4.E0)–(4.E6). Let u ∈ AC([0, T ];V ) be an absolutely continuous curve complying
with (B.1), and suppose that the set
(B.14)
S(t, u(t), u′(t)):=

{
(ζ, p) ∈ V ∗×R : ζ ∈ Ft(u(t)) ∩ (−∂Ψu(t)(u

′(t))), p ≤ Pt(u(t), ζ)
}
,

is nonempty for almost all t ∈ (0, T ).

Then, there exists measurable functions ξ : (0, T ) → V ∗, p : (0, T ) → R such that
(B.15)

(ξ(t), p(t)) ∈ Argmin{Ψ∗
u(t)(−ζ) − p : (ζ, p) ∈ S(t, u(t), u′(t))} for a.a. t ∈ (0, T ) .

Proof: First of all, let us observe that

(B.16) Argmin{Ψ∗
u(t)(−ζ) − p : (ζ, p) ∈ S(t, u(t), u′(t))} 6= ∅ for a.a. t ∈ (0, T ) .

For, let (ξn, pn) ⊂ S(t, u(t), u′(t)) be a infimizing sequence: then, there exist some positive
constants C and C ′ such that
(B.17)

Ψ∗
u(t)(−ξn) ≤ C + pn ≤ C + Pt(u(t), ξn) ≤ C + C2G(u(t)) ≤ C ′ for every n ∈ N,

where the first inequality trivially follows from the fact that (ξn, pn) is infimizing, the second
one from the definition of S(t, u(t), u′(t)), the third one from (4.E4), and the last one from
(4.5) and assumption (B.1). In view of the latter, and of the superlinear growth condition (4.Ψ2),
from the bound for Ψ∗

u(t)(−ξn) we infer that supn ‖ξn‖∗ < +∞. It is also clear from (B.17)

that supn |pn| < +∞, therefore there exist (ξ∗, p∗) such that, up to a subsequence, ξn ⇀
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ξ∗ in V ∗ and pn → p∗. Exploiting the closedness condition (4.E6), we infer that (ξ∗, p∗) ∈
S(t, u(t), u′(t)), and by lower semicontinuity

Ψ∗
u(t)(−ξ∗) − p∗ ≤ lim inf

n→∞

(
Ψ∗

u(t)(−ξn) − pn

)
= inf

(ζ,p)∈S(t,u(t),u′(t))
{Ψ∗

u(t)(−ζ) − p},

whence (B.16).

In order to prove (B.15), we first observe that for all t ∈ [0, T ] the set
(B.18)
S : = {(t, u, v, ξ, p) ∈ [0, T ]×V×V×V ∗×R : ξ ∈ Ft(u) ∩ (−∂Ψu(v)), p ≤ Pt(u, ξ)}

is a Borel set of [0, T ] × V × V × V ∗ × R.

This follows from the same arguments as for (B.8) in Proposition B.1. Now, due to (B.14) there
exists a subset T′ ⊂ (0, T ) of full measure such that S(t, u(t), u′(t)) 6= ∅ for all t ∈ T′. We
thus consider the graph of the multivalued function t ∈ T′ 7→ S(t, u(t), u′(t)) ⊂ V ∗ × R, i.e.
the set

S := {(t, ξ, p) ∈ T
′ × V ∗ × R : (ξ, p) ∈ S(t, u(t), u′(t))}

= {(t, ξ, p) ∈ T′ × V ∗ × R : (t, u(t), u′(t), ξ, p) ∈ S} .

Then, we combine the latter representation of S with (B.18), and the fact that the functions
u : (0, T ) → V and u′ : (0, T ) → V are Borelian up to choosing a suitable representative
for u′. Thus, we conclude that S is a Borel set of T′ × V ∗ × R. Hence, the existence of a
measurable selection (ξ, p) as in (B.15) is a consequence of [14, Cor. III.3, Thm. III.6], cf. also
Filippov’s theorem, see e.g. [4, Thm. 8.2.11].
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