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AbstratWe onsider a Fokker-Plank equation on a ompat interval where, as a on-straint, the �rst moment is a presribed funtion of time. Eliminating the assoiatedLagrange multiplier one obtains nonlinear and nonloal terms. After establishingsuitable loal existene results, we use the relative entropy as an energy funtional.However, the time-dependent onstraint leads to a soure term suh that a deliateanalysis is needed to show that the dissipation terms are strong enough to ontrolthe work done by the onstraint. We obtain global existene of solutions as longas the presribed �rst moment stays in the interior of an interval. If the presribedmoment onverges to a onstant value inside the interior of the interval, then thesolution stabilises to the unique steady state.1 IntrodutionIn this paper we disuss a model that was developed for a many-partile system relevantfor lithium-ion batteries, see [DJ∗10, DGH06℄. Here the variable x ∈ Ω = ]0, 1[ relates tothe relative loading state of partiles and u(x, t) is the time-dependent probability density,i.e. ∫
Ω
u(x, t) dx = 1 for all t. The model takes the form






τut(x, t) =
(
ν2ux(x, t) + ψ′(x)u(x, t) − Λ(t)u(x, t)

)
x

for x ∈ Ω, t > 0,

ν2ux(x, t) + ψ′(x)u(x, t) − Λ(t)u(x, t) = 0 for x ∈ ∂Ω, t > 0,

C(u(t)) :=
∫
Ω
xu(x, t) dx = ℓ(t) for t ≥ 0,

u(x, 0) = u0(x) for x ∈ Ω.

(1.1)The potential ψ an be taken general but has to satisfy ertain smoothness, namely it isa general potential satisfying
ψ ∈ H1([0, 1]). (1.2)The Lagrange multiplier Λ(t) is assoiated with the onstraint C(u(t)) = ℓ(t), where

ℓ : [0,∞[ → ]0, 1[ is a given datum. In fat, Λ an easily be determined as
Λ(t) =

∫

Ω

ν2ux(x, t) + ψ′(x)u(x, t) dx+ τ ℓ̇(t).After inserting Λ into (1.1) we arrive at a nonlinear Fokker-Plank equation, where thenonlinearity is quadrati and arises only through the nonloal term Λ(t).In Setion 2.1 the origins of this model and its physial relevane are disussed in moredetail. In Setion 3 we provide a loal existene theory for the above system. After some
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preparation we use the semilinear struture of the problem to derive existene on smalltime intervals. Positivity and paraboli regularity are obtained. The quadrati nature ofthe problem is nontrivial and may lead to blow-up. Note that (1.1) after elimination of
Λ takes the form





τut(x, t) =
(
ν2ux(x, t) + u(x, t)

[
ψ′(x) − L(u(t)) − τp(t)

])

x
for x ∈ Ω, t > 0,

ν2ux(x, t) + u(x, t)
[
ψ′(x) − L(u(t)) − τp(t)

]
= 0 for x ∈ ∂Ω, t > 0,(1.3)where p(t) plays the role of ℓ̇(t) and for any v ∈ C(Ω̄), L(v) is de�ned as

L(v) := ν2 (v(1) − v(0)) +

∫

Ω

ψ′(x)v(x) dx. (1.4)We show that for this system blow-up ours for suitable hoies of p and initial onditions
u0.To obtain global existene, one needs to remember p = ℓ̇ and that ℓ(0) is given by theinitial ondition. Hene

ℓ(t) =

∫

Ω

xu(x, 0) dx+

∫ t

0

p(t) dt.Global existene will depend on the additional assumption ℓ(t) ∈ ]0, 1[ for all t ≥ 0.Obviously, there does not exist a smooth probability density on ]0, 1[ with ℓ = 0 or 1. Touse this information we introdue the energy funtional
A(u) =

∫

Ω

ν2u(x) ln u(x) + ψ(x)u(x) dx,whih is in fat the relative entropy with respet to the equilibrium solution û(x) =
ce−ψ(x)/ν2 . In Setion 2.2, equation (1.1) is formally rewritten as the abstrat onstraintgradient �ow

τut = −K(u)
(
DA(u) − Λ(t)DC(u)

)
, C(u(t)) = ℓ(t),where K(u) is the semi-de�nite, selfadjoint linear operator de�ned via

K(u)ξ = −
(
u ξx

)
x
,whih is the inverse of the Wasserstein metri tensor, see [JKO98, Ott01℄.The ruial onsequene of this struture is the energy-dissipation relation

d

dt
A(u(t)) = −D(u(t), ℓ̇(t)) with D(u, p) =

∫

Ω

(ν2ux+ψ
′u)2

u
dx− L(u)2 − pL(u).While it is easy to show via the Cauhy-Shwarz estimate that the sum of the �rst twoterms in D is nonnegative, the third term, whih arises through the work of the onstraint,may have an arbitrary sign. A major task is to �nd good lower bounds for D, whih will be
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done in Setion 4.1 in several steps. The main point is that D(u, p) needs to be estimatedfrom below on the set
M(ℓ) := { u ∈ L1(Ω) : u ≥ 0,

∫

Ω

u(x) dx = 1,

∫

Ω

xu(x) dx = ℓ }.Theorem 4.3 shows that for eah δ ∈ ]0, 1/2[ and ψ ∈ H1(Ω) there is a onstant Cψ
δ suhthat ℓ ∈ [δ, 1−δ] implies

D(u, p) ≥ −Cψ
δ |p| for all u ∈ M(ℓ) and p ∈ [−1

δ
, 1
δ
].Thus we an onlude that A(u(t)) annot blow-up along a solution. Employing the L-log L variant of [BHN94℄ of the Gagliardo-Nirenberg interpolation for the embedding of

L∞(Ω) in H1(Ω) (see Lemma A.2) it is then possible to �nd an apriori estimate for the
L2 norm and global existene an be obtained for all ℓ ∈ W1,∞lo ([0,∞[) with ℓ(t) ∈ ]0, 1[for all t ≥ 0.Finally, in Setion 5 we show that the solutions onverge to a steady state if ℓ(t) → ℓ∗ ∈
]0, 1[ in suh a way that ℓ̇ ∈ L1(]0,∞[) ∩ L∞(]0,∞[). For this we exploit that for eah ℓ∗there is exatly one steady state Uℓ∗ that is haraterised by the fat that it is the uniqueminimiser of A on the set M(ℓ∗). As a �nal result we show that u(t) → Uℓ∗ in L2(Ω) for
t→ ∞.The theory in Setions 4 and 5 share many similarities with the global existene andonvergene theory for eletro-reation-di�usion systems studied in [GlH97℄. This inludesthe usage of the L-log L variant [BHN94℄ of the Gagliardo-Nirenberg interpolation, theenergy estimate via the energy-dissipation relation, and the introdution of the auxiliaryvariable v =

(
u/Uℓ)

1/2, where Uℓ is the relevant equilibrium, see the proofs of Theorem 4.3and Proposition 4.4. Our analysis is simpler in the respet that we only deal with a singlesalar equation, however we treat the ase of a driven system, where the time-dependentonstraint leads to several subtle di�ulties.Starting from Setion 2.2 we will set the parameters τ and ν equal to 1. We do this withoutloss of generality as explained at the end of Setion 2.1.2 Modelling and mathematial strutures2.1 Motivation: Modelling of many-partile storage systemsHere we explain how the above model is apable to desribe the behaviour of ensembles ofinteronneted storage partiles. Modern many-partile eletrodes of rehargeable lithium-ion batteries belong to that lass of storage systems. The eletrode onsists of a powder of1010 - 1017 nano-partiles that serve to reversibly store and release lithium atoms duringthe proess of harging and disharging respetively. For more details of the funtionalityof the battery, see [DJ∗10℄ and [DGH06℄.
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The probability density to �nd a partile of the ensemble at time t in the loading state xis represented by the funtion u : [0, T ] × Ω → [0,∞[. Thus it satis�es
∫

Ω

u(x, t) dx = 1 for all t ∈ [0, T ] . (2.1)The voltage of the battery linearly depends on the expetation value ∫
Ω
µ(x)u(x, t) dx,where the hemial potential µ(x) is non-monotone. Finally, the apaity of the battery,i.e. the total loading state of the ensemble, is proportional to 1 − ℓ(t) with

ℓ(t) = C(u(t)) :=

∫

Ω

xu(x, t) dx . (2.2)In the harging experiment the funtion ℓ ∈ C1([0, T ]) is presribed for all t ∈ [0, T ]. Thus(2.2) introdues a onstraint on the probability density. Due to Ω = ]0, 1[ we have
0 < ℓ(t) < 1 for all t ∈ [0, T ] . (2.3)Figure 1 shows the typial behaviour of the battery. The voltage-apaity diagram revealstwo ruial phenomena. We observe hystereti behaviour and horizontal branhes, indi-ating a phase transition in the many-partile system during harging and dishargingrespetively.

Figure 1: Voltage versus capacity of a battery with FePO4 storage particles, see [DJ∗10].The time for full harging is 20 hours and hene very large with respet to the di�usionalrelaxation time τ of a single storage partile, whih is about 1 seond. Our mathematialmodel appropriately desribes the harging-disharging proess in that speial ase wherethe time to approah equilibrium of a single storage partile is muh smaller than thetime for full harging of the ensemble.The evolution of the probability density u(x, t) is desribed by the Fokker-Plank equation
τut =

(
uΥ

)
x

with Υ = −Λ(t) + µ(x) + ν2
(
log(u)

)
x

for x ∈ Ω . (2.4)The equation ontains a Lagrange multiplier Λ, whih is assoiated with the onstraint(2.2) and there appear two onstant parameters τ > 0 and ν2 > 0.
4



The evolution starts from smooth and non-negative initial data and we have homogenousno-�ux boundary onditions, namely
u(x, 0) = u0(x) with

∫

Ω

u(x, t) dx = 1, Υ = 0 for x ∈ ∂Ω = {0, 1} . (2.5)By multiplying the �rst equation by x and integration over Ω, we see that Λ an beeliminated via
Λ(t) = τ ℓ̇(t) + ν2(u(1)−u(0)) +

∫

Ω

µ(x)u(x, t) dx . (2.6)It is now easy to see that (2.4) gives exatly (1.1), and with the use of (2.6) we get(1.3).We note that the observed hystereti behaviour from Figure 1 is implied by the modelin the parameter regime τ ≪ 1, ν2 ≪ 1. Details of numerial simulations for various τ ,
ν2 regimes are to be found in [DGH06℄, that also ontains a areful desription of themodelling. Another way of deriving marosopi hysteresis in a many-partile system isdisussed in [MiT10℄, where instead of the entropi di�usion term ν2uxx spatial random�utuations are used.In partiular, in [DGH06℄ it is shown that the Fokker-Plank equation (2.4) identiallysatis�es the 2nd law of thermodynamis, whih reads for the onsidered open system

d

dt
A(u(t)) − Λ(t) ℓ̇(t) ≤ 0 , (2.7)where the total free energy of the system A(u) is given by

A(u) =

∫

Ω

(ν2u(x) log u(x) + ψ(x)u(x)) dx . (2.8)The newly introdued free energy of a single storage partile is related to the hemialpotential by µ ≡ ψ′.From now on we set the onstants τ and ν equal to 1. We an do so without loss ofgenerality, sine dividing (1.3) by ν2 yields the equivalent PDE
τ

ν2
ut(x, t) =

(
ux(x, t) +

ψ′

ν2
(x)u(x, t) − L2(u(t)) −

τ

ν2
p(t)

)

x
,

L2(u(t)) =
L(v)

ν2
= (v(1) − v(0)) +

∫

Ω

ψ′(x)

ν2
v(x) dx.This shows, that we an eliminate all ourrenes of τ and ν on the right hand side bytransforming the data to p̃(t) = τp(t)/ν2 and ψ̃′(x) = ψ′(x)/ν2. Another time transfor-mation then easily lets the fator τ/ν2 in front of the time derivative on the left hand sidedisappear.
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2.2 Gradient systems driven by a onstraintAs was observed in [JKO98℄, in the unonstraint ase, i.e. without a ondition as (2.2),the Fokker-Plank equation
ut =

(
ux + ψ′(x)u

)

x
(2.9)an be written as the gradient system

ut = −K(u)DA(u), where K(u)ψ = −
(
uψx)x. (2.10)Note that K(u) is a selfadjoint, positive semide�nite operator, whih an be inverted on(the tangent bundle of) funtion spaes satisfying the onstraint (2.1) and being positive.Denoting the inverse by G(u) equation (2.9) takes formally the form of a standardgradient system G(u)ut = −DA(u), where G denotes the metri tensor.Moreover, (2.9) is also a transport equation (onservation law) of the form ut =

{
uṽ

}
xwith

ṽ =
(
DA(u)

)
x

=
(
ψ + log u

)
x

= ψ′ + ux/uOne of the main onsequene of the gradient struture is a natural a priori estimate, alledenergy-dissipation estimate in terms of the funtional A and the dissipation operator K.For the system (2.9) in the form ut = −K(u)DA(u) it reads
d

dt

(
A(u(t))

)
= −

〈
DA(u), K(u)DA(u)

〉
= −

∫

Ω

(ux + ψ′u)2

u
dx ≤ 0.This shows that A dereases along trajetories and that the only equilibria are thosewhere ux + ψ′u ≡ 0.In the present ase we have a onstraint gradient system, ut =

{
uv

}
x
, but now v is givenby (2.4).Finally, we return to the full problem (2.4) and (2.5), whih we identify as a onstraintgradient system in the form

ut = −K(u)
(
DA(u)− ΛDC(u)

)
, C(u) = ℓ(t), (2.11)where the operator K is given as in (2.10).Testing with 1 and using the de�nition of K we immediately �nd that ∫

Ω
u dx is onstantalong solutions. Moreover, taking the derivative of the onstraint we immediately �nd theorret relation for ℓ̇, namely

ℓ̇ = 〈DC(u), ut〉 = 〈x,
(
u
(
(log u+1) + ψ − Λx

)
x

)

x
〉

= −〈1, u
(
ux

u
+ ψ′ − Λ

)
〉 = −

∫

Ω

ux+ψ
′u dx+ Λ

∫

Ω

u dx.Using ∫
Ω
u dx ≡ 1 we �nd the adequate de�nition (2.6) for the Lagrange multiplier Λ.Finally, we may take the derivative of A(u(t)) to obtain the following ruial energy-dissipation estimate in terms of the data ℓ.
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Lemma 2.1. Every su�iently smooth solution u of (1.1) satis�es
d

dt
A(u(t)) = −D(u, ℓ̇) where

D(u, ℓ̇) =

∫

Ω

(ux+ψ
′u)2

u
dx−

(∫

Ω

ux+ψ
′u dx

)2

− ℓ̇

∫

Ω

ux+ψ
′u dx.

(2.12 )Proof. Taking the derivative of A along a solution we �nd
d

dt
A(u(t)) = 〈DA(u), ut〉 = 〈

(
(log u+1) + ψ,

(
u
(
(log u+1) + ψ − Λx

)
x

)

x
〉

= −
∫

Ω

(ux + ψ′u)2

u
dx+ Λ

∫

Ω

ux + ψ′u dx.Inserting formula (2.6) for Λ the assertion is established.A ruial step in our global existene result will be a suitable lower estimate for thedissipation funtional D, whih is not automatially nonnegative for ℓ̇ 6= 0, beause of thework done by the hanging onstraint C(u(t)) = ℓ(t).3 Loal existene of lassial solutionsIn this setion we will inspet the solvability of the PDE (1.3). In this PDE the onstraint
C(u(t)) = ℓ(t) is resolved and as a onsequene the PDE is in�uened only by the derivative
p := ℓ̇. Also the datum funtion ψ whih omes from the energy A, see (2.6), hasonly in�uene through its derivative µ := ψ′. Thus the results in this setion are statedindependently, only for Problem (1.3) with given data p and µ. The relation of solutionsto ℓ and A are used in the later setions where we return to the investigation of theequivalent Problem (1.1).In the sequel, Lq(Ω) denotes the usual omplex Lebesgue spae, with norm ‖ · ‖Lq . For afuntion u(x, t) depending on two variables, we write u(t) for the funtion {x 7→ u(x, t)}.This makes notation shorter, suh that ‖u(t)‖Lq is shorthand for ‖u(·, t)‖Lq .3.1 The semilinear equation: loal existene and uniquenessOur approah towards loal existene of solutions basially follows a standard proedurefor semilinear paraboli PDE's. We arry out the proofs, in order to inorporate two aims.We want that only some spatial Lq(Ω) norm of a solution with any q > 1 needs to beontrolled near t = T in order to extend the solution beyond time T . Furthermore wewant our theory to hold for hoies of µ whih are only in some Lq(Ω) but not neessarilybounded, as the hoie of µ in the model in [DGH06℄ has logarithmi singularities at theboundary.
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We are looking for a solution of (1.3). By a solution we mean a funtion
u ∈ C1

(
]0, T0[ , L

q(Ω)
)
∩ C

(
]0, T0[ ,W

1,q(Ω)
)
∩ C

(
[0, T0[ , L

q(Ω)
) suh that for all ϕ ∈

C∞(Ω̄) and t ∈ ]0, T0[ there holds
∫

Ω

ut(x, t)ϕ(x) dx = −
∫

Ω

(
ux(x, t) + u(x, t)

[
µ(x) − L(u(t)) − p(t)

])
ϕx(x) dx. (3.1)Theorem 3.1. Suppose that p ∈ Cδ

loc([0,∞[), µ ∈ Lq(Ω), and that u0 ∈ Lq(Ω) forsome q > 1 and δ > 1/2. Then there exists a maximal time T0 ∈ ]0,∞] and a uniquelydetermined solution of (1.3) (in the sense of (3.1)). Moreover we have the followingalternative:Either T0 = ∞, or ‖u(t)‖Lq → ∞ as tր T0 for some q > 1. (3.2 )Proof. Existene and Uniqueness. We de�ne L as in (1.4), M :=
∫ 1

0
u0(x) dx, and

w0(x) :=
∫ x

0
u0(z) dz −Mx. First we prove the existene of a solution to the problem

wt(x, t) − wxx(x, t) =
[
µ(x) − p(t) − L (wx(t) +M)

]
(wx(x, t) +M),

w(0, t) = w(1, t) = 0,

w(x, 0) = w0(x).

(3.3)The fat, that then the funtion u := wx +M is a solution to the original problem (1.3)follows as a regularity result. For T ≤ 1, q > 1 and β ∈ ]1 + 1/q, 2[ we onsider the spae
X := C([0, T ],W1,q

0 (Ω)) ∩ Cγ(]0, T ] ,Wβ,q
0 (Ω)),

‖v‖X := sup
t∈[0,T ]

‖v(t)‖W1,q
0

+ sup
t∈]0,T ]

tγ‖v(t)‖Wβ,q
0

,where γ is spei�ed below. The hoie of β gives the ompat injetion Wβ,q
0 (Ω) →֒ C1(Ω̄).Thus a onstant cL depending on ‖µ‖Lq exists suh that for all v ∈ W1,q

0 (Ω) there holds
|L(vx)| ≤ cL‖v‖Wβ,1

0

and |L(vx +M)| ≤ cL(‖v‖Wβ,1
0

+M) .Let A denote the Dirihlet Laplaian on Ω. For a suitable γ ∈ ]0, 1/2[ and R̃ > 0 we nowshow that F , de�ned as,
Fv(t) := e−tAw0 +

∫ t

0

e−(t−s)AN(v(s)) ds, v ∈ S, t ∈ [0, T ],

Nv(x, t) := −
(

L(vx(t) +M) − µ(x) + p(t)

)
· (vx(x, t) +M),is a ontrative selfmapping on the losed set

S :=
{
v ∈ X : v(0) = w0 and ‖x‖X ≤ R̃+ 2‖w0‖W1,q

0

:= R
}
,and thus has a unique �xed point. A �xed point ṽ of F would be a mild solution to theabove PDE. In the sequel we dedue restritions for the hoie of γ, depending on q and

β.
8



First we show that for T small enough, F is a selfmapping on S. We de�ne RM := R+Mand examine
‖F (v)(t)‖W1,q

0

≤ ‖w0‖W1,q
0

+

∫ t

0

(t− s)−
1

2‖
(
µ(x) − p(s)

)(
vx(s) +M

)
‖Lq ds

+

∫ t

0

(t− s)−
1

2‖L
(
vx(s) +M

)(
vx(s) +M

)
‖Lq ds,

≤ ‖w0‖W1,q
0

+

∫ t

0

(t− s)−
1

2‖
(
µ(x) − p(s)

)
‖Lq(‖v(s)‖Wβ,q

0

+M) ds

+

∫ t

0

(t− s)−
1

2 |L
(
vx(s) +M

)
| (‖v(s)‖W1,q

0

+M) ds,

≤ ‖w0‖W1,q
0

+

∫ t

0

(t− s)−
1

2 s−γ
[(
‖µ(x)‖Lq + ‖p‖L∞

)
RM + cLR

2
M

]
ds,

≤ ‖w0‖W1,q
0

+ t
1

2
−γc0

∫ 1

0

(1 − σ)−
1

2σ−γ dσ.Note that the integral exists by the hoie of γ and the onstant c0 depends on upperbounds for M , R̃, ‖p‖L∞ , ‖µ‖Lq and ‖w0‖W1,q . Thus diminishing T if neessary, we have
sup
t∈[0,T ]

‖F (v)(t)‖W1,q
0

≤ R

2
.As a seond step we estimate

‖F (v)(t)‖Wβ,q
0

≤ t−
β−1

2 ‖w0‖W1,q
0

+

∫ t

0

(t− s)−
β
2 ‖

(
µ(x) − p(s)

)(
vx(s) +M

)
‖Lq ds

+

∫ t

0

(t− s)−
β
2 ‖L

(
vx(s) +M

)(
vx(s) +M

)
‖Lq ds,

≤ t−
β−1

2 ‖w0‖W1,q
0

+

∫ t

0

(t− s)−
β
2 s−γ

[(
‖µ(x)‖Lq + ‖p‖L∞

)
RM + cLR

2
M

]
ds,

≤ t−
β−1

2 ‖w0‖W1,q
0

+ t1−γ−
β
2 c0

∫ 1

0

(1 − σ)−
β
2 σ−γ dσ.Again the integral over σ exists by the hoie of γ and β. Thus requiring β < 1 + 2γ, weget for su�iently small T

sup
t∈]0,T ]

tγ‖F (v)(t)‖Wβ,q
0

≤ R

2
.whih gives that F is a selfmapping on S.
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Next we hek, that F is a ontration on S. For v1, v2 ∈ S we an estimate
‖F (v1)(t) − F (v2)(t)‖W1,q

0

≤
∫ t

0

(t− s)−
1

2‖
(
µ(x) − p(s)

)(
v1x(s) − v2x(s)

)
‖Lq ds

+

∫ t

0

(t− s)−
1

2‖L
(
v1x(s) − v2x(s)

)(
v1x(s) +M

)

− L
(
v2x(s) +M

)(
v2x(s) − v1x(s)

)
‖Lq ds,

≤
∫ t

0

(t− s)−
1

2

(
‖µ(x)‖Lq + ‖p‖L∞

)
‖v1(s) − v2(s)‖Wβ,q

0

ds

+ cL

∫ t

0

(t− s)−
1

2‖v1(s) − v2(s)‖Wβ,q
0

RM ds

+ cL

∫ t

0

(t− s)−
1

2RMs
−γ‖v1(s) − v2(s)‖W1,q

0

ds,

≤ t
1

2
−γc1

∫ 1

0

(1 − σ)−
1

2σ−γ dσ‖v1(s) − v2(s)‖X .As before the onstant c1 depends on bounds for the given date. For small T this gives
sup
t∈[0,T ]

‖F (v1)(t) − F (v2)(t)‖W1,q
0

≤ 1

4
‖v1(s) − v2(s)‖X .In a similar way we estimate

‖F (v1)(t) − F (v2)(t)‖Wβ,q
0

≤
∫ t

0

(t− s)−
β
2 ‖

(
µ(x) − p(s)

)(
v1x(s) − v2x(s)

)
‖Lq ds

+

∫ t

0

(t− s)−
β
2 ‖L

(
v1x(s) − v2x(s)

)(
v1x(s) +M

)

− L
(
v2x(s) +M

)(
v2x(s) − v1x(s)

)
‖Lq ds,

≤ t1−γ−
β
2 c2

∫ 1

0

(1 − σ)−
β
2 σ−γ dσ‖v1(s) − v2(s)‖X .The onstant again depends on bounds for the given date. For small T this gives

sup
t∈]0,T ]

tγ‖F (v1)(t) − F (v2)(t)‖Wβ,q
0

≤ 1

4
‖v1(s) − v2(s)‖X .Thus F is a 1/2 ontration on S provided, that T is su�iently small. Hene it has aunique �xed point.Let us disuss the interrelation of the ourring parameters. Remember that by assumptionthere holds q > 1. Then all our requirements for β, γ and q whih we needed, namely

1 +
1

q
< β < 2, β < 1 + 2γ and 0 < γ <

1

2
.are satis�ed by hoosing γ lose to 1/2.
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The length of the existene time T depends on bounds for ‖µ‖Lq , M , ‖p‖L∞ , the hoieof R̃ and the W1,q
0 (Ω) norm of the initial value w0. Thus by suessively repeating theabove reasoning we get an alternative provided that we have a uniform bound on |p(t)|.The maximal existene time T0 is then either ∞ or if T0 < ∞ then there must hold forevery q > 1, that ‖w(t)‖W1,q

0

→ ∞ as t→ T0.Regularity. By onstrution of the spae X we know for every ε > 0, that ‖w(t)‖Wβ,q
0

≤
cε, for all t > ε Inserting this in the right hand side of the above PDE gives a linearparaboli equation with in Lq(Ω) bounded right hand side N(w(t)) on the time interval
[ε, T ]. Aording to known regularity theory for paraboli PDE's, see [Lun95, Prop.4.2.1℄,this results in the solution being even Hölder ontinuous in time. We have for all η ∈ [0, 1[that the solution w to the above PDE is of quality

w ∈ C1− η
2

(
[ε, T ],Wη,q

0 (Ω)
)
.Now we use the assumption that p is Hölder ontinuous with the Hölder exponent δ > 0.The right hand side N(w(t)) is then Hölder ontinuous in time on any interval [ε, T ]. Thusagain using known regularity theory, see [Lun95, Prop.4.3.4℄, we have that w is a lassialsolution to (3.3). Using this we an iteratively improve the Hölder ontinuity of w to getby the assumption δ > 1/2, that there exists a small δ̃ > 0 suh that

w ∈ C1+δ
(
[ε, T ], Lq(Ω)

)
∩ Cδ

(
[ε, T ],W2,q

0 (Ω)
)
⊂ C1+δ̃

(
[ε, T ],W1,q

0 (Ω)
)
.Finally we have that the time derivative w′ is spatially weakly di�erentiable for positivetimes t and vanishes at the boundary. Thus we see that u := wx −M is a solution to(1.3) in the sense of (3.1), sine for any ϕ ∈ C∞(Ω̄) we have

∫

Ω

ut(x, t)ϕ(x) dx = −
∫

Ω

wt(x, t)ϕx(x) dx,

= −
∫

Ω

(
wxx(x, t) + (wx(x, t) +M)

[
µ(x) − L(wx(t) +M) − p(t)

])
ϕx(x) dx,

= −
∫

Ω

(
ux(x, t) + u

[
µ(x) − L(u) − p(t)

])
ϕx(x) dx.Remark 3.2. Better regularity of the data µ results in better spatial regularity of thesolution.Lemma 3.3. Let the Assumptions of Theorem 3.1 with q = 2 hold. If the initial value

u0 ∈ L2(Ω) is nonnegative, then the solution u to (1.3) is also nonnegative on Ω× [0, T ].Proof. We �rst show the nonnegativity if µ is a bounded funtion: sine q = 2 we anapply the negative part u−(t) as a test funtion in (3.1) to get
1

2

ddt‖u−(t)‖2
L2 ≤ −‖u−x (t)‖2

L2 +

∫

Ω

u−x (x, t)u−(x, t)
(
µ− L

(
u(t)

)
− p(t)

)
dx,

≤ 1

4
(‖µ‖L∞ +RM t

−γ + ‖p‖L∞)2‖u−(t)‖2
L2 .
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Using Gronwall's lemma and ‖u−0 ‖L2 = 0, we dedue ‖u−(t)‖L2 = 0 for all t ∈ [0, T ]. If µis unbounded, we de�ne for any k > 0 the ut-o� funtion µk := min(k,max(−k, µ)). By
uk we all the solution of (3.1), if µ is there replaed by µk. We onsider the funtions
wk(x, t) :=

∫ x

0
uk(y, t) dy −Mx, being the solution to (3.3) when there µ is replaed by

µk. Sine ‖µk‖L2 ≤ ‖µ‖L2 one an �nd a ommon T > 0 suh that eah of the mappings
Fkv(t) := e−tAw0 +

∫ t

0

e−(t−s)A [µk − L(vx(s) +M) − p(s)] (vx(s) +M) ds, for v ∈ S.(3.4)is a ontration on X with ontration onstant 1
2
. Let wk denote the orresponding �xedpoint for Fk and w the �xed point for the mapping F from above. One easily alulates

‖w−wk‖X ≤ ‖Fw−Fkwk‖X ≤ ‖Fkw−Fkwk‖X+‖Fw−Fkw‖X ≤ 1

2
‖w−wk‖X+‖Fw−Fkw‖X,what leads to ‖w−wk‖X ≤ 2‖Fw− Fkw‖X . Let us show that ‖Fw− Fkw‖X approahes

0; one has
‖Fw(t) − Fkw(t)‖H1 ≤ ‖

∫ t

0

e−(t−s)A(w(s)x +M)
(
µ− µk

)
ds‖H1 ,

≤ ‖µ− µk‖L2t
1

2
−γ

∫ 1

0

(1 − σ)−
1

2σ−γRM dσ.Sine µk → µ in L2(Ω), we get, uniformly in t, ‖Fw(t) − Fkw(t)‖H1 → 0. Similarly weget tγ‖Fw(t) − Fkw(t)‖Hβ → 0 uniformly for all t ∈ [0, T ]. This gives for all t ∈ [0, T ]that wk(t) → w(t) in H1(Ω), and thus uk(t) → u(t) in L2(Ω). Hene, u(t) must alsobe a nonnegative funtion beause eah uk(t) � orresponding to the bounded oe�ientfuntion µk� is.In the model derived in [DGH06℄, µ is not only in L2(Ω), but inside of Ω it is a smoothfuntion. This helps us to dedue strit positivity of the solution for positive times.Lemma 3.4. Let the Assumptions of Theorem 3.1 hold. Furthermore assume that forall ε > 0 we have µ ∈ C1([ε, 1− ε]) and 0 6= u0 ∈ L2(Ω) is nonnegative. Then the solutionis stritly positive inside Ω for all positive times.Proof. Let u be the solution to problem (1.3). We de�ne Ωε := ]ε, 1 − ε[ and
ψ(x, t) := µ(x) − L(u(t)) − p(t).Consider the funtion wε(x, t) := u(x, t)est with sε := − supx∈Ωε

|µx(x)| ≥ 0. This funtionthen solves inside Ωε × ]ε, T ]

wεt(x, t) − wεxx(x, t) − wεx(x, t)ψ(x, t) = u(x, t)est(x, t)(µx(x) + sε). (3.5)
12



The oe�ients and initial as well as boundary values are spatially ontinuous and in timeeven Hölder ontinuous. This allows us to apply lassial paraboli theory. We know fromTheorem 3.1 that the initial and boundary values to this PDE are nonnegative. Due toonservation of mass, the initial funtion wε0(x) := u(x, ε)eεs is positive inside Ωε for εsmall enough. Even the right hand side of the PDE (3.5) is nonnegative. Hene usinglassial maximum priniples, see for example [Eva98, Chapter 7.1 Theorem 9℄, we get
w > 0 in Ωε × ]ε, T ] and thus u is also stritly positive. This means by the arbitrarinessof ε, that u is positive everywhere inside Ω for all positive times t.Lemma 3.5. Assume that the solution u exists on a time interval [t0, T∗[ and µ ∈
L∞(Ω). Let c0 denote the onstant max

(
‖µ‖L∞, ‖p‖L∞([t0,T∗[

), and let us put a :=
36c2

0

5
,

b := 44
(
π+1
π

)2.i) Then the L2-norm of u admits the following estimate:
‖u(t)‖2

L2 ≤ 1√
e2a(t0−t)[ 1

‖u(t0)‖4

L2

+ b
a
] − b

a

, (3.6 )as long as the expression under the square root is positive.ii) Consequently, the L2 norm does not explode on any interval [t0, T ] as long as
T < t0 +

1

2a
log

(a
b

1

‖u(t0)‖4
L2

+ 1
)
.Proof. We test the equation (1.3) with u and obtain for every t ∈ ]t0, T∗[

1

2
‖u(t)‖2

L2 +

∫ t

t0

∫ 1

0

|ux(x, s)|2 dx ds ≤ (3.7)
≤ 1

2
‖u(t0)‖2

L2 +

∫ t

t0

‖µ‖L∞

∫ 1

0

|u(x, s)||ux(x, s)| dx ds+

+

∫ t

t0

|p(s) +

∫ 1

0

µ(x)u(x, s) dx+ u(0, s) − u(1, s)|
∫ 1

0

|u(x, s)| |ux(x, s)| dx ds.Exploiting ∫
Ω
u dx = 1 and thus | ∫

Ω
µu dx| ≤ c0, we obtain

|p(s) +

∫ 1

0

µ(x)u(x, s) dx| ≤ 2c0,while (A.4) from Lemma A.1 gives
|u(0, s)− u(1, s)| ≤ 2

√
2

√
π + 1

π
‖u(s)‖1/2

L2 ‖ux(s)‖1/2
L2 .
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Additionally estimating ∫ 1

0
|u(x, s)| |ux(x, s)| dx on the right hand side of (3.7) by

‖u(s)‖L2‖ux(s)‖L2 , we derive from (3.7) the inequality
1

2
‖u(t)‖2

L2 ≤ 1

2
‖u(t0)‖2

L2 −
∫ t

t0

‖ux(s)‖2
L2 ds + 3c0

∫ t

t0

‖u(s)‖L2‖ux(s)‖L2 ds+

+

∫ t

t0

2
√

2

√
π + 1

π
‖u(s)‖3/2

L2

∥∥∥ux(s)
∥∥∥

3/2

L2

ds. (3.8)(3.8), equivalently written, reads as,
‖u(t)‖2

L2 ≤ −
∫ t

t0

2‖ux(s)‖2
L2 ds+ ‖u(t0)‖2

L2+ (3.9)
∫ t

t0

6c0‖u(s)‖L2‖ux(s)‖L2 + 4
√

2

√
π + 1

π
‖u(s)‖3/2

L2 ‖ux(s)‖3/2
L2 ds.We estimate by Young's inequality

6c0‖u(s)‖L2‖ux(s)‖L2 ≤ 36c20
5

‖u(s)‖2
L2 +

5

4
‖ux(s)‖2

L2 (3.10)and
4
√

2

√
π + 1

π
‖u(s)‖3/2

L2 ‖ux(s)‖3/2

L2 ≤ 44
(π + 1

π

)2

‖u(s)‖6
L2 +

3

4
‖ux(s)‖2

L2. (3.11)Applying this to (3.9), we get
‖u(t)‖2

L2 ≤ ‖u(t0)‖2
L2 +

∫ t

t0

36c20
5

‖u(s)‖2
L2 + 44

(π + 1

π

)2

‖u(s)‖6
L2 ds. (3.12)Putting g : [0,∞[ ∋ s 7→ as + bs3 = s(a + bs2) and y(s) := ‖u(s)‖2

L2, (3.12) an be readas the following integral inequality for y:
y(t) ≤ y(t0) +

∫ t

t0

g(y(s)) ds, t ∈]t0, T∗[.By straight forward omputation one identi�es the primitive of 1
g
by

G : r 7→ 1

a
log

r√
1 + b

a
r2

+ κ, (3.13)for arbitrary hoie of κ. Thus the inverse funtion G−1 is
G−1 : t 7→ 1√

e−2a(t−κ) − b
a

.Aording to the Bihari-Lemma ([Bih56℄, see also [BeB61, Ch. 4.5℄) we get
y(t) ≤ G−1(G(y(t0)) + t− t0) =

1√
e2a(t0−t)[ 1

y(t0)2
+ b

a
] − b

a

, (3.14)as long as the expression under the square root is positive.ii) follows straightforward from i).
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3.2 Blow-up resultsThe identity (4.2b) for the time evolution of the �rst moments of solutions easily leadsto the following blow-up riterion.Lemma 3.6. Suppose that there exists T > 0 suh that either
∫ T

0

p(t) dt < −
∫

Ω

xu0(x) dx (3.15 )or ∫ T

0

p(t) dt > 1 −
∫

Ω

xu0(x) dx. (3.16 )Then the solution u of (1.3) blows up before or at time T .Proof. Assuming that the maximal existene time T0 of u exeeds T , we reall (4.2b) tosee that ∫ T

0

p(t) dt =

∫

Ω

xu(x, T ) dx−
∫

Ω

xu0(x) dx.This is ompatible neither with (3.15) nor with (3.16), beause the properties u ≥ 0and ∫
Ω
u dx ≡ 1 entail that

0 <

∫

Ω

xu(x, t) dx < 1 for all t ∈ ]0, T0[ . (3.17)Thus, u must ease to exist before time T .As a partiular onsequene, we see that if p is su�iently large then all solutions blow-up.Corollary 3.7. Suppose that there exists T > 0 suh that
∣∣∣
∫ T

0

p(t) dt
∣∣∣ ≥ 1. (3.18 )Then for all nonnegative u0 ful�lling ∫

Ω
u0 dx = 1, the solution of (1.3) blows up in�nite time.Proof. In view of (3.17), the assumption (3.18) shows that any suh u0 satis�es either(3.15) or (3.16), so that the solution emanating from u0 will blow-up before time T .Seondly, if merely p 6≡ 0 then at least some initial data lead to non-global solutions.Corollary 3.8. Suppose that p 6≡ 0. Then there exists a nonnegative u0 ∈ C∞

0 (Ω) with∫
Ω
u0 dx = 1 suh that the orresponding solution u of (1.3) blows up in �nite time.

15



Proof. Let P (t) :=
∫ t

0
p(s) ds for t ≥ 0. Sine P ′ = p on ]0,∞[, our assumption p 6≡ 0ensures that for some T > 0 we have P (T ) 6= 0, whih enables us to hoose some ε ∈ ]

0, 1
2

[suh that ε < |P (T )|. We now �x any nonnegative ζ ∈ C∞
0 (R) suh that supp ζ ⊂ ]1, 2[and ∫ 2

1
ζ(ξ) dξ = 1.Assuming �rst that P (T ) < 0, we then let

u0(x) :=
1

ε
· ζ

(x
ε

)
, x ∈ [0, 1].Then u0 belongs to C∞(Ω̄) and has its support ontained in ]ε, 2ε[ ⊂ Ω, and we easilyompute ∫

Ω
u0 dx = 1. Moreover, its �rst moment satis�es
∫

Ω

xu0(x) dx =

∫ 2ε

ε

xu0(x) dx ≤ ε ·
∫

Ω

u0(x) dx = ε < −P (T ),whih entails that (3.15) is ful�lled, so that Lemma 3.6 asserts �nite-time blow-up ofthe orresponding solution.In the ase P (T ) > 0 we proeed similarly by de�ning
u0(x) :=

1

ε
· ζ

(1 − x

ε

)
, x ∈ [0, 1],and showing that then (3.16) holds.4 Global existene for general ℓWe now return to the situation where ℓ is a given datum suh that ℓ(t) ∈ ]0, 1[ for alltime. For the loal existene results in the previous setion we only used p(t) = ℓ̇(t) andhene the additional onstraint ℓ(t) > 0 and ℓ(t) < 1 where only impliit.We �rst make sure that the loal solutions onstruted above satis�es the onstraint asexpeted and therefore turn out to be solutions to (1.1). For this we reall the generalassumption

ℓ ∈ C1([0,∞[) and 0 < ℓ(t) < 1 for all t ≥ 0. (4.1)The expeted result is the following.Lemma 4.1. Let (4.1) and (1.2) hold. Suppose that u is a lassial solution of (1.3)in Ω × ]0, T [ for some T ∈ ]0,∞] satisfying ∫
Ω
u(x, 0) dx = 1 and C(u(0)) = ℓ(0). Then

∫

Ω

u(x, t) dx = 1 for all t ∈ ]0, T [ (4.2a)and
C(u(t)) =

∫

Ω

xu(x, t) dx = ℓ(t) for all t ∈ ]0, T [ . (4.2b)Proof. The �rst identity easily results by using ϕ ≡ 1 as a test funtion for (1.3), whereas(4.2b) follows upon hoosing ϕ(x, t) := x and using ∫
Ω
xu(x, 0) dx = ℓ(0).

16



Remark 4.2. As a simple onsequene of Lemma 4.1 together with Lemma 3.6 we geta su�ient explosion ondition. For ℓ ∈ W1,∞(]0,∞[), with ℓ(0) ∈ ]0, 1[, let t∗ be the�rst time suh that ℓ(t∗) = 1 or ℓ(t∗) = 0. Then t∗ must be an explosion time for thesolution to (1.1), if the solution does not ease to exist before time t∗. The rest of thissetion is devoted to the fat, that this ondition is also neessary. Thus if ℓ stays inside of
]0, 1[, then the solution exists globally and does not explode. The solution then even staysbounded in L∞(Ω) on all bounded time intervals.4.1 Dissipation and energy ontrolThe next result provides the fundamental estimate for the dissipation funtional. We reallthe energy dissipation funtion from Lemma 2.1, namely

d

dt
A(u(t)) = −D(u(t), ℓ̇) with D(u, ℓ̇) =

∫

Ω

W 2

u
dx−

(∫

Ω

W dx
)2

− ℓ̇

∫

Ω

W dx,where W = ux+ψ
′u, as we have set ν = 1. To obtain global existene we want to estimate

A from above and hene D from below. As suh our strategy is similar to those in [GlH97℄for more ompliated eletro-reation-di�usion systems. However, in our ase the time-dependent onstraint C(u(t)) = ℓ(t) ompliates the matter a lot. In partiular, the lowerestimates for D are muh more di�ult.When estimating D from below we an of ourse take advantage of the onstraints (4.2).Nevertheless, the di�ulty is here that we annot ontrol ∫
Ω
W dx easily. The �rst twoterms in D form a nonnegative ontribution, namely

∫

Ω

W 2

u
dx−

(∫

Ω

W dx
)2

=

∫

Ω

W 2

u
dx−

∫

Ω

√
u
W√
u

dx

≥
∫

Ω

W 2

u
dx−

∫

Ω

u dx

∫

Ω

W 2

u
dx = 0,where we used the Cauhy-Shwarz estimate and ∫

Ω
u dx = 1. However, there is no hopeto obtain a better lower estimate that allows to estimate the third term ℓ̇

∫
Ω
W dx. Thereason is that the Cauhy-Shwarz estimate is an equality whenever W = βu for some

β ∈ R. Thus, the funtions u = uβ : x 7→ c eβx−ψ(x) lead to a vanishing ontribution inthe �rst two terms but may generate to an arbitrary large ontribution in the third term.However, the additional onstraint C(u) = ℓ ∈ ]0, 1[ selets a unique β, see Setion 5.1.Hene, there one an expet to �nd a suitable lower bound when using both onstraints.The following result shows that these onsiderations an be made quantitative. We willestimate the deviation of a general u from a suitable hosen Uλ.Theorem 4.3. Assume ψ ∈ W1,1([0, 1]). Then, for eah δ ∈ ]0, 1/2[ there exists aonstant Cψ
δ ≥ 0 suh that for all ℓ ∈ [δ, 1−δ] and all λ ∈ [−1/δ, 1/δ] the followingestimate holds:

D(u, λ) ≥ −Cψ
δ |λ| for all u ∈ H1(Ω) with ∫

Ω

u(x) dx = 1 and C(u) = ℓ. (4.3 )
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Proof. There are two ruial steps in this proof. First we replae u by v =
√
u, whihtransforms the integral ∫

Ω
W 2/u dx into the quadrati form ∫

Ω
(2vx+ψ

′v)2 dx and givesthe new onstraints for all t in the existene interval
∫

Ω

v(x, t)2 dx = 1 and ∫

Ω

xv(x, t)2 dx = ℓ(t). (4.4)Seondly we will deompose v into Vα+η, where Vα is a funtion satisfying the �rst of theabove onstraints and making the �rst two terms of D vanish, i.e. the Cauhy-Shwarzestimate is sharp.To be more preise we introdue the notations
V(ℓ) = { v ∈ H1(Ω) : v ≥ 0, and (4.4) holds },
D(v, λ) = D(v2, λ) =

∫

Ω

w2 dx−
(∫

vw dx
)2

− λ

∫

Ω

vw dx,

w = 2vx + ψ′v, γ = ‖w‖L2, and ρ =

∫

Ω

vw dx.Using ‖u‖L2 = 1 and the Cauhy-Shwarz estimate we have ρ2 ≤ γ2.The ase ρ = 0 is trivial, beause it gives D(v, λ) ≥ 0. Hene, we assume ρ > 0 from nowon. This implies γ > 0, and we �rst deompose v in the form
v =

ρ

γ2
w + ξ with ∫

Ω

ξ w dx = 0,whih is a simple orthogonal projetion. Hene, we �nd
1 = ‖v‖2

L2 =
ρ2

γ2
+ ‖ξ‖2

L2 ⇒ ‖ξ‖2
L2 = 1 − ρ2

γ2
.Realling the de�nition of w in terms of v leads to 2vx+ψ′v = w = γ2

ρ

(
v−ξ

). Solving thisODE with ‖v‖L2 = 1 gives the formula
v = βVγ2/ρ + Kγ2/ρξ where Kαξ(x) =

∫ 1

0

Kα(x, y)ξ(y) dy.Here Vα(x) = cαe
(αx−ψ(x))/2 with cα > 0 hosen suh that ‖Vα‖L2 = 1. The onstant β ishosen suh that ‖v‖L2 = 1. The kernel Kα is de�ned via
Kα(x, y) =





αVα(x)
2Vα(y)

for α > 0 and 0 < x < y < 1,

−αVα(x)
2Vα(y)

for α < 0 and 0 < y < x < 1,

0 otherwise.Using ψ ∈ W1,1(Ω), whih implies ψ ∈ C(Ω̄), the kernel an be estimated via
0 ≤ Kα(x, y) ≤

Cψ
K

2
|α|e−|α||x−y|/2 for α 6= 0 and x, y ∈ [0, 1],
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where Cψ
K depends only on ψ but not on α. Using this we an estimate ξ̂ := Kγ2/ρξvia |ξ̂(x)| ≤ Cψ

K
α
2

∫ 1

0
e−|α||x−y|/2|ξ(y)| dy. Then using Young's inequality for onvolutions

ξ̂ = φ ∗ ξ in the form ‖ξ̂‖L2(R) = ‖φ‖L1(R)‖ξ‖L2(R), we have the uniform estimate
‖Kα‖Lin(L2(Ω),L2(Ω)) ≤ Cψ

K for all α 6= 0.Now we write the �nal deomposition in the form
v = Vγ2/ρ + η with η = (β−1)Vγ2/ρ + Kγ2/ρξ.It is now essential to estimate η in terms of ρ/γ. We do this in terms of ξ̂ = Kγ2/ρξ,whih satis�es ‖ξ̂‖L2 ≤ Cψ

K(1−ρ2/γ2)1/2. Realling ‖Vγ2/ρ‖L2 = ‖v‖L2 = 1, we always have
‖η‖L2 ≤ 2. For the ase ‖ξ̂‖L2 ≤ 1 we improve this estimate with the relation

1 ≥ ‖ξ̂‖2
L2 = ‖v − βVγ2/ρ‖2

L2
= 1 − 2β

∫

Ω

vVγ2/ρ dx+ β2.Using ∫
Ω
vVγ2/ρ dx > 0 we onlude β ≥ 0. Hene,
|1−β| ≤ |1−β2| =

∣∣‖v‖2
L2

− ‖βVγ2/ρ‖2
L2

∣∣ =
∣∣
∫

Ω

(v−βVγ2/ρ)(v+βVγ2/ρ) dx
∣∣

≤
∣∣
∫

Ω

ξ̂(2v+ξ̂) dx
∣∣ ≤ (2+Cψ

K)‖ξ̂‖L2
.Combing this with the de�nition of η we �nd

‖η‖L2 ≤ |β−1| + ‖ξ̂‖L2 ≤ (3+Cψ
K)Cψ

K

(
1−ρ2/γ2

)1/2 if ‖ξ̂‖L2 ≤ 1. (4.5)Now we are ready to estimate D(v, λ) from below on the admissible set V(ℓ). By ourde�nitions of ρ and γ the funtional D takes the form
D(v, λ) = γ2 − ρ2 − λρ,where γ and ρ depend on v ∈ V(ℓ). To estimate D we hoose σδ ∈ ]0, 1[ suh that

(3+Cψ
K)Cψ

K

(
1−σ2

δ

)1/2 ≤ δ/2 < 1/4.and distinguish two ases ρ2 ≤ γ2σ2
δ and ρ2/γ2 ∈ [σ2

δ , 1].Case I, |ρ| ≤ γσδ: We easily �nd
D(v, λ) = γ2 − ρ2 − λρ ≥ γ2 − γ2σ2

δ − |λ|γσδ ≥ − λ2σ2
δ

4(1−σ2
δ )

≥ − σ2
δ

4δ(1−σ2
δ )

|λ| ,where δ is from the statement of the theorem suh that |λ| ≤ 1/δ.
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Case II, ρ2/γ2 ∈ [σ2
δ , 1]: Realling ‖ξ̂‖L2 ≤ Cψ

K(1−ρ2/γ2)1/2 we have ‖ξ̂‖L2 ≤ δ/6 ≤ 1 andan use estimate (4.5) for η, namely ‖η‖L2 ≤ δ/2. Sine v = Vγ2/ρ + η lies in V (ℓ) weobtain
∣∣∣ℓ−

∫

Ω

xVρ2/γ(x) dx
∣∣∣ =

∣∣∣
∫

Ω

x
(
v(x)−Vρ2/γ(x)

)
dx

∣∣∣ ≤
∫

Ω

∣∣xη(x)
∣∣ dx ≤ ‖η‖L2 ≤ δ/2.We onsider the funtion

m(α) :=

∫

Ω

xVα(x)
2 dx.It is easy to see that m : R → ]0, 1[ is di�erentiable, stritly inreasing and satis�es

m(α) → 0 for α → −∞ and m(α) → 1 for α → ∞. Thus, for eah δ ∈ ]0, 1/2[ there is aonstant aδ suh that m(α) ∈ [δ/2, 1−δ/2] implies α ∈ [−aδ, aδ].Using the assumption ℓ ∈ [δ, 1−δ] we have shown that the deomposition v = Vρ2/γ + ηimpliesm(γ2/ρ) ∈ [δ/2, 1−δ/2]. Thus, we onlude the estimate aδ ≥ |γ2/ρ| ≥ |γ|, beause
0 < |ρ| ≤ γ. Thus, we obtain the lower bound

D(v, λ) = γ2 − ρ2 − λρ ≥ −aδ|λ|.Combining the two ases we have established the desired estimate (4.3) with Cψ
δ =

max{aδ, σ2
δ/(4δ(1−σ2

δ ))}.Analysing the dependene of σδ and aδ on δ in the above proof, it an be shown that Cψ
δan be estimated by 1/δ3. However, it is possible that the estimates an be improved.The above dissipation estimate is fundamental to ontrol the growth of the energy A.Under our main assumption (4.1) for ℓ we �nd for eah T > 0 a onstant δ > 0 suhthat ℓ(t) ∈ [δ, 1−δ] and |ℓ̇(t)| ≤ 1/δ for all t ∈ [0, T ]. Hene we onlude the main energyestimate

∣∣A(u(t2)) −A(u(t1))
∣∣ ≤ Cδ

∫ t2

t1

|ℓ̇(s)| ds ≤ C2
δ (t2−t1) for 0 ≤ t1 < t2 ≤ T. (4.6)In partiular, A(u(t)) annot blow-up, if it is bounded initially.For later use in the onvergene theory in Setion 5, we provide an improved energy-dissipation estimate, where the dissipation is not only bounded from below and evenoerive but an also be bounded from below by an arbitrary positive multiple of theenergy itself. The proof is a slight variant of the one above.Proposition 4.4. Assume ψ ∈ H1(Ω). Then, for eah κ > 0 and eah δ ∈ ]0, 1/2[ thereexists a onstant Kψ

κ,δ suh that for all ℓ ∈ [δ, 1−δ] and all λ ∈ [−1/δ, 1/δ] the followingestimate holds:
D(u, λ) ≥ κ‖ux‖L2 −Kψ

κ,δ and D(u, λ) ≥ κA(u) −Kψ
κ,δ (4.7 )for all u ∈ H1(Ω) with u ≥ 0, ∫

Ω
u dx = 1, and C(u) = ℓ.
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Proof. We proeed exatly as in the proof of Theorem 4.3 and use the same notations.Step 1: We �rst estimate
Dκ(v, λ) = D(v, λ) − κ‖vx‖3/2

L2 .Beause of γ = ‖2vx+ψ′v‖L2 and ‖v‖L2 = 1 we have ‖vx‖L2 ≤ γ + 1 + 1
2
‖ψ′‖2

L2 and �nd
Dκ(v, λ) ≥ γ2 − ρ2 − λρ− κγ3/2 − Cwhere C depends on ψ and κ. This an be estimated from below via the two ases asbefore.Case I, |ρ| ≤ γσδ: We obtain

Dκ(v, λ) ≥ (1−σ2
δ )γ

2 − 1
δ
σδγ − κγ3/2 − C,whih is ertainly bounded from below by a onstant depending only on κ and σδ.Case II, ρ2/γ2 ∈ [σ2

δ , 1]: As in the previous proof we �nd |ρ| ≤ γ ≤ aδ, giving
Dκ(v, λ) ≥ γ2 − ρ2 − 1

δ
|ρ| − κγ3/2 − Cis trivially bounded from below.Combining the two ases gives Dκ(v, λ) ≥ kψκ,δ as desired.Step 2: We now need to undo the substitution u = v2 in D(u, λ) = D(

√
u, λ). With

ux = 2vvx we �nd
‖ux‖2

L2 = 4‖vvx‖2
L2 = 4‖v‖2

L∞‖vx‖2
L2 ≤ C(1 + ‖vx‖3

L2),where we have used ‖v‖2
L∞ ≤ C‖v‖L2(‖v‖L2+‖vx‖L2) = C(1+‖vx‖L2), see Lemma A.1.Using v =

√
u we dedue

D(u, λ) − κ‖ux‖L2 ≥ D(v, λ) − c1κ‖vx‖3/2
L2 − c2 = Dc1κ(v, λ) − c2 ≥ kψc1κ,δ − c2 =: Kψ

κ,δ.Thus, the �rst estimate in (4.7) is established.Step 3: The seond estimate in (4.7) is obtained by estimating A(u) from above. Wehave
A(u) =

∫

Ω

u lnu+ψu dx ≤ max{ln u+ψ}
∫

Ω

u dx ≤ ln ‖u‖L∞ + maxψ ≤ C(1+‖ux‖).Inserting this into the �rst estimate of (4.7), the seond follows immediately.4.2 Improved a priori estimatesBased on the above energy bounds we derive new a priori estimates in L2(Ω) as well as in
L∞(Ω). To exploit the energy bound we an employ a variant of the �L log L� improvedversion of the lassial Gagliardo-Nirenberg interpolation inequality:

∀ ε > 0 ∃Cε ∀w ∈ H1(Ω) : ‖w‖3
L∞ ≤ ε‖wx‖2

L2‖w ln |w|‖L1 + Cε
(
1+‖w‖3

L1

)
. (4.8)
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The proof will be provided in Lemma A.2. We refer to [GlH97, GlM04℄ for similar uses ofthis inequality in reation-di�usion systems.From this, we are now able to derive an a-priori estimate for the L2-norm, thus showingthat blow-up is impossible under the assumption (4.1) for ℓ.Proposition 4.5. Assume that ψ and ℓ satisfy (1.2) and (4.1), respetively. Thenfor all K > 0 and T0 there exists C(K, T0) > 0 suh that the following holds. If for some
t0 ∈ [0, T0[ the solution u of (1.1) satis�es

A(u(t0)) =

∫

Ω

u(x, t0)
(
ln u(x, t0) + ψ(x)

)
dx ≤ K and ‖u(t0)‖L2 ≤ K, (4.9 )then the following a priori estimate in L2(Ω) holds:

‖u(t)‖L2 ≤ C(K, T0) for all t ∈ ]t0, T0[ . (4.10 )Proof. First we test (1.3) with u to obtain
1

2

d

dt
‖u‖2

L2 + ‖ux‖2
L2 =

(∫

Ω

ux dx+ ℓ̇+

∫

Ω

ψ′u dx
)
·
∫

Ω

uux dx−
∫

Ω

ψ′uux dx (4.11)for all t ∈ ]t0, T [. The integrals ∫
Ω
uk−1ux dx = 1

k
(u(1)k−u(0)k) we estimate by 2

k
‖u‖kL∞,while the last term admits the estimate

−
∫

Ω

ψ′uux dx ≤ 1

4

∫

Ω

u2
x dx+

∫

Ω

ψ′2u2 dx ≤ 1

4
‖ux‖2

L2 + ‖ψ′‖2
L2‖u‖2

L∞. (4.12)With |
∫
Ω
ψ′u dx| ≤ ‖ψ′‖L1‖u‖L∞, estimate (4.11) leads to

1

2

d

dt
‖u‖2

L2 +
3

4
‖ux‖2

L2 ≤ C0

(
1+‖u‖3

L∞

) with C0 = 3+‖ψ′‖L1+‖ψ′‖2
L2+1

δ
, (4.13)where δ > 0 is suh that |ℓ̇(t)| ≤ 1/δ for t ∈ [0, T0].Next we employ the energy estimate (4.6) and the initial ondition (4.9) giving

A(u(t)) =

∫

Ω

u(x, t)
(
lnu(x, t) + ψ(x)

)
dx ≤ C1(KA) = KA := K + T0/δ. (4.14)Together with ∫

Ω
ψu dx ≥

∫
Ω

min(ψ)u dx = minψ and the lower inequality |ξ ln ξ| ≤
2
e

+ ξ ln ξ, valid for all ξ > 0, we �nd
‖u(t) lnu(t)‖L1(Ω) ≤ C2(KA) =

2

e
+ C1(KA) − minψ for all t ∈ ]t0, T0[ .An appliation of (4.8) with ε(KA) := 1

4C0C2

shows that
1

2

d

dt
‖u(t)‖2

L2 +
1

2
‖ux(t)‖2

L2 ≤ C3(KA) for all t ∈ ]t0, T0[ . (4.15)
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Sine u(t) has mean value one there exist two positive onstants C4 and C5 suh that
C4‖u(t)‖2

L2 − C5 ≤ ‖ux(t)‖2
L2 . Using this in (4.15) results in the di�erential inequality

d

dt
‖u(t)‖2

L2 ≤ −C4‖u(t)‖2
L2 + C5 + 2C3(KA),whih gives for C5(KA) := (C5 + 2C3(KA))/C4,

‖u(t)‖2
L2 ≤ C(K, T0) := max

{
‖u(t0)‖2

L2, C5(KA)
}
. (4.16)Where the dependene on T0 in the onstant C(K, T0) stems from KA in (4.14).4.3 Global existene and boundedness propertiesTo obtain global existene for t ∈ [0,∞[ we use a slightly weakened version of our basiassumption (4.1) on ℓ. We do no longer ask for ontinuous di�erentiability of ℓ, but useonly ℓ ∈ W1,∞lo ([0,∞[). Additionally, we need to have ℓ(t) ∈ ]0, 1[. Thus, we impose that

ℓ stays away from the boundary whih implies that
∀T > 0, ∃ δ ∈ ]0, 1/2[ : ℓ(t) ∈ [δ, 1−δ] and |ℓ̇(t)| ≤ 1/δ for almost all t ∈ [0, T ].(4.17)To obtain boundedness we have to impose this ondition uniformly on [0,∞[.Theorem 4.6. Suppose that ℓ ∈ W1,∞lo ([0,∞[) satis�es (4.17). Then (1.1) admits aglobal lassial solution u.Proof. We let T0 ∈ ]0,∞] denote the maximal existene time of the loal-in-time solution

u of (1.1). Assume T0 < ∞, then on the one hand Theorem 3.1 implies ‖u(t)‖L2 →
∞ as t ր T0 (use (3.2) with q = 2). On the other hand, Proposition 4.5 shows
lim suptրT0

‖u(t)‖L2 < ∞ (see (4.10)): From this ontradition we onlude T0 = ∞.To obtain boundedness of the solution on the whole time interval ]0,∞[ we need to showthat A remains bounded. For this we use the uniform version of (4.17) and the improvedenergy dissipation estimate (4.7) provided in Proposition 4.4.Theorem 4.7. Assume that there exists δ ∈ ]0, 1/2[ suh that ℓ ∈ W1,∞([0,∞[) satis�es
ℓ(t) ∈ [δ, 1−δ] for all t ∈ [0,∞[. Then the global solution u of (1.1) with u0 ∈ L2(Ω),whih was obtained in Theorem 4.6, satis�es

u ∈ L∞([0,∞[ , L2(Ω)).Proof. For this we use the dissipation estimate (4.7) and obtain a di�erential inequality.For any positive κ we obtain
d

dt
A(u(t)) ≤ D(u(t), ℓ̇(t)) ≤ −κA(u(t)) +Kψ

κ,δ,
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where, if neessary, the onstant δ > 0 from the assumption is made smaller to have
|ℓ̇(t)| ≤ 1/δ for a.a. t ≥ 0 as well. From this estimate we easily obtain A(u(t)) ≤ KA :=
max{A(u(0)), Kψ

κ,δ}. We an use the estimates provided in the proof of Proposition 4.5.Note that (4.16) implies
‖u(t)‖L2 ≤ max{‖u0‖L2 , C5(KA)},whih is independent of t, beause here KA is bounded independently of any time interval.Remark 4.8. The reasoning in Theorem 4.7 is still orret if the ondition (4.17)holds only up to a �nite time T∗. Then the assertion in Theorem 4.7 holds up to thistime. Thus the ondition that ℓ(t) touhes the boundary of ]0, 1[ at time t∗ is not onlysu�ient, as seen in Remark 4.2, but also neessary for t∗ to be an explosion time. Henefor ℓ ∈ W1,∞

loc ([0, t∗[) the solution exists on the time interval [0, t∗[ if and only if ℓ(t) ∈ ]0, 1[for all t ∈ [0, t∗[.5 Convergene to the steady state if ℓ(t) → ℓ∗ ∈ ]0, 1[In this setion we show that the global solutions onstruted in the previous setiononverge to the unique steady state if the onstraint ℓ(t) onverges in a suitable way.In Setion 5.1 we �rst haraterise the steady states as funtions of the onstraint ℓ. Inpartiular, we show that they are the unique minimisers of A subjet to the onstraint
C(u) = ℓ. In Setion 5.2 we will then use properties of the dissipation funtional D toshow onvergene of the solutions under the additional assumption that ℓ̇ ∈ L1(]0,∞[).5.1 Charaterisation of the steady statesThe following lemma desribes the struture of the set of equilibria of (1.1) satisfying(4.2a). In fat, all these steady states are expliitly known as setting ut ≡ 0 leads to anODE for u that an be solved expliitly. For β ∈ R we de�ne the funtions uβ ∈ L2(Ω)via

uβ(x) =
1

cβ
eβx−ψ(x) with cβ =

∫

Ω

eβx−ψ(x) dx. (5.1)By de�nition we have uβ > 0 and ∫
Ω
uβ dx = 1. It remains to study the �rst moment forwhih we set

M(β) =

∫

Ω

xuβ(x) dx.The following result shows that M is stritly inreasing with M(β) → 0 and uβ
∗
⇀ δ0(δ-distribution at x = 0) for β → −∞ and M(β) → 1 and uβ

∗
⇀ δ1 (δ-distribution at

x = 1) for β → ∞.
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Lemma 5.1. The funtions uβ satisfy
uβ → 0

{ in Clo(]0, 1]) as β → −∞,in Clo([0, 1[) as β → +∞.
(5.2 )Moreover, M is stritly inreasing with

M(β) =

∫

Ω

xuβ(x) dx→
{

0 as β → −∞,

1 as β → +∞.
(5.3 )Consequently, for eah ℓ ∈ ]0, 1[ there exists a unique β with ℓ = M(β), whih we denoteby β = B(ℓ). Then,

Uℓ := uB(ℓ) (5.4 )is the unique steady state u of (1.1) with ∫
Ω
u dx = 1 and ∫

Ω
xu(x) dx = ℓ.Proof. In order to derive (5.2), let us �x x0 ∈ ]0, 1] and assume that there exist C0 > 0and a sequene of numbers βk → −∞ suh that uβk

(x0) ≥ C0 for all k. Sine ψ ∈ H1(Ω)we have C1 > 0 suh that ‖ψ‖C < C1 and so ‖eψ(·)‖C ≤ C2. Then for β < 0 we anestimate uβ on ]0, x0/2[ by
|uβ(x0)|
|uβ(x)|

≤ |eβ(x0−x)| |eψ(x)−ψ(x0)| ≤ |eβ
2
x0 | C2

2 → 0, as β → −∞, for all x ∈
]
0,
x0

2

[
.Thus we an �x β0 < 0 suh that for all x ∈

]
0, x0

2

[ we have uβ(x) ≥ 4
C0x0

uβ(x0) ≥ 4
x0whenever β < β0, whih implies that for all su�iently large k

1 =

∫

Ω

uβk
≥

∫ x0

2

0

uβk
≥ 2 .Whih is a ontradition to the onstrution (5.1). This proves the pointwise onvergeneto zero on ]0, 1]. By the same reasoning we an �x β1 < 0 for any x0 ∈ ]0, 1[, suh that forall x ∈

]
1+x0

2
, 1

] we have uβ(x) ≤ C3uβ(x0) whenever β < β1. This implies the uniformonvergene on every subset ]
1+x0

2
, 1

] and thus the �rst laim in (5.2), whereas the seondan be seen in a similar way.Along with the property ∫
Ω
uβ dx = 1, this also entails (5.3): Indeed, given ε > 0, by(5.2) we an �x β⋆ < 0 suh that uβ < ε in ]

ε
2
, 1

[ for all β < β⋆, whene
∫
Ω
xuβ(x) dx ≤ ε

2

∫ ε
2

0
uβ(x) dx+

∫ 1
ε
2

x · ε dx

< ε
2
· 1 + ε · 1

2
for all β < β⋆,and the limit behaviour as β → +∞ an be proven similarly. Finally, to see that M isstritly inreasing we use (5.1) to ompute

d

dβ

∫

Ω

xuβ(x) dx =

( ∫
Ω
x2eβx−ψ(x) dx

)
·
( ∫

Ω
eβx−ψ(x) dx

)
−

( ∫
Ω
xeβx−ψ(x) dx

)2

( ∫
Ω

eβx−ψ(x) dx
)2
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for β ∈ R. Sine ρ1(x) := xe
1

2
(βx−ψ(x)) and ρ2(x) := e

1

2
(βx−ψ(x)), x ∈ Ω̄, are linearlyindependent, the Cauhy-Shwarz inequality says that

(∫

Ω

ρ1ρ2 dx
)2

<
(∫

Ω

ρ2
1 dx

)
·
( ∫

Ω

ρ2
2 dx

)and thus ensures that d
dβ

∫
Ω
xuβ(x) dx > 0 for eah β ∈ R.The next result haraterises the above equilibria in terms of the energy funtional A andthe onstraint C.Proposition 5.2. The funtional u 7→ A(u) attains its minimum on the set

M(ℓ) := { u ∈ L1(Ω) : u ≥ 0,

∫

Ω

u(x) dx = 1,

∫

Ω

xu(x) dx = ℓ }on exatly one point, namely Uℓ de�ned in (5.4).Proof. Note that M(ℓ) is a strongly losed and onvex subset of L1(Ω). Moreover, thefuntional A is stritly onvex. Hene, there is at most one minimiser.We diretly show that Uℓ is the desired minimiser. The onvexity of u 7→ u lnu gives
ũ ln ũ ≥ u lnu+ (lnu+1)(ũ−u) for u > 0 and ũ ≥ 0.Thus, for all ũ ∈ M(ℓ) we obtain

A(ũ) =

∫

Ω

ũ ln ũ+ ψũ dx ≥
∫

Ω

Uℓ lnUℓ + (lnUℓ+1)(ũ−Uℓ) + ψũ dx

(i)
= A(Uℓ) +

∫

Ω

(
B(ℓ)x− ln cB(ℓ)

)
(ũ−Uℓ) dx

(ii)
= A(Uℓ),where in (i) we used a anellation of all terms involving ψ while in (ii) we use ũ, Uℓ ∈

M(ℓ).The following simple onsequene will be useful to establish onvergene to equilibria.Corollary 5.3. Assume that the sequene (uk)k∈N satis�es
uk ⇀ u∗ in L2(Ω), C(uk) → ℓ∗ ∈ ]0, 1[ , A(uk) → A(Uℓ∗).Then, u∗ = Uℓ∗ and uk → Uℓ∗ in L2(Ω) strongly.Proof. On the one hand, the strong ontinuity and onvexity of A imply weak lowersemiontinuity of A. Hene, we have A(u∗) ≤ A(Uℓ∗).On the other hand C is weakly ontinuous, whih implies C(u∗) = ℓ∗. Thus, Proposition5.2 implies that u∗ is equal to the unique minimiser Uℓ∗ .Finally the strit onvexity of A allows us to apply the Visintin's argument [Vis84℄. Theenergy onvergene A(uk) → A(Uℓ∗) turns the weak onvergene uk ⇀ Uℓ∗ into the desiredstrong onvergene.
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5.2 Vanishing dissipation and onvergeneWe now onsider the ase of global solutions for an ℓ ∈ W1,∞(]0,∞[) satisfying thefollowing onditions
ℓ̇ ∈ L1(]0,∞[) ∩ L∞(]0,∞[) and ∃ δ ∈ ]0, 1/2[ ∀ t ≥ 0 : ℓ(t) ∈ [δ, 1−δ]. (5.5)A simple onsequene of this ondition is that the limit

ℓ∗ := lim
t→∞

ℓ(t)exists. Moreover, Theorem 4.7 implies a lassial solution u ∈ L∞(]0,∞[ , L2(Ω)). Our aimis now to show that u(t) → Uℓ∗ in L2(Ω) for t→ ∞. Our proof has two ingredients, bothof whih are related to the energy dissipation relations derived in Setion 4.1. In the �rststep we will establish the onvergene of A(u(t)) → A∗. In the seond and �nal step wewill exploit that the integral ∫ ∞

0
D(u(t), ℓ̇(t)) dt is �nite.Lemma 5.4. Assume that ψ ∈ H1(Ω) and that ℓ satis�es (5.5). Then, for everysolution the following limit exists:
A∗ := lim

t→∞
A(u(t)).Proof. We reall the energy-dissipation (2.12) giving

A(u(t2)) +

∫ t2

t1

D(u(t), ℓ̇(t)) dt = A(u(t1)) for 0 ≤ t1 < t2. (5.6)The dissipation estimate (4.3) givesD(u(t), ℓ̇(t)) ≥ −C|ℓ̇(t)| for a �xed onstant C. Thus,the funtion τ 7→ a(τ) := A(u(τ)) − C
∫ τ

0
|ℓ̇(t)| dt is noninreasing. By the assumption

ℓ̇ ∈ L1(]0,∞[) and the lower bound A(u) ≥ −1/e + minψ we know that a is bounded aswell. Hene a(t) → a∗ for t→ ∞. Thus, A(u(t)) → a∗ + C
∫ ∞

0
|ℓ̇(t)| dt =: A∗.We still have to show that A∗ is related to ℓ∗ = limt→∞ ℓ(t). If we an show that A∗ =

A(Uℓ∗), then Corollary 5.3 an be employed easily. To �nd the identity for A∗ it willbe enough to �nd one sequene tk → ∞ suh that D(u(tk), 0) → 0 and to employ thefollowing result.Proposition 5.5. Assume ψ ∈ H1(Ω) and onsider a sequene (uk)k∈N with uk ∈ M(ℓk)suh that
uk ⇀ u∗ in L2(Ω), ℓk = C(uk) → ℓ∗ ∈ ]0, 1[ , D(uk, 0) → 0.Then, uk → Uℓ∗ in H1(Ω) and A(uk) → A(Uℓ∗).Proof. By the oerivity (4.7) of D, we obtain that uk is even bounded in H1(Ω). Thus,the weak onvergene in L2(Ω) implies uk ⇀ u∗ in H1(Ω). From this we obtain uniformonvergene and onlude A(uk) → A(u∗).
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We already now u∗ ∈ M(ℓ∗), and it remains to identify u∗ as Uℓ∗ . For this we use
D(uk, 0) → 0. We introdue a new dependent variable zk via the formula

uk(x) = eρk(x)zk(x)
2 with zk(x) ≥ 0 and ρk(x) = Λkx− ψ(x), (5.7)where Λk := Luk = uk(1) − uk(0) +

∫
Ω
ψ′uk dx. Doing some elementary alulations we�nd

D(uk, 0) = D̂(zk) := 4

∫

Ω

eρk(x)(z′k(x))
2 dx,

1 =

∫

Ω

uk(x) dx =

∫

Ω

eρk(x)
(
zk(x)

)2
dx, ℓk =

∫

Ω

xuk(x) dx =

∫

Ω

xeρk(x)
(
zk(x)

)2
dx.As uk onverges to u∗ we have Λk → Λ∗ = Lu∗ and ρk → ρ∗ : x 7→ Λ∗x− ψ(x).Using D̂(zk) → 0 we onlude zk → z∗ in H1(Ω) strongly, where z′∗ ≡ 0. From (5.7) wenow see that uk → eρ∗z2

∗ , i.e. u∗ = eρ∗z2
∗ . As z∗ is onstant, we see that u∗ must be amultiple of uΛ∗

. However, due to Lemma 5.1, there is only one suh multiple in M(ℓ∗),namely Uℓ∗ . Thus, u∗ = Uℓ∗ is established. Moreover uk → Uℓ∗ in H1(Ω) as zk → z∗ in
H1(Ω).We are now ready to present our �nal onvergent result.Theorem 5.6. Assume that ψ ∈ H1(Ω) and that ℓ satis�es (5.5) with ℓ∗ = limt→∞ ℓ(t).Then, for every solution u we have u(t) → Uℓ∗ in L2(Ω) for t→ ∞.Proof. Aording to Lemma 5.4 we have A(u(t)) → A∗. Hene we an let t1 = 0 and
t2 → ∞ in the energy-dissipation relation (5.6) to obtain

∫ ∞

0

D(u(t), ℓ̇(t)) dt = A(u(0)) − A∗.As by Theorem 4.3 there holds D(u(t), ℓ̇(t)) ≥ −C|ℓ̇(t)| we onlude that t 7→ D(u(t), ℓ̇(t))lies in L1(]0,∞[). Hene we an �nd a sequene tk → ∞ suh that D(u(tk), ℓ̇(tk)) → 0,
ℓ̇(tk) → 0. Thus Proposition 4.4 implies that ‖u(tk)‖H1 is uniformly bounded for all k.This implies for a subsequene (not relabelled) that u(tk) ⇀ u∗ in H1(Ω) to some u∗.Sine this even implies D(u(tk), 0) → 0, Proposition 5.5 is appliable, and we onlude
u(tk) → Uℓ∗ and A∗ = A(Uℓ∗).Now we onsider a general sequene τk → ∞. Sine u(τk) is bounded in L2(Ω), see Theorem4.7, we may assume u(τk) ⇀ u∗ in L2(Ω) for some u∗ ∈ M(ℓ∗). From u(τk) ∈ M(ℓ(τk))and τk → ∞, we obtain u∗ ∈ M(ℓ∗). Beause of A(u(τk)) → A∗ = A(Uℓ∗), Corollary 5.3yields the desired result u(τk) → Uℓ∗ in L2(Ω) strongly. As the possible limit of boundedsequenes is unique, we have onvergene of the whole family u(t).We expet that the methods in [GlH97, Set. 5.3℄ an be adapted to our ase as well.Thus, if ℓ(t) onverges exponentially to ℓ∗, i.e. |ℓ(t)−ℓ∗| ≤ C0e

−ρt, then there shouldexists λ ∈ ]0, ρ] and C > 0 suh that the following exponential onvergenes hold:
|A(u(t)) −A(Uℓ)| ≤ C e−λt and ‖u(t)−Uℓ∗‖L2 ≤ C e−λt/2.However, this is beyond of the aims of this paper.
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A Appendix: Some embedding and inequalitiesLemma A.1. i) Let α, β be integers satisfying 0 ≤ α < β and let 1 ≤ q, r ≤ ∞,
0 ≤ p < ∞. For the ase q or r having the value ∞, we de�ne formally 1

∞
= 0.Then we de�ne θ as

θ :=

1
p
− 1

q
− α

1
r
− 1

q
− β

.If θ ∈ [α
β
, 1] then there exist onstants c0, c1 ≥ 0 suh that for all ϕ ∈ Hβ,r(Ω)∩Lq(Ω)there holds

‖ ∂
α

∂xα
ϕ‖Lp ≤ c0‖

∂β

∂xβ
ϕ‖θLr‖ϕ‖1−θ

Lq + c1‖ϕ‖Lq . (A.1 )ii) For all 0 < q < ∞ and 0 < r ≤ ∞ there exists c > 0 suh that for all ϕ ∈
H1(Ω) ∩ Lq(Ω) ∩ Lr(Ω) there holds

‖ϕ‖C([0,1]) ≤ (
q

2
+ 1)θ‖ϕx‖θL2‖ϕ‖1−θ

Lq + ‖ϕ‖Lr , (A.2 )and ‖ϕ‖C([0,1]) ≤ (
q

2
+ 1)θ(‖ϕ‖L2 + ‖ϕx‖L2)θ‖ϕ‖1−θ

Lq , with θ =
2

q + 2
.(A.3 )iii) For all ψ ∈ H1(Ω) it holds true

|ψ(1) − ψ(0)| ≤ 2
√

2

√
π + 1

π
‖ψ‖1/2

L2 ‖ψx‖1/2

L2 . (A.4 )Proof. i) This statement is taken from [Zhe04, Theorem 1.3.4℄.ii) We know that H1(Ω) ⊂ C(Ω̄) suh that we an de�ne x∗, x∗ ∈ [0, 1] as
|ψ(x∗)| ≤ |ψ(x)| ≤ |ψ(x∗)| ∀x ∈ [0, 1].Then for all β > 1 there holds

‖ψ‖βL∞ = |ψ(x∗)|β ≤
∣∣∣
∫ x∗

x∗

(
|ψ|β

)
x

dx
∣∣∣ + |ψ(x∗)|β ≤ β

∫ 1

0

|ψ|β−1|ψx| + |ψ(x∗)|β dx

≤ β‖ψ‖β−1
L2β−2‖ψx‖L2 + |ψ(x∗)|β. (A.5 )Applying the bound |ψ(x∗)| ≤ ‖ψ‖Lr and setting β = q

2
+ 1 > 1, this proves (A.2). Onthe other hand keeping the hoie of β we an proeed from (A.5) with

‖ψ‖βL∞ ≤ β‖ψ‖β−1
L2β−2‖ψx‖L2 + |ψ(x∗)|β−1|ψ(x∗)| ≤ β‖ψ‖β−1

L2β−2‖ψx‖L2 + ‖ψ(x)‖β−1
L2β−2‖ψ(x)‖L2

≤ β‖ψ‖β−1
L2β−2(‖ψ‖L2 + ‖ψx‖L2).This then proves (A.3).iii) We �rst observe that we have to estimate a linear form on H1(Ω) whih vanishes on
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onstant funtions. Therefore it su�es to give an estimate only for those funtions whihare orthogonal to the onstants. (It is lear that a funtion ψ is orthogonal to the onstantsif and only if ∫
Ω
ψ dx = 0.) We estimate by means of (A.3), with q = 2,

|ψ(0) − ψ(1)| ≤ 2‖ψ‖C([0,1]) ≤ 2
√

2‖ψ‖1/2

L2

√
‖ψ‖L2 + ‖ψx‖L2. (A.6 )Using the estimating ‖φ‖L2 ≤ 1

π
‖φx‖L2 whih holds for all for all φ ∈ H1(]0, 1[) with∫ 1

0
φ dx = 0, one obtains the assertion.We provide a Gagliardo-Nirenberg type estimate involving norms in L logL(Ω). The proofonsists of a modi�ation of [BHN94, p. 1199℄.Lemma A.2. Let G ⊂ R be a bounded interval. There exists C > 0 with the propertythat for all ε > 0 one an �nd Cε > 0 suh that

‖w‖3
L∞ ≤ ε‖wx‖2

L2 · ‖w ln |w|‖L1 + Cε + C‖w‖3
L1 (A.7 )is valid for all w ∈ H1(G).Proof. Following the reasoning in [BHN94℄, we �rst invoke the Gagliardo-Nirenberg in-equality (A.1) to �nd c1 > 0 suh that

‖z‖3
L∞ ≤ c1‖zx‖2

L2 · ‖z‖L1 + c1‖z‖3
L1 for all z ∈ H1(G). (A.8)We now hoose N > 1 large ful�lling 8c1

lnN
≤ ε and introdue χ ∈ W1,∞

loc (R) by de�ning
χ(s) := 0 for s ∈ [−N,N ], χ(s) := |s| for |s| ≥ 2N and χ(s) := 2(|s| − N) for N < |s| <
2N . Then given w ∈ H1(G), we evidently have

‖w − χ(w)‖L∞ ≤ 2Nand furthermore
‖χ(w)‖L1 ≤

∫

{|w|>N}

|w| dx ≤ 1

lnN
· ‖w ln |w|‖L1.Sine (1 + ξ)3 ≤ 2 · (1 + ξ3) for ξ ≥ 0, (A.8) furthermore yields

‖w‖3
L∞ ≤ 2‖χ(w)‖3

L∞ + 2‖w − χ(w)‖3
L∞

≤ 2c1‖(χ(w))x‖2
L2 · ‖χ(w)‖L1 + 2c1‖χ(w)‖3

L1 + 24N3

≤ 8c1
lnN

· ‖wx‖2
L2 · ‖w ln |w|‖L1 + 2c1‖w‖3

L1 + 34N3,beause ‖χ′‖L∞(R) = 2 and |χ(s)| ≤ |s| for all s ∈ R. In view of our de�nition of N , thisproves (A.7) with C := 2c1 and Cε := 24N3.Aknowledgements. A.M. is grateful to Annegret Glitzky for helpful omments andto the European Researh Counil for partial support under the grant ERC-2010-AdGno.267802 AnaMultiSale. This work was initiated while M.W. visited WIAS in Otober2010. M.W. is grateful for the kind hospitality.
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