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AbstratWe show that ontinuum models for ideal plastiity an be obtained as a rigorousmathematial limit starting from a disrete mirosopi model desribing a viso-elasti rystal lattie with quenhed disorder. The onstitutive struture hanges asa result of two onurrent limiting proedures: the vanishing-visosity limit and thedisrete to ontinuum limit. In the ourse of these limits a non-onvex elasti prob-lem transforms into a onvex elasti problem while the quadrati rate-dependentdissipation of viso-elasti solid transforms into a singular rate-independent dissipa-tion of an ideally plasti solid. In order to emphasize ideas we employ in our proofsthe simplest prototypial system desribing transformational plastiity of shape-memory alloys. The approah, however, is su�iently general and an be used forsimilar redutions in the ases of more general plastiity and damage models.1 IntrodutionPhenomenologial models involving rate-independent hysteresis appear in various solidmehanis problems ranging from frition to plastiity and damage. Typially, the asso-iated systems of phenomenologial equations ontain empirial parameters harateriz-ing the failure thresholds and the hardening rates. In sharp ontrast to elasti moduli,these measures of out-of-equilibrium behavior an rarely be formally linked to the stru-ture of the underlining mirosopi system. The main di�ulty originates from the fatthat at �nite temperature the mirosopi dissipation is neessarily rate dependent whilethe observed marosopi dissipation is rate independent. This means that the orretoarse graining, implying averaging out of the mirosopi time and spae sales, mustneessarily involve the basi hange of the model struture. Essentially one needs tounderstand the limit transition from quadrati dissipative potentials of Onsager type tosingular dissipative potentials used in the desription of rate-independent dissipative pro-esses. The main physial ingredients of suh a limit were identi�ed in [PuT05℄, whererate-independent plastiity was obtained as a rheologial model. Here we present the �rstrigorous mathematial analysis of the problem and obtain the orresponding system ofpartial di�erential equations in spae and time.The foundations of the general phenomenologial theory of rate-independent systemshave been laid down in [Hil50, Mor74℄ (see also [NgR76, FeE89, Ha97, FrM98, OrR99,Pet05℄). The universal mathematial features of suh models found their most learmanifestation in the general onept of energeti rate-independent systems (ERIS) in-trodued in [MiT99, MTL02℄. The ERIS-based approah has been already used in thedesription of frature [DFT05, DeT09℄, plastiity [DDM06, DD∗08, MaM09℄, delami-nation [KMR06, RSZ09℄, damage [FrG06, BMR09, GaL09℄ and phase transformations[MTL02, Rou02, The02, KMR05℄.The mirosopi models in all these areas rely on the existene of harateristi defetsarrying inelasti deformation (e.g. disloations, phase boundaries, frature fronts, et.)The mirosopi dynamis of the individual defets is well understood, however, theirinteration is very omplex whih is the reason why the detailed bridge between themirosopi and the phenomenologial models has not been yet built. In this situationsimple prototypial meso-sopi models, even extremely shemati ones, still o�er aninsight and have a onsiderable heuristi value.1



In the framework of plastiity theory the mirosopi origin of rate independent dis-sipation was �rst studied by using simpli�ed zero-dimensional models desribing a singlepartile on a periodi landsape (e.g. [Pra28, Deh29℄). Later suh models were applied toa wide range of rate-independent dissipative phenomena from harge density waves andmagnetism to superondutivity and phase transitions [PBK79, Fis85, HB∗94, CDP∗99℄.One-dimensional disrete models involving bi-stable snap-springs (soft spins) representthe next level of shematization allowing one to model realisti hystereti behavior with-out introduing a periodi landsape [MüV77, FeZ92, PuT00, TrV05, PRTZ09℄. Higher-dimensional snap-spring models allow one to study pinning-depinning transition, ritial-ity and power law struture of �utuations e.g. [Kar98, Zai06, PRTZ08℄.Despite the onsiderable literature on the subjet, no attempt has been made so far tobridge the gap between visous and rate independent plasti systems by rigorous math-ematial analysis outside the simplest zero-dimensional ase leading only to rheologialmodels [ACJ96, Men02, PuT05, Sul09℄. In the present paper we prove for the �rst timesome exat onvergene results for the one-dimensional problem. Although we deal withthe simplest nontrivial ase, we have to onfront all the major problems assoiated withnon-onvexity and oarse graining in both spae and time. We therefore expet that ourtehnique an be extended to more general systems.More spei�ally, we onsider a quasi-statially driven disrete hain of bi-stable, viso-elasti snap-springs and derive a oarse-grained model that is equivalent to ontinuumrate-independent plastiity. The main ingredient of the mirosopi model making suhredution possible is the rugged energy landsape. Under slow external loading our systemremains in a loal equilibrium (metastable state) till it is fored to undergo a fast transitionfrom an unstable state to a new loal minimum of the energy. The energy dissipated duringthe fast transitions an be desribed in the ontinuum limit by a dissipation potential thatis homogeneous funtion of degree one. Some formal omputations justifying suh limithave been presented in [PuT05℄. In partiular, it was realized that the transition mustinvolve simultaneous averaging over the fast time sale and homogenization over spatialinhomogeneity. In this paper we present the �rst rigorous analysis of the full dynamis andshow that in order to obtain in the limit a spatially nontrivial rate independent plastiityproblem it is neessary to regularize the disrete system by introduing quenhed disorder.Previously, the disorder in suh systems was used to obtain hardening and produe realistiinner hysteresis loops, but only in spatially independent rheologial setting [PuT02℄.In mathematial terms, our starting point is a system of N ordinary di�erential equa-tions of the gradient �ow type. The system is non-autonomous beause the hain isdriven through applied displaement on the boundaries (hard devie). We identify twomain small parameters. The parameter δ is the rate of visous relaxation on the timesale of the loading. This parameter goes to zero when either driving is quasi-stati orthe internal relaxation is fast. The seond parameter ε = 1/N is the marosopi lengthof the N snap springs and thus gives the sale of the inhomogeneity: it disappears whenthe internal length is muh smaller than the external one. To avoid degeneray leading toNeishtadt type phenomena [Ne��88℄ we introdue small random inhomogeneity, whih addsa third small parameter aounting for the dispersion r. We then assume that the randomproperties of the system are �xed and fous on the study of a partiular double limit: �rst
δ → 0, then ε→ 0. We prove that in this limit the original �nite dimensional viso-elastisystem redues to an in�nite-dimensional ontinuum model exhibiting rate-independent2



hystereti behavior.The onstitutive struture is hanging as a result of two onurrent limiting proedures:the vanishing-visosity limit and the disrete to ontinuum limit. In the ourse of theselimits a non-onvex elasti energy (in terms of mirosopi strains) transforms into aonvex elasti energy (in terms of two marosopi variables, namely the elasti strain andthe averaged phase indiators alled plasti strain), while the quadrati rate-dependentdissipation of viso-elasti solid transforms (given in terms of the rate of mirosopistrains) into a singular rate-independent dissipation of an ideally plasti solid (given interms of the rate of the plasti strain). As intermediate onstrutions we enounterjump disontinuities in time and parametri measure-valued solutions in spae. Theproof involves two main steps. The �rst is the redution of a �nite-dimensional gradientsystem of ODEs to a disrete automaton, whih gives a quasi-stati evolution on thetime-dependent set of loal energy minima. This automaton is then reformulated asan energeti rate-independent system (ERIS) represented by an energy funtional and adissipation distane. The seond step is the limit passage from disrete to ontinuum inthe framework of Γ-onvergene of ERIS. Here we exploit the Young measures generatedthrough the disorder and thus are able to pass to the limit in both the energy and thedissipative potential.In order to emphasize ideas we employ in our proofs the simplest prototypial systemdesribing transformational plastiity of shape-memory alloys. The approah, however,is su�iently general and an be used for similar redutions in the ases of more generalplastiity and damage models.The paper is organized as follows. In Setions 2 and 3 we set the general dynami prob-lem for the overdamped ODE system and introdue the regularization through quenheddisorder. We then de�ne the marosopi variables by embedding the disrete systeminto L2(Ω) where Ω = ]0, 1[ is the referene on�guration of a ontinuum bar. Most ofthe rigorous analysis is done under the assumption that Φ is a bi-quadrati and thatthe body fores are time independent. These assumptions are not essential and are usedonly to make alulations simpler and the proofs more transparent. In Setion 4 we dealwith the vanishing-visosity limit δ → 0 for �xed ε. We present areful estimates forthe visous solutions omparing them to those of a limiting rate-independent disreteautomaton. The main di�ulty is to ontrol the phase state of eah individual spring,whih beomes possible beause our disorder and dynamis are onsistent with the order-ing of the springs. We show that the evolution of the system splits into equilibrium anddissipative stages where the dissipative stages an be replaed by jump disontinuities inisolated moments of time. The limiting ERIS leads to formulations involving inrementalminimization problems, whih allows us to use diret variational tehniques later on.In Setion 5 the limit ε = 1/N → 0 is obtained through embedding the system into
Q = L2(Ω)2 and ontrolling the joint Young measures for elasti and plasti strains.The onvergene to the limiting plastiity model is interpreted in terms of Γ-onvergeneof energeti rate-independent systems as �rst suggested in [MRS08℄. In Setion 6 weshow that in the ase of a bi-quadrati potential the more general double limit (ε, δ) →
(0, 0) with δ ≤ κ+ε for some κ∗ > 0 produes the same limiting plastiity problem.(However, we do not expet the restrition δ ≤ κ+ε to be sharp.) In Setion 7 wereturn to the ase of general (non neessarily bi-quadrati) potentials Φ and generaltime dependent body fores. We �rst study the ordered double limit �limε→0 limδ→0�3



and present a formal alulation showing how the e�etive dissipation potential and thee�etive stored-energy density an be obtained from the mirosopi elasti potentialand the probability distribution of the quenhed disorder. We then sketh the proof ofthe onvergene, heavily relying on the orresponding proofs in the ase of bi-quadratipotential. Finally, in Setion 7.5 we brie�y disuss onvergene along the generi sequenesin the (ε, δ) plane.2 PreliminariesConsider a marosopi interval [0, 1] ontaining N−1 partiles at the referene positions
xNj = j/N , j = 1, . . . , N−1. The boundary points j = 0 and j = N are assumed tobe ontrolled and undergoing presribed displaements. The remaining points are linkedin series by N idential snap-springs. The disreteness of this mehanial system an beviewed as a shemati representation of an array of obstales (defets, grain boundaries,et.).PSfrag replaements
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Figure 2.1: Left: Non-monotone stress-strain relation. Right: Two branhes ψ+1 and ψ−1of the strain-stress relationThe most important ingredient of the model is the bi-stability of the individual elastielements. To be more preise we write the normalized elasti energy of the hain in theform
Ẽ(e) =

1

N

N∑

j=1

Φ(ej) with e = (e1, . . . , eN) ∈ R
N ,where ej is the strain in the jth snap-spring. We assume that the elasti energy of asnap-spring Φ : R → R is a non-onvex two-well potential. This means that the funtion

φ = Φ′ is dereasing on the interval ]e−, e+[ (spinodal region) and stritly inreasing on thetwo intervals ]−∞, e−[ and ]e+,∞[, representing phase �+� and phase �−�, respetively(see Fig. 2.1). We an formally de�ne the orresponding energy wells by setting
σ+ := φ(e−) > σ− := φ(e+).For future onveniene we denote by ψ+1 : [σ−,∞[ → [e+,∞[ and ψ−1 : ]−∞, σ+] →

]−∞, e−] the inverse funtions of φ : [e+,∞[ → [σ−,∞[ and φ : ]−∞, e−] → ]−∞, σ+],respetively. We also de�ne e∗− = ψ+1(σ+) > e+ and e∗− = ψ−1(σ−) < e−.4



In what follows a prominent role will be played by a partiular bi-quadrati potential
Φbiq(e) :=

k

2
min{(e+a)2, (e−a)2}, (2.1)giving

φbiq(e) =

{
k(e+a) for e < 0,
k(e−a) for e > 0.Note that in this ase φ is not ontinuous at e = 0 where φ an take the value either kaor −ka. For the bi-quadrati energy Φbiq we �nd

e± = 0, e∗± = ±2a, σ± = ±ka, ψ±1(σ) =
1

k
σ ± a.The hain is loaded by time dependent marosopi body fores G̃j(τ) given by

G̃j(τ) =

∫ j/N

0

g̃ext(τ, y)dy.In addition we impose time-dependent Dirihlet boundary ondition (hard devie) repre-senting external ontrol of the total average strain ℓ̃, namely
1

N

N∑

1

ej(τ) = ℓ̃(τ). (2.2)It is natural to write the resulting energy funtion in terms of the relative strains ẽj =
ej − ℓ̃(τ). The new unknowns form a vetor ẽ = (ẽ1, . . . , ẽN) ∈ XN , where XN =

{ (a1, . . . , aN) ∈ R
N | ∑N

1 aj = 0 }. In these notations the total energy of the hain anbe written as
Ẽ(τ, ẽ) =

1

N

N∑

j=1

(
Φ(ẽj+ℓ̃(τ))− G̃j(τ)ẽj

)
.In the framework of quasi-stati elastiity theory the mehanial problem for the drivenhain redues to parametri minimization of the energy Ẽ(τ, ẽ). Due to bi-stability ofthe individual elasti elements suh energy has an exponentially large number of ritialpoints. One an also expet that the orresponding metastable (loal minimum) branhes

ej(τ) are not ontinuous with respet to the parameter τ . In this situation the knowledgeof dynamis is neessary to de�ne uniquely the evolution of the system.Assume that the mirosopi dynamis is overdamped (for inertial limit see [YuT10℄)and that the dissipation is haraterized by a dissipation potential R(ė) giving
D

ėe
R( ˙̃e) = −DeeẼ(τ, ẽ).(We ontinue to use DaF to denote the (partial) Gateaux derivative of a funtional withrespet to the variable a.) The standard visous model is haraterized by the quadratidissipation potential
R(ė) =

ν

2N

N∑

j=1

˙̃e
2

j ,5
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PSfrag replaements
ej−1 ej ej+1Figure 2.2: Visoelasti hain with bi-stable springs.where ν is the visosity parameter. The resulting dynamis is of gradient-�ow type

ν

N
˙̃e = −DeeẼ(τ, ẽ).We further assume that the loading rate is small, i.e.,
ℓ̃(τ) = ℓ(δ̃τ)where ℓ(·) is a given smooth funtion and δ̃ is a measure of loading rate. By introduingthe slow time parameter t = δ̃τ and de�ning G(t, y) = G̃(τ, y), we obtain

δėj = −φ(ej)−G(t, j/N) + σ(t) for j = 1, . . . , N,

1

N

N∑

j=1

ej(t) = ℓ(t).





(2.3)(Here we returned to the original stain variables ej = ẽj(t) + ℓ(t) for a better physialinterpretation.) The new non-dimensional parameter δ = δ̃ν is the ratio of the rate ofloading and the rate of visous relaxation (see also [PuT05℄). The funtion σ : [0, T ] → Rrepresenting total stress appears in (2.3) as the Lagrange multiplier assoiated with thelength onstraint (2.2).To gain some insight into the behavior of the system (2.3) subjeted to quasi-statiloading we perform several numerial experiments. In these experiments we neglet bodyfores and assume φ(e) = e3−e.We also assume that visosity is small but �nite δ = 0.015.The initial data are hosen randomly distributed around the value ej(0) ≈ −1.3. In allexperiments we presribe the history of average strain and study the behavior of theaverage stress σ̂ = 1

N

∑N
1 φ(εj).
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Figure 2.3: Simulation of system (2.3) for N = 9. Left: σ̂ = 1
N

∑N
1 φ(ej) versus ℓ. Right:

e1, ..., e9 versus t. 6
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Figure 2.4: Stress and strains for a model with N = 9 and linear bias µ9
j = 0.05(j−5).Right: σ̂ versus ℓ. Left: e1, ..., e9 versus t.The �rst experiment was onduted with a homogeneous hain where all snap-springswere idential. The resulting stress-strain urve and the strains inside individual snap-springs are shown in Fig. 2.3. Observe that we do not obtain a plastiity-like hysteretibehavior. Instead, we detet a �snap� phenomenon, when a large number of springstransform simultaneously forming one big avalanhe while the rest of the springs relaxes.As the load subsequently inreases, the inhomogeneous state beomes homogeneous againin a smooth way.We interpret the �snap� behavior as synhronization, whih leads to a delayed bifur-ation, known as the Neishtadt phenomenon [Ne��87, Ne��88℄. Indeed, in the stable regime

ℓ(t) < e− the strains eNj (t) are always lose to the quasistati equilibrium value ℓ(t) andthe perturbations deay exponentially. More preisely the deay rate is −λmin/δ, where
λmin > 0 is the smallest eigenvalue of the Hessian of the energy at e = (ℓ, . . . , ℓ). Hene,if a solution starts in the stable regime at t = t0 with perturbations of order 1 and reahesthe spinodal region at t = t1, the perturbations will be of order e−λmin(t1−t0)/δ. Thus, theinstability of the steady state e(t) = (ℓ(t), . . . , ℓ(t)) in the spinodal region needs sometime to establish oneself: the unstable eigenvalue will be of the form λ̂/δ, and to obtainperturbations of order 1 we need to wait until t2 satis�es λ̂(t2−t1)/δ = λmin(t1−t0)/δ.The point is that (t2−t1)/(t1−t0) = λmin/λ̂ is independent of δ.
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Figure 2.5: Simulation of ODE with N = 15 and random bias. Left: σ̂ versus ℓ. Right:
ej versus t. 7



To obtain separation of trajetories of the dynamial system one needs to break thepermutational symmetry. The inhomogeneity an be generated through a disrete set ofmirosopi body fores. This amounts to the following modi�ation of the snap-springpotentials Φj(ej) = Φ(ej) − µjej, where µj with j = 1, ..., N are the biasing fores. Theresulting system of the ODEs reads
δėj = −e3j + ej + µj + σ(t) for j = 1, ..., N.In our next numerial experiment we set µ9

j = 0.05(j−5). Suh inhomogeneity allowsus to generate an unsynhronized response, where eah spring transformers at its ownritial stress starting from the weakest one, see also [PuT02℄. The results are shown inFig. 2.4. Notie that now, instead of one big �snap�, we observe a serious of small �popping�events so that the inhomogeneous system produes realisti plastiity-type behavior (withhardening).Observe however that plasti deformation (phase transition in our ase) propagatesthrough the system in the form of a single front. This is not realisti beause we knowthat (outside very speial �easy glide� regimes) plastiity usually develops simultaneouslyall over the sample. To ahieve the stohasti separation of the trajetories we need toassume that parameters µj are stohastially independent.The results of numerial loading-unloading test for the ase when µj are equi-distributedin the segment [−0.1, 0.1] is presented in Fig. 2.5. We see that the overall behavior ofthe system is basially the same as in the previous ase modulo the dispersion of the�popping� events. The important di�erene, however, is that now the strain distributioninside the sample is no longer monotone and instead beomes strongly osillatory makingthe system marosopially homogeneous. The ensuing homogeneity at the oarse-grainedsale is exatly the property whih is neessary to obtain a nontrivial ontinuum limit.3 Main resultsTo formulate the main result we need to introdue random mirosopi body fores µjrepresenting quenhed disorder. We assume that the probability density f ∈ L1(R), whihharaterizes the distribution of µj and satis�es the following natural onstraints
f ≥ 0,

∫

R

f(µ)dµ = 1,

∫

R

µf(µ)dµ = 0, and r2 =

∫

R

µ2f(µ)dµ > 0. (3.1)The dynamial system
δėj = −φ(ej) + µj −G(t, j/N) + σ(t) for j = 1, . . . , N,

1

N

N∑

j=1

ej(t) = ℓ(t)





(3.2)depends now on three nondimensional parameters, namely the disreteness level

ε = 1/N > 0,the normalized visosity
δ > 0,8
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popPSfrag replaements ε = 1/N

r

ε→ 0

r → 0Figure 3.1: Shemati phase diagram in the spae of small parameters indiating loationof the `popping' domain whih we assoiate with rate-independent plastiity response.and the measure of disorder
r > 0.As our numerial experiments suggest, one an expet to obtain marosopi ontinuumrate-independent plastiity model only in ertain triple limit of the form

(ε, δ, r) → (0, 0, 0).We have seen that the limit r → 0 at �xed ε, δ may lead to �snap� behavior, andthe subsequent driving ε and δ to zero does not save the situation. To obtain the �pop�behavior we need �rst to assume that r > 0 and onsider the limit (ε, δ) → (0, 0).We anthen ontinue along the parametri path r → 0 leading to ideal plastiity limit.At �xed r one an �nd for eah ε and δ a set of solutions of the mirosopi problem
eε,δ : [0, T ] → R

N . Here the vetor eε,δ(t) is de�ned by
eε,δ(t) = (eε,δj (t))j=1,...,N .It will be onvenient to rewrite the original ODE system (3.2) in the form

0 = DėRε,δ(ė(t)) + DeEε(t, e(t)) + σ(t)DeCε(t, e(t)), Cε(t, e(t)) = 0. (3.3)Here the energy
Eε(t, e) =

1

N

N∑

j=1

(
Φ(ej)−hNj (t)ej

)depends on inhomogeneity through
hNj (t) = µNj −G(t, j/N),where we expliitly indiate the dependene of the random terms on the size of the system.The time dependent onstraint an be written as
Cε(t, e) =

N∑

j=1

(
ej−ℓ(t)

)and the dissipation potential is given by
Rε,δ(ė) =

δ

2N

N∑

j=1

ėj(t)
2.9



In the vanishing visosity limit the solutions eε,δ(t) of (3.3) an be expeted to staymost of the time lose to elasti equilibrium. The orresponding elasti problem reduesto solving the equations
0 = −φ(ej) + µNj −G(t, j/N) + σN(t),

1

N

N∑

j=1

ej = ℓ(t).Sine the funtion φ(·) is non-monotone, the response eε,0 : [0, T ] → R
N is not neessarilysingle-valued. If we introdue the phase indiators

zj = sign(ej) ∈ {−1, 0, 1},speifying three individual sheets of the inverse funtion ψzj
(·) (two stable phases and thespinodal region, see Figure 2.1), we an write expliitly

ej = ψzj
(σN(t)+µNj −G(t, j/N)). (3.4)The phase indiators identify individual branhes of the equilibrium stress-strain rela-tion and, if the solution remains lose to a partiular branh, the phase indiators remainunhanged. The disrete variables zj are the preursors of ontinuum plasti strain vari-ables, whih we introdue in the next setion. One an see that if the `plasti' on�guration

zj is given, the elasti strains ej an be easily reovered from the solution of the onvexproblem (3.4). This suggests that in the vanishing-visosity limit the elasti problem anbe `ondensed' and the evolution of the system an be reformulated in terms of plastistrains only.In what follows we show that due to the quenhed disorder the phase indiators
zε,δ(t) ∈ {−1, 0, 1}N and onsequentially the strains eε,δ(t) ∈ R

N �utuate in a ran-dom fashion. The independene of the random hoies at di�erent spatial points leads(due to entral limit theorem) to ontrollable properties of the mean values and thusallows one to onstrut a oarse-grained theory and expliate the marosopi properties.To be more spei�, we assume that the quantities varying at the sale ε are miro-sopi, while those varying at the sale 1 are marosopi. To de�ne the marosopiaverages we �rst need to introdue a spatial averaging operator. We begin by embeddingthe solutions e ∈ R
N into L2(Ω) via the harateristi funtions

χNj = χ](j−1)/N,j/N [ : x 7→
{

1 for x ∈ ](j−1)/N, j/N [ ,
0 otherwise.This allows us to de�ne the elasti strain �eld eε,δ ∈ L2(Ω) as follows

eε,δ(t, x) =
N∑

j=1

eε,δj (t)χNj (x).Similarly, we introdue a ontinuum phase indiator (plasti strain) zε,δ ∈ L2(Ω) via
zε,δ(t, x) =

N∑

j=1

ŝ(eε,δj (t))χNj (x).10



Here
ŝ(e) =





−1 for e ≤ e−,
0 for e− < e < e+,

+1 for e ≥ e+.The disrete-to-ontinuum limit onerns the asymptotis ε = 1/N → 0. The stronglimits of the above sequenes do not exist and our main task is to haraterize the weaklimits
(eε,δ(t, ·), zε,δ(t, ·)) ⇀ (e(t, ·), z(t, ·)) in Q = L2(Ω)2.We understand them in the sense that

∫

Ω

eε,δ(t, x)v1(x)+z
ε,δ(t, x)v2(x)dx→

∫

Ω

e(t, x)v1(x)+z(t, x)v2(x)dxfor (ε, δ) → 0 where the test funtions satisfy v1, v2 ∈ L2(Ω). As we show, the limitingmixtures of phases annot be fully haraterized by the value of the average elasti strain
e. The missing information, allowing one to lose the oarse-grained desription at themaro-sale, is exatly the limit of the indiator funtion z.More preisely, we show that a sequene of limits δ → 0 and then ε→ 0 allow one toobtain a one-dimensional elasto-plastiity problem in the form

0 = DeE(t, e, z(t)) + σ(t) for x ∈ Ω,

∫

Ω

e(t, x)dx = ℓ(t); (3.5a)
0 ∈ ∂R(ż(t)) + DzE(e(t), z(t)). (3.5b)Here the marosopi elasti energy E is given by

E(e, z) =

∫ 1

0

(
Φ(e(x), z(x))−G(t, x)e(x)

)
dx,where the marosopi energy density Φ depends on Φ and the probability density fdetermining the random bias vetors (µNj )j=1,...,N . In the bi-quadrati ase Φ = Φbiq (see(2.1)) we obtain the expliit formula

Φ(e, z) =
k

2

(
e− a z

)2
+H(z), (3.6)where the kinemati hardening funtion H depends on f , see (5.3). In the general asethe marosopi rate independent dissipative potential R takes the form

R(ż) =

∫ 1

0

R(ż(x))dx with R(v) =

{
ρ+v for v ≥ 0,
ρ−|v| for v ≤ 0,where ρ+ and ρ− an be expressed in terms of Φ, see (7.7). In the bi-quadrati ase

Φ = Φbiq we obtain ρ± = 2ka2.The most unexpeted feature of our result is the fundamental hange in the nature ofthe dynamial system in the limit. Indeed, while (3.3) is an N-dimensional ODE derivedfrom a gradient �ow with quadrati dissipation potential, the limit is a rate-independentsystem, where the dissipation related fores ∂R(ż) are homogeneous of degree 0 in ż11



(as the dissipation potential R(·) is homogeneous funtion of degree 1). The origin ofthe hange is the `onstrutive interferene' of miro-elastiity and miro-visosity in theontinuum limit. Notie that both the marosopi energy and the marosopi dissipationare a�eted by these two onstitutive omponents of the mirosopi model. Notie alsothat the memory of the spei� nature of the mirosopi dissipation has been lost inthe marosopi double limit suggesting that linear visosity is not the only mirosopidissipative mehanism leading to our rate-independent maro-model.If introdution of quenhed disorder is pereived as an auxiliary tehnial step, thedisorder must be eliminated through yet another limit r → 0. The derivation of thelimiting model an follow a well-established path known in lassial elasto-plastiity, seee.g. [BMR10℄. From the de�nition (5.3) of the hardening funtion Hf in (3.6) it followsthat it depends on f in suh a way that r2 =
∫

R
µ2f(µ) dµ → 0 implies Hf (z) → 0 forall z ∈ ]−1, 1[ (while H(z) = ∞ if |z| > 1), see e.g. (5.4). Therefore the limiting model,given again by (3.5) with Φ from (3.6), has the property that H(z) = 0 for |z| ≤ 1. Onean see that the resulting Φ and hene E are only degenerate onvex whih means thatthe model is not well-posed: as it is well known in ideal plastiity, several solutions mayexist for given initial data.4 Vanishing-visosity limitSuppose that ε > 0 and r > 0 are �xed and onsider the limit δ → 0. In fat, the as-sumption r > 0 is not ruial in this setion; the only required property of the parameters

µN1 , . . . , µ
N
N is that the e�etive biases hj = µNj −G(t0, j/N) are pairwise di�erent.4.1 Energy landsapeWe begin with the review of the struture of the elasti energy landsape at the givenloads (see also [PuT00℄). To this end we �x the time t = t0 and onsider the problem ofminimizing the energy

Eε(t, e) =
1

N

N∑

1

(
φ(ej)− hjej

)under the onstraint
1

N

N∑

1

ej = ℓ.The ritial points of (3.3) an be obtained as solutions of the algebrai equations
0 = −φ(ej) + hj + σ for j = 1, ..., N,

1

N

N∑

1

ej = ℓ(t0). (4.1)Metastable equilibria (loal minima of the energy) are seleted by the ondition of thepositive de�niteness of the Hessian matrix. For su�iently large N none of the metastablestrains ej an lie in the spinodal region ]e−, e+[, see [PuT00℄. To identify the remainingtwo phases we de�ne for eah j a phase indiator zj ∈ {−1,+1}, suh that
ej = ψzj

(hj+σ).12



Ametastable equilibrium orresponding to an indiator vetor z = (z1, . . . , zn) ∈ {−1, 1}Nexists when the equations
1

N

N∑

j=1

ψzj
(hj+σ) = ℓ and {

hj+σ ≥ σ− if zj = 1,
hj+σ ≤ σ+ if zj = −1an be satis�ed simultaneously. For eah metastable branh parameterized by z we ande�ne the equilibrium response funtions σ = σ(l, z).A ruial observation for this work is that, due to imposed inhomogeneity, not allmetastable equilibria will be aessible by our dynamis. Indeed, suppose that the biasoe�ients hj are pairwise di�erent and de�ne a sublass of metastable states, whih weall ordered states, via the ondition

hj < hk =⇒ e1(t) < e2(t) < · · · < en(t). (4.2)Then, the knowledge of the set of ordered states is su�ient for the study of the limitingmarosopi problem beause the set of ordered states is invariant under the evolution forthe visous and for the limiting invisid systems (see (4.8) and (DA1)�(DA3) in De�nition(4.2)). Moreover, one an see that a system that starts non-ordered will have the tendenyto return into an ordered state. For instane, the hain will aquire the ordering if it isever strethed beyond the transformation thresholds and will then maintain its orderingduring all future times. Nevertheless, the system may have an initial nontrivial virginurve involving some non-ordered states, whih our limiting theory would not apture.Remark 4.1 The disorder entering through the random mirosopi body fores is veryspeial in the sense that it leads to a partiular simple struture of the inner hysteresisloops. A somewhat more realisti way of bringing disorder into the model would be througha randomization of the thresholds σ− and σ+ as in [PuT02℄. This, however, brings addi-tional tehnial ompliations, whih we would like to avoid here.It will be onvenient to simplify the ordering ondition by using the permutationalsymmetry of the system. Indeed, without loss of generality we an assume that the biases
hj are ordered as h1 < h2 < · · · < hN , suh that (4.2) redues to the ondition

e1(t) < e2(t) < · · · < eN (t). (4.3)In Setion 5, however, we need to return to the original ordering ondition (4.2) beausethe strains (ej)j=1,...,N of the springs in a one-dimensional bar Ω = ]0, 1[ will be naturallyordered aording to the material points (x = j/N).The lass of ordered equilibria in the sense of (4.3) have a simple haraterization: foreah suh state there exists a threshold ĥ suh that all j with hj ≥ ĥ are in phase zj = +1while those with hj < ĥ are in phase zj = −1. We an then assoiate with eah thresholda partiular distribution of snap-springs between the two energy wells
zj = sign(hj−ĥ), (4.4)where sign(hj−ĥ) = 1 for hj ≥ ĥ and sign(hj−ĥ) = −1 for hj < ĥ. It will also beonvenient to introdue the following two funtions

h+(ĥ) = min{ hj | hj ≥ ĥ }, h−(ĥ) = max{ hj | hj < ĥ }. (4.5)13
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Figure 4.1: Eight monotone stress-strain equilibrium branhes ℓ = M(ĥ, σ) representingordered hoies of the phases.Notie that h± : R → R are nondereasing pieewise onstant funtions suh that h−(ĥ) <

ĥ ≤ h+(ĥ). We shall also de�ne h+(ĥ) = ∞ if all hj < ĥ and h−(ĥ) = −∞ if all hj ≥ ĥ.For eah ĥ ∈ R we an now de�ne the funtion M(ĥ, ·) : [σ−−h+(ĥ), σ+−h−(ĥ)] → Rgiven by the formula
M(ĥ, σ) =

1

N

N∑

j=1

ψsign(hj−bh)(hj+σ).It is not hard to see that we an have at most N+1 di�erent funtions M(ĥ, ·). Eah ofthese funtions is stritly inreasing and has at most one solution for M(ĥ, σ) = ℓ (seeFigure 4.1). Suh solutions form equivalene lasses de�ning equilibrium branhes
σ = σ(ℓ, ξ)where
ξ = m/N (4.6)andm ∈ {0, 1, ..., N} is the number of elements j with sign(ej) = 1. As we see, for orderedstates the metastable branh is de�ned not by the whole vetor z but by a single parameter

ξ, whih is the fration of the springs in phase +1. It will serve as the predeessor of theplasti strain appearing later in the limiting ontinuum problem.It is easy to see that one an have at most N+1 solutions for eah ℓ. For instane, forthe ase of a bi-quadrati potential Φbiq in (2.1) the funtions M(ĥ, ·) take the form
M(ĥ, σ) =

1

k
σ +

1

kN

N∑

j=1

hj +
a

N

N∑

j=1

sign(hj−ĥ),whih are N+1 parallel lines shifted by the same onstant 2a/N . Under the simplifyingassumption that ∑N
1 hj = 0 we �nd the expliit representation of the equilibrium branhes

ej = ℓ + a sign(ej) + hj/k + a(1−2ξ), (4.7)14



where ξ is de�ned by (4.6).4.2 Jump disontinuitiesSuppose now that the body fores hj remain ordered and onstant with ∑N
j=1 hj = 0,while the total length of the hange beomes a funtion of time ℓ(t). The resulting systemof ODEs takes the form

δėj = −φ(ej) + hj + σ(t),
1

N

N∑

j=1

ej(t) = ℓ(t), (4.8)where ℓ ∈ C1([0, T ]) is a given datum. We again restrit our attention to ordered statesand onsider the ase of bi-quadrati potential. In this ase we an de�ne a unique limitingsolution as δ → 0.Suppose �rst that δ is �nite. Observe that if all the ej(t) are ordered and are di�erentfrom 0, then the solution of the ODE (4.8) an be extended uniquely as di�erentiablefuntion. Suh a di�erentiable extension will work up to the time t∗ when ej∗(t−∗ ) = 0 forsome j∗ (here ej(s−) = limtրs ej(t) means the limit from the left), and until that time thesolution is unique. If the solution is smoothly extendable, then we hoose this as the uniqueextension, i.e. ej∗ does not hange sign at t∗ (and we ignore the other solution where ej∗would hange sign and ė has a jump at t∗). If there is no extension where ė is ontinuous,we an onstrut a unique di�erentiable solution on [t∗, t∗+τ ] with initial ondition e(t∗)that is uniquely determined by hoosing ej∗(·) suh that its signs di�er for t < t∗ and
t > t∗. Conatenating this to the solution on [0, t∗] de�nes the unique global solution,whih is still Lipshitz ontinuous in time. Observe that the system always remains inthe set of ordered states. In the next subsetion we prove that the visous solution eδ(t)onverges to a solution e0(t) of a well-de�ned limit problem. The on�gurations e0(t)an be viewed as a time-dependent family of metastable states desribed in the previoussubsetion. This family splits into branhes and when the branh ends the extensiononstituting e0(t) is seleted by a suitable jump rule whih is the only memory of thevisous dissipative mehanism (see also [PuT05℄).The parameter de�ning plasti dissipation in the oarse-grained model is the releaseof energy in a single jump. The energy is de�ned as follows

E(t, e) =

{
1
N

∑N
j=1

(
Φ(ej)− hjej

) if 1
N

∑N
j=1 ej = ℓ(t),

∞ else. (4.9)In the ase of the bi-quadrati potential Φbiq the energy release an be alulated expliitly
E(t∗, e(t−∗ ))−E(t∗, e(t+∗ )) = ρN/N > 0 where ρN = 2ka2 − 2ka2/N. (4.10)Here the �rst term in ρN orresponds to the integral ∫ e∗+

e−
σ+−φ(e)de, see Lemma 7.2. Theseond term is due to the relaxation of the stress from σ(t−∗ ) = σ± to σ(t+∗ ) = σ±∓2ak/N .Beause of our speial hoie of the disorder the ritial values e− and e+ are not a�etedby the disorder. For Φbiq both thresholds are equal to 0 and the strains satisfy thefollowing expliit jump relations

ej(t
+
∗ ) = ej(t

−
∗ )− a∆̂/N for j 6= j∗, ej∗(t

−
∗ ) = 0, ej∗(t

+
∗ ) = a∆̂(1−1/N), (4.11)where ∆̂ = z(t+)− z(t−) ∈ {−2, 2}. 15



4.3 The automatonAs we have already mentioned, one an expet the solution eδ of the visous ODE (4.8)to slide along the metastable branhes with �nitely many well-separated fast jumps fromone urve to the next. The limiting dynamis then inludes the periods, when the systemremains on one of the metastable branh with parameter ξ �xed, and the jumps, when ξhanges and the system swithes metastable branhes. The resulting dynamial systemtakes the form of a disrete threshold-type automaton (see [PRTZ08, PRTZ09℄).De�nition 4.2 Given an ordered bias vetor (hj)j and a loading pro�le ℓ ∈ C1([0, T ]) afuntion e : [0, T ] → R
N is alled a solution of the automaton, if the following onditionshold:(DA1) For all t ∈ [0, T ] the state e(t) is an ordered steady state as desribed in Setion 4.1with 1

N

∑N
1 ej(t) = ℓ(t).(DA2) There are at most a �nitely many times 0 = t0 < t1 < t2 < · · · tL = T suh that for

l = 1, ..., L the funtion e|]tl−1,tl[ has a C1 extension to [tl−1, tl].(DA3) At eah jump time tl, l = 1, ..., L−1 the following holds:(i) the strain is ritial, i.e. ej(t−l ) ∈ {e+, e−},(ii) the jump onditions (4.11) hold for t∗ = tl, and(iii) the energy release E(tl, e
0(t−l ))−E(tl, e

0(t+l )) is exatly ρN/N ,Notie that the jump onditions in (DA3) are redundant and it would be su�ient tostate only (iii), sine the speial form of φ implies that (i) and (ii) must hold. This will beimpliitly shown in the proof of Proposition 4.4. Here we stated the redundant onditionsto highlight all the speial features of the jumps.Another tehnial issue is that as in the ase of the visous ODE system (4.8) thesolution of the disrete automaton is not unique. A nonuniqueness an our if a steadystate reahes ej∗(t∗) = 0 exatly at a moment when ℓ has a loal extremum. Then, thephase jump may our or may not our. We de�ne a unique extension by asking the so-lution to stay ontinuous as long as possible, i.e. we assume that jumps only our if theyare neessary. This additional �rule� for the bi-quadrati problem an be obtained rigor-ously if one onsiders an additional limit when a �nite spinodal region is asymptotiallyshrinking to zero.4.4 An energeti rate-independent systemBefore giving the onvergene proof for δ → 0, we show that the automaton (DA1)�(DA3)an be reformulated in terms of an energeti rate-independent system (ERIS) in the senseof [Mie05℄. This reformulation will serve as a basis of the subsequent ontinualization ofour disrete dynamial system in Setion 5.A general ERIS is given in terms of the state spae Q, time-dependent energy fun-tional E : [0, T ]×Q → R∞ := R∪ {∞}, and a dissipation distane D : Q×Q → [0,∞].Our state spae is Q = R
N and the energy funtional E is de�ned in (4.9). The newquantity is the dissipation distane D, whih measures the energy that is dissipated dueto fast visous motion. If the strains vary quasistatially in one of the two wells, there16



will be no dissipative ontribution in the invisid limit δ → 0. However, if a strain jumpsinto the other well (i.e. by hanging sign), then the visous motion is fast, namely of order
1/δ and the energy ∫ t2(δ)

t1(δ)
1
N

∑N
j=1 δė

2
j (t)dt has a �nite limit (see also [PuT05℄).We an de�ne the dissipation distane by ounting the number of phase jumps asfollows:

D(e0, e1) =
1

N

N∑

j=1

DN(e0j , e
1
j), where DN(e0, e1) =

{
ρN if e0e1 < 0 (phase jump),
0 if e0e1 ≥ 0 (no phase jump),where ρN is de�ned in (4.10). Using the triple (Q,E,D) we an further de�ne the notionof energeti solutions as follows, see e.g. [Mie05, Mie10℄. This notion is espeially adaptedto solutions that may have jumps like in the present ase.De�nition 4.3 Given a loading ℓ ∈ C1([0, T ]) and a (hj)j=1,...,N ∈ R

N , a funtion e :
[0, T ] → Q is alled an energeti solution of the ERIS (Q,E,D), if for all t ∈ [0, T ] wehave the stability (S) and the energy balane (E):(S) ∞ > E(t, e(t)) ≤ E(t, ẽ) + D(e(t), ẽ) for all ẽ ∈ Q,(E) E(t, e(t)) + DissD(e, [0, t]) = E(0, e(0))−

∫ t

0

Σ(e(s))ℓ̇(s)ds,
(4.12)where DissD(e, [0, t]) is the supremum of ∑M

k=1 D(e(τk−1), e(τk)) over all M ∈ N and allpartitions 0 ≤ τ0 < τ1 < · · · < τM ≤ t of [0, t] and Σ(e) = 1
N

∑N
j=1

(
φ(ej)−hj

).Note that the dissipation funtional DissD(e, [r, t]) gives a ounting measure, sine it isequal to ρN/N times the number of all the phase jumps of e in the time interval [r, t].The following result states that the evolution given in terms of the disrete automatonis exatly the same as the energeti solutions of (Q,E,D). For this result the order-ing property of the solutions is in fat not neessary and it also applies to non-orderedsolutions.Proposition 4.4 Consider an ordered bias vetor (hj)j=1,...,N and that ℓ ∈ C1([0, T ]).Then, an ordered funtion e : [0, T ] → Q = R
N is an energeti solution of (Q,E,D)given via (4.12) if and only if it satis�es (DA1)�(DA3) in De�nition 4.2.Proof: (S)&(E) ⇒ (DA1)�(DA3).From (S) we onlude that for eah t ∈ [0, T ] the solution satis�es the length onstraintand is in equilibrium. For the latter, simply onsider variations ẽ suh that D(e(t), ẽ) = 0,i.e. with no additional phase jumps. Then, e(t) is a loal minimizer of E(t, ·) und thus astable equilibrium. Thus, (DA1) is established. In partiular, we know that e(t) lies inthe �nite set of stable equilibria. Along these branhes the dependene of e(t) on ℓ(t) issmooth, see (4.7).From (E) we onlude that DissD(e, [0, T ]) is �nite. Sine D only takes the disretevalues { kρN/N | k = 0, 1, ..., N } we onlude that the monotone funtion δ̂ : [0, T ] →

[0,∞[ ; t 7→ DissD(e, [0, t]) is pieewise onstant with �nitely many jump points t1 < · · · <
tL−1, where eah jump is an integer multiple of ρN/N . Sine jumping between the solutionbranhes generates a jump in δ̂, we onlude that on the intervals ]tl−1, tl[ the solution17



remains on one branh and hene an be extended smoothly to [tl−1, tl]. Hene (DA2) isestablished.(E) implies energy balane on all subintervals, namely E(t, e(t)) + DissD(e, [r, t]) =
E(r, e(r)) −

∫ t

r
Σ(e(s))ℓ̇(s) ds. Taking the limits t → t+l and r → t−L we �nd the jumprelation

E(tl, e(t+l )) + D(e(t−l ), e(t+l )) = E(tl, e(t−l )). (4.13)However, the hoie of ρN was exatly suh that it orresponds to the energy loss for ajump arising from ritial strains ej∗(t−l ) ∈ {e−, e+}, whih establishes (i). Properties (ii)and (iii) follow from the assumption that all hj are pairwise disjoint. Then, at most one
ej an have a phase jump.(DA1)�(DA3) ⇒ (S)&(E). From (DA1) we obtain easily (S): Every stable equi-librium is globally stable in the sense of (S), sine stability with respet to ẽ satisfying
D(e(t), ẽ) = 0 follows from the equilibrium onditions and onvexity of Φ in the two wells.Moreover, ρN was hosen as the maximal energy loss when jumping from one branh toa neighboring one. Thus, the energy release E(t, e(t))−E(t, ẽ) will be always less than
D(e(t), ẽ).Using (DA2) and (DA3) the energy balane (E) is obtained by joining the smooth partsin ]tl−1,min{t, tl}[ and the jumps. In the �rst ase set t∗ = min{t, tl}, the smoothnessgives E(t∗, e(t−∗ )) = E(tl−1, e(t+l−1)) −

∫ t∗
tl−1

Σ(e(s))ℓ̇(s) ds. At the jumps we have (4.13)and (E) follows by addition.4.5 Convergene proofWe �nally prove the onvergene for δ → 0 of the visous ODE system (4.8) to theautomaton (DA1)�(DA3) and onsequently to the ERIS system (Q,E,D). The proof isonstrutive and provides expliit error estimates in terms of the small parameter δ and
ε = 1/N .A main point is that there will be di�erent soures of error that need to be estimatedin di�erent norms. During the equilibrium phase, when the system slides lose to apartiular metastable branh, the non-zero visosity prevents the solution from relaxingto the exat equilibrium state and this gives rise to an error (i) of order δ in all of theomponents. Two other errors our during jumps: (ii) one of the strains, namely ej∗ , isfar away from a stable steady state, while (iii) all the other strains have an error of order
ε. The �rst and the third type of errors is most e�iently measured in the maximum norm
|R|∞ = max{ |Rj| | j = 1, ..., N } whereas the seond type of errors is better evaluated inthe 1-norm |R|1 =

∑N
1 |Rj|.Under the assumption that body fores are time independent and the potential isbi-quadrati, we have the following result:Theorem 4.5 Consider an ordered bias vetor (hj)j with ∑N

1 hj = 0 and a loading pro�le
ℓ ∈ CLip([0, T ]) that is pieewise C1 with |ℓ̇(t)| ≥ λ > 0 a.e. in [0, T ]. Take any orderedsteady state e0 ∈ R

N assoiated with ℓ = ℓ(0). Then, the solution eδ ∈ CLip([0, T ]; RN) of(4.8) with eδ(0) = e0 onstruted above onverges to the unique solution e0 : [0, T ] → R
Nwith e0(0) = e0 of the disrete automaton (DA1)�(DA3) onstruted above, i.e. for almostevery t ∈ [0, T ] we have eδ(t) → e0(t) as δ → 0.18



Moreover, for eah given data k, a, T , and ℓ ∈ C1([0, T ]) there are positive onstants
C and κ∗ suh that for all δ ∈ ]0, 1] and N ∈ N with δN ≤ κ∗ we have eδ(t) = e0(t) +
R1(t) +R2(t) with

|R1(t)|∞ ≤ C(δ+1/N) and |R2(t)|1 ≤ C. (4.14)Proof: To simplify the notations we drop the supersript δ for the visous solutions butkeep the supersript 0 for the limit. Throughout the proof the onstant C may vary, butit is always independent of δ, N and the given solutions. We use sometimes onstants
C1, C2, ... to indiate how ertain estimates follow from others.We deompose the time interval into �nitely many subintervals on eah of whih ℓ ismonotone. If we allow for a suitable error for the initial ondition it is then su�ient toonsider only one of these intervals. Indeed, without loss of generality we an assume that
ℓ is monotonially inreasing on [0, T ], however, to be able to onatenate several pieeswe allow for a nontrivial shift e(0)−e0(0) .From the monotoniity of ℓ and the ordering of the solutions e we obtain jump times
0 < t1 < · · · < tL < T . For the following it is more onvenient to reorder these numbersand to use as the swithing times parameters sj , j = 1, ..., N de�ned suh that sign ej(t) =
sign(t−sj). Then, 0 ≤ sN ≤ sn−1 ≤ · · · s1 ≤ T , where strit inequality holds as soon asthe times are di�erent from 0 or T . With m(t) we ount the number of ej(t) and e0j(t)bigger than 0, namely m(t) = N−j for t ∈ ]sj−1, sj[. Similarly, for the solution e0, where
δ = 0, we de�ne s0

j and m0(t) having exatly the same properties.For su�iently small δ + 1/N we onlude that m(0) = m0(0). Using m0 and m theaverage stresses σ0 and σ an be alulated as
σ(t) =

1

N

N∑

j=1

(
φ(ej(t)) + hj + δėj(t)

)
= kℓ(t) + δℓ̇(t) +

ak

N
(2m(t)−N),

σ0(t) = kℓ(t) +
ak

N
(2m0(t)−N).With these stress histories known, the strains solving (4.8) have the expliit representation

ej(t) = e−kt/δej(0) +

∫ t

0

e−k(t−s)/δ
1

δ

(
ak sign(s−sj) + hj − σ(s)

)
ds, (4.15a)

e0j (t) = a sign(t−s0
j) +

1

k
(hj+σ

0(t)). (4.15b)We write the di�erene ρj(t) = ej(t)− e0j (t) in the form
ρ(t) = ρ1

j(t) + ρ2
j (t) + ρ3

j (t) + ρ4
j (t) with

ρ1
j (t) = e−kt/δρj(0), ρ2

j(t) =

∫ t

0

e−k(t−s)/δkℓ̇(s)ds,

ρ3
j (t) =

∫ t

0

e−k(t−s)/δ
2ak

δN

(
m0(t)−m(s)

)
ds,

ρ4
j (t) =

∫ t

0

e−k(t−s)/δ
ak

δ

(
sign(t−s0

j )− sign(s−sj)
)
ds.19



We immediately �nd |ρ1
j (t)|+ |ρ2

j(t)| ≤ C(δ+1/N) as desired.To estimate the other terms we need to estimate the di�erene between sj and s0
j . Thenontrivial s0

j are de�ned via
0 = −a+ hj/k + ℓ(s0

j) + a(2j−N)/N, (4.16)whih implies ℓ(s0
j )− ℓ(s0

j+1) = (hj+1−hj)/k + 2a/N > 2a/N . Hene with C = a‖ℓ̇‖∞/2we �nd
|s0
j − s0

l | ≥
|j−l|
CN

for j, l = 1, ..., N. (4.17)For the moment we assume a similar estimate
|sj − sl| ≥

|j−l|
CmN

for j, l = 1, ..., N, (4.18)where the onstant Cm is still to be determined by hoosing δN ≤ κ∗ su�iently small.Using this assumption we an estimate ėj(s−j ) (limit from the left) via the expliit form of
ej in (4.15a). Note that σ is pieewise smooth with jumps of size O(1/N) at eah sl Theontributions of the initial ondition and the smooth parts are bounded by a onstant C1independently of δ, N and Cm. Inluding the terms from the jumps gives the estimate

|ėj(s−j )| ≤ C1 + CCmγ
(
1/(CmδN)

)
, where γ(r) =

N∑

l=j+1

re−(l−j)r ≤ 1 + r.As the nontrivial sj are obtained from
0 = ej(sj) = −ahj/k + ℓ(sj) + a(2j−N)/N + δ

(
ℓ̇(sj)−ėj(s−j )

)
,we an ompare with (4.16). Using λ ≤ ℓ̇(t) ≤ C and |ėj(s−j )| ≤ C(1+Cm) we �nd aonstant C suh that

|sj − s0
j | ≤

δ

λ

(
C(1+Cm) + ‖ℓ̇‖∞

)
=: δC2(1+Cm). (4.19)From this we an now derive (4.18) as follows. For nontrival j and l with j 6= l we have

|sj−sl| ≥ |s0
j−s0

l | − |s0
j−sj| − |s0

l−sl| ≥
|j−l|
CN

− 2δC2(1+Cm)

≥ |j−l|
CN

(
1− 2δNCC2(1+Cm)

) (∗)

≥ |j−l|
CmN

.To justify (∗)

≥ we use δN ≤ κ∗ with κ∗ := 1/(4C2 max{C, 2C2}) and set Cm = (2κ∗C2)
−1/2.Thus, (4.18) is �nally established.Using the above estimates between the jump times sj and s0

l we are able to ontrolthe di�erene between m0(t) and m(s). First assume m(t) = N−j ≥ m0(t) = N−l, thenby the de�nition of m and m0 we have sj ≥ s0
l−1. Thus, we �nd

s0
j + δC ≥ sj ≥ s0

l−1 ≥ s0
j +

l−1−j
CN

,20



whih yields l−j ≤ 1+δNC2. Hene, l−j ≤ N∗ := ⌊1+κ∗C
2⌋ ∈ N. With a similarargument for m(t) = N−j ≤ m0(t) = N−l and using (4.17) we obtain

|m(s)−m0(t)| ≤ N∗ + CN(t−s) for 0 ≤ s ≤ t ≤ T.Hene, ρ3
j an be estimated via

|ρ3
j(t)| ≤ C(δ + 1/N) for all j = 1, ..., N and t ∈ [0, T ].Let smin

j and smax
j be the minimun and maximum of {sj, s0

j}. Using (4.19) yields
|ρ4
j(t)| ≤





0 for s ≤ smin
j ,

2 for smin
j < s ≤ smax

j ,

2e−k(t−s
max
j )/δ for s ≥ smax

j .To onlude the theorem we de�ne R1 via R1
j (t) = ρ1

j (t) + ρ2
j (t) + ρ3

j (t) and obtainimmediately |R1(t)|∞ ≤ C(δ + 1/N). For R2
j (t) = ρ4(t) we use the fat that in a giventime t only for a few js there has been a reent jump, namely

|ρ4(t)|1 =
N∑

1

|ρ4
j(t)| ≤ 2

(
N∗ +

∑N
1 e−k/(Cδ)

)
≤ C4.Thus, estimate 4.14 is established.We still have to show the onvergene Rδ,1(t) + Rδ,2(t) → 0 for δ → 0 but N �xed.We now display the dependene on δ again by adding the supersript δ where onvenient.We show that this onvergene holds for all t in T := [0, T ] \ {s0
1, ..., s

0
N}, whih is a setof full measure.It is now easy to see that ρδ,1j (t) + ρδ,2j (t) → 0 for all t. To estimate ρδ,3j and ρδ,4j we�x t ∈ T and let τ = 1

2
dist(t, {s0

1, ..., s
0
N}). Then, for all su�iently small δ the interval

]t−τ, t[ does not ontain any s0
l or sδl . Whenem0(t) = mδ(s) and sign(t−s0

j ) = sign(s−sδj)for s ∈ [t−τ, t], beause sδl → s0
l , and ρδ,3j (t) + ρδ,4j (t) → 0 follows easily.Thus, the proof of Theorem 4.5 is omplete.5 Continuum limitWe are now interested in the limit ε→ 0, i.e. the number N of elements goes to in�nity,whih means that we apply the seond limiting proedure to the automaton representingthe primary invisid limit of the original ODE system. The main hallenge is to replaethe automaton type evolution of the plasti variable formulated in terms of disrete spaeand disrete time by a dynamial system employing a ontinuous time variable t andontinuous spae variable x. This is feasible beause in the limit ε→ 0 the elasti stagesbeome progressively shorter while the plasti jumps beomes weaker and more frequent(see also [PuT05℄). As a result the limiting evolution involves simultaneous elasti andplasti stages and the orresponding ontinuum variables hange all the time.To justify this piture it will be onvenient to use the formulation as an energetisystem (QN ,EN ,DN). The strategy is to embed this system into a system de�ned on

Q = L2(Ω)× L2(Ω), whih ontains the strains and a plasti variable. For the embeddedsystem we are able to pass to the limit ε→ 0 in the pure rate-independent setting.21



5.1 Embedding into physial spaeNote that now we are treating a sequene of problems with N as a parameter. Hene, foreah N there is a bias vetor hN with omponents hNj , j = 1, ..., N . All solutions e(t) weonsider satisfy the original ordering ondition (4.2), namely
hj < hk =⇒ ej(t) < ek(t).We de�ne an embedding of R

N into L2(Ω) via the harateristi funtions
χNj

def

= χ](j−1)/N,j/N [ (harateristi funtion of ]
j−1
N
, j
N

[
⊂ Ω).The pieewise onstant interpolants eN and a plasti variable pN are given by

PN : R
N → Q := L2(Ω)× L2(Ω), PN (e) := (eN , pN ) with

eN (t, x) =

N∑

j=1

ej(t)χ
N
j (x) and pN (t, x) = a

N∑

j=1

sign(ej(t))χ
N
j (x).For N ∈ N we now speify the hoie of the random bias oe�ients hj in the form

hNj = µNj −G(j/N), where G(x) = c +
∫ x

0
gext(y)dy with ∫ 1

0
G(x)dx = 0,and where the random ontributions µNj for N ∈ N and j = 1, ..., N are independent,identitially distributed random variables taking values in R. The distribution is giventhrough a density f ∈ L1(R) with ompat support and average 0.5.2 Marosopi systemTo speify the struture of the limiting energy, whih inorporates kinemati hardeningomponent, we need to assoiate to eah density f satisfying (3.1) an auxiliary funtion

F∗. We �rst de�ne
F : µ 7→

∫ µ

−∞

f(y)dy and F : µ 7→
∫ µ

−∞

F (y)dy, (5.1)whih gives F ′′(µ) = f(µ) ≥ 0. Now, F∗ : R → R∪{∞} is de�ned as Legendre transformof F , namely
F∗(η) := sup{µη − F(µ) | µ ∈ R }. (5.2)Thus, F∗ is onvex as well and satis�es F∗(η) = ∞ for µ 6∈ [0, 1]. We an now de�ne the(kinemati) hardening funtion H : R → R∞ assoiated with the density f as

H(p) = 2aF∗
(
(a−p)/(2a)

)
, (5.3)whih is onvex and satis�es H(p) = ∞ for |p| > a, by de�nition.For the simple example f(µ) = 1

2µ∗
χ[−µ∗,µ∗] we obtain H(p) = µ∗(p

2−a2)/(2a). Con-sider now a family of densities fr satisfying fr(µ) = 1
r
f1(

µ
r
). Then, we obtain Fr(µ) =22



F1(µ/r) and Fr(µ) = rF1(µ/r). For the Legendre transform this leads to F∗
r (η) = rF1(η).Thus, we obtain that

Hr(p) = rH1(p) → 0 for r → 0 and |p| < a �xed. (5.4)By using the de�nitions above we an now desribe the limiting ontinuum problem.We de�ne an e�etive marosopi energy funtional E : [0, T ] × Q → R∞ and themarosopi dissipation funtional D as follows:
E(t, e, p) =

{
E0(e, p) for ∫

Ω
e(x)dx = ℓ(t),

∞ otherwise, and (5.5a)
D(p0, p1) =

∫

Ω

2ka|p1(x)−p0(x)|dx, (5.5b)where E0(e, p) =

∫

Ω

Φ(e(x), p(x))+G(x)e(x)dx − Γf (5.5)with Φ(e, p) =
k

2
(e−p)2 +H(p) and Γf =

1

2k

∫

R

µ2f(µ)dµ. (5.5d)Here Φ is the ontinuum energy density depending on the marosopi elasti and theplasti strain variables.Using the uniform onvexity of H one an show that the marosopi ERIS (Q, E ,D)has a unique energeti solution for eah stable initial ondition (e0, p0). This solution
(e, p) is Lipshitz ontinuous in time and satis�es the following plastiity problem (f.[Vis94, BrS96, Kre99, Mie05℄):

k
(
e(t, x)−p(t, x)

)
+G(x) = σ(t),

∫

Ω

e(t, y)dy = ℓ(t), (5.6a)
0 ∈ kaSign

(
ṗ(t, x)

)
+ k

(
p(t, x)−e(t, x)

)
+ ∂H(p(t, x)), (5.6b)where �Sign� denotes the set-valued funtion with Sign(0) = [−1, 1] and Sign(v) =

{sign(v)} for v 6= 0. Introduing the displaement u(t, x) =
∫ x

0
e(t, y) dy we an rewritethe system in the more lassial form

−∂x
(
k
(
∂xu(t, x)−p(t, x)

))
= gext(x), u(t, 0) = 0, u(t, 1) = ℓ(t),

0 ∈ kaSign
(
ṗ(t, x)

)
+ k

(
p(t, x)−∂xu(t, x)

)
+ ∂H(p(t, x)).Note thatHr and Γfr

are the only terms in E andD depending on the probability distri-bution density fr. Obviously, Γfr
is irrelevant for the elasto-plasti evolution, whereas thehardening funtion Hr is essential. When r → 0 one an show that Fr(µ) → max{0, µ}and Hr(p) → H0(p) = 0 for |p| < a, see (5.4) for a speial ase. As we have alreadymentioned, there is no hardening in the ase H = H0, therefore existene of solutions anstill be established but uniqueness fails.5.3 Convergene proofIn this sub-setion we prove our seond main theorem, whih establishes a rigorous relationbetween the disrete automaton (DA1)�(DA3) and the ontinuum system (5.6) by usingthe Γ-onvergene for ERIS developed in [MRS08℄.23



More preisely we onsider the sequene of disrete ERIS (RN ,EN ,DN ) desribedin Setion 4.4 with solutions eN : [0, T ] → R
N and show that the embedded funtions

(eN , pN) = PN (eN) : [0, T ] → Q weakly onverge to the unique solution of the marosopiERIS (Q, E ,D), where PN is de�ned in Setion 5.1. In fat, we show more, namely thatthe assoiated energies and dissipations onverge as well. In fat, it is the onvergene ofthe energies and dissipations that allows us to show that the limit is an energeti solutionfor (Q, E ,D).Theorem 5.1 Fix a loading pro�le ℓ ∈ C1([0, T ]), whih is pieewise monotone, andassume that the bias vetors µN ∈ R
N are hosen as desribed above. De�ne hNj =

µNj −G(j/N) + λN with λN suh that ∑N
1 h

N
j = 0 and take initial onditions eN0 ∈ R

Nthat are ordered with respet to hN suh that
PN(eN0 ) ⇀ (e0, p0) in Q = L2(Ω)× L2(Ω) and EN(0, eN0 ) → E(0, e0, p0) <∞.Then the embeddings of the ordered solutions of eN : [0, T ] → R

N of (RN , EN ,DN) on-struted in Setion 4.2 onverge to the unique solution (e, p) : [0, T ] → Q of (Q, E ,D)with (e(0), p(0)) = (e0, p0), namely
PN (eN(t)) ⇀ (e(t), p(t)) in Q for all t ∈ [0, T ].Moreover, we have EN(t, eN (t)) → E(t, e(t), p(t)) and DissDN

(eN , [0, t]) → DissD(p, [0, t]).Proof: Step 1: For the proof we use our preise knowledge of the solutions eN . Note thatthe ordered states are uniquely determined by the funtion mN (t) : [0, T ] → {0, ..., N}ounting the number of j suh that eNj (t) is bigger 0. Moreover, we have
σN(t) = kℓ(t)− ak(2mN (t)−N)/N. (5.7)Thus, σN (t) also allows us to reover the solution eN(t) ompletely as follows. For given

t we de�ne hN+ (t) > hN− (t) suh that
#{ j |hj≥hN+ (t) } = mN(t), hN+ (t) = min{ hNj |hNj ≥hN+ (t) }, hN− (t) = max{ hNl |hNl <hN+ (t) }.Along solutions, the values of h± are equal to those of h± (f. (4.5)), but now they dependon t ∈ [0, T ]. We have
eNj (t) = sign(eNj (t))a+

1

k
(σN(t)+hNj ) and sign(eNj (t)) =

{
1 for hNj ≥ hN+ (t),

−1 for hNj ≤ hN− (t).
(5.8)Step 2: We only prove that onvergene holds along a subsequene. However, sinethe limit problem has a unique solution, we know a priori that the whole sequene mustonverge. To �nd a onvergene subsequene we onsider the funtions σN . Sine ℓis pieewise monotone the interval [0, T ] an be deomposed into �nitely many, let ussay P , subintervals where ℓ is monotone. However, eah mN is also monotone in thesesubintervals. Sine the variation of mN in a montone part is bounded by N , the variationof eah mN is at most PN . Thus, (5.7) shows that the variation of σN is bounded by

k‖ℓ̇‖L1 + 2akP . 24



Thus, Helly's seletion priniple allows us to extrat a subsequene (not relabeled)suh that σN (t) → σ∞(t) for all t ∈ [0, T ]. As a onsequene we �nd
mN(t)/N → ξ∞(t) =

k(ℓ(t)−a)− σ∞(t)

2ak
(5.9)Step 3: Next we show that this onvergene implies the onvergene of (eN , pN) =

PN (eN) as well as that of the energy and the dissipation. In fat, we show that for eah t ∈
[0, T ] the sequene (eN (t), pN (t))N∈N generates a well-de�ned Young measure ν(t) : Ω →
Prob(R2) (Radon measures on R with total measure 1). This follows from the independentrandom hoies of µNj using the law of large numbers. It is here, where we exploit thedisorder in an essential fashion. Beause the biases hNj are hosen independently andidentially distributed (with density f), the law of large numbers an be applied to anyontinuous funtion Ξ to obtain

1

N

N∑

j=1

Ξ(hj) →
∫

R

Ξ(µ)f(µ)dµ. (5.10)In fat, muh less than the assumed randomness is su�ient to derive the following on-lusions. We only need a type of weak ergodiity that ould, e.g., be also generated byquasiperiodi funtions.For a general test funtion Ψ ∈ C0(Ω× R
2) we onsider the limit of

ψN(t) =

∫

Ω

Ψ(x, eN(t, x), pN(t, x))dxfor N → ∞. Using the de�nition of (eN , pN) = PN(eN ) and de�ning ΨN
j (e, p) =

1
N

∫ j/N

(j−1)/N
Ψ(y, e, p)dy we �nd

ψN(t) =
1

N

N∑

j=1

ΨN
j (eNj (t), a sign(ej(t)))Inserting the expliit formula (5.8) for eNj (t) we �nd

ψN(t) =
1

N

∑

{ j | hN
j ≤h

N
−

(t) }

ΨN
j (−a+1

k
(σN(t)+hNj ),−a) +

1

N

∑

{ j | hN
j ≥h

N
−

(t) }

ΨN
j (a+

1

k
(σN(t)+hNj ), a).Realling hNj = µNj − G(j/N), where all the µNj are independently hosen aording tothe density distribution f , we an pass to the limit N → ∞. First observe that hN± (t)onverge to h∞± (t) de�ned by

h∞− (t) = sup{ h | FG(h) < ξ∞(t) } and h∞+ (t) = inf{ h | FG(h) > ξ∞(t) },where FG(h) :=
∫
Ω

∫ h

η=−∞
f(η+G(x)) dη dx ∈ [0, 1] and ξ∞ is de�ned in (5.9). Note that

FG is a probability distribution with ompat support sine f has ompat support and G25



is bounded. Subsequently it su�es to take any h∞(t) ∈ [h∞− (t), h∞+ (t)]. Using σN → σ∞and the law of large numbers on µNj (f. (5.10)) we �nd ψN (t) → ψ∞(t) with
ψ∞(t) =

∫

Ω

∫ h∞(t)

−∞

Ψ(x,−a+(σ∞(t)+h)/k,−a)f(h+G(x))dhdx

+

∫

Ω

∫ ∞

h∞(t)

Ψ(x, a+(σ∞(t)+h)/k, a)f(h+G(x))dhdx.The Young measure ν is de�ned via ∫
Ω

∫
R2 Ψ(x, e, p)ν(t, x, de, dp)dx = ψ∞(t) giving

∫

R2

Ψ̂(e, p)ν(t, x, de, dp)

=

∫

R

Ψ̂
(
a sign(µ−µ̂(t, x)) + (σ∞(t)+µ−G(x))/k, a sign(µ−µ̂(t, x))

)
f(µ)dµ,where µ̂(t, x) is any solution of ξ∞(t) = FG(µ−G(x)), e.g.

µ̂(t, x) = h∞(t) +G(x). (5.11)Using the identity ∫
R

sign(µ̂−µ)f(µ)dµ = 2F (µ̂)−1 and the testfuntions Ψ̂(e, p) = e and
Ψ̂(e, p) = p we obtain the weak limits e(t) and p(t), respetively, via

e(t, x) =

∫

R

(
a sign(µ−µ̂(t, x)) + (σ∞(t)+µ−G(x))/k

)
f(µ)dµ

= a(2F (µ̂(t, x))−1) + (σ∞(t)−G(x))/k,

p(t, x) = a(2F (µ̂(t, x))−1).

(5.12)Step 4. For the onvergene of the energy we use
EN

0 (eN(t)) = EN
1 (eN(t)) + EN

2 (eN(t)), where
EN

1 (eN) =
1

N

N∑

1

k

2
(eNj −a sign(eNj ))2 and EN

2 (eN ) = − 1

N

N∑

1

hNj e
N
j .Using the expliit form (5.8) of eNj we obtain

EN
1 (eN(t)) =

1

N

N∑

1

1

2k

(
σN(t)−G(j/N)+µNj

)2 →
∫

Ω

1

2k

(
σ∞(t)−G(x)

)2
dx+ Γf ,where Γf is de�ned in (5.5). For EN

2 we proeed as for ψN(t) and obtain
EN

2 (eN(t)) = − 1

N

∑

hN
j ≤h

N
−

(t)

hNj
(
−a+

1

k
(σN (t)+hNj )

)
− 1

N

∑

hN
j ≥h

N
−

(t)

hNj
(
a+

1

k
(σN(t)+hNj )

)

→ −
∫

Ω

∫

R

(µ−G(x))
(
a sign(µ−µ̂(t, x)) + (σ∞(t)−G(x)+µ)/k

)
f(µ)dµdx.26



Using the representations of the weak limits in (5.12) we obtain
EN

1 (eN(t)) →
∫

Ω

k

2
(e(t, x)−p(t, x))2 dx+ Γf .To ompute the limit of the last term EN

2 (eN (t)) we de�ne the auxiliary funtion
F̃ (µ) =

1

2

∫

R

y sign(µ−y)f(y)dy,and denote by µ = µ̂(η) ∈ [−∞,∞] any solution of F (µ) = η ∈ [0, 1]. Then one an showthat the following holds:(a) For η ∈ [0, 1] we have F∗(η) = F̃ (µ̂(η)).(b) For all µ, η ∈ R we have: µ ∈ ∂F∗(η) ⇐⇒ η = F (µ).Indeed, the standard Legendre-Fenhel theory gives
η = F ′(µ) = F (µ) ⇔ µ ∈ ∂F∗(η) ⇔ µη = F(µ) + F∗(η).Thus, di�erentiating η = F (µ̂(η)) yields 1 = f(µ̂(η))µ̂′(η). Moreover, the de�nition of F̃easily gives F̃ ′(µ) = µf(µ). Thus, the funtion J : η 7→ F̃ (µ̂(η)) satis�es J ′(η) = µ̂(η)whih leads to J ′′(η) = µ̂′(η) = 1/f(µ̂(η)). By the properties of the Legrendre transformwe have (F∗)′′(η) = 1/F ′′(µ̂(η)) = 1/f(µ̂(η)) = J ′′(η).Finally, using F̃ (±∞) = 0 we obtain J(0) = J(1) = 0. The de�nition of F gives

F(µ) = max{0, µ} + m(µ) with 0 ≤ m(µ) → 0 for |µ| → ∞, whih implies F∗(0) =
F∗(1) = 0. Sine J and F oinide at η = 0 and 1 and have the same seond derivative,they are the same on all of [0, 1]. Thus, (a) and (b) are established.Based on these properties of the funtion F̃ we an now write

EN
2 (eN(t)) →

∫

Ω

2aF̃ (µ̂(t, x)) +G(x)e(t, x)dx− 2Γf .Then, by using the representation of p in (5.12), the de�nition of H via F∗, and therelation
µ ∈ ∂H(p) ⇔ p = a(1−2F (µ))we �nd

H(p(t, x)) = 2aF̃ (µ̂(t, x)).The onvergene EN(t, eN(t)) → E(t, e(t), p(t)) is therefore shown.Step 5. To show the onvergene of the dissipation we use that ℓ is pieewise monotone,i.e. there exist times 0 = t0 < t1 < · · · < tL = t suh that ℓ is monotone on [tl−1, tl]. Asa onsequene the solutions eN and p are monotone on these intervals. By the de�nitionof the dissipation funtionals DissDN
and DissD we then have

DissDN
(eN , [0, t]) =

L∑

l=1

DN (eN(tl−1), e
N(tl)), DissD(p, [0, t]) =

L∑

l=1

D(p(tl−1), p(tl)).

27



Thus, it su�es to show onvergene for these time inrements only. Without loss ofgenerality we onsider the ase ℓ(tl−1) < ℓ(tl). With ρN → ρ∞ = 2ka2 we have
DN (eN(tl−1), e

N(tl)) =
1

N

N∑

j=1

ρN
(
sign(eNj (tl))− sign(eNj (tl1))

)
=
ρN
N

(mN (tl)−mN(tl−1))

→ ρ∞(ξ∞(tl)−ξ∞(tl−1)) =

∫

Ω

ka(p(tl, x)−p(tl−1, x))dx = D(p(tl−1), p(tl)).Thus, DissDN
(eN , [0, t]) → DissD(p, [0, t]) is established as well.Step 6: It remains to show that (e, p) is the unique energeti solution for the maro-sopi ERIS (Q, E ,D). We �rst onsider the energy balane. For all N we have themirosopi energy balane

EN(t, eN(t)) + DissDN
(eN , [0, t]) = EN(0, eN0 ) +

∫ t

0

σN (s)ℓ̇(s)ds.Sine all four terms onverge to the desired limits for N we immediately obtain the energybalane (E) for the limit (e, p) with respet to the ERIS (Q, E ,D).To establish the stability ondition
E(t, e(t), p(t)) ≤ E(t, ẽ, p̃) +D(p(t), p̃) for all (ẽ, p̃) ∈ Q,we use the stability of eN(t) with respet to (RN ,EN ,DN). We test the stability usingthe state ẽN , whih is de�ned like eN(t) but with a di�erent funtion G̃ replaing G.We hoose an arbitrary G̃ ∈ H1(Ω) with ∫

Ω
G(x) dx = 0 and de�ne the new bias vetor

h̃ = (h̃Nj )j ∈ R
N via

h̃Nj = µNj − G̃(j/N) + λ̃N , where N∑

1

h̃Nj = 0.We de�ne F eG via F eG(h) =
∫
Ω
F (h+G̃(x))dx. Then, for every pair (ξ̃, h̃) satisfying

1−ξ̃ = F eG(h̃) and |σ̃+h̃| ≤ ka, where σ̃ = kℓ(t)− ak(2ξ̃−1),where exists a sequene h̃N suh that
ẽNj = a sign eNj +

1

k
(σ̃N+h̃Nj ) and sign ẽNj =

{
1 if h̃Nj ≥ h̃N ,

−1 if h̃Nj < h̃N ,

σ̃N → σ̃, h̃N → h̃, (2m̃N−1)/N → ξ̃,where m̃N =
(
N +

∑N
1 sign ẽNj

)
/2, σ̃N = kℓ(t)− ak(2m̃N−1)/N .Repeating the alulations in Step 3 we obtain the onvergene PN (ẽN) ⇀ (ẽ, p̃) in

Q, where
0 = k(ẽ−p̃) + G̃− σ̃ and p̃(x) = a(1−2F (h̃+G̃(x)). (5.13)28



Repeating the alulations in Step 4, while arefully distinguishing between the still rele-vant hNj and the arti�ial h̃Nj whih only di�er by G̃(j/N)− λ̃N −G(j/N) + λN , we �ndthe onvergene EN(t, ẽN) → E(t, ẽ, p̃).Moreover, we are able to alulate the limit of DN (eN(t), ẽN) as follows (using hN =

hN± (t) and negleting λN , λ̃N → 0):
DN(eN (t), ẽN) =

ρN
N

N∑

j=1

| sign eNj (t)− sign ẽNj |

=
ρN
N

(
#{ j | hN+G(j/N) ≤ µNj < h̃N+G̃(j/N) }

+ #{ j | h̃N+G̃(j/N) ≤ µNj < hN+G(j/N) }
)

→ ρ∞

∫

Ω

([
F (h̃+G̃(x))−F (h∞+G(x))

]+
+

[
F (h∞+G(x))−F (h̃+G̃(x))

]+
)

dx

= 2ka2

∫

Ω

|F (h∞+G(x))−F (h̃+G̃(x))|dx

= 2ka2

∫

Ω

∣∣ 1

2a
(a−p(t, x))− 1

2a
(a−p̃(x))

∣∣dx = ka

∫

Ω

∣∣p(t, x)−p̃(x)
∣∣dx

= D(p(t), p̃),where [a]+ = max{0, a}. Hene, we an pass to the limit in the stability ondition for
eN(t), namely EN(t, eN(t)) ≤ EN(t, ẽN ) + DN (eN(t), ẽN) and obtain E(t, e(t), p(t)) ≤
E(e, p) +D(p(t), p̃), where the omparison states (ẽ, p̃) are the ones onstruted in (5.13).Via the free hoie of G̃ we are able to generate a dense set of p̃ in L2(Ω; [−a, a]). However,the assoiated strains ẽ are the equilibrium strains. By the quadrati nature of E , we easily�nd E(t, ê, p̃) ≥ E(t, ẽ, p̃) for all ê ∈ L2(Ω). Thus, the stability of (e(t), p(t)) is established,and (e, p) : [0, T ] → Q is shown to be an energeti solution for (Q, E ,D).6 Double asymptotisLet us now show that in the ase of bi-quadrati potential the limit does not hange ifone performs the double asymptotis (ε, δ) → (0, 0) under the onstraint that δ tends to 0faster than ε. The result is a onsequene of the estimates obtained in Theorem 4.5, whihallow one to show that the L2 di�erene between the visous solutions and the disretesolutions tends to 0 with (ε, δ) → (0, 0). Sine the latter onverge weakly, it follows thatthe former also onverge weakly.Theorem 6.1 Consider the solutions eδ,N : [0, T ] → R

N of the visous problem (4.8),where hNj = µNj −G(j/N)+λN is as above. Then, there exists a onstant κ∗ suh that thefollowing holds. If the initial onditions eδ,N(0) are ordered equilibrium states for given
ℓ(0) suh that

PN (eδ,N(0)) ⇀ (e0, p0) in Q and EN (0, eδ,N(0)) → E(0, e0, p0)for (ε, δ) → 0. Then, for (ε, δ) → 0 with 0 < δ < κ∗ε the solutions eδ,N : [0, T ] → R
N ofthe visous problem (4.8) satisfy

PN(eδ,N(t)) ⇀ (e(t), p(t)) in Q for all t ∈ [0, T ],29



where (e, p) is the unique solution of the plastiity problem (5.6) with (e(0), p(0)) =
(e0, p0).Proof: The ruial observation is that the de�nition of the norms | · |p in R

N andin Lp(Ω) together with the embedding PN lead to an additional fator 1/N1−1/p. For
(ẽ, p̃) = PN(ẽN ) and (ê, p̂) = PN(êN ) we have

‖ẽ− ê‖L2(Ω) ≤
1

N q
|ẽN − êN |p for p ∈ [1,∞] with q = min{1/2, 1/p},

‖p̃− p̂‖L2(Ω) =
2a√
N

(
#{ j | sign ẽNj 6= sign êNj }

)1/2
.If δ ≤ κ∗/N = κ∗ε, where κ∗ is the same as in Theorem 4.5, estimate (4.14) (with p = ∞and p = 1 for R1 and R2, respetively) yields

‖eδ,N(t)− e0,N‖L2(Ω) ≤ C
(
δ + 1/N1/2

)
.Moreover, the number of di�erent signs between eδ,N(t) and e0,N(t) is bounded by N∗(independently of δ and N), whih leads to the estimate

‖PN(eδ,N(t))− PN(e0,N(t))‖L2(Ω) ≤ C2

(
δ+1/N1/2

)
≤ C3/N

1/2 = C3ε
1/2,where we have used δ ≤ κ∗/N = κ∗ε again. Combining this with the onvergene statedin Theorem 5.1 we obtain the desired onvergene result.7 General potentialsIn the previous setions we have restrited our analysis to the speial ase of a biquadratipotential Φbiq. Moreover, the loading gext was assumed to be time independent. Here wedrop both assumptions and disuss the neessary hanges for generalizing the results toarbitrary loadings and generi stress-strain relations. More preisely, we show that inthe ase of a general double-well potential and a rather general time dependent bodyfores the sequene of limits, �rst δ → 0 and then ε = 1/N → 0, leads to basially thesame general piture modulo appropriate modi�ation of the hardening funtion and thedissipative potential in the limiting model.7.1 Mirosopi modelTo replae G(x) by a general time-dependent funtion G(t, x) satisfying ∫

Ω
G(t, x)dx = 0for all t ∈ [0, T ] we need to generalize the onept of ordered states. Indeed, sine theloading may now depend on time, a state that is ordered for t1 may no longer be orderedfor t2 > t1. Therefore we need to interpret the order ondition loally in (t, x) ∈ [0, T ]×Ω.This is possible, sine G(t, x), ℓ(t), and σ(t) vary only on the marosopi sale while thebias oe�ients �utuate on the mirosopi sale and are independent of time.Moreover, sine the general double-well potential Φ does not allow us to de�ne aplasti strain p = a sign(e) as in the bi-quatrati ase, we need to use the mirosopiphase indiator variable zj ∈ {−1, 0, 1} as in Setion 2. The threshold µ̂(t, x) is now30



ative in a mirosopially large but marosopially small region, whih an be de�nedas follows |j − xN | ≤
√
N . For j in this domain, the ondition µNj > µ̂(t, x) then implies

eNj (t) ≥ e+ and zNj (t) = 1, whereas µNj < µ̂(t, x) implies eNj (t) ≤ e− and zNj (t) = −1.In the formal proof whih follows, the important issue will be to ontrol the evolutionof the threshold µ̂(t, x). Looking at the dynamis of the disrete automaton in De�nition4.2 we see that phase hanges should only our if the strain is ritial. In terms ofthe marosopi stress σ(t, x) = σ(t) − G(t, x), we need to have σ+ = µ̂ + σ, if ˙̂µ < 0,and σ− = µ̂ + σ, if ˙̂µ > 0. Moreover, the threshold value µ̂(t, x) must always satisfy
σ + µ̂ ∈ [σ−, σ+].7.2 Marosopi energyAs in the speial ase of bi-quadrati energy, we begin with formally omputing thelimiting ontinuum energy and determining the hardening potential.Notie that the relation (3.4) provides a strong orrelation between ej and µj and thusontrols the joint Young measures ν generated by (eN , zN), whih takes the form

∫

R2

Ψ̂(e, z)ν(t, x, de, dz)

=

∫

R

Ψ̂
(
sign(µ−µ̂(t, x)), ψsign(µ−bµ(t,x))(σ(t, x)+µ)

)
f(µ)dµ.In partiular, we an de�ne the marosopi onstitutive relations

Ê(σ̃, µ̃)
def

=

∫

R

ψsign(µ−eµ)(σ̃+µ)f(µ)dµ and Ẑ(µ̃)
def

=

∫

R

sign(µ−µ̃)f(µ)dµ, (7.1)suh that the limits e and z satisfy
e(t, x) = Ê(σ(t, x), µ̂(t, x)) and z(t, x) = Ẑ(µ̂(t, x)).By σ = Ŝ(e, µ) we denote the unique solution σ of e = Ê(σ, µ). We an now ompute thee�etive potential as a funtion of e and µ̂ via

Φ̂(e, µ̂) =

∫

M

(
Φ

(
ψsign(µ−bµ)(Ŝ(e, µ̂)+µ)

)
− µψsign(µ−bµ)(Ŝ(e, µ̂)+µ)

)
f(µ)dµ.The joint Young measure ν̂(e,bµ) generated by (ej , µj) and assoiated with the marosopipair (e, µ̂) has the form

∫

R2

Ψ̂(e, µ)ν(e,bµ)(de, dµ) =

∫

M

Ψ̂
(
ψsign(µ−bµ)(Ŝ(e, µ̂)+µ), µ

)
f(µ)dµ,where Ψ̂ ∈ C0(R

2) is an arbitrary test funtion. In partiular, it an by heked that thede�nitions of Ŝ and Φ̂ are ompatible in the sense that Ŝ(e, µ̂) = ∂eΦ̂(e, µ̂).To alulate the partial derivative of Φ̂ with respet to µ̂ we introdue the funtions
ϕ±(σ) = ψ±(σ)σ − Φ(ψ±(σ)), (7.2)31



whih satisfy the relations
ϕ′±(σ) = ψ±(σ), ϕ+(σ) = sup

e≥e+

σe− Φ(e), and ϕ−(σ) = sup
e≤e−

σe− Φ(e).For the derivative we obtain (after some elementary alulations involving the hain rule)
∂bµΦ̂(e, µ̂) =

∂

∂µ̂

[ ∫
bµ

−∞

(
Φ(ψ−1(Ŝ(e, µ̂)+µ))− µψ−1(Ŝ(e, µ̂)+µ)

)
f(µ)dµ

+

∫ ∞

bµ

(
Φ(ψ1(Ŝ(e, µ̂)+µ))− µψ1(Ŝ(e, µ̂)+µ)

)
f(µ)dµ

]

=
(
ϕ+(Ŝ(e, µ̂)+µ̂)− ϕ−(Ŝ(e, µ̂)+µ̂)

)
f(µ̂)Notie that the disorder threshold µ̂ enters our formulas as a parametrization andthat the energy representation in terms of elasti and plasti variable is still impliit. Toabolish the auxiliary variable µ̂(t, x) and to replae it by the ontinuous internal variable

z(t, x) = Ẑ(µ̂) we assume that the latter relation is invertible. We write µ̂ = µ̃(z) andapply the hain rule in (7.1) to obtain
µ̃′(z) =

−1

2f(µ̃(z))
< 0.We an now de�ne the stored energy density Φ and the stress S via

Φ(e, z) = Φ̂(e, µ̃(z)) and S(e, z) = Ŝ(e, µ̃(z)),whih still satisfy the relation ∂eΦ = S. Moreover, we �nd the identities
∂zΦ(e, z) = ∂bµΦ̂µ̃

′ = ϕ−(S(e, z)+µ̃(z))− ϕ+(S(e, z)+µ̃(z)), (7.3a)
∂2
zΦ(e, z) =

(
ψ−(S(e, z)+µ̃(z))− ψ+(S(e, z)+µ̃(z))

)(
∂zS(e, z) +

1

f(µ̃(z))

)
> 0. (7.3b)Next we show that the funtion (e, z) 7→ Φ(e, z) is onvex, whih is an importantproperty for proving existene and uniqueness of solutions for the assoiated plastiityproblem. For this we introdue the auxiliary funtions

Ẽ(σ, z, µ) = ψsign(µ−eµ(z))(σ+µ) and E(σ, z) =

∫

R

Ẽ(σ, z, µ)f(µ)dµ,whih satisfy ∂zE(σ, z) = ψ−(σ+µ̃(z)) − ψ+(σ+µ̃(z)). We then have σ = S(e, z) if andonly if e = E(σ, z) = Ê(σ, µ̃(z)). Moreover, we de�ne
E(e, z, µ)

def

= Ẽ(S(e, z), z, µ)and �nd the relations
e =

∫

R

E(e, z, µ)f(µ)dµ and φ(E(e, z, µ))−µ = S(e, z). (7.4)Then, the stored-energy density takes the form
Φ(e, z) =

∫

R

(
Φ(E(e, z, µ))− µE(e, z, µ)

)
f(µ)dµ. (7.5)32



Lemma 7.1 The derivatives of Φ take the following form
∂eΦ = S, ∂zΦ = ϕ+(S(e, z)+µ̃(z))− ϕ−(S(e, z)+µ̃(z)),

D2Φ =

(
∂eS ∆∂eS

∆∂eS ∆2∂eS + ∆
f(eµ(z))

)where ∂eS = 1
∂σE(S(e,z),z)

> 0 and ∆ = ψ+(S(e, z)+µ̃(z))− ψ−(S(e, z)+µ̃(z)) > 0. Hene,
Φ is uniformly onvex.Proof: The formula for ∂eΦ follows by di�erentiation under the integral and using (7.4).The formula for ∂zΦ follows by using µ̃′(z) = 1/f(µ̃(z)) and E(e, z, µ) = ψ±(S(e, z))+µfor µ > µ̃(z) and µ < µ̃(z), respetively.Di�erentiating e = E(S(e, z), z) with respet to e and using the de�nition of E weobtain the formula for ∂eS = ∂2

eΦ. For the mixed derivative we an use ϕ′±(σ) = ψ±(σ)to �nd ∂e
(
∂zΦ

). For ∂2
zΦ we di�erentiate e = E(S(e, z), z) with respet to z and �nd

∂zS(e, z) = −∂zE
∂σE

= ∆∂eS. Together this gives
∂2
zΦ = (ϕ′+−ϕ′−)

(
∆∂eS+µ̃(z)

)
= ∆

(
∆∂eS+1/f(µ̃(z))

)
,whih is the desired result.The above alulations an be done expliity for the biquadrati potential Φbiq, see(2.1). We have ψ±(σ) = σ/k ± a and �nd

E(σ, z) =

∫

R

(
σ/k + a sign(µ−µ̃(z))

)
f(µ)dµ =

σ

k
+ az.Hene, S(e, z) = k(e−az), whih results in

E(e, z, µ) = e− az +
µ

k
+ a sign(µ−µ̃(z)).Inserting this into the de�nition (7.5) of Φ (with Φ = Φbiq) we an use the ruial identity

Φbiq(E(e, z, µ)) = k
2
(e−az+µ

k
)2. This follows from the stress relation S(e, z) + µ̃(z) ∈

[σ−, σ+] = [−ka, ka], whih implies sign(µ−µ̃(z)) = signE. Hene, on the one hand wehave ∫
R

Φbiq(E(e, z, µ))f(µ)dµ = k
2
(e−az)2 + 2Γf , while on the other hand we have

∫

R

(−µ)E(e, z, µ)f(µ)dµ = −Γf + aF̃ (µ̃(z)) = −Γf +H(z/a).This gives the desired formula in (5.5).7.3 Marosopi dissipative potentialWe now turn to the analysis of the dynamis of z, whih is strongly linked to that of µ̂via z = Ẑ(µ̂). From the above we know that σ + µ̂ ∈ [σ−, σ+] and that σ+ = µ̂ + σ, if
˙̂µ < 0, and σ− = µ̂+ σ, if ˙̂µ > 0. These onditions an be formulated as a play operatorin the form

0 ∈ ∂R̂( ˙̂µ(t, x)) + µ̂(t, x) + σ(t, x), (7.6)33
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Figure 7.1: Evolution of the play operator generated by Eqn. (7.6)PSfrag replaements
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σ−Figure 7.2: Energies dissipates when the system jumpswhere the 1-homogeneous frition potential R̂ : R → R is given via
R̂(µ̇) = −σ− sign(µ̇)µ̇ =

{
−σ−µ̇ for µ̇ ≥ 0,
−σ+µ̇ for µ̇ ≤ 0.This is a lassial hysteresis operator that provides for eah σ a unique solution µ̂, see[BrS96, Kre99, Vis94℄ and also Figure 7.1. Note that µ̂ + σ always lie in the interval

[σ−, σ+]. Moreover, µ̂ an only hange if µ̂+ σ is either σ− or σ+.To de�ne the marosopi dissipative potential we introdue the two quantities
ρ+

def

=

∫ ψ+(σ+)

e−

σ+ − φ(e)de > 0 and ρ−
def

=

∫ e+

ψ−(σ−)

φ(e)− σ−de > 0. (7.7)Realling ϕ± de�ned in (7.2) we have the following identities, see also Figure 7.2:Lemma 7.2 For the areas enlosed by the the graph of φ and the hysteresis loop we have
ρ+ = ϕ+(σ+)− ϕ−(σ+) > 0 and ρ− = ϕ−(σ−)− ϕ+(σ−) > 0,Moreover, we have the fore relation S(e, z) + µ̃(z) = σ± =⇒ ∂zΦ(e, z) = ∓ρ±.Proof: The integral formulae follow easily using e∓ = E±(σ±) and the de�nition of ϕ±in (7.2). The seond statement follows diretly from (7.3a).The above omputations show that the ritial thresholds −σ± for σ+µ̂ are reahedif and only if ∂zΦ(e, z) reahes the ritial values ρ±. Hene, the play operator in (7.6) isequivalent to

0 ∈ ∂R(ż) + ∂zΦ(e, z) with R(v)
def

= ρsign(v)|v|. (7.8)34



7.4 Plastiity problemWe an now formulate the general marosopi equations in terms of the variables e and z.Consider the solutions eN,δ : [0, T ] → R
N of (3.2). Under the above hypotheses we expetthat the embedding (eN,δ, zN,δ) : [0, T ] → L2(Ω)2 onverge in the limit �limN→∞ limδ→0�(weakly in L2(Ω)2) to the solutions (e, z) of the marosopi elastoplastiity system:

0 = ∂eΦ(e(t, x), z(t, x))−G(t, x) + σ(t) for x ∈ Ω,

∫

Ω

e(t, x)dx = ℓ(t); (7.9a)
0 ∈ ∂R(ż(t, x)) + ∂zΦ(e(t, x), z(t, x)). (7.9b)The onvergene proof must follow the proof of Theorem 4.5 for the limit δ → 0and the proof of Theorem 5.1 for N → ∞. While the former onvergene is tedious andlengthy it does not need any substantial new ideas. For the seond limit we see easily thatby onstrution and the de�nition σ(t, x) = σ(t) − G(t, x) the marosopi equilibriumequation (7.9a) is a diret onsequene of (4.1).For the �ow rule (7.9b) one an start from (7.6) whih is stated in terms of µ̂. Sine

µ̂ = µ̃(z), we have the identity ˙̂µ = µ̃′(z)ż. Sine µ̃′ is assumed to be stritly negativeand the limit problem is rate independent, we an replae ˙̂µ by −ż in any 0-homogeneoussubdi�erential. At �rst sight, R̂ and R are not diretly related. However, sine weare dealing with a simply play operator, we only have to math the thresholds. While(7.6) orresponds to the bounds σ− ≤ µ̂ + σ ≤ σ+, the �ow rule (7.9b) orresponds to
−ρ− ≤ −∂zΦ ≤ ρ+. Now we an apply the relations derived in Lemma 7.2 to obtainsystem (7.9).7.5 Other salingsIn this subsetion we brie�y disuss how one an study the ase when the order of thelimits is reversed and we �rst perform a limit ε → 0, and then the limit δ → 0 (see also[PuT05℄).Choose a �nite δ > 0. In the ase µj = 0 for all j (i.e. r = 0) the formal pointwiselimit N →∞ leads to the following ontinuous system

δė(t, x) = −φ(e(t, x))−
∫ x

0

gext(t, y)dy + σ(t),

∫ 1

0

e(t, x)dx = ℓ(t).Introduing the displaement u(t, x) =
∫ x

0
e(t, ξ)dξ and taking the derivative with respetto x we obtain the lassial quasistati viso-elasti problem in spae dimension 1:

0 =
(
Φ′(ux) + δu̇x

)
x

+ gext(t, x), u(t, x) = 0 and u(t, 1) = ℓ(t). (7.10)In general we annot expet the onvergene of solutions of (3.2) to solutions of (7.10),beause of the nononvexity of Φ.The limiting behavior may be analyzed by introduing distribution funtion F (t, x, ·) ∈
L1(R× R) that aount for the �utuations of the strains eNj and the biases µNj via

∫

R×R

F (t, x, µ, E)ψ(µ,E)d(µ,E) = lim
N→∞

1

#J(x,N)

∑

j∈J(x,N)

ψ(µNj , e
N
j (t)),35



where J(x,N) = { j ∈ {1, ..., N} | |j−Nx| < N1/2 }. The �utuations of the initial strain
(eNj (0))j may be hosen independently of the bias (µNj ) and they do not disappear in �nitetime beause of the visosity δ > 0. Assuming that the above limits exist we obtain thefollowing transport equation:

δ∂tF (t, x, µ, e) +
(
− φ(e) + µ−G(t, x) + σ(t)

)
∂eF (t, x, µ, e) = 0, (7.11a)

∫

Ω

∫

R

∫

R

e F (t, x, µ, e)d(x, µ, e) = ℓ(t),

∫

R×R

F (t, x, µ, e)de = f(µ). (7.11b)The �rst onstraint in (7.11b) gives the total length of the deformed body, while theseond says that the quenhed disorder has the bias distribution f , whih is independentof t and x. System (7.11) may also be seen as transport equation for a Young measure
νt,x ∈ Prob(R× R) and an be treated as in [Tar87, The98, Mie99, BFS01℄.The problem an be simpli�ed substantially if we hose initial data suh that F (0, ·)degenerates to a δ-distribution. This property is preserved by the dynamis and leadsto solutions e = ẽ(t, x, µ) and F (t, x, µ, e) = δee(t,x,µ)(e)f(µ). Then, (7.11) redues to atransport equation for ẽ:

δ∂tẽ(t, x, µ) = −φ(ẽ(t, x, µ)) + µ−G(t, x) + σ(t),∫

Ω

∫

R

ẽ(t, x, µ)f(µ)dµdx = ℓ(t).
(7.12)The onvergene of the ODE-system in R

N is now trivial, as the disrete setting an beembedded via funtions that are pieewise onstant in x ∈ Ω. Moreover, the right-handside is loally Lipshitz ontinuous on L∞(Ω × R), and lassial ontinuous dependeneon the initial data yields onvergene.The limit δ → 0+ fores the solutions to stay in equilibria for all t ∈ [0, T ]. Thismeans that for small δ the solution should satisfy 0 ≈ −φ(e(t, x, µ)) + µ−G(t, x) + σ(t).Thus, it should be possible to establish the seond onvergene for δ → 0+ and to obtainthe same plastiity limit as in the ase limε→0 limδ→0. Again we fae the problem thatthe limiting system is governed by steady states whih are non-unique beause of thenon-monotoniity of φ. In the ODE ase we were able to derive the orresponding jumprules by hand (see (DA3)), but in the general ase the problem remains open.Referenes[ACJ96℄ R. Abeyaratne, C.-H. Chu, and R. James. Kinetis of materials with wigglyenergies: theory and appliation to the evolution of twinning mirostrutures ina Cu-Al-Ni shape memory alloy. Phil. Mag. A, 73, 457�497, 1996.[BFS01℄ D. Brandon, I. Fonsea, and P. Swart. Osillations in a dynamial modelof phase transitions. Pro. Roy. So. Edinburgh Set. A, 131(1), 59�81, 2001.[BMR09℄ G. Bouhitté, A. Mielke, and T. Roubí£ek. A omplete-damage problemat small strains. Z. angew. Math. Phys. (ZAMP), 60(2), 205�236, 2009.[BMR10℄ S. Bartels, A. Mielke, and T. Roubí£ek. Ideal plastiity as Γ-limit ofplastiity with small hardening. In preparation, 2010.36
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