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1Abstrat. In the nononvex ase solutions of rate-independent systems may developjumps as a funtion of time. To model suh jumps, we adopt the philosophy that rateindependene should be onsidered as limit of systems with smaller and smaller visosity.For the �nite-dimensional ase we study the vanishing-visosity limit of doubly nonlinearequations given in terms of a di�erentiable energy funtional and a dissipation potentialwhih is a visous regularization of a given rate-independent dissipation potential.The resulting de�nition of `BV solutions' involves, in a nontrivial way, both the rate-independent and the visous dissipation potential, whih play a ruial role in the desrip-tion of the assoiated jump trajetories.We shall prove a general onvergene result for the time-ontinuous and for the time-disretized visous approximations and establish various properties of the limiting BVsolutions. In partiular, we shall provide a areful desription of the jumps and omparethe new notion of solutions with the related onepts of energeti and loal solutions torate-independent systems. 1. IntrodutionRate-independent evolutions our in several ontexts. We refer the reader to [32℄ andthe forthoming monograph [39℄ for a survey of rate-independent modeling and analysis ina wide variety of appliations, whih may pertain to very di�erent and far-apart branhesof mehanis and physis. Rate-independent systems present very distintive ommonfeatures, beause of their hystereti harater [54, 24℄. Driven by external loadings ona time sale muh slower than their internal sale, suh systems respond to hanges inthe external ations invariantly for time-resalings. Thus, they in fat show (almost) nointrinsi time-sale. This kind of behavior is enoded in the simplest, but still signi�ant,example of rate-independent evolution, namely the doubly nonlinear di�erential inlusion(DN0) ∂Ψ0(u
′(t)) + DEt(u(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ).For the sake of simpliity, we will onsider here the ase when X is a �nite dimensionallinear spae, E : [0, T ] × X → R an energy funtional (DE denoting the di�erential of Ewith respet to the variable u ∈ X), and Ψ0 : X → [0, +∞) is a onvex, nondegenerate,dissipation potential, hereafter supposed positively homogeneous of degree 1. Thus, (DN0)is invariant for time-resalings, rendering the system rate independene.Sine the range K∗ of ∂Ψ0 is a proper subset of X∗, when E(t, ·) is not stritly onvexone annot expet the existene of an absolutely ontinuous solution of (DN0). Over thepast deade, this fat has motivated the development of suitable notions of weak solutionsto (DN0). In the mainstream of [18, 35, 44℄, the present paper aims to ontribute to thisissue. Relying on the vanishing-visosity approah, we shall propose the notion of BVsolution to (DN0) and thoroughly analyze it.To better motivate the use of vanishing visosity and highlight the features of the oneptof BV solution, in the next paragraphs we shall brie�y reall the other main weak solvabilitynotions for (DN0). For the sake of simpliity, we shall fous on the partiular ase(1.1) Ψ0(v) = ‖v‖, for some norm ‖ · ‖ on X.



2Energeti and loal solutions. The �rst attempt at a rigorous weak formulation of (DN0)goes bak to [40℄ and the subsequent [42, 41℄, whih advaned the notion of global energetisolution to the rate-independent system (DN0). In the simpli�ed ase (1.1), this solutiononept onsists of the following relations, holding for all t ∈ [0, T ]:(S) ∀ z ∈ X : Et(u(t)) ≤ Et(z) + ‖z − u(t)‖,(E) Et(u(t)) + Var(u; [0, t]) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds .The energy identity (E) balanes at every time t ∈ [0, T ] the dissipated energy Var(u; [0, t])(the latter symbol denotes the total variation of the solution u ∈ BV([0, T ]; X) on theinterval [0, t]), with the stored energy Et(u(t)), the initial energy, and the work of theexternal fores. On the other hand, (S) is a stability ondition, for it asserts that thehange from the urrent state u(t) to another state z brings about a gain of potentialenergy smaller than the dissipated energy. Sine the ompetitors for u(t) range in thewhole spae X, (S) is in fat a global stability ondition.The global energeti formulation (S)�(E) only involves the (assumedly smooth) power ofthe external fores ∂tE, and is otherwise derivative-free. Thus, it is well suited to jumpingsolutions. Furthermore, as shown in [27, 32℄, it is amenable to analysis in very generalambient spaes, even with no underlying linear struture. Beause of its �exibility, thisonept has been exploited in a variety of appliative ontexts, like, for instane, shapememory alloys [42, 37, 5℄, rak propagation [15, 14, 17℄, elastoplastiity [29, 30, 31, 20, 10,11, 28℄, damage in brittle materials [38, 6, 52, 33℄, delamination [23℄, ferroeletriity [43℄,and superondutivity [50℄.On the other hand, in the ase of nononvex energies ondition (S) turns out to be astrong requirement, for it may lead the system to hange instantaneously in a very drastiway, jumping into very far-apart energeti on�gurations (see, for instane, [30, Ex. 6.1℄,[21, Ex. 6.3℄, and [35, Ex. 1℄). On the disrete level, global stability is re�eted in the globalminimization sheme giving raise to approximate solutions by time-disretization. Indeed,for a �xed time-step τ > 0, induing a partition {0 = t0 < t1 < . . . < tN−1 < tN = T} ofthe interval [0, T ], one onstruts disrete solutions (Un
τ )N

n=1 of (S)�(E) by setting U0
τ := u0and then solving reursively the variational inremental sheme(IP0) Un

τ ∈ Argmin
U∈X

{

‖U − Un−1
τ ‖ + Etn(U)

} for n = 1, . . . , N .However, a sheme based on loal minimization would be preferable, both in view of nu-merial analysis and from a modeling perspetive, see the disussions in [30, Se. 6℄ and,in the realm of rak propagation, [16, 45, 26℄.As pointed out in [16℄, loal minimization may be enfored by perturbing the variationalsheme (IP0) with a term, modulated by a visosity parameter ε, whih penalizes thesquared distane from the previous step Un−1
τ,ε(IPε) Un

τ,ε ∈ Argmin
U∈X

{

‖U − Un−1
τ,ε ‖ + ε

|U − Un−1
τ,ε |2

τ
+ Etn(U)

} for n = 1, . . . , N ,



3and depends on a seond norm | · |, typially Hilbertian, on the spae X. In a in�nite-dimensional setting, one may think of X = L2(Ω), with Ω a domain in R
d, d ≥ 1, and ‖ · ‖,

| · | the L1 and L2 norms, respetively. Notie that, on the time-ontinuous level, (IP0)orresponds to the visous doubly nonlinear equation(DNε) ∂Ψε(u
′
ε(t)) + DEt(uε(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ),with Ψε(v) = ‖v‖ +

ε

2
|v|2(see [9, 8℄ for the existene of solutions uε ∈ AC([0, T ]; X)). Then, the idea would be toonsider the solutions to (DN0) arising in the passage to the limit, in the disrete sheme(IPε), as ε and τ tend to 0 simultaneously, keeping τ ≪ ε. One an guess that, at leastformally, this proedure should be equivalent to onsidering the limit of the solutions to(DNε) as ε ↓ 0.Vanishing visosity has by now beome an established seletion riterion for mehani-ally feasible weak solvability notions of rate-independent evolutions. We refer the readerto [25℄ for rate-independent problems with onvex energies and disontinuous inputs, and,in more spei� applied ontexts, to [12℄ for elasto-plastiity with softening, to [19℄ forgeneral material models with nononvex elasti energies, the reent [13℄ for am-lay non-assoiative plastiity, and [53, 21, 22℄ for rak propagation. Sine the energy funtionalsinvolved in suh appliations are usually nonsmooth and nononvex, the passage to thelimit mostly relies on lower semiontinuity arguments. Let us illustrate the latter in theprototypial ase (DNε). The key observation is that (DNε) is equivalent (see the disussionin Setion 2.4) to the ε-energy identity(1.2) Et(uε(t)) +

∫ t

0

(

‖u′
ε(s)‖ ds +

ε

2
|u′

ε(s)|
2 +

1

2ε
dist∗

(

−DEs(uε(s)), K
∗
)2

)

ds

= E0(u(0)) +

∫ t

0

∂tEs(uε(s))dsfor all t ∈ [0, T ], where the term(1.3)
dist∗

(

−DEt(u(t)), K∗
)

:= min
z∈K∗

| − DEt(u(t)) − z|∗, with K∗ =
{

z ∈ X∗ : ‖z‖∗ ≤ 1
}

,measures the distane with respet to the dual norm | · |∗ of −DEt(u(t)) from the set K∗.The term de�ned in (1.3) is penalized in (1.2) by the oe�ient 1/2ε. Thus, passing to thelimit in (1.2) as ε ↓ 0, one �nds
dist∗(−DEt(u(t)), K∗) = 0 for a.a. t ∈ (0, T ) .Hene,(1.4) −DEt(u(t)) ∈ K∗, i.e. ‖ − DEt(u(t))‖∗ ≤ 1 for a.a. t ∈ (0, T ) ,whih is a loal version of the global stability (S). Furthermore, (1.2) yields, via lower-semiontinuity, the energy inequality(1.5) Et(u(t)) + Var(u; [0, t]) ≤ E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds for all t ∈ [0, T ] .Conditions (1.4)�(1.5) give raise to the notion of loal solution of the rate-independentsystem (DN0).



4 While the loal stability (1.4) is more physially realisti than (S), its ombinationwith the energy inequality (1.5) turns out to provide an unsatisfatory desription of thesolution at jumps (see the disussion in [35, Se. 5.2℄ and Remark 2.8 later on). In orderto apture the jump dynamis, the energeti behavior of the system in a jump regime hasto be revealed. From this perspetive, it seems to be ruial to reover from (1.2), as ε ↓ 0,an energy identity, rather than an energy inequality. Thus, the passage to the limit has tosomehow keep trak of the limit of the term
∫ t

0

(

ε

2
|u′

ε(s)|
2 +

1

2ε
dist∗

(

−DEs(uε(s)), K
∗
)2

)

ds ,whih in fat enodes the ontribution of the visous dissipation ε
2
|u′

ε|
2, ompletely missingin (1.5).BV solutions. Moving from these onsiderations, it is natural to introdue the vanishingvisosity ontat potential (whih is related to the bipotential disussed in [7℄, see Setion3) indued by Ψε, i.e. the quantity(1.6) p(v, w) := inf

ε>0

(

Ψε(v) + Ψ∗
ε(w)

)

= inf
ε>0

(

‖v‖ +
ε

2
|v|2 +

1

2ε
dist2

∗(w, K∗)

)

= ‖v‖ + |v| dist∗(w, K∗) for v ∈ X, w ∈ X∗ .Then, the ε-energy identity (1.2) yields the inequality(1.7) Et(uε(t)) +

∫ t

0

p (u′
ε(s),−DEs(uε(s))) ds ≤ E0(u(0)) +

∫ t

0

∂tEs(uε(s))ds ,see Setion 3.1. Passing to the limit in (1.7), in Theorem 4.10 we shall prove that, up to asubsequene, the solutions (uε) of the visous equation (DNε) onverge, as ε ↓ 0, to a urve
u ∈ BV([0, T ]; X) satisfying the loal stability (1.4) and the following energy inequality(1.8) Et(u(t)) + Varp,E(u; [0, t]) ≤ E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds .Without going into details (see De�nition 3.4 later on), we may point out that (1.8) featuresa notion of (pseudo)-total variation (denoted by Varp,E) indued by the vanishing visosityontat potential p (1.6) and the energy E. The main novelty is that a BV-urve obeyingthe loal stability ondition (1.4) always satis�es the opposite inequality in (1.8), thusyielding the energy balane(Ep,E) Et(u(t)) + Varp,E(u; [t, t]) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds .In fat, Varp,E provides a �ner desription of the dissipation ∆p,E of u, along a jump betweentwo values u− and u+ at time t: it involves not only the quantity ‖u+ − u−‖ related tothe dissipation potential (1.1), but also the visous ontribution indued by the vanishingvisosity ontat potential p through the formula(1.9) ∆p,E(t; u−, u+) := inf
{

∫ r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr :

ϑ ∈ AC([r0, r1]; X), ϑ(r0) = u−, ϑ(r1) = u+

}

.



5By a resaling tehnique, it is possible to show that, in a jump point, the system may swithto a visous behavior, whih is in fat reminisent of the visous approximation (DNε). Inpartiular, when the jump point is of visous type, the in�mum in (1.9) is attained andthe states u− and u+ are onneted by some transition urve ϑ : [r0, r1] → X, ful�lling thevisous doubly nonlinear equation
∂Ψ0(ϑ

′(r)) + ϑ′(r) + DEt(ϑ(r)) ∋ 0 in X∗ for a.a. r ∈ (r0, r1)(in the ase the norm | · | is Eulidean and we use its di�erential to identify X with
X∗). The ombination of (1.4) and (1.8) yields the notion of BV solution to the rate-independent system (X, E, p). This onept was �rst introdued in [35℄, in the ase theambient spae X is a �nite-dimensional manifold X, and both the rate-independent andthe visous approximating dissipations depend on one single Finsler distane on X. In thispaper, while keeping to a Banah framework, we shall onsiderably broaden the lass ofrate-independent and visous dissipation funtionals, f. Remark 2.4. Moreover, the notionof BV solution shall be presented here in a more ompat form than in [35℄, amenable toa �ner analysis and, hopefully, to further generalizations.Let us now brie�y omment on our main results. First of all, we are going to show inTheorems 4.3, 4.6, and 4.7 that the onept of BV rate-independent evolution ompletelyenompasses the solution behavior in both a purely rate-independent, non-jumping regime,and in jump regimes, where the ompetition between dry-frition and visous e�ets ishighlighted. Indeed, from (1.4) and (1.8) it is possible to dedue suitable energy balanesat jumps (f. onditions (JBV) in Theorem 4.3).Then, in Theorem 4.10 we shall prove that, along a subsequene, the visous approxima-tions arising from (DNε) onverge as ε ↓ 0 to a BV solution. Next, our seond main result,Theorem 4.11, states that, up to a subsequene, also the disrete solutions Uτ,ε onstrutedvia the ε-disretization sheme (IPε) onverge to a BV solution u ∈ BV([0, T ]; X) of (DN0)as ε ↓ 0 and τ ↓ 0 simultaneously, provided that the respetive onvergene rates are suhthat

lim
ε, τ↓0

ε

τ
= +∞ .Finally, in Setion 5 we shall develop a di�erent approah to BV solutions, via the resal-ing tehnique advaned in [18℄ and re�ned in [35, 44℄. The main idea is to suitablyreparametrize the approximate visous urves (uε) in order to apture, in the vanishingvisosity limit, the visous transition paths at jumps points. This leads to performing anasymptoti analysis as ε ↓ 0 of the graphs of the funtions uε, in the extended phase spae

[0, T ] × X. For every ε > 0 the graph of uε an be parametrized by a ouple of funtions
(tε, uε), tε being the (stritly inreasing) resaling funtion and uε := uε ◦ tε the resaledsolution. In Theorem 5.6 we assert that, up to a subsequene, the funtions (tε, uε) on-verge as ε ↓ 0 to a parametrized rate-independent solution. By the latter terminology wemean a urve (t, u) : [0, S] → [0, T ] × X ful�lling

t : [0, S] → [0, T ] is nondereasing,
t′(s) + ‖u′(s)‖ > 0 for a.a. s ∈ (0, S),

(1.10a)
t′(s) > 0 =⇒ ‖− DEt(s)(u(s))‖ ≤ 1,

‖u′(s)‖ > 0 =⇒ ‖− DEt(s)(u(s))‖ ≥ 1

} for a.a. s ∈ (0, S) ,(1.10b)



6and the energy identity
d

ds
E(t(s), u(s)) − ∂tE(t(s), u(s)) t′(s)

= −‖u′(s)‖ − |u′(s)|dist∗(−DEt(s)(u(s)), K∗) for a.a. s ∈ (0, S) ,
(1.10)As already pointed out in [18, 35℄, like the notion of BV solution, relations (1.10) aswell omprise both the purely rate-independent evolution as well as the visous transientregime at jumps. The latter regime in fat orresponds to the ase −DEt(u) 6∈ K∗ : thesystem does not obey the loal stability onstraint (1.4) any longer, and swithes to visousbehavior, see also Remark 5.7 later on.As a matter of fat, Theorem 5.8 shows that parametrized rate-independent solutionsmay be viewed as the �ontinuous ounterpart� to BV evolutions. With a suitable trans-formation, it is possible to assoiate with every parametrized rate-independent solutiona BV one, and onversely. One advantage of the parametrized notion is that it avoidsthe tehnialities related to BV funtions. Hene, it is for instane more easily amenableto a stability analysis (f. [35, Rmk. 6℄). Furthermore, in [44℄ a highly re�ned vanish-ing visosity analysis has been developed, with this reparametrization tehnique, in thein�nite-dimensional (L1, L2)-framework, where (DNε) is replaed by a general quasilinearevolutionary PDE.Generalizations and future developments. So far we have foused on dissipation fun-tionals of the type (1.1) and Ψε(v) = ‖v‖ + ε

2
|v|2 as in (DNε) for expository reasons only,in order to highlight the main variational argument leading to the notion of BV solution.Indeed, the analysis developed in this paper is targeted to a generalpositively 1-homogeneous, onvex dissipation Ψ0 : X → [0, +∞),(f. (2.1)), and onsiders a fairly wide lass of approximate visous dissipation funtionals

Ψε, de�ned by onditions (Ψ.1)�(Ψ.3) in Setion 2.3. Furthermore, at the prie of justtehnial ompliations, our results ould be extended to the ase of a Finsler-like familyof dissipation funtionals Ψ0(u, ·), depending on the state variable u ∈ X, and satisfyinguniform bounds and Moso-ontinuity with respet to u, see [35, Set. 2℄ and [47, Set. 6, 8℄.The extension to in�nite-dimensional ambient spaes and nonsmooth energies is ru-ial for appliation of the onept of BV solution to the PDE systems modelling rate-independent evolutions in ontinuum mehanis. A �rst step in this diretion is to gen-eralize the known existene results for doubly nonlinear equations, driven by a visousdissipation, to nononvex and nonsmooth energy funtionals in in�nite dimensions. Asshown in [48, 47℄, in the nonsmooth and nononvex ase one an replae the energy di�er-ential DEt with a suitable notion of subdi�erential ∂Et. Aordingly, instead of ontinuityof DEt, one asks for losedness of the multivalued subdi�erential ∂Et in the sense of graphs.These ideas shall be further advaned in the forthoming work [36℄. Therein, exploitingtehniques from nonsmooth analysis, we shall also takle energies whih do not dependsmoothly on time (this is relevant for rate-independent appliations, see e.g. [22℄ and [25℄).On the other hand, the requirement that the ambient spae is �nite-dimensional ouldbe replaed by suitable ompatness (of the sublevels of the energy) and re�exivity as-sumptions on the ambient spae X. The latter topologial requirement in fat ensures



7that X has the so-alled Radon-Nikodým property, i.e. that absolutely ontinuous urveswith values in X are almost everywhere di�erentiable. The vanishing visosity analysisin spaes whih do not enjoy this property requires a subtler approah, involving metriarguments (see e.g. [47, Set. 7℄), or ad-ho stronger estimates [44℄. See also [34℄ for somepreliminary approahes to BV solutions for PDE problems.Plan of the paper. Setion 2 is devoted to an extended presentation of energeti andloal solutions to rate-independent systems. In partiular, after �xing the setup of thepaper in Setion 2.1, in Se. 2.2 we reall the de�nition of global energeti solution, showits di�erential haraterization and the related variational time-inremental sheme. Wedevelop the vanishing-visosity approah in Ses. 2.3 and 2.4, thus arriving at the notionof loal solution (see Setion 2.5), whih also admits a di�erential haraterization.In Setion 3 we introdue the onept of vanishing visosity ontat potential and thor-oughly analyze its properties, as well as the indued (pseudo)-total variation. With theseingredients, in Se. 4 we present the notion of BV solution. We show that BV rate-independent evolutions admit, too, a di�erential haraterization, and, in Se. 4.2, thatthey provide a areful desription of the energeti behavior of the system. Then, in Se-tion 4.3, we state our main results on BV solutions.While Setion 5 is foused on the alternative notion of parametrized rate-independentsolutions, the last Se. 6 ontains some tehnial results whih lie at the ore of our theory.2. Global energeti versus loal solutions, and their visousregularizationsIn this setion, we will brie�y reall the notion of energeti solutions and show that theirvisous regularizations give raise to loal solutions.2.1. Rate-independent setting: dissipation and energy funtionals. We let
(X, ‖ · ‖X) be a �nite-dimensional normed vetor spae,endowed with a gauge funtion Ψ0, namely a(2.1) non-degenerate, positively 1-homogeneous, onvex dissipation Ψ0 : X → [0, +∞),i.e. Ψ0 satis�es Ψ0(v) > 0 if v 6= 0, and

Ψ0(v1 + v2) ≤ Ψ0(v1) + Ψ0(v2), Ψ0(λv) = λΨ0(v) for every λ ≥ 0, v, v1, v2 ∈ X.In partiular, there exists a onstant η > 0 suh that
η−1‖v‖X ≤ Ψ0(v) ≤ η‖v‖X for every v ∈ X.Sine Ψ0 is 1-homogeneous, its subdi�erential ∂Ψ0 : X ⇉ X∗ an be haraterized by(2.2) ∂Ψ0(v) :=

{

w ∈ X : 〈w, z〉 ≤ Ψ0(z) for every z ∈ X, 〈w, v〉 = Ψ0(v)
}

⊂ X∗;

∂Ψ0 takes its values in the onvex set K∗ ⊂ X∗, given by(2.3) K∗ = ∂Ψ0(0) :=
{

w ∈ X∗ : 〈w, z〉 ≤ Ψ0(z) ∀ z ∈ X} ⊃ ∂Ψ0(v) for every v ∈ X,



8whih enjoys some useful (and well-known, see e.g. [46℄) properties. For the reader's on-veniene we list them here:K1. K∗ is the proper domain of the Legendre transform Ψ∗
0 of Ψ0, sine(2.4) Ψ∗

0(w) = IK∗(w) =

{

0 if w ∈ K∗,

+∞ otherwise.K2. Ψ0 is the support funtion of K∗, sine(2.5) Ψ0(v) = sup
w∈K∗

〈w, v〉 for every v ∈ X,and K∗ is the polar set of the unit ball K :=
{

v ∈ X : Ψ0(v) ≤ 1
} assoiated with

Ψ0.K3. K∗ is the unit ball of the support funtion Ψ0∗ of K:(2.6) K∗ =
{

w ∈ X∗ : Ψ0∗(w) ≤ 1
}

, with Ψ0∗(w) = sup
v∈K

〈w, v〉 = sup
v 6=0

〈w, v〉

Ψ0(v)
.K4. In the even ase (i.e., when Ψ0(v) = Ψ0(−v) for all v ∈ X), we have that Ψ0 is anequivalent norm for X, Ψ0∗ is its dual norm, K and K∗ are their respetive unit balls.Further, we onsider a smooth energy funtional

E ∈ C1([0, T ] × X) ,whih we suppose bounded from below and with energy-bounded time derivative(2.7) ∃C > 0 ∀ (t, u) ∈ [0, T ] × X : Et(u) ≥ −C , |∂tEt(u)| ≤ C
(

1 + Et(u)+
)

,where (·)+ denotes the positive part. The rate-independent system assoiated with theenergy funtional E and the dissipation potential Ψ0 an be formally desribed by therate-independent doubly nonlinear di�erential inlusion(DN0) ∂Ψ0(u
′(t)) + DEt(u(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ).As already mentioned in the Introdution, for nononvex energies solutions to (DN0) mayexhibit disontinuities in time. The �rst weak solvability notion for (DN0) is the oneptof (global) energeti solution to the rate-independent system (DN0) (see [42, 40, 41℄ andthe survey [32℄), whih we reall in the next setion.2.2. Energeti solutions and variational inremental sheme.De�nition 2.1 (Energeti solution). A urve u ∈ BV([0, T ]; X) is an energeti solution ofthe rate independent system (X, E, Ψ0) if for all t ∈ [0, T ] the global stability (S) and theenergy balane (E) holds:(S) ∀ z ∈ X : Et(u(t)) ≤ Et(z) + Ψ0(z − u(t)),(E) Et(u(t)) + VarΨ0

(u; [0, t]) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds.



9
BV funtions. Hereafter, we shall onsider funtions of bounded variation pointwise de-�ned in every point t ∈ [0, T ], suh that the pointwise total variation with respet to Ψ0(any equivalent norm of X an be hosen) VarΨ0

(u; [0, T ]) is �nite, where
VarΨ0

(u; [a, b]) := sup
{

M
∑

m=1

Ψ0

(

u(tm) − u(tm−1)
)

: a = t0 < t1 < · · · < tM−1 < tM = b
}

.Notie that a funtion u in BV([0, T ]; X) admits left and right limits at every t ∈ [0, T ] :(2.8)
u(t−) := lim

s↑t
u(s), u(t+) := lim

s↓t
u(s), with the onvention u(0−) := u(0), u(T+) := u(T ),and its pointwise jump set Ju is the at most ountable set de�ned by(2.9)

Ju :=
{

t ∈ [0, T ] : u(t−) 6= u(t) or u(t) 6= u(t+)
}

⊃ ess-Ju :=
{

t ∈ [0, T ] : u(t−) 6= u(t+)
}

.We denote by u′ the distributional derivative of u, and reall that u′ is a Radon vetormeasure with �nite total variation |u′|. It is well known [3℄ that u′ an be deomposed intothe sum of the three mutually singular measures(2.10) u′ = u′
L

+ u′
C + u′

J, u′
L

= u̇L
1, u′

co := u′
L

+ u′
C .Here, u′

L
is the absolutely ontinuous part with respet to the Lebesgue measure L 1,whose Lebesgue density u̇ is the usual pointwise (and L 1-a.e. de�ned) derivative, u′

J is adisrete measure onentrated on ess-Ju ⊂ Ju, and u′
C is the so-alled Cantor part, stillsatisfying u′

C({t}) = 0 for every t ∈ [0, T ]. Therefore u′
co = u′

L
+u′

C is the di�use part of themeasure, whih does not harge Ju. In the following, it will be useful to use a nonnegativeand di�use referene measure µ on (0, T ) suh that L 1 and u′
C are absolutely ontinuousw.r.t. µ: just to �x our ideas, we set(2.11) µ := L

1 + |u′
C|.With a slight abuse of notation, for every (a, b) ⊂ (0, T ) we denote by ∫ b

a
dΨ0(u

′
co) theintegral(2.12) ∫ b

a

dΨ0(u
′
co) :=

∫ b

a

Ψ0

(

du′
co

dµ

)

dµ =

∫ b

a

Ψ0(u̇) dL
1 +

∫ b

a

Ψ0

(

du′
C

d|u′
C|

)

d|u′
C|.Sine Ψ0 is 1-homogeneous, the above integral is independent of µ, provided u′

co is abso-lutely ontinuous w.r.t. µ.Towards a di�erential haraterization of energeti solutions. Let us �rst of allpoint out that (S) is stronger than the loal stability ondition(Sloc) −DEt(u(t)) ∈ K∗ for every t ∈ [0, T ] \ Ju,whih an be formally dedued from (DN0) and (2.3). Indeed, the global stability (S)yields for every z = u(t) + hv ∈ X and h > 0

〈−DEt(u(t)), hv〉+ o(|h|) ≤ Et(u(t)) − Et(u(t) + hv) ≤ hΨ0(v)and therefore, dividing by h and passing to the limit as h ↓ 0, one gets
〈−DEt(u(t)), v〉 ≤ Ψ0(v) for every z ∈ X,



10so that (Sloc) holds. We obtain more insight into (E) by representing the Ψ0 variation
VarΨ0

(u; [a, b]) in terms of the distributional derivative u′ of u. In fat, realling (2.11) and(2.12), we have
VarΨ0

(u; [a, b]) :=

∫ b

a

dΨ0(u
′
co) + JmpΨ0

(u; [a, b]),where the jump ontribution JmpΨ0
(u; [a, b]) an be desribed, in terms of the quantities(2.13) ∆Ψ0

(v0, v1) := Ψ0(v1 − v0), ∆Ψ0
(v−, v, v+) := Ψ0(v − v−) + Ψ0(v+ − v),by(2.14)

JmpΨ0
(u; [a, b]) := ∆Ψ0

(u(a), u(a+)) + ∆Ψ0
(u(b−), u(b)) +

∑

t∈Ju∩(a,b)

∆Ψ0
(u(t−), u(t), u(t+)).Also notie that, as usual in rate-independent evolutionary problems, u is pointwise every-where de�ned and the jump term JmpΨ0

(u; [·, ·]) takes into aount the value of u at everytime t ∈ Ju. Therefore, if u is not ontinuous at t, this part may yield a stritly biggerontribution than the total mass of the distributional jump measure u′
J (whih gives riseto the so-alled essential variation).The following result provides an equivalent haraterization of energeti solutions: be-sides the global stability ondition (S), it involves a BV formulation of the di�erentialinlusion (DN0) (f. the subdi�erential formulation of [41℄) and a jump ondition at anyjump point of u.Proposition 2.2. A urve u ∈ BV([0, T ]; X) satisfying the global stability ondition (S)is an energeti solution of the rate-independent system (X, E, Ψ0) if and only if it satis�esthe di�erential inlusion(DN0,BV) ∂Ψ0

(du′
co

dµ
(t)

)

+ DEt(u(t)) ∋ 0 for µ-a.e. t ∈ [0, T ], µ := L
1 + |u′

C|,and the jump onditions(Jener)
Et(u(t)) − Et(u(t−)) = −∆Ψ0

(u(t−), u(t)), Et(u(t+)) − Et(u(t)) = −∆Ψ0
(u(t), u(t+)),

Et(u(t+)) − Et(u(t−)) = −∆Ψ0
(u(t−), u(t+)).for every t ∈ Ju (reall onvention (2.8) in the ase t = 0, T ).We shall simply sketh the proof, referring to the arguments for the forthoming Proposi-tion 2.7 for all details.Proof. By the additivity property of the total variation VarΨ0

(u; [·, ·]), (E) yields for every
0 ≤ t0 < t1 ≤ T(E') VarΨ0

(u; [t0, t1]) + Et1(u(t1)) = Et0(u(t0)) +

∫ t1

t0

∂tEt(u(t)) dt .Arguing as in the proof of Proposition 2.7 later on, one an see that the global stability(S) and (E') yield the di�erential inlusion (DN0,BV) and onditions (Jener).



11Conversely, repeating the arguments of Proposition 2.7 one an verify that (DN0,BV)and (Jener) imply (E). �Inremental minimization sheme. Existene of energeti solutions an be proved bysolving a minimization sheme, whih is also interesting as onstrution of an e�etiveapproximation of the solutions.For a given time-step τ > 0 we onsider a uniform partition (for simpliity) 0 = t0 <
t1 < · · · < tN−1 < T ≤ tN , tn := nτ , of the time interval [0, T ], and an initial value
U0

τ ≈ u0. In order to �nd good approximations of Un
τ ≈ u(tn) we solve the inrementalminimization sheme(IP0) �nd U1

τ , · · · , UN
τ suh that Un

τ ∈ Argmin
U∈X

{

Ψ0(U − Un−1
τ ) + Etn(U)

}

.Setting(2.15) Uτ (t) := Un
τ if t ∈ (tn−1, tn],it is possible to �nd a suitable vanishing sequene of step sizes τk ↓ 0 (see, e.g., [41, 32℄ forall alulations), suh that

∃ lim
k→+∞

Uτk
(t) =: u(t) for every t ∈ [0, T ],and u is an energeti solution of (DN0).2.3. Visous approximations of rate-independent systems. In the present paper wewant to study a di�erent approah to approximate and solve (DN0): the main idea is toreplae the linearly growing dissipation potential Ψ0 with a suitable onvex and superlinear�visous� regularization Ψε : X → [0, +∞) of Ψ0, depending on a �small� parameter ε > 0and �onverging� to Ψ0 in a suitable sense as ε ↓ 0. Solving the doubly nonlinear di�erentialinlusion (we use the notation u̇ for the time derivative when u is absolutely ontinuous)(DNε) ∂Ψε(u̇ε(t)) + DEt(uε(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ),one an onsider the sequene (uε) as a good approximation of the solution u of (DN0) as

ε ↓ 0.There is also a natural disrete ounterpart to (DNε), whih regularizes the inrementalminimization problem (IP0). We simply substitute Ψ0 by Ψε in (IP0), realling that nowthe time-step τ should expliitly appear, sine Ψε is not 1-homogeneous any longer. Thevisous inremental problem is therefore(IPε) �nd U1
τ,ε, · · · , UN

τ,ε suh that Un
τ,ε ∈ Argmin

U∈X

{

τΨε

(U − Un−1
τ,ε

τ

)

+ Etn(U)
}

.Setting as in (2.15)
Uτ,ε(t) := Un

τ,ε if t ∈ (tn−1, tn],one an study the limit of the disrete solutions when τ ↓ 0 and ε ↓ 0, under some restritionon the behavior of the quotient ε/τ (see Theorem 4.11 later on).



12The hoie of the visosity approximation Ψε. Here we onsider the partiular asewhen the potential Ψε an be obtained starting from a given(Ψ.1) onvex funtion Ψ : X → [0, +∞) suh that Ψ(0) = 0, lim
‖v‖X↑+∞

Ψ(v)

‖v‖X
= +∞,by the anonial resaling(Ψ.2) Ψε(v) := ε−1Ψ(εv) for every v ∈ X, ε > 0,and Ψε is linked to Ψ0 by the relation(Ψ.3) Ψ0(v) = lim

ε↓0
Ψε(v) = lim

ε↓0
ε−1Ψ(εv) for every v ∈ X.Remark 2.3. Notie that, by onvexity of Ψ and the fat that Ψ(0) = 0, the map ε 7→

ε−1Ψ(εv) is nondereasing for all v ∈ X. Hene,(2.16) Ψ0(v) ≤ Ψε(v) for all v ∈ X, for all ε > 0.Furthermore, by the oerivity ondition (Ψ.1),
∂Ψε(v) := ∂Ψ(εv) is a surjetive map.Here are some examples, showing that (Ψ.2) still provides a great �exibility and oversseveral interesting ases.Example 2.4.

Ψ0-visosity: The simplest example, still absolutely non trivial [35℄, is to onsider(2.17) Ψ(v) := Ψ0(v) +
1

2

(

Ψ0(v)
)2

, Ψε(v) := Ψ0(v) +
ε

2

(

Ψ0(v)
)2

,

∂Ψε(v) =
(

1 + εΨ0(v)
)

∂Ψ0(v).A similar regularization an be obtained by hoosing a real onvex and superlinearfuntion FV : [0, +∞) → [0, +∞), with FV (0) = F ′
V (0) = 0, and setting(2.18) Ψ(v) := Ψ0(v) + FV (Ψ0(v)) = F (Ψ0(v)), with F (r) := r + FV (r).Quadrati or p-visosity indued by a norm ‖ · ‖: The most interesting ase involvesan arbitrary norm ‖ · ‖ on X and onsiders for p > 1(2.19)

Ψ(v) = Ψ0(v) +
1

p
‖v‖p, Ψε(v) = Ψ0(v) +

εp−1

p
‖v‖p, ∂Ψε(v) = ∂Ψ0(v) + εp−1Jp(v),where Jp is the p-duality map assoiated with ‖ · ‖. In partiular, if ‖ · ‖ is a Hilbertiannorm and p = 2, then J2 is the Riesz isomorphism and we an hoose J2(v) = v byidentifying X with X∗. Hene, (DNε) reads

∂Ψε(u̇ε(t)) + εu̇ε(t) + DEt(uε(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ),and the inremental problem (IPε) looks for Un
τ,ε whih reursively minimizes

U 7→ Ψ0(U − Un−1
τ,ε ) +

ε

2τ
‖U − Un−1

ε,τ ‖2 + Etn(U).This is the typial situation whih motivates our investigation.



13Additive visosity: More generally, we an hoose a onvex �visous� potential ΨV :
X → [0, +∞) satisfying(2.20) lim

ε↓0
ε−1ΨV (εv) = 0, lim

λ↑+∞
λ−1ΨV (λv) = +∞ for all v ∈ X,and set(2.21) Ψ(v) := Ψ0(v)+ΨV (v), Ψε(v) := Ψ0(v)+ε−1ΨV (εv), ∂Ψε(v) = ∂Ψ0+∂ΨV (εv).2.4. Visous energy identity. Sine Ψ has a superlinear growth, the results of [9, 8℄ensure that for every ε > 0 and initial datum u0 ∈ X there exists at least one solution

uε ∈ AC([0, T ]; X) to equation (DNε), ful�lling the Cauhy ondition uε(0) = u0.In order to apture its asymptoti behavior as ε ↓ 0, we split equation (DNε) in a simplesystem of two onditions, involving an auxiliary variable wε : [0, T ] → X∗ and a salarfuntion pε : [0, T ] → R

∂Ψε(u̇ε(t)) ∋ wε for a.a. t ∈ (0, T ) ,(2.22a)
DEt(uε(t)) = −wε(t), ∂tEt(uε(t)) = −pε(t) for all t ∈ [0, T ].(2.22b)Denoting by Ψ∗, Ψ∗

ε the onjugate funtions of Ψ and Ψε, we have(2.23) 0 = Ψ∗(0) ≤ Ψ∗(ξ) < +∞, Ψ∗
ε(ξ) = ε−1Ψ∗(ξ) for every ξ ∈ X∗.Due to (2.16), there holds(2.24) Ψ∗

ε(ξ) ≤ Ψ∗
0(ξ) for all v ∈ X, ε > 0.The lassial haraterization of the subdi�erential of Ψε yields that the �rst ondition(2.22a) is equivalent to(2.25) Ψε(u̇ε(t)) + Ψ∗

ε(wε(t)) = 〈wε(t), u̇ε(t)〉 for a.a. t ∈ (0, T ) .On the other hand, the hain rule for the C1 funtional E shows that along the absolutelyontinuous urve uε(2.26)
d

dt
Et(uε(t)) = 〈DEt(uε(t)), u̇ε(t)〉+ ∂tEt(uε(t)) = −〈wε(t), u̇ε(t)〉 − pε(t) for a.a. t ∈ (0, T ).Thus, if wε(t) = −DEt(uε(t)), equation (2.22a) is equivalent to the energy identity(2.27) ∫ t1

t0

(

Ψε (u̇ε(r)) + Ψ∗
ε (wε(r)) + pε(r)

)

dr + Et1(uε(t1)) = Et0(uε(t0)),for every 0 ≤ t0 ≤ t1 ≤ T.Remark 2.5 (The role of Ψ∗
ε). In the general, additive-visosity ase (see (2.21)), when

Ψ(v) = Ψ0(v) + ΨV (v) the inf-sup onvolution formula yields
Ψ∗

ε(ξ) = inf
ξ1+ξ2=ξ

ξ1,ξ2∈X∗

{

IK∗(ξ1) +
1

ε
Ψ∗

V (ξ2)

}

= ε−1 min
z∈K∗

Ψ∗
V (ξ − z).In partiular, when ΨV (ξ) := 1

2
|v|2 for some norm | · | of X, one �nds

Ψ∗
ε(ξ) =

1

2ε
min
z∈K∗

|ξ − z|2∗,



14where | · |∗ is the dual norm of | · |. Thus, for all ξ ∈ X∗ the funtional Ψ∗
ε(ξ) is the squareddistane of ξ from K∗, with respet to | · |∗. This shows that, in the visous regularizedequation (DNε), the (loal) stability ondition w(t) = −DEt(u(t)) ∈ K∗ has been replaedby the ontribution of the penalizing term

1

2ε

∫ T

0

min
z∈K∗

| − DEt(uε(t)) − z|2∗ dtin the energy identity (2.27).2.5. Pointwise limit of visous approximations and loal solutions. Using (2.7), itis not di�ult to show that the visous solutions uε of (DNε) satisfy the a priori bound(2.28) ∫ T

0

(

Ψε(u̇ε(t))+Ψ∗
ε(wε(t))

)

dt ≤ C, with wε(t) = −DEt(uε(t)) for all t ∈ [0, T ].Therefore, Helly's ompatness theorem shows that, up to the extration of a suitablesubsequene, the sequene (uε) pointwise onverges to a BV urve u. From the onvergene
wε(t) → w(t) = −DEt(u(t)) as ε ↓ 0 and the fat that for all t ∈ [0, T ](2.29) lim inf

ε↓0
ε−1Ψ∗(wε(t))

(2.23)
≥ Ψ∗

0(w(t)) = I∗K(w(t)) =

{

0 if w(t) ∈ K∗,

+∞ otherwise,we infer that the limit urve u satis�es the (loal) stability ondition (Sloc). On the otherhand, passing to the limit in (2.27) one gets the energy inequality(E′ineq) Et1(u(t1))+VarΨ0
(u; [t0, t1]) ≤ Et0(u(t0))+

∫ t1

t0

∂tEt(u(t)) dt for 0 ≤ t0 < t1 ≤ T.The above disussion motivates the onept of loal solution (see also [35, Se. 5.2℄ and thereferenes therein).De�nition 2.6 (Loal solutions). A urve u ∈ BV([0, T ]; X) is alled a loal solution ofthe rate independent system (X, E, Ψ0) if it satis�es the loal stability ondition(Sloc) −DEt(u(t)) ∈ K∗ for every t ∈ [0, T ] \ Ju,and the energy dissipation inequality (E′ineq).Loal solutions admit the following di�erential haraterization.Proposition 2.7 (Di�erential haraterization of loal solutions). A urve u ∈ BV([0, T ]; X)is a loal solution of the rate independent system (X, E, Ψ0) if and only if it satis�es the
BV di�erential inlusion(DN0,BV) ∂Ψ0

(du′
co

dµ
(t)

)

+ DEt(u(t)) ∋ 0 for µ-a.e. t ∈ [0, T ], µ := L
1 + |u′

C|,and the jump inequalities(Jloal)
Et(u(t)) − Et(u(t−)) ≤ −∆Ψ0

(u(t−), u(t)), Et(u(t+)) − Et(u(t)) ≤ −∆Ψ0
(u(t), u(t+)),

Et(u(t+)) − Et(u(t−)) ≤ −∆Ψ0
(u(t−), u(t+)),at eah jump time t ∈ Ju.



15Proof. Notie that at every point t ∈ (0, T ) where du′
co(t)/dµ = 0, the di�erential inlusion(DN0,BV) redues to the loal stability ondition (Sloc). In the general ase, (DN0,BV) followsby di�erentiation of (E′ineq). Indeed, the latter proedure provides the following inequalitybetween the distributional derivative d

dt
Et(u(t)) of the map t 7→ Et(u(t)) and the Ψ0-totalvariation measure Ψ0(u

′
co) := Ψ0

(

du′
co/dµ

)

µ for µ := u′
C + L 1(2.30) d

dt
Et(u(t)) + Ψ0(u

′
co) − ∂tEt(u(t))L 1 ≤ 0 .Applying the hain rule formula for the omposition of the C1 funtional E and the BVurve u (see [2℄ and [3, Thm. 3.96℄) and taking into aount the fat that u′

co and u′
J aremutually singular, we obtain from (2.30) that(2.31) 〈

−DEt(u(t)),
du′

co

dµ

〉

µ ≥ Ψ0(u
′
co) = Ψ0

(du′
co

dµ

)

µ .Combining (2.31) with the loal stability ondition (Sloc), in view of the harateriza-tion (2.2) of ∂Ψ0 and of (2.3) we �nally onlude (DN0,BV). Loalizing (E′ineq) around ajump point t we get the inequalities (Jloal).Conversely, let us suppose that a BV urve u satis�es (DN0,BV) and (Jloal). The loalstability ondition is an immediate onsequene of (DN0,BV), whih yields−DEt(u(t)) ∈ K∗for L 1-a.e. t ∈ [0, T ] and therefore, by ontinuity, at every point of [0, T ] \ Ju.In order to get (E′ineq), we again apply the hain rule for the omposition E and u,obtaining(2.32) Et1(u(t1)) +

∫ t1

t0

〈

−DEt(u(t)),
du′

co

dµ

〉

dµ(t) − Jmp(E; [t0, t1])

= Et0(u(t0)) +

∫ t1

t0

∂tEt(u(t)) dt,where
Jmp(E; [t0, t1]) = E+(t0) + E−(t1) +

∑

t∈Ju∩(t0,t1)

(

E−(t) + E+(t)
)

,and
E−(t) := Et(u(t)) − Et(u(t−)), E+(t) := Et(u(t+)) − Et(u(t)).By (DN0,BV) we have(2.33) ∫ t1

t0

〈

−DEt(u(t)),
du′

co

dµ

〉

dµ(t) =

∫ t1

t0

Ψ0

(du′
co

dµ
(t)

)

dµ(t) =

∫ t1

t0

dΨ0(u
′
co) ,whereas (Jloal) yields for every t ∈ Ju(2.34) E−(t) ≤ −∆Ψ0

(u(t−), u(t)), E+(t) ≤ −∆Ψ0
(u(t), u(t+)),so that −Jmp(E; [t0, t1]) ≥ JmpΨ0

(u; [t0, t1]) and therefore (E′ineq) follows from (2.32). �



16Remark 2.8. Unlike the ase of energeti solutions (f. Proposition 2.2), a preise de-sription of the behavior of loal solutions at jumps in missing here. In fat, the jumpinequalities (Jloal) are not su�ient to get an energy balane and do not ompletely ap-ture the jump dynamis, see the disussion of [35, Se. 5.2℄.In order to get more preise insight into the jump properties and to understand theorret energy balane along them, we have to introdue a �ner desription of the dissipa-tion. It is related to an extra ontribution to the jump part of VarΨ0
(u; [·, ·]), whih an bebetter desribed by using the vanishing visosity ontat potential indued by the oupling

Ψ, Ψ∗. We desribe this notion in the next setion.3. vanishing visosity ontat potentials and Finsler dissipation osts3.1. Heuristis for the onept of vanishing visosity ontat potential. Supposefor the moment being that, in a given time interval [r0, r1], the energy Et(·) = E(·) doesnot hange w.r.t. time. If ϑ ∈ AC([r0, r1]; X) is a solution of (DNε) onneting u0 = ϑ(r0)to u1 = ϑ(r1), then the energy release between the initial and the �nal state is, by theenergy identity (2.27),(3.1) E(u0) − E(u1) =

∫ r1

r0

(

Ψε(v) + Ψ∗
ε(w)

)

dt,with v(t) = ϑ̇(t) and w(t) = −DE(ϑ(t)) for a.a. t ∈ (0, T ).If one looks for a lower bound of the right-hand side in the above energy identity whih isindependent of ε > 0, it is natural to reur to the funtional p : X ×X∗ → [0, +∞) de�nedby
p(v, w) := inf

ε>0
(Ψε(v) + Ψ∗

ε(w)) = inf
ε>0

(

ε−1Ψ(εv) + ε−1Ψ∗(w)
) for v ∈ X, w ∈ X∗.We obtain(3.2) E(u0) − E(u1) ≥

∫ r1

r0

p(v, w) dt with v(t) = ϑ̇(t) and w(t) = −DE(ϑ(t)).Sine p(·, ·) is positively 1-homogeneous with respet to its �rst variable, the right-handside expression in (3.2) is in fat independent of (monotone) time resalings. On the otherhand, the vanishing visosity ontat potential p(·, ·) has the remarkable properties(3.3) p(v, w) ≥ 〈w, v〉, p(v, w) ≥ Ψ0(v) for every v ∈ X, w ∈ X∗.Therefore, if ϑ̃ ∈ AC([r0, r1]; X) is another arbitrary urve onneting u0 to u1, the hainrule (2.26) for E yields
E(u0) − E(u1) =

∫ r1

r0

〈w̃(t), ṽ(t)〉 dt ≤

∫ r1

r0

(Ψε(v(t)) + Ψ∗
ε(w̃(t))) dt(where ṽ denotes the time derivative of ϑ̃ and w̃ = −DE(ϑ̃)), whene(3.4) E(u0) − E(u1) ≤

∫ r1

r0

p(ṽ(t), w̃(t)) dt .It follows that, in a time regime in whih the energy funtional E does not hange withrespet to time, for every ε > 0 any visous solution of (DNε) (and, therefore, any suitable



17limit of visous solutions) should attain the minimum dissipation, measured in terms ofthe vanishing visosity ontat potential p. Moreover, this dissipation always provides anupper bound for the energy release, reahed exatly along visous urves and their limits.Remark 3.1. In some of the ases disussed in Example 2.4, the vanishing visosity ontatpotential p admits a more expliit representation.(1) We �rst onsider the Ψ0-visosity ase (2.18), where Ψ(v) := F (Ψ0(v)), F : [0, +∞) →
[0, +∞) being a real onvex superlinear funtion with F (0) = 0, F ′(0) = 1. We introduethe 1-homogeneous support funtion Ψ0∗ of the set

K :=
{

v ∈ X : Ψ0(v) ≤ 1
}

, Ψ0∗(w) := sup
v∈K

〈w, v〉.It is not di�ult to show that Ψ∗(w) = F ∗(Ψ0∗(w)) and that for all (v, w) ∈ X × X∗(3.5) p(v, w) = Ψ0(v) max(1, Ψ0∗(w)) =

{

Ψ0(v) if w ∈ K∗,

Ψ0(v) Ψ0∗(w) if w 6∈ K∗.(2) In the additive visosity ase of (2.21) one has for all (v, w) ∈ X × X∗(3.6)
p(v, w) = Ψ0(v) + pV (v, w), where pV (v, w) = inf

ε>0

(

ε−1ΨV (εv) + ε−1 inf
z∈K∗

Ψ∗
V (w − z)

)

.In partiular, when ΨV (v) = FV (‖v‖) for some norm ‖ · ‖ of X and a real onvex andsuperlinear funtion FV : [0, +∞) → [0, +∞) with FV (0) = F ′
V (0) = 0, we have for all

(v, w) ∈ X × X∗(3.7) p(v, w) = Ψ0(v) + pV (v, w), with pV (v, w) = ‖v‖ min
z∈K∗

‖w − z‖∗.Notie that in (3.5) and (3.7) the form of the vanishing visosity ontat potential p doesnot depend on the hoie of F and FV , respetively, but only on the hosen visosity norm.By the 1-homogeneity of p(·, w) and these variational properties, it is then natural tointrodue the following Finsler dissipation.De�nition 3.2 (Finsler dissipation). For a �xed t ∈ [0, T ], the Finsler ost indued by pand (the di�erential of) E at the time t is given by(3.8) ∆p,E(t; u0, u1) := inf
{

∫ r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr :

ϑ ∈ AC([r0, r1]; X), ϑ(r0) = u0, ϑ(r1) = u1

}for every u0, u1 ∈ X. We also onsider the indued �triple� ost
∆p,E(t; u−, u, u+) := ∆p,E(t; u−, u) + ∆p,E(t; u, u+).Remark 3.3. Sine p(v, w) ≥ Ψ0(v) by (3.3), a simple time resaling argument shows thatthe in�mum in (3.8) is always attained by a Lipshitz urve ϑ ∈ AC([r0, r1]; X) withonstant p-speed, in partiular suh that
p(ϑ̇(r),−DEt(ϑ(r)) ≡ 1 for a.a. r ∈ (r0, r1) .



18 By the heuristial disussion developed throughout (3.1)�(3.4), the ost ∆p,E is thenatural andidate to substituting the potential Ψ0 and the related ost ∆Ψ0
of (2.13) inthe jump ontributions (2.14) and in the jump onditions (Jener). Notie that the seondrelation of (3.3) implies(3.9) ∆p,E(t; u0, u1) ≥ ∆Ψ0

(u0, u1) for every u0, u1 ∈ X.The notion of jump variation arising from suh replaements is preisely stated as follows.De�nition 3.4 (The total variation indued by ∆p,E). Let u ∈ BV([0, T ]; X) a given urve,let u′
co be the di�use part of its distributional derivative u′, and let Ju be its pointwise jumpset (2.9). For every subinterval [a, b] ⊂ [0, T ] the Jump variation of u indued by (p, E) on

[a, b] is(3.10) Jmpp,E(u; [a, b]) :=∆p,E(a; u(a), u(a+)) + ∆p,E(b; u(b−), u(b))+

+
∑

t∈Ju∩(a,b)

∆p,E(t; u(t−), u(t), u(t+)),and the (pseudo-)total variation indued by (p, E) is(3.11) Varp,E(u; [a, b]) :=

∫ b

a

dΨ0(u
′
co) + Jmpp,E(u; [a, b]).Remark 3.5 (The (pseudo-)total variation Varp,E). Let us mention that Varp,E enjoys someof the properties of the usual total variation funtionals, but it is not lower semiontinuousw.r.t. pointwise onvergene. In fat, it is not di�ult to see that its lower semiontinuousenvelope is simply VarΨ0

. Furthermore, Varp,E is not indued by any distane on X. Indeed,we have used slanted fonts in the notation Var to stress this fat. In order to reover amore standard total variation in a metri setting, one has to work in the extended spae
X := [0, T ] × X and add the loal stability onstraint −DEt ∈ K∗ on the �ontinuous�part of the trajetories. We shall disuss this point of view in Setion 6.In view of inequality (3.9) between the Finsler dissipation ∆p,E and ∆Ψ0

, the notion oftotal variation assoiated with ∆p,E provides an upper bound for VarΨ0
, namely(3.12) ∀u ∈ BV([0, T ]; X), [a, b] ⊂ [0, T ] : Varp,E(u; [a, b]) ≥ VarΨ0

(u; [a, b]).3.2. Vanishing visosity ontat potentials. While postponing the de�nition of BVsolutions related to Varp,E to the next setion, let us add a few remarks about the vanishingvisosity ontat potential p(3.13)
p(v, w) := inf

ε>0
(Ψε(v) + Ψ∗

ε(w)) = inf
ε>0

(

ε−1Ψ(εv) + ε−1Ψ∗(w)
) for v ∈ X, w ∈ X∗.whih partly mathes the de�nition introdued by [7℄. We �rst list a set of intrinsiproperties of p, whih we shall prove at the end of this setion.Theorem 3.6 (Intrinsi properties of p). The ontinuous funtional p : X×X∗ → [0, +∞)de�ned by (3.13) satis�es the following properties:(I1) For every v ∈ X, w ∈ X∗ the maps p(v, ·) and p(·, w) have onvex sublevels.(I2) p(v, w) ≥ 〈w, v〉 for every v ∈ X, w ∈ X∗.



19(I3) For every w ∈ X∗ the map v 7→ p(v, w) is 1-homogeneous and thus onvex in X, with
p(v, w) > 0 if v 6= 0.(I4) For every v ∈ X, w ∈ X∗ the map λ 7→ p(v, λw) is nondereasing in [0, +∞).(I5) If for some v0 ∈ X and w̄, w ∈ X∗ we have p(v0, w̄) < p(v0, w), then the inequality
p(v, w̄) ≤ p(v, w) holds for every v ∈ X, and there exists v1 ∈ X suh that p(v1, w̄) <
〈w, v1〉.Remark 3.7 (A dual family of onvex sets). Property (I5) has a dual geometri ounterpart:let us �rst observe that for every w ∈ X∗ the map v 7→ p(v, w) is a gauge funtion andtherefore it is the support funtion of the onvex set

K∗
w :=

{

z ∈ X∗ : 〈z, v〉 ≤ p(v, w) for every v ∈ X
}

, i.e. p(v, w) = sup
{

〈z, v〉 : z ∈ K∗
w

}

.Assertion (I5) then says that for every ouple w, w̄ ∈ X(3.14)we always have w̄ ∈ K∗
w or w ∈ K∗

w̄ and, moreover, w̄ ∈ K∗
w ⇔ p(·, w̄) ≤ p(·, w).Suppose in fat that w 6∈ K∗

w̄: this means that an element v0 ∈ X exists suh that
〈w, v0〉 > p(v0, w̄); by (I2) we get p(v0, w) > p(v0, w̄), and therefore by (I5) p(v, w) ≥
p(v, w̄) ≥ 〈w̄, v〉 for every v ∈ X, so that w̄ ∈ K∗

w. The seond statement of (3.14) is animmediate onsequene of the seond part of (I5).Property (I2) suggests that the set where equality holds in plays a ruial role:De�nition 3.8 (Contat set). The ontat set Σp ⊂ X × X∗ is de�ned as(3.15) Σp :=
{

(v, w) ∈ X × X∗ : p(v, w) = 〈w, v〉
}

.Here are some other useful onsequenes of (I1�I5)Lemma 3.9. If p : X × X∗ → [0, +∞) satis�es (I1�I5), then(I6) for every v ∈ X, w ∈ X∗ we have(3.16) p(v, 0) + IK∗

0
(w) ≥ p(v, w) ≥ p(v, 0).(I7) The ontat set an be haraterized by(3.17) (v, w) ∈ Σp ⇔ w ∈ ∂p(·, w)(v) ⇔ v ∈ ∂IK∗

w
(w).More generally, if w̄ ∈ ∂p(·, w)(v) then (v, w̄) ∈ Σp, w̄ ∈ K∗

w, and p(v, w) = p(v, w̄).In partiular, if w̄ ∈ ∂K∗
w then w ∈ K∗

w̄.Proof. The hain of inequalities in (3.16) is an immediate onsequene of (I4) and of (3.14).(3.17) is a diret onsequene of the fat that v 7→ p(v, w) is a gauge funtion and IK∗

w
isits Legendre transform.In order to hek the last statement, given v ∈ X, w ∈ X∗ let us take w̄ ∈ ∂p(·, w)(v) sothat w̄ ∈ K∗

w and p(v, w) = 〈w̄, v〉. Combining (I2) with (3.14) we get p(v, w) = p(v, w̄),so that (v, w̄) ∈ Σp. �



20Remark 3.10. Properties (I1,I2,I5) suggest a strong analogy between p and the notion ofbipotential introdued by [7℄: aording to [7℄, a bipotential is a funtional b : X × X∗ →
(−∞, +∞] whih is onvex and lower semiontinuous in eah argument, satis�es (I2), andwhose ontat set ful�ls a ondition similar to (3.17)

(v, w) ∈ Σb ⇔ w ∈ ∂b(·, w)(v) ⇔ v ∈ ∂b(v, ·)(w).In our situation, (3.17) is a diret onsequene of the homogeneity of p, but the onvexityondition with respet to w looks too restritive, as shown by this simple example. Considerthe ase X = X∗ = R
2, with Ψ(v) := ‖v‖1 + ΨV (v), ‖v‖1 := |v1| + |v2|, and

ΨV (v) :=
1

2
v2
1 +

1

4
v4
2, v = (v1, v2) ∈ R

2; Ψ∗
V (w) =

1

2
w2

1 +
3

4
w

4/3
2 w = (w1, w2) ∈ R

2.By (3.6) we have p(v, w) = ‖v‖1+pV (v, w) with pV (v, w) = infε>0
1
ε

(

ΨV (εv)+Ψ∗(w)
) and�nd

Ψ∗(w) =
1

2
(|w1| − 1)2

+ +
3

4
(|w2| − 1)

4/3
+ .Considering the speial ase v = (v1, 0), w = (0, w2), we obtain

pV ((v1, 0), (0, w2)) =
√

3/2 |v1|
(

(|w2| − 1)+

)2/3

.The map w2 7→ p((v1, 0), (0, w2)) is therefore not onvex.Let us now onsider some properties of p and its ontat set Σp involving expliitlythe funtional Ψ. Sine the vanishing visosity ontat potential p is de�ned through theminimum proedure (3.13), the ontat set is stritly related to the set of optimal ε > 0attaining the minimum in (3.13).De�nition 3.11 (Lagrange multipliers). For every (v, w) ∈ X × X∗ we introdue themultivalued funtion Λ (with possibly empty values)(3.18) Λ(v, w) :=
{

ε ≥ 0 : p(v, w) = Ψε(v) + Ψ∗
ε(w)

}

⊂ [0, +∞).Notie that for every (v, w) ∈ X ×X∗ the funtion ε 7→ ε−1Ψ(εv) + ε−1Ψ∗(w) is onvexon (0, +∞). Sine Ψ has superlinear growth at in�nity, it goes to +∞ as ε ↑ +∞ if v 6= 0,so that(3.19) the set Λ(v, w) is always a bounded losed interval if v 6= 0.Theorem 3.12 (Properties of p, Ψ and Σp).(P1) The vanishing visosity ontat potential p satis�es p(v, 0) = Ψ0(v), K∗
0 = K∗, andin partiular

p(v, w) ≥ 〈w, v〉, Ψ0(v) + IK∗(w) ≥ p(v, w) ≥ Ψ0(v) ≥ 0 for every v ∈ X, w ∈ X∗,
(3.20)

p(v, w) = Ψ0(v) ⇔ w ∈ K∗.(3.21)



21(P2) For every w ∈ X∗, the onvex sets K∗
w are the sublevels of Ψ∗(3.22) K∗

w =
{

z ∈ X∗ : Ψ∗(z) ≤ Ψ∗(w)
}

,and p admits the dual representation(3.23) p(v, w) = sup
{

〈z, v〉 : z ∈ X∗, Ψ∗(z) ≤ Ψ∗(w)
}

.In partiular, Ψ∗(w1) ≤ Ψ∗(w2) for some w1, w2 ∈ X∗ if and only if p(v, w1) ≤
p(v, w2) for every v ∈ X.(P3) The multivalued funtion Λ de�ned in (3.18) is upper semiontinuous, i.e.(3.24) if (vn, wn) → (v, w) ∈ X × X∗ and εn ∈ Λ(vn, wn) → ε, then ε ∈ Λ(v, w).(P4) The ontat set Σp (3.15) an be haraterized by(3.25) w ∈ ∂Ψ0(v) ⊂ K∗ or, if w 6∈ K∗, ∃ ε > 0 : w ∈ ∂Ψ(εv),and the last inlusion holds exatly for ε ∈ Λ(v, w). Equivalently,

(v, w) ∈ Σp ⇔ w ∈ ∂Ψε(v) for every ε ∈ Λ(v, w).In partiular, in the ase of additive visosity, with Ψ(v) = Ψ0(v) + ΨV (v) and ΨVsatisfying (2.20), we simply have(3.26) (v, w) ∈ Σp ⇐⇒ ∃λ ≥ 0 : w ∈ ∂Ψ0(v) + ∂ΨV (λv).Proofs of Theorems 3.12 and 3.6.Ad (P1). Inequalities (3.20) are immediate onsequenes of the de�nition of p. Theequality Ψ0(v) = p(v, w) is equivalent to the existene of a sequene εk > 0 suh that(reall that ε−1Ψε(εv) ≥ Ψ0(v))
lim
k→∞

ε−1
k Ψ(εkv) = Ψ0(v), lim

k→∞
ε−1

k Ψ∗(w) = 0.Sine the �rst inequality prevents εk from diverging to +∞ (being Ψ superlinear), fromthe seond limit we get Ψ∗(w) = 0, i.e.
〈w, z〉 ≤ Ψ(z) ∀ z ∈ X.Replaing z with εz, multiplying the previous inequality by ε−1, and passing to the limitas ε ↓ 0, in view of (Ψ.3) we onlude

〈w, z〉 ≤ Ψ0(z) ∀ z ∈ X, so that w ∈ K∗.The onverse impliation in (3.21) is immediate.Ad (P2). Sine the sublevels of Ψ∗ are losed and onvex, a duality argument shows that(3.22) is equivalent to (3.23). In order to prove the latter formula, let us observe that, if
Ψ∗(z) ≤ Ψ∗(w), then 〈z, v〉 ≤ p(v, w), beause the Fenhel inequality yields
〈z, v〉 = ε−1〈z, εv〉 ≤ ε−1Ψ(εv)+ε−1Ψ(z) = Ψε(v)+Ψ∗

ε(z) ≤ Ψε(v)+Ψ∗
ε(w) for every ε > 0.We show that there exists z ∈ X∗ suh that Ψ∗(z) ≤ Ψ∗(w) and p(v, w) = 〈z, v〉. Dueto (3.21), if w ∈ K∗, then p(v, w) = Ψ0(v) and the thesis follows from (2.5) Hene, let ussuppose that w 6∈ K∗ and v 6= 0; then we an hoose ε0 ∈ Λ(v, w), ε0 > 0, suh that(3.27) p(v, w) = ε−1

0 Ψ(ε0v) + ε−1
0 Ψ∗(w) ≤ ε−1Ψ(εv) + ε−1Ψ∗(w) for every ε > 0.



22Choosing zε ∈ ∂Ψ(εv) we have
Ψ(εv) − Ψ(ε0v) ≤ 〈zε, (ε − ε0)v〉 for every ε > 0so that, in view of inequality (3.27),

(

ε−1 − ε−1
0

)

(

Ψ(ε0v) + Ψ∗(w)
)

+ ε−1〈zε, (ε − ε0)v〉 ≥ 0 for every ε > 0.Dividing by ε − ε0 and passing to the limit �rst as ε ↓ ε0 and then as ε ↑ ε0, we thus�nd z± ∈ ∂Ψ(ε0v) (aumulation points of the sequenes (zε : ε > ε0) and (zε : ε < ε0),respetively), suh that(3.28) 〈z−, v〉 ≤ p(v, w) = ε−1
0

(

Ψ(ε0v) + Ψ∗(w)
)

≤ 〈z+, v〉.On the other hand, the Fenhel identity of onvex analysis yields(3.29) ε−1
0 Ψ∗(z) = 〈z, v〉 − ε−1

0 Ψ(ε0v) for every z ∈ ∂Ψ(ε0v)so that the map z 7→ Ψ∗(z) is a�ne on ∂Ψ(ε0v) and a omparison between (3.28) and(3.29) yields
Ψ∗(z−) ≤ Ψ∗(w) ≤ Ψ∗(z+).Using formula (3.29) we an thus �nd θ ∈ [0, 1] and zθ := (1 − θ)z− + θz+ ∈ ∂Ψ(ε0v) suhthat

Ψ∗(zθ) = Ψ∗(w), 〈zθ, v〉 = p(v, w) = ε−1
0

(

Ψ(ε0v) + Ψ∗(w)
)

.The last statement of (P2) follows easily. One impliation is immediate. On the otherhand, if Ψ∗(w1) > Ψ∗(w2), then by the Hahn-Banah separation theorem we an �nd
v̄ ∈ X and δ > 0 suh that

〈w1, v̄〉 ≥ δ + 〈z, v̄〉 for every z ∈ X∗ suh that Ψ∗(z) ≤ Ψ∗(w2),and, therefore, by (3.23) we onlude p(v̄, w1) ≥ 〈w1, v̄〉 ≥ δ + p(v̄, w2).Ad (I1,2,3,4,5) These properties diretly follow from (P2).Ad (P3) and ontinuity of p. Notie that p is upper semiontinuous, being de�nedas the in�mum of a family of ontinuous funtions. Take now onverging sequenes
(vn), (wn), (εn) as in (3.24): we have that
lim inf
n→∞

(

ε−1
n Ψ(εnvn) + ε−1

n Ψ∗(wn)
)

≥ Ψε(v) + Ψ∗
ε(w) =

{

ε−1Ψ(εv) + ε−1Ψ∗(w) if ε > 0,

Ψ0(v) + I∗K(w) if ε = 0.Sine(3.30) p(v, w) ≥ lim inf
n→∞

p(vn, wn) ≥ lim inf
n→∞

(

ε−1
n Ψ(εnvn) + ε−1

n Ψ∗(wn)
)

≥ Ψε(v) + Ψ∗
ε(w) ≥ p(v, w),we obtain ε ∈ Λ(v, w).Inequality (3.30) shows that p is also lower semiontinuous, sine, if v 6= 0, any sequene

εn ∈ Λ(vn, wn) admits a onverging subsequene, in view of (3.19).Ad (P4). Conerning the haraterization (3.25) of Σp, it is easy to hek that, if (v, w)satis�es (3.25), then by the Fenhel identity and formula (2.2) we have, when w ∈ K∗,

p(v, w) ≥ 〈w, v〉 = Ψ0(v) = p(v, w),



23and, when w 6∈ K∗,
p(v, w) ≥ 〈w, v〉 = ε−1〈w, εv〉 = ε−1Ψ(εv) + ε−1Ψ∗(w) ≥ p(v, w)so that (v, w) ∈ Σp and ε ∈ Λ(v, w). Conversely, if p(v, w) = 〈w, v〉 and w ∈ K∗, then by(3.20) Ψ0(v) = 〈w, v〉 and therefore w ∈ ∂Ψ0(v). If w 6∈ K∗, then, hoosing ε ∈ Λ(v, w),we have
Ψ(εv) + Ψ∗(w) = εp(v, w) = 〈w, εv〉, so that w ∈ ∂Ψ(εv).In the partiular ase of (2.21), (3.26) follows now from (3.25) by the sum rule of thesubdi�erentials and the 0-homogeneity of ∂Ψ0. �4. BV solutions and energy-driven dissipation4.1. BV solutions. We an now give our preise de�nition of BV solution of the rate-independent system (X, E, p), driven by the vanishing visosity ontat potential p (3.13)and the energy E. From a formal point of view, the de�nition simply replaes the globalstability ondition (S) by the loal one (Sloc), and the Ψ0-total variation in the energybalane (E) by the �Finsler� total variation (3.11), indued by p and E.De�nition 4.1 (BV solutions, variational haraterization). A urve u ∈ BV([0, T ]; X)is a BV solution of the rate independent system (X, E, p) the loal stability (Sloc) and the

(p, E)-energy balane hold:(Sloc) −DEt(u(t)) ∈ K∗ for a.a. t ∈ [0, T ] \ Ju(Ep,E) Varp,E(u; [0, t]) + Et(u(t)) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds for all t ∈ [0, T ].We shall see in the next Setion 4.3 that any pointwise limit, as ε ↓ 0, of the solutions
(uε) of the visous equation (DNε) or, as τ, ε ↓ 0, of the disrete solutions (Uτ,ε) of thevisous inremental problems (IPε), is a BV solutions indued by the vanishing visosityontat potential p. Let us �rst get more insight into De�nition 4.1.Properties of BV solutions. As in the ase of energeti solutions, it is not di�ult tosee that the energy balane (Ep,E) holds on any subinterval [t0, t1] ⊂ [0, T ]; moreover,if the loal stability ondition (Sloc) holds, to hek (Ep,E) it is su�ient to prove theorresponding inequality.Proposition 4.2. If u ∈ BV([0, T ]; X) satis�es (Ep,E), then for every subinterval [t0, t1]there holds(E′

p,E) Varp,E(u; [t0, t1]) + Et1(u(t1)) = Et0(u(t0)) +

∫ t1

t0

∂tEs(u(s)) ds.Moreover, if u satis�es (Sloc), then (Ep,E) is equivalent to the energy inequality(Ep,E;ineq) Varp,E(u; [0, T ]) + ET (u(T )) ≤ E0(u(0)) +

∫ T

0

∂tEs(u(s)) ds.



24Proof. (E′
p,E) easily follows from the additivity property(4.1) ∀ 0 ≤ t0 < t1 < t2 ≤ T : Varp,E(u; [t0, t1]) + Varp,E(u; [t1, t2]) = Varp,E(u; [t0, t2]).In order to prove the seond inequality we argue as in [35, Prop. 4℄, taking (Sloc) intoaount. �Notie that, by (3.12), any BV solution is also a loal solution aording to De�nition2.6, i.e. it satis�es the loal stability ondition and energy inequality (E′ineq). In fat, onehas a more aurate desription of the jump onditions, as the following Theorem shows(f. with Propositions 2.2 and 2.7).Theorem 4.3 (Di�erential haraterization of BV solutions). A urve u ∈ BV([0, T ]; X)is a BV solution of the rate-independent system (X, E, p) if and only if it satis�es the doublynonlinear di�erential inlusion in the BV sense(DN0,BV) ∂Ψ0

(du′
co

dµ
(t)

)

+ DEt(u(t)) ∋ 0 for µ-a.e. t ∈ [0, T ], µ := L
1 + |u′

C|,and the following jump onditions at eah point t ∈ Ju of the jump set (2.9)(JBV) Et(u(t)) − Et(u(t−)) = −∆p,E(t; u(t−), u(t)),

Et(u(t+)) − Et(u(t)) = −∆p,E(t; u(t), u(t+)),

Et(u(t+)) − Et(u(t−)) = −∆p,E(t; u(t−), u(t+)).Proof. We have already seen (see Lemma 2.7) that loal solutions satisfy (DN0,BV). Thejump onditions (JBV) an be obtained by loalizing (E′
p,E) around any jump time t ∈ Ju.Conversely, to prove (Ep,E;ineq) (as seen in the proof of Lemma 2.7, (Sloc) ensues from(DN0,BV)), we argue as in the seond part of the proof of Lemma 2.7, still applying (2.32)and (2.33), but replaing inequalities (2.34) with the following identities,

E−(t) = −∆p,E(t; u(t−), u(t)), E+(t) = −∆p,E(t; u(t), u(t+)) for all t ∈ Ju,whih are due to (JBV). Hene, −Jmp(E; [0, T ]) = Jmpp,E(u; [0, T ]). Then, (Ep,E;ineq)follows from (2.32). �The next setion is devoted to a re�ned desription of the behavior of a BV solutionalong the jumps.4.2. Jumps and optimal transitions. Let us �rst introdue the notion of optimal tran-sition.De�nition 4.4. Let t ∈ [0, T ], u−, u+ ∈ X with −DEt(u−), −DEt(u+) ∈ K∗, and −∞ ≤
r0 < r1 ≤ +∞. An absolutely ontinuous urve ϑ : [r0, r1] → X onneting u− = ϑ(r0)and u+ = ϑ(r1) is an optimal (p, Et)-transition between u− and u+ if(O.1) ϑ̇(r) 6= 0 for a.a. r ∈ (r0, r1); Ψ0∗(−DEt(ϑ(r))) ≥ 1 ∀ r ∈ [r0, r1],(O.2) Et(u−) − Et(u+) = ∆p,E(t; u−, u+) =

∫ r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr.



25We also say that an optimal transition ϑ is ofsliding type if − DEt(ϑ(r)) ∈ K∗ for every r ∈ [r0, r1],(Osliding) visous type if − DEt(ϑ(r)) 6∈ K∗ for every r ∈ (r0, r1),(Ovisous) energeti type if Et(u+) − Et(u−) = −Ψ0(u+ − u−).(Oener)We denote by Θ(t; u−, u+) the (possibly empty) olletion of suh optimal transitions, withnormalized domain [0, 1] and onstant Finsler veloity(4.2) p(ϑ̇(r),−DEt(ϑ(r))) ≡ Et(u−) − Et(u+) for a.a. r ∈ (0, 1) .Remark 4.5. Notie that the notion of optimal transition is invariant by absolutely ontin-uous (monotone) time resalings with absolutely ontinuous inverse; moreover, any optimaltransition ϑ has �nite length, it admits a reparametrization with onstant Finsler veloity
p(ϑ̇(·),−DEt(ϑ(·))), and is a minimizer of (3.8), so that it is not restritive to assume
ϑ ∈ Θ(t, u−, u+).Theorem 4.6. A loal solution u ∈ BV([0, T ]; X) is a BV solution aording to De�ni-tion 4.1 if and only if at every jump time t ∈ Ju the initial and �nal values u(t−) and
u(t+) an be onneted by an optimal transition urve ϑt ∈ Θ(t; u(t−), u(t+)), and thereexists r ∈ [0, 1] suh that u(t) = ϑt(r). Any optimal transition urve ϑ satis�es the ontatondition(4.3) (ϑ̇(r),−DEt(ϑ(r))) ∈ Σp for a.a. r ∈ (0, 1).Proof. Taking into aount Theorem 4.3, the proof of the �rst part of the statement isimmediate. To prove (4.3), let t be a jump point of u and let us �rst suppose that
u(t−) = u(t) 6= u(t+). By Remark 3.3, we an �nd a Lipshitz urve ϑ01 ∈ AC([r0, r1]; X)with normalized speed p(ϑ̇,−DEt(ϑ)) ≡ 1, onneting u(t−) to u(t+), so that the jumpondition (JBV) yields

∫ r1

r0

〈−DEt(ϑ(r)), ϑ̇(r)〉 dr = Et(u(t−)) − Et(u(t+)) =

∫ r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr.This shows that ϑ is an optimal transition urve and satis�es
∫ r1

r0

(

p(ϑ̇,−DEt(ϑ(r))) dr − 〈−DEt(ϑ(r)), ϑ̇(r)〉
)

dr = 0.Sine the integrand is always nonnegative, it follows that (4.3) holds.In the general ase, when u is not left or right ontinuous at t, we join two (suitablyresaled) optimal transition urves ϑ01 ∈ Θ(t; u(t−), u(t)) and ϑ12 ∈ Θ(t; u(t), u(t+)). �The next result provides a areful desription of (p, Et)-optimal transitions.Theorem 4.7. Let t ∈ [0, T ], u−, u+ ∈ X, and ϑ : [0, 1] → X be an optimal transitionurve in Θ(t; u−, u+). Then,



26(1) ϑ is a onstant-speed minimal geodesi for the (possibly asymmetri) Finsler ost
∆p,E(t; u−, u+), and for every 0 ≤ ρ0 < ρ1 ≤ 1 it satis�es(4.4) Et(ϑ(ρ0)) − Et(ϑ(ρ1)) = ∆p,E(t; ϑ(ρ0), ϑ(ρ1))

= (ρ1 − ρ0)∆p,E(t; u−, u+) = (ρ1 − ρ0)
(

Et(u−) − Et(u+)
)

;In partiular, the map ρ 7→ Et(ϑ(ρ)) is a�ne.(2) An optimal transition ϑ is of sliding type (Osliding) if and only if it satis�es(4.5) ∂Ψ0(ϑ̇(r)) + DEt(ϑ(r)) ∋ 0 for a.a. r ∈ (0, 1),(4.6) Ψ0∗(−DEt(ϑ(r))) = 1 for every r ∈ [0, 1].(3) An optimal transition ϑ is of visous type (Ovisous) if and only if there holds for everyseletion (0, 1) ∋ r 7→ ε(r) in Λ(ϑ̇(r),−DEt(ϑ(r))(4.7) ∂Ψ(ε(r)ϑ̇(r)) + DEt(ϑ(r)) ∋ 0 for a.a. r ∈ (0, 1).Equivalently, there exists an absolutely ontinuous, surjetive time resaling r : (ρ0, ρ1) →
(0, 1), with −∞ ≤ ρ0 < ρ1 ≤ ∞ and ṙ(s) > 0 for L 1 a.e. s ∈ (ρ0, ρ1), suh that theresaled transition θ(s) := ϑ(r(s)) satis�es the visous di�erential inlusion(4.8)

∂Ψ(θ̇(s)) + DEt(θ(s)) ∋ 0 for a.a. s ∈ (ρ0, ρ1) , with lim
s↓ρ0

θ(s) = u−, lim
s↑ρ1

θ(s) = u+ .(4) Any optimal transition ϑ an be deomposed in a anonial way into an (at most)ountable olletion of optimal sliding and visous transitions. In other words, thereexists (uniquely determined) disjoint open intervals (Sj)j∈σ and (Vk)k∈υ of (0, 1), with
σ, υ ⊂ N, suh that (0, 1) ⊂

(

∪j∈σ Sj) ∪
(

∪k∈υ Vk

) and
ϑ|Sj

is of sliding type, ϑ|Vk
is of visous type.(5) An optimal transition ϑ is of energeti type (Oener) if and only if ϑ is of sliding typeand it is a Ψ0-minimal geodesi, i.e.(4.9) Ψ0(ϑ(r1) − ϑ(r0)) = (r1 − r0)Ψ0(u1 − u0) for every 0 ≤ r0 < r1 ≤ 1.If Ψ0 has stritly onvex sublevels, then ϑ is linear and r 7→ (ϑ(r), Et(ϑ(r))) is a linearsegment ontained in the graph of Et.If Ψ0 is Gâteaux-di�erentiable at X \ {0} then

−DEt(ϑ(r)) = DΨ0(u+ − u−) for every r ∈ [0, 1].In partiular, the map r 7→ −DEt(ϑ(r)) is onstant.Remark 4.8. It follows from the haraterization in (2) of Theorem 4.7 (f. with (4.5)�(4.6)) that sliding optimal transitions are independent of the form of the vanishing visosityontat potential p, and thus on the partiular visosity potential Ψ.Instead, as one may expet, Ψ ours in the doubly nonlinear equation (4.7) (equiv-alently, in (4.8)), whih in fat desribes the visous transient regime. Hene, di�erenthoies of the visous dissipation Ψ shall give raise to a di�erent behavior in the visousjumping regime, see also the example in [51, Se. 2.2℄. The latter paper sets forth a di�er-ent haraterization of rate-independent evolution, still oriented towards loal stability, butderived from a global-in-time variational priniple and not a vanishing visosity approah.



27Proof. Ad (1). The geodesi property follows from the minimality of ϑ (f. with (O.2) inDe�nition 4.4). Then, there holds(4.10) d

dr
Et(ϑ(r)) = −p(ϑ̇(r),−DEt(ϑ(r))) ≡ Et(u+) − Et(u−) for a.a. r ∈ (0, 1),where the �rst identity ensues from the hain rule (2.26) for E and the ontat ondition(4.3), and the seond one from (4.2). Clearly, (4.10) implies (4.4).Ad (2). If ϑ is of sliding type, then the ontat ondition (4.3), with (3.25), yields (4.5);(4.6) follows sine ϑ̇ 6= 0 a.e. in (0, 1).Ad (3). Equation (4.7) still follows from (3.25). Choosing r0 ∈ (0, 1) and a Borel seletion

ε(r) ∈ Λ(ϑ̇(r),−DEt(ϑ(r))) (whih is therefore loally bounded away from 0), we set(4.11) s(r) :=

∫ r

r0

ε−1(ρ) dρ, r := s−1,so that r is de�ned in a suitable interval of R and satis�es
ṙ(s) = ε(r(s)), θ̇(s) = ε(r(s))ϑ(r(s)).Ad (4). We simply introdue the disjoint open sets

V :=
{

r ∈ (0, 1) : −DEt(ϑ(r)) 6∈ K∗
}

, S := (0, 1) \ Vand we onsider their anonial deomposition in onneted omponents.Ad (5). If ϑ is energeti, then by (Oener) and (4.4) there holds ∆p,E(t; u−, u+) = Ψ0(u+ −

u−). Thus, taking into aount (4.2) and (3.3) as well, we �nd p(ϑ̇,−DEt(ϑ(r))) = Ψ0(ϑ̇(r))for a.a. r ∈ (0, 1). Sine its Ψ0-veloity is onstant and the total length is Ψ0(u+ −
u−), we dedue that ϑ is a onstant speed minimal geodesi for Ψ0. Conversely, theonstraint −DEt(ϑ(r)) ∈ K∗ satis�ed by sliding transitions yields, in view of (3.21), that
p(ϑ̇,−DEt(ϑ(r))) = Ψ0(ϑ̇(r)) for a.a. r ∈ (0, 1). Therefore,

∆p,E(t; u−, u+) =

∫ 1

0

Ψ0(ϑ̇(r)) dr = Ψ0(u+ − u−)by the geodesi property (4.9).It is well known that, if Ψ0 has stritly onvex sublevels, the related geodesis arelinear segments. In order to prove the last statement, let us observe that for every ξ ∈
∂Ψ0(u+ − u−) ⊂ K∗ there holds

∫ 1

0

〈ξ, ϑ̇(r)〉 dr = 〈ξ, u+ − u−〉 = Ψ0(u+ − u−) =

∫ 1

0

Ψ0(ϑ̇(r)) dr ,where the seond equality follows from the haraterization (2.2) of ∂Ψ0(u+ −u−). Hene,
∫ 1

0

(

Ψ0(ϑ̇(r)) − 〈ξ, ϑ̇(r)〉
)

dr = 0.Sine the above integrand is nonnegative (being ξ ∈ K∗), again by (2.2) we dedue that
ξ ∈ ∂Ψ0(ϑ̇(r)) for a.a. r ∈ (0, 1). On the other hand, if Ψ0 is Gâteaux-di�erentiable outside
0, its subdi�erential ontains just one point. Ultimately, (4.5) (reall that ϑ is of slidingtype) shows that −DEt(ϑ(r)) = ξ for every r ∈ [0, 1]. �



28 The next result lari�es the relationships between energeti and BV solutions.Corollary 4.9 (Energy balane and omparison with energeti solutions).(1) A BV solution u of the rate-independent system (X, E, p) satis�es the energy balane(E) if and only if every optimal transition assoiated with its jump set is of energetitype (Oener).(2) A BV solution u is an energeti solution if and only if it satis�es the global stabilityondition (S). In that ase, all of its optimal transition urves are of energeti type.(3) Conversely, an energeti solution u is a BV solution if and only if, for every t ∈ Ju,any jump ouple (u(t−), u(t+)) an be onneted by a sliding optimal transition.Proof. Ad (1). Let u be a BV solution suh that every optimal transition is of energetitype (Oener). Now, taking into aount (JBV), one sees that (Oener) is equivalent to thejump onditions (Jener). Then, equation (DN0,BV) (whih holds by Theorem 4.3) and (Jener)yield the energy balane (E) (f. the proofs of Propositions 2.2 and 2.7). The onverseimpliation ensues by analogous arguments.Ad (2). The neessity is obvious; for the su�ieny we observe that, for every jump point
t ∈ Ju, the global stability ondition (S) (written �rst for u(t−) with test funtions v = u(t)and v = u(t+), and then for u(t) with v = u(t+)), yields
Ψ0(u(t) − u(t−)) ≥ Et(u(t−)) − Et(u(t)) = ∆p,E(t; u(t−), u(t)) ≥ Ψ0(u(t) − u(t−)),

Ψ0(u(t+) − u(t−)) ≥ Et(u(t−)) − Et(u(t+)) = ∆p,E(t; u(t−), u(t+)) ≥ Ψ0(u(t+) − u(t−)),

Ψ0(u(t+) − u(t)) ≥ Et(u(t)) − Et(u(t+)) = ∆p,E(t; u(t), u(t+)) ≥ Ψ0(u(t+) − u(t)),where the intermediate equalities are due to (O.2) and the subsequent inequalities to (3.9).The resulting identities ultimately show that the transition is energeti, by the very de�-nition (Oener).Ad (3). The ondition is learly su�ient. It is also neessary by the previous point, sineenergeti transitions are in partiular of sliding type. �4.3. Visous limit. We onlude this setion by our main asymptoti results:Theorem 4.10 (Convergene of visous approximations to BV solutions). Consider asequene
(uε) ⊂ AC([0, T ]; X) of solutions of the visous equation (DNε), with uε(0) → u0 as ε ↓ 0.Then, every vanishing sequene εk ↓ 0 admits a further subsequene (still denoted by
(εk)), and a limit funtion u ∈ BV([0, T ]; X) suh that(4.12) uεk

(t) → u(t) for every t ∈ [0, T ] as k ↑ +∞,and u is a BV solution of (DN0), indued by the vanishing visosity ontat potential paording to De�nition 4.1.Proof. It follows from the disussion developed in Setion 2.5 that for every sequene εk ↓ 0there exists a not relabeled subsequene (uεk
) suh that (4.12) holds, and u omplies withthe loal stability ondition (Sloc). In view of Proposition 4.2, it is then su�ient to hekthat (Ep,E;ineq) holds. The latter energy inequality is a diret onsequene of the ε-energyidentity (2.27) and the lower semiontinuity property stated in Lemma 6.15 later on. �



29Our next result onerns the onvergene of the disrete solutions to the visous time-inremental problem (IPε), as both the visosity parameter ε and the time-step τ tend to
0.Theorem 4.11 (Convergene of disrete solutions of the visous inremental problems).Let Uτ,ε : [0, T ] → X be the left-ontinuous pieewise onstant interpolants of the disretesolutions of the visous inremental problem (IPε), with U0

τ,ε → u0 as ε, τ ↓ 0.Then, all vanishing sequenes τk, εk ↓ 0 satisfying(4.13) lim
k↓0

εk

τk

= +∞admit further subsequenes (still denoted by (τk) and (εk)) and a limit funtion u ∈
BV([0, T ]; X) suh that

Uτk ,εk
(t) → u(t) for every t ∈ [0, T ] as k ↑ +∞,and u is a BV solution of (DN0) indued by the vanishing visosity ontat potential paording to De�nition 4.1.The reader may ompare this result to [16, 21, 22, 49℄, where the same double passage tothe limit was performed for spei� applied problems and onditions analogous to (4.13)were imposed.Proof. The standard energy estimate assoiated with the variational problem (IPε) yields(4.14) τ

ε
Ψ

(ε

τ
(Un

τ,ε−Un−1
τ,ε )

)

+Etn(Un
τ,ε) ≤ Etn(Un−1

τ,ε ) = Etn−1
(Un−1

τ,ε )+

∫ tn

tn−1

∂tEt(U
n−1
τ,ε ) dt .Thanks to (2.7), we easily get from (4.14) the following uniform bounds for every 1 ≤ n ≤ N(here C is a onstant independent of n, τ, ε)

Etn(Un
τ,ε) ≤ C,

N
∑

n=1

τ

ε
Ψ

( ε

τ
(Un

τ,ε − Un−1
τ,ε )

)

≤ C,

N
∑

n=1

Ψ0(U
n
τ,ε − Un−1

τ,ε ) ≤ C ,the latter estimate thanks to (Ψ.2).Denoting by Uτ,ε (resp. Uτ,ε) the right-ontinuous pieewise onstant interpolants (resp. piee-wise linear interpolant) of the disrete values (Un
τ,ε) whih take the value Un

τ,ε at t = tn, wehave
Et(Uτ,ε(t)) ≤ C, VarΨ0

(Uτ,ε; [0, T ]) ≤ C(4.15a)
‖Uτ,ε − Uτ,ε‖L∞(0,T ;X), ‖Uτ,ε − Uτ,ε‖L∞(0,T ;X),≤ sup

n
‖Un

τ,ε − Un−1
τ,ε ‖X ≤ Cω(τ/Cε),

(4.15b)where
ω(r) := sup

x∈X

{

‖x‖X : rΨ(r−1x) ≤ 1
}satis�es limr↓0 ω(r) = 0 thanks to (Ψ.1). By Helly's theorem, these bounds show that (upto the extration of suitable subsequenes (τk) and (εk) satisfying (4.13)), the sequenes

(Uτk,εk
), (Uτk ,εk

) and (Uτk ,εk
) pointwise onverge to the same limit u.



30 By di�erentiating the variational haraterization of Un
τ,ε given by (IPε) we obtain

∂Ψε

(Un
τ,ε − Un−1

τ,ε

τ

)

+ W n
τ,ε ∋ 0, W n

τ,ε := −DEtn(Un
τ,ε),whih yields in eah interval (tn−1, tn] (here, Wτ,ε denotes the left-ontinuous pieewiseonstant interpolant of the values (W n

τ,ε)
N
n=1)

τΨε

(

U̇τ,ε

)

+ τΨ∗
ε(Wτ,ε) = −〈DEtn(Uτ,ε(tn)), Uτ,ε(tn) − Uτ,ε(tn−1)〉

= Etn−1
(Uτ,ε(tn−1)) − Etn(Uτ,ε(tn)) +

∫ tn

tn−1

∂tEt(Uτ,ε(t)) dt − R(tn; Uτ,ε(tn−1), Uτ,ε(tn))where
R(t; x, y) := Et(y) − Et(x) − 〈DEt(y), y − x〉.Sine E is of lass C1, for every onvex and bounded set B ⊂ X there exists a onavemodulus of ontinuity σB : [0, +∞) → [0, +∞) suh that limr↓0 σB(r) = σB(0) = 0 and

R(t; x, y) ≤ σB(‖y − x‖X)‖y − x‖X for every t ∈ [0, T ], x, y ∈ B.We thus obtain(4.16)
∫ T

0

(

Ψε(U̇τ,ε(t)) + Ψ∗
ε(Wτ,ε(t))

)

dt + EtN (Uτ,ε(tN)) ≤ E0(u0) +

∫ tN

0

∂tEt(Uτ,ε(t)) dt

+ sup
1≤n≤N

σB(‖Un
τ,ε − Un−1

τ,ε ‖)

N
∑

n=1

‖Un
τ,ε − Un−1

τ,ε ‖, Wτ,ε(t)) = −DEt̄τ (t)(Uτ,ε(t)).We pass to the limit along suitable subsequenes (τk) and (εk) suh that Uτk,εk
, Uτk ,εk

→ upointwise; sine Uτ,ε and Uτ,ε are uniformly bounded, (4.15b) and (4.13) yield the on-vergene to 0 of the third term on the right-hand side of (4.16), whih thus tends to
E0(u0) +

∫ T

0
∂tEt(u(t)) dt. Sine Wτk,εk

(t) → w(t) = −DEt(u(t)), applying the lower semi-ontinuity result of Lemma 6.15 we obtain that u satis�es (Ep,E;ineq) and the loal stabilityondition. In view of Proposition 4.2, this onludes the proof. �5. Parametrized solutionsIn this setion, we restart from the disussions in Setions 2.4 and 2.5, and adopt adi�erent point of view, whih relies on the rate-independent struture of the limit problem.The main idea, whih was introdued by [18℄, is to resale time in order to gain a uniformLipshitz bound on the (resaled) visous approximations. Keeping trak of the asymptotibehavior of time resalings, one an retrieve the BV limit we analyzed in Setion 4. Inpartiular, we shall reover that the limiting jump pathes re�et the visous approximation.5.1. Vanishing visosity analysis: a resaling argument. Let us reall that for every
ε > 0 uε are the solutions of the visous di�erential inlusion(DNε) ∂Ψε(u̇ε(t)) + DEt(uε(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ),



31whih we split into the system
∂Ψε(u̇ε(t)) ∋ wε,

DEt(uε(t)) = −wε, ∂tEt(uε(t)) = −pε.We follow the ideas of [18, 35℄ to apture the aforementioned limiting visous jump pathes,.However, owing to the dissipation bound (2.28), we use a di�erent time resaling sε :
[0, T ] → [0, Sε](5.1) sε(t) := t +

∫ t

0

(

Ψε(u̇ε(r)) + Ψ∗
ε(wε(r))

)

dr and Sε := sε(T ).Thus, sε may be interpreted as some sort of �energy arlength� of the urve uε. Notie that,thanks to (2.28), the sequene (Sε) is uniformly bounded with respet to the parameter ε.Let us onsider the resaled funtions (tε, uε) : [0, Sε] → [0, T ] × X and (pε, wε) : [0, Sε] →
R × X∗ de�ned by(5.2) tε(s) := s−1

ε (s) , uε(s) := uε(tε(s)),

pε(s) := pε(tε(s)) = −∂tEtε(s)(uε(s)) , wε(s) := wε(tε(s)) = −DEtε(s)(uε(s)).We now study the limiting behavior as ε ↓ 0 of the reparametrized trajetories
{(

tε(s), uε(s)
)

: s ∈ [0, Sε]
}

⊂ X = [0, T ] × X,
{(

ṫε(s), u̇ε(s); pε(s), wε(s)
)

: s ∈ [0, Sε]
}

⊂ B,where we use the notation(5.3) B := [0, +∞) × X × R × X∗.In order to rewrite the �resaled energy identity� ful�lled by the triple (tε, uε, wε), we de�nethe visous spae-time vanishing visosity ontat potential Pε : (0, +∞)×X ×R×X∗ →
[0, +∞) by setting(5.4) Pε(α, v; p, w) := αΨε(v/α) + αΨ∗

ε(w) + αp =
α

ε
Ψ(

ε

α
v) +

α

ε
Ψ∗(w) + αpHene, (2.27) beomes for all 0 ≤ s1 ≤ s2 ≤ Sε(5.5) ∫ s2

s1

Pε

(

ṫε(s), u̇ε(s); pε(s), wε(s)
)

ds + Etε(s2)(uε(s2)) = Etε(s1)(uε(s1)),and (5.1) yields
Pε

(

ṫε(s), u̇ε(s); 1, wε(s)
)

= 1 for a.a. s ∈ (0, Sε) .A priori estimates and passage to the limit. Due to estimate (2.28), there exists
S > 0 suh that, along a (not relabeled) subsequene, we have sε(T ) → S as ε ↓ 0.Exploiting again (2.28), the Arzelà-Asoli ompatness theorem, and the fat that X is�nite-dimensional (see also the proof of [35, Thm. 3.3℄), we �nd two urves t ∈ W 1,∞(0, S)and u ∈ W 1,∞([0, S]; X) suh that, along the same subsequene,

tε → t in C0([0, S]), ṫε⇀
∗ ṫ in L∞(0, S),(5.6a)

uε → u in C0([0, S]; X), u̇ε⇀
∗ u̇ in L∞(0, S; X),(5.6b)

pε → p in C0([0, S]), wε → w in C0([0, S]; X∗),(5.6)



32with(5.6d) Etε(uε) → Et(u), p(s) = −∂tEt(s)(u(s)), w(s) = −DEt(s)(u(s))for all s ∈ [0, S]. Then, to pass to the limit in (5.5) we exploit a lower semiontinuity result(see Proposition 6.2), based on the fat that the sequene of funtionals (Pε) Γ-onvergesto the augmented vanishing visosity ontat potential P : [0, +∞)×X×R×X∗ → [0, +∞](see Lemma 6.1) de�ned by(5.7) P(α, v; p, w) :=

{

Ψ0(v) + IK∗(w) + α p if α > 0,

p(v, w) if α = 0.By (5.6) and Proposition 6.2, we take the lim inf as ε ↓ 0 of (5.5) and onlude that thepair (t, u) ful�ls, for all 0 ≤ s1 ≤ s2 ≤ S, the estimate(5.8) ∫ s2

s1

P
(

ṫ(s), u̇(s); p(s), w(s)
)

ds + Et(s2)(u(s2)) ≤ Et(s1)(u(s1)) .5.2. Vanishing visosity ontat potentials and rate-independent evolution. Theaugmented spae-time ontat potential P is losely related to p introdued by (3.13). Thefollowing result �xes some properties of P. Its proof, whih we hoose to omit, an be easilydeveloped starting from Theorems 3.6 and 3.12 for the vanishing visosity ontat potential
p.Lemma 5.1 (General properties of P).(1) P is lower semiontinuous, 1-homogeneous and onvex in the pair (α, v); for every

(α, v) ∈ [0, +∞) × X the funtion P(α, v; ·, ·) has onvex sublevels.(2) For all (α, v, p, w) ∈ B (f. (5.3)) it satis�es
P(α, v; p, w) ≥ 〈w, v〉 + αp, P(0, v; p, w) ≥ p(v, w) ≥ Ψ0(v),(5.9)

P(0, v; p, w) = Ψ0(v) ⇔ w ∈ K∗.(5.10)(3) The ontat set of P(5.11) ΣP :=
{

(α, v; p, w) ∈ B : P(α, v; p, w) = 〈w, v〉 + αp
}does not impose any onstraint on p. It an be haraterized by(5.12) (α, v; p, w) ∈ ΣP ⇔ w ∈ ∂ P(α, · ; p, w)(v).We also havefor α > 0, (α, v; p, w) ∈ ΣP if and only if w ∈ ∂Ψ0(v),(5.13) for α = 0, (α, v; p, w) ∈ ΣP if and only if (v, w) ∈ Σp.(5.14)Equivalently, (α, v; p, w) ∈ ΣP if and only if(5.15) w ∈ ∂Ψ0(v) ⊂ K∗ or (

w 6∈ K∗, α = 0, ∃ ε ∈ Λ(v, w) : w ∈ ∂Ψ(εv)
)

,where Λ(v, w) is de�ned in (3.18). In partiular, in the additive visosity ase (2.21),we simply have(5.16) (α, v; p, w) ∈ ΣP ⇐⇒ ∃λ ≥ 0 : w ∈ ∂Ψ0(v) + ∂ΨV (λv) and αλ = 0.



33Conlusion of the vanishing visosity analysis. We are now going to show that (5.8)is in fat an equality. This an be easily heked relying on the hain rule (2.26), whihyields for a.a. s ∈ (0, S)(5.17) d

ds
Et(s)(u(s)) = −∂tEt(s)(u(s)) ṫ(s) − 〈−DEt(s)(u(s)), u̇(s)〉(5.2)

= −p(s)ṫ(s) − 〈w(s), u̇(s)〉 ≥ −P(ṫ(s), u̇(s), p(s), w(s)) .Colleting (5.17) and (5.8), we onlude that the latter holds with an equality sign and,with an elementary argument, that suh equality also holds in the di�erential form, namelyfor a.a. s ∈ (0, S)(5.18) p(s) = −∂tEt(s)(u(s)), w(s) = −DEt(s)(u(s))

d

ds
Et(s)(u(s)) = −p(s)ṫ(s) − 〈w(s), u̇(s)〉 = −P(ṫ(s), u̇(s), p(s), w(s))whih yields(5.19) (

ṫ(s), u̇(s);−∂tEt(s)(u(s)),−DEt(s)(u(s))
)

∈ ΣP for a.a. s ∈ (0, S).Finally, we take the lim sup as ε ↓ 0 of (5.5), using (5.6) and (5.18), whene
lim sup

ε↓0

∫

S

0

Pε(ṫε(s), u̇ε(s), pε(s), wε(s)) ds ≤

∫

S

0

P(ṫ(s), u̇(s), p(s), w(s)) ds.In partiular, we �nd that for a.a. s ∈ (0, S)(5.20) P
(

ṫ(s), u̇(s); 1, w(s)
)

= 1.5.3. Parametrized solutions of rate-independent systems. Motivated by the dis-ussion of the previous setion, we now give the notion of parametrized rate-independentevolution, driven by a general vanishing visosity ontat potential P, satisfying onditions
(1), (2) of Lemma 5.1.De�nition 5.2 (Parametrized solutions of rate-independent systems). Let P : B →
(−∞, +∞] be the vanishing visosity ontat potential (5.7). We say that a Lipshitzontinuous urve (t, u) : [a, b] → [0, T ] × X is a parametrized rate-independent solutionfor the system (X, E, P) if t is nondereasing and, setting p(s) = −∂tEt(s)(u(s)), w(s) =
−DEt(s)(u(s)) for all s ∈ [a, b], we have(5.21) ∫ s2

s1

P(ṫ(s), u̇(s); p(s), w(s)) ds + Et(s2)(u(s2)) ≤ Et(s1)(u(s1)) ∀ a ≤ s1 ≤ s2 ≤ b.Furthermore,(1) if ṫ(s) + Ψ0(u̇(s)) > 0 for a.a. s ∈ (a, b) we say that (t, u) is nondegenerate;(2) if t(a) = 0, t(b) = T we say that (t, u) is surjetive;(3) if (t, u) satis�es (5.20), we say that it is normalized.De�nition 5.2 generalizes to the present setting the notion whih we �rst introduedin [35℄.



34Remark 5.3. The nie feature of the previous de�nition is its invariane with respet to(nondereasing, Lipshitz) time resalings. Namely, if (t, u) : [a, b] → [0, T ] × X is aparametrized solution and s : [α, β] → [a, b] is a Lipshitz nondereasing map, then (t ◦
s, u ◦ s) is a parametrized solution in [α, β].The next result provides equivalent haraterizations of parametrized solutions.Proposition 5.4. A Lipshitz ontinuous urve (t, u) : [a, b] → [0, T ] × X, with t nonde-reasing, is a parametrized solution of (X, E, P) if and only if one of the following (equiv-alent) onditions (involving as usual p = −∂tEt(u), w = −DEt(u)) is satis�ed:(1) The energy inequality (5.21) holds just for s1 = a and s2 = b, i.e.(5.22) ∫ b

a

P(ṫ(s), u̇(s); p(s), w(s)) ds + Et(b)(u(b)) ≤ Et(a)(u(a)).(2) The energy inequality (5.21) holds in the di�erential form(5.23) d

ds
Et(s)(u(s)) + P(ṫ(s), u̇(s); p(s), w(s)) ≤ 0 for a.a. s ∈ (a, b).(3) The energy identity holds, in the di�erential form(5.24) d

ds
Et(s)(u(s)) + P(ṫ(s), u̇(s); p(s), w(s)) = 0 for a.a. s ∈ (a, b),or in the integrated form(5.25) ∫ s2

s1

P(ṫ(s), u̇(s); p(s), w(s)) ds + Et(s2)(u(s2)) = Et(s1)(u(s1)) for a ≤ s1 ≤ s2 ≤ b.(4) There holds
(

ṫ(s), u̇(s);−∂tEt(s)(u(s)),−DEt(s)(u(s))
)

∈ ΣP for a.a. s ∈ (a, b) .(5) The pair (t, u) satisfy the di�erential inlusion(5.26) ∂ P
(

ṫ(s), · ;−∂tEt(s)(u(s)),−DEt(s)(u(s))
)

(u̇(s)) + DEt(s)(u(s)) ∋ 0 a.e. in (a, b) .In partiular, for a.a. s ∈ (a, b) we have the impliations(5.27) ṫ(s) > 0 ⇒ −DEt(s)(u(s)) ∈ K∗,
−DEt(s)(u(s)) ∈ K∗ ⇒ −DEt(s)(u(s)) ∈ ∂Ψ0(u̇(s)),and for every Borel map λ de�ned in the open set J by(5.28) J :=

{

s ∈ (a, b) : −DEt(s)(u(s)) 6∈ K∗
}

,with λ(s) ∈ Λ(u̇(s),−DEt(s)(u(s))) for a.a. s ∈ J,we have(5.29) −DEt(s)(u(s)) ∈ ∂Ψ(λ(s)u̇(s)), ṫ(s) = 0 for a.a. s ∈ J.The proof follows from the hain rule (2.26) (arguing as for (5.17), (5.18), (5.19)), andfrom the haraterization of the ontat set ΣP of Lemma 5.1 (see also [35, Prop. 2℄).



35Corollary 5.5 (Di�erential haraterization in the additive visosity ase). Let P : B →
(−∞, +∞] be a vanishing visosity ontat potential satisfying onditions (1), (2) of Lemma5.1, and suppose also that the ontat set of P satis�es the haraterization (5.16) ofLemma 5.1 in the additive visosity ase (2.21) Ψ = Ψ0 + ΨV .Then, a Lipshitz ontinuous urve (t, u) : [a, b] → [0, T ]×X is a parametrized solutionof (X, E, P) if and only if there exists a Borel funtion λ : (a, b) → [0, +∞) suh thatfor a.a. s ∈ (a, b)(5.30) ∂Ψ0(u̇(s)) + ∂ΨV (λ(s)u̇(s)) + DEt(s)(u(s)) ∋ 0, λ(s)ṫ(s) = 0 for a.a. s ∈ (a, b).The vanishing visosity analysis developed in Setions 5.1 and 5.2 provides the followingonvergene result.Theorem 5.6 (Convergene to parametrized solutions). Let (un) be visous solutions of(DNε) orresponding to a vanishing sequene (εn), let tn : [0, S] → [0, T ] be uniformlyLipshitz and surjetive time resalings and let un : [0, S] → X be de�ned as un(s) :=
un(tn(s)) for all s ∈ [0, S]. Suppose that

∃α > 0 ∀n ∈ N : mn(s) := Pεn
(ṫn(s), u̇n(s); 1,−DEtn(s)(un(s))) ∈ [α, α−1]for a.a. s ∈ (0, S). If the funtions (tn, un, mn) pointwise onverge to (t, u, m) as n → ∞,then (t, u) is a (nondegenerate, surjetive) parametrized rate-independent solution aordingto De�nition 5.2, and

P(ṫ(s), u̇(s); 1,−DEt(s)(u(s))) = m(s) for a.a. s ∈ (0, S).The following remark, to be ompared with Remark 4.8, highlights the di�erent me-hanial regimes enompassed in the notion of parametrized rate-independent solution.Remark 5.7 (Mehanial interpretation). The evolution desribed by (5.26) in Proposi-tion 5.4 bears the following mehanial interpretation (f. with [18℄ and [35℄):
• the regime (ṫ > 0, u̇ = 0) orresponds to stiking,
• the regime (ṫ > 0, u̇ 6= 0) orresponds to rate-independent sliding. In both thesetwo regimes −DEt(u) ∈ K∗.
• when −DEt(u) annot obey the onstraint K∗, then the system swithes to a visousregime. The time is frozen (i.e., ṫ = 0), and the solution follows a visous path.In the additive visosity ase (2.21) it is governed by the resaled visous equation(5.30) with λ > 0. These visous motions an be seen as a jump in the (slow)external time sale.We onlude this setion with the main equivalene result between parametrized and

BV solutions of rate-independent systems (ompare with the analogous [35, Prop. 6℄). Wepostpone its proof at the end of the next setion.Theorem 5.8 (Equivalene between BV and parametrized solutions). Let (t, u) : [0, S] →
[0, T ] × X be a (nondegenerate, surjetive) parametrized solution of the rate independentsystem (X, E, P). For every t ∈ [0, T ] set(5.31) s(t) :=

{

s ∈ [0, S] : t(s) = t
}



36Then, any urve u : [0, T ] → X suh that(5.32) u(t) ∈
{

u(s) : s ∈ s(t)
}is a BV solution of the rate-independent system (X, E, p).Conversely, if u : [0, T ] → X is a BV solution, then there exists a parametrized solution

(t, u) suh that (5.32) holds for a time-resaling funtion s de�ned as in (5.31).6. Auxiliary resultsAfter proving some lower semiontinuity results for vanishing visosity ontat poten-tials, in Setion 6.2 we develop some auxiliary results onerning the total variation induedby time-dependent (and possibly asymmetri) Finsler norms.6.1. Lower semiontinuity for vanishing visosity ontat potentials. Let us startwith a lemma whih shows that Pε, whih is de�ned in (5.4), Γ-onverges to P as ε ↓ 0(ompare with [35, Lemma 3.1℄), where P is de�ned in (5.7).Lemma 6.1 (Γ-onvergene of Pε).
Γ-liminf estimate: For every hoie of sequenes εn ↓ 0 and (αn, vn, pn, wn) →

(α, v, p, w) in B, we have(6.1) lim inf
n→∞

Pεn
(αn, vn; pn, wn) ≥ P(α, v; p, w).

Γ-limsup estimate: For every (α, v; p, w) ∈ B there exists (αε, vε, pε, wε)ε>0 suhthat(6.2) lim sup
ε↓0

Pε(αε, vε; pε, wε) ≤ P(α, v; p, w).Proof. The Γ-liminf estimate is easy: if α > 0 then, also realling (2.29), one veri�es that(6.3) lim inf
n→∞

Pεn
(αn, vn; pn, wn) ≥ lim inf

n→∞

(

Ψ0(vn) + αnε−1
n Ψ∗

0(wn) + αnpn

)

≥ P0(α, v; p, w),where we have used the notation(6.4) P0(α, v; p, w) := Ψ0(v) + I∗K(w) + αp.The �rst inequality in (6.3) is also due to (2.16). If α = 0, we use the obvious lower bound
Pεn

(αn, vn; pn, wn) ≥ p(vn, wn) + αnpnand the ontinuity of p (f. Theorem 3.12).To show the limsup estimate (6.2) for w ∈ K∗, we simply hoose αε := α + ε, vε :=
v, pε := p, wε := w, observing that in this ase

Pε(αε, vε; pε, wε) ≤ ε(α + ε)Ψ(v/(ε(α + ε)) + (α + ε)p
ε↓0
→ Ψ0(v) + αp = P(α, v; p, w) ,the �rst passage due to (2.24). If w 6∈ K∗, we hoose a oe�ient λ ∈ Λ(v, w) as in (3.18),and we set αε := λε, vε := v, pε := p, wε := w, obtaining

Pε(αε, vε; pε, wε) = p(v, w) + λεp
ε↓0
→ p(v, w) = P(α, v; p, w). �



37An important onsequene of the previous Lemma is provided by the following lower-semiontinuity result for the integral funtional assoiated with Pε.Proposition 6.2 (Lower-semiontinuity of the ε-energy). Let us �x an interval (s0, s1).For every hoie of a vanishing sequene εn > 0 and of funtions αn ∈ L∞(s0, s1), pn ∈
L1(s0, s1), vn ∈ L1(0, T ; X), wn ∈ L1(0, T ; X∗) suh that

αn⇀
∗ α in L∞(s0, s1), pn → p in L1(0, T ),

vn ⇀ v in L1(0, T ; X), wn → w in L1(s0, s1),we have the liminf estimates
lim inf
n→∞

∫ s1

s0

Pεn
(αn(s), vn(s); pn(s), wn(s)) ds ≥

∫ s1

s0

P(α(s), v(s); p(s), w(s)) ds,(6.5)
lim inf
n→∞

∫ s1

s0

P0(αn(s), vn(s); pn(s), wn(s)) ds ≥

∫ s1

s0

P(α(s), v(s); p(s), w(s)) ds,(6.6)where P0 is de�ned in (6.4).Proof. It is su�ient to prove this result in the ase pn ≡ p = 0. Then we notie that, byLemma 6.1, the integrand
P̃(ε, α, v, w) := Pε(α, v; 0, w) for (ε, α, v, w) ∈ [0, +∞) × [0, +∞) × X × X∗is lower semiontinuous and onvex in the pair (α, v). Then, inequality (6.5) follows fromIo�e's Theorem (see e.g. [3, Thm. 5.8℄). A similar argument yields (6.6). �6.2. Asymmetri dissipations, pseudo-total variation, and extended spae-timeurves.Notation. Hereafter, X shall stand for the extended spae-time domain [0, T ]×X, withelements x = (t, u) denoted by bold letters. We shall denote by V the tangent one

[0, +∞) × X to X and by v = (α, v) the elements in V .We shall onsider lower semiontinuous dissipation funtionals R : X × V → [0, +∞)satisfying the following properties:
∀x ∈ X : R (x; ·) is onvex and positively 1-homogeneous;(6.7a)
∃C > 0 ∀x ∈ X , v = (α, v) ∈ V : R (x; v) ≥ C‖v‖X(6.7b)

R is lower semiontinuous on X × V .(6.7)In order to keep trak of the time-omponent of v we also set, for all β ≥ 0,
Rβ (x; v) = αβ + R (x; v) for allx ∈ X , v = (α, v) ∈ V .Notie that, for any dissipation R omplying with properties (6.7), the orrespondingfuntional Rβ satis�es the subadditivity property for all x ∈ X and v1, v2 ∈ V

Rβ (x; v1 + v2) ≤ Rβ (x; v1) + Rβ (x; v2) .Example 6.3 (Dissipations indued by Ψ0 and P).(1) Our �rst trivial example of a dissipation ful�lling properties (6.7) is given by(6.8) P(x, v) := Ψ0(v) for x ∈ X , v = (α, v) ∈ V .



38 (2) Our main example will be provided by the dissipation indued by the vanishingvisosity ontat potential P, namely(6.9) B(x; v) := P(α, v, 0,−DEt(u)) for x = (t, u) ∈ X , v = (α, v) ∈ V .It is not di�ult to hek that B satis�es all of assumptions (6.7). Hene, for all
β ≥ 0 we set(6.10) Bβ (x; v) := P(α, v; β,−DEt(u)) for x = (t, u) ∈ X , v = (α, v) ∈ V .De�nition 6.4 (Pseudo-Finsler distane indued by R). Given a dissipation funtion

R : X × V → [0, +∞) omplying with (6.7), for every xi = (ti, ui) ∈ X , i = 0, 1, with
0 ≤ t0 ≤ t1 ≤ T , we set(6.11) ∆Rβ

(x0, x1) := inf
{

∫ r1

r0

Rβ (x(r); ẋ(r)) dr :

x = (t, u) ∈ Lip(r0, r1; X ), x(ri) = xi, i = 0, 1, ṫ ≥ 0
}

.If t0 > t1 we set ∆Rβ
(x0, x1) := +∞. We also de�ne

∆R0
(t; u0, u1, u2) := ∆R0

((t, u0), (t, u1)) + ∆R0
((t, u1), (t, u2)).(notie that this quantity is independent of β).Remark 6.5. The link with the Finsler ost ∆p,E (3.8) indued by (p, E) is lear. For R = Bgiven by (6.9), using P(0, v; 0, w) = p(v, w) we have, for t0 = t1 = t,(6.12) ∆B0

((t, u0), (t, u1)) = ∆p,E(t; u0, u1) for every u0, u1 ∈ X.When R = P is given by (6.8), we simply have
∆Pβ

((t0, u0), (t1, u1)) = β(t1 − t0) + Ψ0(u1 − u0) for u0, u1 ∈ X, 0 ≤ t0 < t1 ≤ T.General properties of ∆Rβ
(·, ·). It is not di�ult to hek that the in�mum in (6.11) isattained and, by the usual resaling argument (f. Remark 4.5), one an always hoose anoptimal Lipshitz urve x = (t, u) de�ned in [0, 1] suh that(6.13)

R1 (x; ẋ) is essentially onstant and equal to ∆R1
(x0, x1) = (t1 − t0) + ∆R0

(x0, x1).Properties (6.7b)�(6.7) yield, for every u0, u1 ∈ X and 0 ≤ t0 ≤ t1 ≤ T, the estimate(6.14) β(t1 − t0) + C‖u1 − u0‖X ≤ ∆Rβ
((t0, u0), (t1, u1)).Notie that ∆Rβ

(·, ·) is not symmetri but still satis�es the triangle inequality: for xi =
(ti, ui) ∈ X with t0 ≤ t1 ≤ t2, there holds

∆Rβ
(x0, x2) ≤ ∆Rβ

(x0, x1) + ∆Rβ
(x1, x2).Another useful property, diret onsequene of (6.7), is the lower semiontinuity withrespet to onvergene in X : if xi,n = (ti,n, ui,n) → xi = (ti, ui) in X as n ↑ +∞, i = 0, 1,then(6.15) lim inf

n↑+∞
∆Rβ

(x0,n, x1,n) ≥ ∆Rβ
(x0, x1).Indeed, assuming that the lim inf in (6.15) is �nite and that, up to the extration ofa suitable subsequene, that it is a limit, it is su�ient to hoose an optimal sequene



39
xn = (tn, un) of Lipshitz urves as in (6.13), whih therefore satis�es a uniform Lipshitzbound and, up to the extration of a further subsequene, onverges to some Lipshitzurve x = (t, u). Then, (6.15) an be proved in the same way as (6.6).In the ase of the ost indued by B indued by the vanishing visosity ontat potential
P, we have a re�ned lower-semiontinuity result:Lemma 6.6. Let un, wn : [t0, t1] → X be Borel maps and (εn) be a vanishing sequene.Suppose that un is absolutely ontinuous for every n ∈ N and that the following onvergeneshold as n → ∞

un(t) → u(t) and wn(t) → w(t) for all t ∈ [t0, t1]; sup
t∈[t0,t1]

‖wn(t) + DEt(un(t))‖X∗ → 0.Then,(6.16) lim inf
n↑+∞

∫ t1

t0

(

Ψεn
(u̇n(t)) + Ψ∗

εn
(wn(t))

)

dt ≥ ∆B0
((t0, u(t0)), (t1, u(t1))).Proof. Up to extrating a further subsequene, it is not restritive to assume that the

lim inf in (6.16) is in fat a limit. We set as in (5.1), (5.2)
sn(t) := t − t0 +

∫ t

t0

(

Ψεn
(u̇n(r)) + Ψ∗

εn
(wn(r))

)

dr, Sn := sn(t1),

tn(s) := s−1
n (s), un(s) := un(tn(s)), wn(s) := wn(tn(s)) for all s ∈ [0, Sn]so that(6.17) ∫ t1

t0

(

Ψεn
(u̇n(t)) + Ψ∗

εn
(wn(t))

)

dt =

∫

Sn

0

Pεn
(ṫn(s), u̇n(s); 0, wn(s)) ds.Sine the sequenes (tn) and (un) are uniformly Lipshitz, applying the Asoli-Arzelà The-orem we an extrat a (not relabeled) subsequene suh that Sn → S, and �nd funtions

t : [0, S] → [t0, t1], u : [0, S] → X, and w : [0, S] → X∗, suh that
tn → t, un → u, wn → w = −DEt(u) uniformly in [0, S].By onstrution, we have t(0) = t0, u(0) = u(t0), t(S) = t1, and u(S) = u(t1). ApplyingProposition 6.2, we have(6.18) lim inf

n↑+∞

∫

Sn

0

Pεn
(ṫn(s), u̇n(s); 0, wn(s)) ds ≥

∫

S

0

P0(ṫ(s), u̇(s); 0, w(s)) ds

≥ ∆B0
((t(0), u(0)), (t(S), u(S))).Combining (6.17) and (6.18), we onlude (6.16). �The total variation assoiated with ∆Rβ

. In the same way as in De�nition 3.4 weintrodued the total variation Varp,E assoiated with the Finsler ost ∆p,E, it is now naturalto de�ne the total variation assoiated with ∆Rβ
.



40De�nition 6.7 (Total variation for the pseudo-Finsler distane ∆Rβ
). For every urve

x = (t, u) : [0, S] → X suh that t is nondereasing and every interval [a, b] ⊂ [0, S] we set(6.19) VarRβ
(x; [a, b]) := sup

{

M
∑

m=1

∆Rβ
(x(sm), x(sm−1)) :

a = s0 < s1 < · · · < sM−1 < sM = b
}

.For a non-parametrized urve u : [0, T ] → X and [a, b] ⊂ [0, T ], we simply set
VarRβ

(u; [a, b]) := VarRβ
(u; [a, b]), with u(t) := (t, u(t)) ∈ X , t ∈ [0, T ].In view of (6.7b), it is immediate to hek that a urve u with VarR0

(u; [0, T ]) < +∞belongs to BV([0, T ]; X).In ontrast to the (pseudo)-total variation de�ned in (3.11), the above notion of totalvariation is lower semiontinuous with respet to pointwise onvergene (ompare withRemark 3.5).Proposition 6.8 (Lower semiontinuity of VarRβ
(·; [a, b])). If xn = (tn, un) : [0, S] → Xis a sequene of urves pointwise onverging to x = (t, u) as n ↑ ∞, we have(6.20) lim inf

n↑∞
VarRβ

(xn; [a, b]) ≥ VarRβ
(x; [a, b]).Proof. The argument is standard: for an arbitrary subdivision a = s0 < s1 < · · · < sM−1 <

sM = b, (6.15) yields
M

∑

m=1

∆Rβ
(x(sm), x(sm−1)) ≤ lim inf

n↑+∞

M
∑

m=1

∆Rβ
(xn(sm), xn(sm−1)) ≤ lim inf

n↑∞
VarRβ

(xn; [a, b]).Taking the supremum with respet to all subdivisions of [a, b] we obtain (6.20). �Lipshitz urves. The next result shows that, for Lipshitz urves, the total variationan be alulated by integrating the orresponding dissipation potential.Proposition 6.9 (The total variation for Lipshitz urves). Given β, L > 0, a boundedurve x := (t, u) : [0, S] → X satis�es the ∆Rβ
�Lipshitz ondition with Lipshitz onstant

L(6.21) ∆Rβ
(x(s1), x(s2)) ≤ L(s2 − s1) for every 0 ≤ s1 ≤ s2 ≤ S,if and only if it is Lipshitz ontinuous (with respet to the usual distane in X ), t isnondereasing, and(6.22) Rβ (x(s); ẋ(s)) ≤ L for a.a. s ∈ (0, S).In this ase, for every γ ≥ 0(6.23) VarRγ

(x; [a, b]) = γ(t(b) − t(a)) +

∫

b

a

R0 (x(s); ẋ(s)) ds.



41Proof. The su�ieny of ondition (6.22) is lear. Let us now onsider a urve x satisfying(6.21): by the oerivity (6.14), x is a Lipshitz urve in the usual sense and [47, Prop.2.2℄ yields
∆Rβ

(x(s0), x(s1)) ≤

∫ s1

s0

m(s) ds, where m(s) := lim
h↓0

∆Rβ
(x(s), x(s + h))

his the so-alled metri derivative of x (see [1, 4℄). The minimality of m ensures that(6.24) m(s) ≤ Rβ (x(s); ẋ(s)) for a.a. s ∈ [0, S].On the other hand, sine Rβ is lower semiontinuous and 1-homogeneous in v, for every
0 < σ < 1 and s ∈ [0, S] we �nd a onstant δ > 0 suh that

Rβ (x(r); v) ≥ σRβ (x(s); v) for every v ∈ V if |r − s| ≤ δ,so that a omparison with the linear segment joining x(s) with x(s + h) yields
∆Rβ

(x(s), x(s + h)) ≤ σ−1
Rβ (x(s); x(s + h) − x(s))Dividing by h and passing to the limit �rst as h ↓ 0 and eventually as σ ↑ 1, we obtain theopposite inequality of (6.24). Combining (6.24) (whih holds as an equality) with (6.21),we infer (6.22), and (6.23) ensues. �Proposition 6.10 (Reparametrization). Let u : [0, T ] → X be a urve with �nite totalvariation V := VarR0

(u; [0, T ]) < +∞, and let us set(6.25) s(t) := t + VarR0
(u; [0, t]) = VarR1

(u; [0, t]) for every t ∈ [0, T ].Then, there exists a Lipshitz parametrization x = (t, u) : [0, S] → X , with S = V + T ,suh that(6.26) R1 (x(s); ẋ(s)) = 1 for a.a. s ∈ (0, S),(6.27) t(s(t)) = t, u(s(t)) = u(t) for every t ∈ [0, T ].In partiular,(6.28) b − a + VarR0
(u; [a, b]) = s(b) − s(a) =

∫

s(b)

s(a)

R1 (x(s); ẋ(s)) ds.Proof. The proof is lassial, at least when the dissipation R is ontinuous and even in itsseond argument: we brie�y sketh the main ideas and refer to [35, Lemma 4.1℄.Notie that the jump set Js of the urve s given by (6.25) oinides with the jump set Juof u, and s is injetive in Cu := (0, T )\Ju. We denote by t its inverse, de�ned on Cu := s(Cu)and extended to Cu by its (Lipshitz) ontinuity; we also set u(s) := u(t) if s = s(t) ∈ Cu.Suppose now that (s−, s+) is a onneted omponent of [0, S] \ Cu, orresponding to sometime t̄ ∈ [0, T ] with s± = s(t̄±) and s̄ = s(t̄) ∈ [s−, s+]. We have
u(s−) = lim

s↑s−
u(s) = u(t̄−), u(s+) = lim

s↓s+
u(s) = u(t̄+),

s̄ − s− = ∆R0
((t̄, u(t̄−)), (t̄, u(t̄))), s+ − s̄ = ∆R0

((t̄, u(t̄)), (t̄, u(t̄+))).By De�nition 6.4, we an join (t̄, u(s−)) to (t̄, u(s+)) by a ∆R0
-Lipshitz urve (still denotedby (t, u)) de�ned in [s−, s+] with onstant �rst omponent t(s) = t̄, and satisfying (6.13)as well as u(̄s) = u(t̄).



42 It is then easy to hek that the �nal urve x = (t, u) obtained by ��lling� in this wayall the (at most ountable) holes in [0, S] \ Cu satis�es (6.27) and the Lipshitz ondition(6.21) with L ≤ 1. Applying (6.22) and (6.23) we get
∫

s(b)

s(a)

R1 (x(s); ẋ(s)) ds ≤ s(b) − s(a) = VarR1
(u; [a, b]) ≤ VarR1

(x; [s(a), s(b)])

=

∫

s(b)

s(a)

R1 (x(s); ẋ(s)) dswhere the �rst inequality follows from the 1-Lipshitz ondition, the subsequent identityfrom the de�nition of s, and the last one from (6.28). �The reparametrization of Proposition 6.10 is also useful to express the distributionalderivative of u. If VarR0
(u; [0, T ]) < +∞, we an introdue the distributional derivative

µR1,u := s′ of s, whih is a �nite positive measure satisfying
µR1,u([a, b]) = s(b) − s(a),

∫ T

0

ζ(t) dµR1,u(t) = −

∫ T

0

ζ̇(t)s(t) dt for every ζ ∈ C0
0(0, T ).Notie that a singleton {t} has stritly positive measure if and only if t ∈ Ju; more preisely

µR1,u({t}) = ∆R0
(t; u(t−), u(t), u(t+)) if t ∈ Ju;

µR1,u({t}) = 0 if t ∈ Cu = (0, T ) \ Ju ,with obvious modi�ation for t = 0, T . As a general fat we have the representation formula(reall that t is the inverse of s)(6.29) t#

(

L
1
|(0,S)

)

= µR1,u, i.e. ∫ T

0

ζ(t) dµR1,u(t) =

∫

S

0

ζ(t(s)) ds,for every bounded Borel funtion ζ : [0, T ] → R. Sine t is injetive in Cu := t−1(Cu) ⊂
(0, S), a Borel subset A of Cu is L 1-negligible if and only if t(A) has µR1,u-measure 0.Therefore, as the derivatives ṫ, u̇ are Borel funtions de�ned up to a L 1-negligible subsetof (0, S), the ompositions ṫ ◦ s, u̇ ◦ s are well de�ned in Cu. The next lemma shows thatthey play an important role.Proposition 6.11. The Lebesgue measure L 1

|(0,T ) and the vetor measure u′
co = u′

L
+u′

Care absolutely ontinuous w.r.t. µR1,u, and we have(6.30) dL 1

dµR1,u

= ṫ ◦ s and du′
co

dµR1,u

= u̇ ◦ s µR1,u-a.e. in Cu.Proof. The absolute ontinuity of both measures is easy, sine L 1 ≤ µR1,u by (6.29) andthe total variation ‖u′‖X is absolutely ontinuous w.r.t. µR1,u thanks to (6.14). The �rstidentity of (6.30) an be proved as in [35, Lemma 4.1℄. Conerning the seond one, let usset for every smooth funtion ζ ∈ C∞
0 (0, T )

Ju(ζ) :=
∑

t∈Ju

ζ(t)
(

u(t+) − u(t−)
)

,



43and let us observe that we have(6.31) −

∫

Cu

(ζ ◦ t)′(s) u(s) ds =

∫

Cu

ζ(t(s)) u̇(s) ds + Ju(ζ).Indeed, denoting by At = (at, bt) = t−1(t), t ∈ Ju, the onneted omponents of [0, S] \ Cu,and realling that u(at) = u(t−), u(bt) = u(t+), we have
−

∫

Cu

(ζ ◦ t)′(s) u(s) ds = −

∫

S

0

(ζ ◦ t)′(s) u(s) ds +
∑

t∈Ju

∫

bt

at

(ζ ◦ t)′(s) u(s) ds

=

∫

S

0

ζ(t(s)) u̇(s) ds −
∑

t∈Ju

∫

bt

at

(ζ ◦ t)(s) u̇(s) ds + Ju(ζ) =

∫

Cu

ζ(t(s)) u̇(s) ds + Ju(ζ).Therefore, there holds
∫ T

0

ζ(t) du′(t) = −

∫ T

0

ζ̇(t) u(t) dt = −

∫

S

0

ζ̇(ṫ(s)) u(t(s)) ṫ(s) ds

= −

∫

Cu

ζ̇(t(s)) u(t(s)) ṫ(s) ds

= −

∫

Cu

(ζ ◦ t)′(s) u(s) ds =

∫

Cu

ζ(t(s)) u̇(s) ds + Ju(ζ)

=

∫

Cu

ζ(t) u̇(s(t)) dµR1,u(t) + Ju(ζ).where the �fth identity ensues from (6.31) and the last one from (6.29). Sine
∫ T

0

ζ(t) du′
co(t) =

∫ T

0

ζ(t) du′(t) − Ju(ζ)we onlude the seond of (6.30). �Corollary 6.12 (Integral expression for VarR). Let u : [0, T ] → X ful�l VarR0
(u; [0, T ]) <

+∞, let µ be a positive �nite measure suh that L 1 ≪ µ and u′
co ≪ µ, and let us set(6.32) JmpR0

(u; [a, b]) := ∆R0
(a; u(a), u(a+)) + ∆R0

(b; u(b−), u(b))

+
∑

t∈Ju∩(a,b)

∆R0
(t; u(t−), u(t), u(t+)).Then,(6.33) VarR0

(u; [a, b]) =

∫ b

a

R0

(

(

t, u(t)
)

;
(dL

1

dµ
(t),

du′
co

dµ
(t)

)

)

dµ(t) + JmpR0
(u; [a, b]).



44Proof. Sine the expression on the right-hand side is independent of the measure µ, it isnot restritive to hoose µ = µR1,u; by (6.28) we have
b − a + VarR0

(u; [a, b]) =

∫

(s(a),s(b))∩Cu

R1 (x(s); ẋ(s)) ds + L
1((s(a), s(b)) \ Cu)

=

∫

(a,b)∩Cu

R1 (x(s(t)); ẋ(s(t))) dµ + µ([a, b] ∩ Ju)

=

∫

(a,b)∩Cu

R1

(

(

t, u(t)
)

; (ṫ(s(t)), u̇(s(t)))
)

+ JmpR0
(u; [a, b]),and we onlude by (6.30). �6.3. Total variation for BV solutions. We fous now on the partiular ase (6.10) ofExample 6.3, when the dissipation R is assoiated with the vanishing visosity ontatpotential P.Theorem 6.13 (Comparison between VarB0

(u; [·, ·]) and Varp,E(u; [·, ·])). For every urve
u ∈ BV([0, T ]; X) and every interval [a, b] ⊂ [0, T ] we have(6.34) Varp,E(u; [a, b]) ≤ VarB0

(u; [a, b]),and equality holds in (6.34) if and only if u satis�es the loal stability ondition (Sloc) on
(a, b). Furthermore, if VarB0

(u; [a, b]) < +∞, then u satis�es (Sloc) on (a, b).Proof. Let us �rst notie that the jump ontributions to the total variations Varp,E and
VarB0

are the same by (6.12). Inequality (6.34) then follows by applying (6.33) and ob-serving that for µ-a.a. t ∈ [0, T ](6.35) B0

(

(

t, u(t)
)

,
(dL 1

dµ
(t),

du′
co

dµ
(t)

))

= P
(dL 1

dµ
(t),

du′
co

dµ
(t); 0, w(t)

)

≥ Ψ0

(du′
co

dµ
(t)

)(where we have used the notation w(t) = −DEt(u(t))), the latter inequality ensuingfrom (5.9). On the other hand, in view of (5.10), (6.35) is an identity if and only if
w(t) ∈ K∗ for µ-a.a t ∈ (0, T ), i.e. if the loal stability property (Sloc) holds.Finally, sine L 1 ≪ µ, dL 1

dµ
(t) > 0 for L 1-a.a t ∈ (0, T ). Therefore, on aount of (5.7)we onlude the last part of the statement. �Corollary 6.14. A urve u : [0, T ] → X is a BV solution if and only if it satis�es one ofthe following (equivalent) two onditions:(6.36)

VarB0
(u; [t0, t1]) + Et1(u(t1)) = Et0(u(t0)) +

∫ t1

t0

∂tEt(u(t)) dt for every 0 ≤ t0 ≤ t1 ≤ T,(6.37) VarB0
(u; [0, T ]) + ET (u(T )) ≤ E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds.



45Lemma 6.15. Suppose that uε ∈ AC([0, T ]; X), ε > 0, is a family pointwise onverging to
u as ε ↓ 0, and wε : [0, T ] → X∗ satis�es ‖wε(t) + DEt(uε(t))‖X∗ → 0 uniformly in [0, T ].Then,(6.38) lim inf

ε↓0

∫ T

0

(

Ψε(u̇ε) + Ψ∗
ε(wε(t))

)

dt ≥ VarB0
(u; [0, T ]) ≥ Varp,E(u; [0, T ]).Proof. Choosing a �nite partition 0 = t0 < t1 < t2 < · · · < tN = T of the time interval

[0, T ], Lemma 6.6 yields
lim inf

ε↓0

∫ T

0

(

Ψε(u̇ε) + Ψ∗
ε(wε(t))

)

dt ≥

N
∑

j=1

∆B0
((tj−1, u(tj−1)), (tj, u(tj))).Taking the supremum of the right-hand side with respet to all partitions of [0, T ], we endup with (6.38). �We onlude this setion with the proof of Theorem 5.8.Proof. Let (t, u) be a parametrized solution as in the statement of the theorem. It is easyto hek diretly from de�nitions (6.11) and (6.19) that

VarB0
(u; [0, T ]) ≤

∫

S

0

P(ṫ(s), u̇(s); 0,−DEt(s)(u(s))) ds

≤ E0(u(0)) − Et(S)(u(S)) +

∫

S

0

∂tEt(s)(u(s))ṫ(s) ds

= E0(u(0)) − ET (u(T )) +

∫ T

0
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