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1Abstrat. We investigate the asymptoti behavior of solutions to semi-lassialShrödinger equations with nonlinearities of Hartree type. For a weakly nonlinearsaling, we show the validity of an asymptoti superposition priniple for slowlymodulated highly osillatory pulses. The result is based on a high-frequeny av-eraging e�et due to the nonloal nature of the Hartree potential, whih inhibitsthe reation of new resonant waves. In the proof we make use of the frameworkof Wiener algebras.1. Introdution and main resultIn this work we are interested in the asymptoti behavior for 0 < ε ≪ 1 of thefollowing nonlinear Shrödinger equation(1.1) iε∂tu
ε = −

ε2

2
∆u

ε +
(
K ∗ |uε|2

)
u

ε, u
ε
∣∣
t=0

= u
ε
0,where (t, x) ∈ R+ × Rd, d ∈ N. This model desribes the time-evolution of aomplex-valued �eld u

ε(t, x), under the in�uene of a Hartree-type nonlinearity, asit appears for example in the desription of super�uids, f. [2℄. Above, K = K(x)denotes a given real-valued interation kernel, to be spei�ed in detail below, and
“∗′′ denotes the onvolution w.r.t. x ∈ Rd. The saling of (1.1) for small ε > 0orresponds to the semi-lassial regime, i.e. the regime of high-frequeny solutions
u

ε(t, x), whih an be approximated via geometri optis.The asymptoti behavior of (1.1) as ε → 0+ has been studied by several authors,mainly for the ase K(x) = ± 1
|x|
: For example in [14, 16, 18℄, Wigner measure teh-niques are invoked, whih however require mixed states and thus an not be appliedto our situation. In the one-dimensional ase, this onstraint an be overome [19℄,but uniqueness of the limiting Wigner measure for t > 0 is still open. Turning tomulti-sale WKB expansions, whih are typially valid for short times only, a varietyof asymptoti results an be found in [1, 7, 10, 15℄, provided that uε

0 is given as asingle-phase WKB initial data, i.e
u

ε
0(x) = aε(x)eiϕ(x)/ε,with given (ε-independent) phase ϕ(x) ∈ C and amplitude aε(x) ∈ R, suh that,asymptotially, aε ∼ a0 + εa1 + ε2a2 + . . . .In the present work we are interested in generalizing these studies to the ase of(a superposition of) several WKB waves. Due to the expeted nonlinear interationbetween high-frequeny waves (i.e. the appearane of resonanes), this problem isnotoriously di�ult, even on a formal level. We shall therefore simplify the situationonsiderably by turning our attention to the ase of (asymptotially) small initialdata orresponding to modulated plane-waves. More preisely, we onsider uε

0(x) =
εα/2uε

0(x), where α > 1 and uε
0(x) is given by a superposition of ε-osillatory plane-waves, i.e.(1.2) uε

0(x) =

J∑

j=1

aj(x)eikj ·x/ε, kj ∈ Rd,



2with amplitudes aj(x) ∈ C, j ∈ {1, . . . , J} ⊆ N. Here, and in the following, we shallassume for the sake of simpliity that the initial amplitudes aj do not depend on ε,sine we shall only be interested in the leading order asymptotis. A generalization toamplitudes admitting an asymptoti expansion in ε is then straightforward. Withoutrestrition of generality we shall also assume that
kj 6= kℓ for all j 6= ℓ ∈ Γ := {1, . . . , J} ⊆ N,where J ∈ N ∪ {∞} and {1, . . . ,∞} means simply N.By resaling uε = ε−α/2

u
ε, we an rewrite the onsidered model into(1.3) iε∂tu

ε = −
ε2

2
∆uε + εα

(
K ∗ |uε|2

)
uε, uε

∣∣
t=0

= uε
0,where the initial data is now of order one but the equation displays an (asymptot-ially) small nonlinearity. We shall from now on take on this point of view sine itlooks more natural from the physial point of view. In addition, it is well known (seee.g. [3, 4℄) that the hoie α = 1 for (1.3) is ritial as far as semi-lassial behav-ior is onerned (see Setion 2 for more details). We shall therefore pay partiularattention to this ase. We remark that the same asymptoti saling has been usedin [5, 6℄ for Shrödinger equations with (gauge invariant) power-law nonlinearities

∝ |u|2σu, σ ∈ N. In partiular, in [5℄ the problem of high-frequeny wave interationis exhaustively studied in the ase σ = 1 for whih a geometri desription of allpossible nonlinear resonanes is given.However, for the onsidered ase of Hartree type nonlinearities, the situation isvery di�erent, due to the nonloal nature of K ∗ |uε|2. Sine we expet the solution
uε(t, x) to be given asymptotially as a superposition of highly osillatory waves,we learly an not regard the Hartree term to be slowly varying (as in the ase ofa single wave). The notion of a resonane though, seems to be not learly de�nedin this ase. A more sophistiated analysis of the osillatory struture of K ∗ |uε|2is needed therefore. As we shall see, the nonloal nature of the Hartree potentialyields a kind of averaging e�et. In partiular no new highly osillatory phases arereated in leading order (via resonanes), in sharp ontrast to the situation for loalnonlinearities.In order to be more preise, we need to introdue some notation: The Fouriertransform of f ∈ L1 ∩ L2(Rd) will be denoted as

(Ff)(ξ) ≡ f̂(ξ) =
1

(2π)d/2

∫

Rd

f(x)e−ix·ξdx.Our analytial approah will be based on the use of the Wiener Algebra (see Setion3 for more details). Within this framework it turns out that the natural spae forthe amplitudes a = (aj)j∈Γ is given as follows.De�nition 1.1.
A(Rd) := {a = (aj)j∈Γ : (âj)j∈Γ ∈ ℓ1(Γ; L1(Rd))},



3
Γ = {1, . . . , J} ⊆ N, equipped with the norm

‖a‖A(Rd) =

J∑

j=1

‖âj‖L1(Rd).We are now in the position to state the main theorem of this work.Theorem 1.2. For d > 1, onsider the Cauhy problem (1.3) with α > 1, subjet toinitial data uε
0 of the form (1.2), where the initial amplitudes aj ∈ L2(Rd) ∩ A(Rd)are suh that (∂p

xaj)j∈Γ ∈ A(Rd) for all |p| 6 2. In addition assume(1.4) |Λ|−1
∞ := inf{|kℓ − km| : ℓ, m ∈ Γ, ℓ 6= m} > 0,and let the interation kernel K satisfy (1 + |ξ|)K̂(ξ) ∈ L∞(Rd).Then, for all T > 0 there exists C, ε0 > 0, suh that for any ε ∈ (0, ε0), the exatsolution to (1.3) an be approximated by(1.5) ∥∥uε − uε

app

∥∥
L∞([0,T ]×Rd)

6 Cεβ with β =

{
1 if α ∈ {1} ∪ [2,∞),
α−1 if α ∈ (1, 2).Here the approximate solution uε

app is given by(1.6) uε
app(t, x) =

J∑

j=1

aj(x − tkj)e
iSj(t,x)eikj ·x/ε−it|kj |2/(2ε),where Sj(t, x) ∈ R is de�ned in (2.10) if α = 1 and Sj(t, x) = 0 if α > 1, respetively.In (1.6), the total number of (highly osillatory) phases J ∈ N ∪∞, is the sameas for the initial data (1.2). Hene, no new phases are reated by the nonlinearity.Nonlinear e�ets in leading order only show up via self-modulation of the amplitudes(provided α = 1). The ondition (1.4) an be seen as a small divisor assumptionrequired in the ase of in�nitely many phases (though, not of the same type as theone used in [5℄). Obviously, (1.4) is satis�ed if J < +∞.Under the general assumptions of this work, we an not infer global well posednessof equation (1.3) in the Wiener spae. The usual arguments for proving globalexistene (see e.g. [17℄) involve the onservation of the L2 norm, whih also holdsin our ase. However, this is not su�ient to ontrol the nonlinearity (K ∗ |u|2)u inthe Wiener spae. Nevertheless, the above theorem shows that for initial data uε

0 inthe form (1.2), the solutions annot blow up too fast: If T ε > 0 is the blow-up time,then T ε → +∞ for ε → 0.Remark 1.3. A partiular example for K, satisfying the assumptions is given by theone onsidered in [2, equation (15)℄ and more importantly by the so-alled Yukawapotential
K(x) = ±

e−λ|x|

|x|
, x ∈ R3, λ > 0,for whih the orresponding Fourier transform is found to be

K̂(ξ) = ±
1

λ2 + |ξ|2
.



4Clearly, (1 + |ξ|)K̂ ∈ L∞(R3) in this ase. Note that in the limit λ → 0 we obtainthe Fourier transform of the Coulomb potential K(x) = ± 1
|x|
, whih, however, is toosingular, to diretly apply our theorem. It remains an interesting open problem toestablish the same result for the Coulomb ase in d = 3.The paper is organized as follows: In Setion 2, we formally derive the approxi-mate solution and draw some further onlusions from it. In Setion 3 we set up theWiener framework for the exat and the approximate solution. Finally, we prove therequired estimates on the remainder of the approximation and onsequently statethe proof of Theorem 1.2 in Setion 4.2. Derivation of the approximate solutionWe seek an approximation of solutions to (1.3) in the form(2.1) uε

app(t, x) =
J∑

j=1

Aj(t, x)eiφj(t,x)/ε.Assuming su�ient smoothness, we an plug this ansatz into (1.3), whih yields(2.2) iε∂tu
ε
app +

ε2

2
∆uε

app − εα
(
K ∗ |uε

app|
2
)
uε

app =

2∑

n=0

εnXn + εα(Y + YR)with
X0 = −

J∑

j=1

eiφj/ε
(
∂tφj +

1

2
|∇φj|

2
)
Aj ,

X1 = i
J∑

j=1

eiφj/ε
(
∂tAj + ∇Aj · ∇φj +

1

2
Aj∆φj

)
,and

X2 =
1

2

J∑

j=1

eiφj/ε∆Aj .(2.3)These terms are the same as in the linear ase K ≡ 0. Due to the presene of theHartree type nonlinearity, we also obtain
Y = −

J∑

j=1

eiφj/ε
(
K ∗

J∑

ℓ=1

|Aℓ|
2
)
Aj ,(2.4)

YR = −
J∑

j=1

eiφj/ε
(
K ∗

J∑

ℓ,m=1

ℓ 6=m

(
AℓAm ei(φℓ−φm)/ε

))
Aj.(2.5)Obviously, YR arries high-frequeny osillations, whih are not aptured by ouransatz (2.1). Thus we need to develop a more areful analysis in the following,whih shows that YR is of higher order.



5Ignoring this problem for the moment, we onsequently aim to eliminate equalpowers of ε. Hene, in leading order, we set X0 = 0, whih is equivalent to theHamilton-Jaobi equation(2.6) ∂tφj +
1

2
|∇φj|

2 = 0, φj

∣∣
t=0

= kj · x.Solutions to (2.6) determine the harateristi high-frequeny osillations present in
uε

app. In our ase, they are easily found to be(2.7) φj(t, x) = kj · x −
t

2
|kj|

2.These phases obviously solve (2.6) for all (t, x) ∈ R ×Rd, i.e. no austis appear inour study.In the next step we set X1 = 0 if α > 1 and X1 + Y = 0 if α = 1 (note that wedo not inlude YR here). Comparing the prefators of the terms multiplied by eiφj/ε,yields the following system of transport equations for the amplitudes:(2.8) ∂tAj + kj · ∇Aj =

{
0 if α > 1,
−iVeff(A)Aj if α = 1,where we have used the fat that ∆φj ≡ 0, in view of (2.7). For α = 1, the e�etive(nonlinear) potential Veff(A) is given by

Veff(A) := K ∗
( J∑

ℓ=1

|Aℓ|
2
)
.We see that for α > 1 no nonlinear e�ets are present in transport equations for theleading order amplitudes. The ase α = 1 is therefore seen to be ritial as far assemi-lassial asymptotis is onerned.Lemma 2.1. The transport equation (2.8) with initial data (aj)j∈Γ ∈ L2 ∩ A(Rd)admits global-in-time solutions A ∈ C([0,∞); L2 ∩ A(Rd)), whih an be written inthe form(2.9) Aj(t, x) = aj(x − tkj)e

iSj(t,x),where Sj ≡ 0 for α > 1 and Sj ∈ C([0,∞) × Rd) for α = 1 is given by(2.10) Sj(t, ·) = −

∫ t

0

(
K ∗

J∑

ℓ=1

∣∣aℓ

(
· +(τ − t)kj − τkℓ

)∣∣2
)

dτIn partiular we have mass onservation for eah individual mode(2.11) ‖Aj(t, ·)‖L2(Rd) = ‖aj‖L2(Rd), ∀ t ∈ R.In ontrast to φj the phases Sj are only slowly varying, i.e. they osillate withfrequenies larger than 1/ε. They desribe the nonlinear self-modulation of theamplitudes but do not show up in quadrati quantities, like the mass density |Aj|2et.



6Proof. By multiplying (2.8) with Āj and taking the real part, we see
(∂t + kj · ∇) |Aj|

2 = 0,whih yields |Aj(t, x)|2 = |aj(x− tkj)|2 and thus (2.9) and (2.11). Finally, inserting(2.9) into (2.8) and integrating along harateristis, we obtain the expression (2.10)for Sj. �Having obtained the harateristi phases φj and the leading order amplitudes
Aj we shall now turn our attention towards the remainder, i.e.(2.12) R(uε

app) =

{
ε2X2 + εYR if α = 1,
ε2X2 + εα(Y + YR) if α > 1.For α = 1 the term YR appearing within R(uε

app) is formally of order O(ε). Thus,at �rst glane, YR seems to be too large to be onsidered a part of the remainder.It will be our main task to show that YR is indeed su�iently small as ε → 0+. Tothis end, we shall rely on the framework of Wiener algebras.3. The Wiener algebra frameworkWe now present the analytial framework of Wiener algebras whih already provedits use in similar irumstanes, f. [5, 8, 12℄. We start with the following de�nition.De�nition 3.1 (Wiener Algebra). We de�ne
W (Rd) :=

{
f ∈ S ′(Rd; C), ‖f‖W := ‖f̂‖L1(Rd) < ∞

}
.The following properties of W (Rd) have been proved in [8, 12℄.Lemma 3.2.i. W (Rd) is a Banah spae, ontinuously embedded into L∞(Rd).ii. W (Rd) is an algebra, in the sense that the mapping (f, g) 7→ fg is ontinuousfrom W (Rd)2 to W (Rd), and moreover

∀f, g ∈ W (Rd), ‖fg‖W 6 ‖f‖W‖g‖W .iii. Let Uε(t) = eiε t
2
∆ denote the free Shrödinger group. Then, for all t ∈ R,

Uε(t) is unitary on W (Rd).Assertion iii. follows from the fat that Ûε(t) = eit|ξ|2/2, ating as a multipliationoperator in Fourier spae. From now on, we shall onsider the Cauhy problem (1.3)to be posed in W (Rd). To this end we need the following well-posedness result (whihis an adaptation of the one given in [5℄ to the ase of Hartree nonlinearities).Lemma 3.3. Consider the initial value problem(1.3) iε∂tu
ε +

ε2

2
∆uε = εα(K ∗ |uε|2)uε, uε

∣∣
t=0

= uε
0,with α > 1. If K̂ ∈ L∞(Rd) and uε

0 ∈ W (Rd) with ‖uε
0‖W 6 D0, then thereexists a T0 > 0, whih depends on D0 but not on ε, and a unique solution uε ∈

C([0, T0]; W (Rd)) of (1.3).



7Proof. Duhamel's formulation of (1.3) reads
uε(t) = Uε(t)uε

0 − iεα−1

∫ t

0

Uε(t − τ)
(
(K ∗ |uε|2)uε)

)
(τ) dτ.Denote, for �xed uε

0, the right hand side of this formula by Φε(uε)(t). From Lemma 3.2iii. we have(3.1) ‖Φε(uε)(t)‖W 6 D0 + εα−1

∫ t

0

‖
(
(K ∗ |uε|2)uε)

)
(τ)‖W dτ.In order to ontrol the nonlinear term, we need to estimate expressions of the form

(K ∗ (uv))w in W (Rd). To this end, we �rst use Lemma 3.2 ii, to obtain
‖(K ∗ (uv))w‖W 6 ‖K ∗ (uv)‖W‖w‖W .By Hölder's inequality we also get(3.2) ‖K ∗ (uv)‖W = ‖K̂ ∗ (uv)‖L1 6 ‖K̂‖L∞‖uv‖W ,and applying again Lemma 3.2 ii, we arrive at(3.3) ‖(K ∗ (uv))w‖W 6 ‖K̂‖L∞‖u‖W‖v‖W‖w‖W for u, v, w ∈ W (Rd).Thus, from (3.1) we obtain

‖Φε(uε)(t)‖W 6 D0 + εα−1‖K̂‖L∞

∫ t

0

‖uε(τ)‖3
W dτ.Moreover, uε 7→ Φε(uε) is loally Lipshitz in U := C([0, T ], W (Rd)): If ‖uε‖U 6 D,

‖vε‖U 6 D, then there exists C = C(D) suh that
‖Φε(uε)(t) − Φε(vε)(t)‖W 6 C(D)

∫ t

0

‖uε(τ) − vε(τ)‖W dτ, ∀t ∈ [0, T ].A �xed point argument in {
u ∈ U : supt∈[0,T ] ‖u(t)‖W 6 D

}, with D > D0, for
T = T0 su�iently small, then yields Lemma 3.3. �Having set up an existene result for the exat solution uε in W (Rd), we nowturn to the approximate solution uε

app given by (1.6). To this end, we shall needthe following lemma, whih shows that the Wiener spae is perfetly adapted to ourproblem.Lemma 3.4. Let kj ∈ Rd, cj ∈ R, and b ∈ ℓ1(Γ, W (Rd)), and set
f(x, y) =

J∑

j=1

bj(x)ei(kj ·y+cj).Then, for all ε > 0 the funtion f(·, ·/ε) : x 7→ f(x, x/ε) lies in W (Rd) with
‖f(·, ·/ε)‖W 6 ‖b‖A =

∑

j∈Γ

‖bj‖W .



8Proof. We write
‖f(·, ·/ε)‖W =

∥∥
J∑

j=1

eicj b̂j(· − kj/ε)
∥∥

L1
6

J∑

j=1

‖b̂j(· − kj/ε)‖L1 =

J∑

j=1

‖b̂j‖L1 .The last term is, by de�nition, ‖b‖A. �Remark 3.5. This lemma in general does not hold for funtions of the form
f(x, y) =

∑J
j=1 bj(x)eiϕj(y), with ϕj(y) 6= kj · y + cj. A generalization of our study tonon-plane wave WKB phases therefore seems to be a deliate issue (at least withinthe Wiener framework) and by no means straightforward.Sine the phases φj onsidered in this work are of plane-wave form (2.7), applyingLemma 3.4 with cj = − t

2ε
|kj|

2 to (1.6), we immediately obtain(3.4) ‖uε
app(t, ·)‖W 6 ‖A(t, ·)‖A.Similarly, we an estimate the expression (2.3) for X2 by(3.5) ‖X2(t, ·)‖W 6
1

2
‖∆A(t, ·)‖A =

1

2

J∑

j=1

‖∆Aj(t, ·)‖W .In addition, we obtain the following estimate for Y , de�ned in (2.4):
‖Y (t, ·)‖W 6

∥∥∥K ∗
J∑

ℓ=1

|Aℓ(t, ·)|
2
∥∥∥

W
‖A(t, ·)‖A,where we have used Lemma 3.4 and Lemma 3.2 ii. This an be estimated furthersimilarly to (3.2) by using Lemma 3.4 (with kj = 0, cj = 0), as well as Assertion ii.of Lemma 3.2 and the fat that ℓ∞ ⊂ ℓ1, to obtain(3.6) ‖Y (t, ·)‖W 6 ‖K̂‖L∞‖A(t, ·)‖3
A.In order to lose the argument, we onsequently require appropriate bounds inA(Rd)on the amplitudes Aj(t, ·), together with their spatial derivatives.Lemma 3.6. Let α > 1 and K̂ ∈ L∞(Rd). For all a = (aj)j∈Γ ∈ A(Rd), thereexists a unique solution A ∈ C([0,∞);A(Rd)) to the system (2.8). Moreover, if

(∂p
xaj)j∈Γ ∈ A(Rd), for |p| 6 2, then (∂p

xAj)j∈Γ ∈ C([0,∞);A(Rd)).Proof. For α > 1 the statements of the lemma are immediately lear, sine in thisase Aj(t, x) = aj(x − tkj), f. (2.8). For α = 1 we rewrite (2.8) in its integral form(3.7) Aj(t, x) = aj(x − tkj) +

∫ t

0

N (A)j(τ, x + (τ − t)kj)dτ,where the nonlinearity N (A)j is given by
N (A)j = −i

(
K ∗

( J∑

ℓ=1

|Aℓ|
2
))

Aj



9Invoking the same arguments as for the derivation of (3.6), we obtain
‖N (A)‖A =

J∑

j=1

‖N (A)j‖W 6 ‖K̂‖L∞‖A‖3
A.This shows that N (A) de�nes a ontinuous mapping from A3 to A and a loal-in-time existene result immediately follows from the standard Cauhy-Lipshitztheorem for ordinary di�erential equations. That the solutions Aj indeed exist forall t > 0 then follows from the expliit representation (2.9). From the latter weadditionally obtain the propagation of regularity, by expliit alulation of ∂p

xA. �Lemma 3.6 onsequently establishes the estimates in W (Rd) for uε
app, X2 and Yin a rigorous way. Note however, that the above given estimates do not yield anestimate for the remainder R(uεapp), given by (2.12), sine it also inludes YR, whihwe ompletely ignored so far. We will make up for it in the following setion.4. Estimates on the remainder and proof of the main theoremIt remains to estimate in W (Rd) the term YR given in (2.5). To this end we shallprove the following key tehnial result.Proposition 4.1. Let YR be de�ned by (2.5) with plane-wave phases φj given by(2.7) and assume |Λ|−1

∞ := inf{|kℓ − km| : ℓ, m ∈ Γ, ℓ 6= m} > 0. Moreover, let Kbe suh that K̂ ∈ L∞(Rd) and ∇̂K ∈ L∞(Rd). Then we have the following bound:(4.1) ‖YR(t, ·)‖W 6 ε CK‖A(t, ·)‖2
A

(
‖A(t, ·)‖A + ‖∇A(t, ·)‖A

)
,where CK > 0 is independent of ε.Proof. Realling the de�nition of YR given in (2.5) and taking into aount thepartiular plane-wave form (2.7) of the phases φj, we obtain from Lemma 3.4 andAssertion ii. of Lemma 3.2 that(4.2) ‖YR‖W 6 ‖A‖A

∥∥∥
J∑

ℓ,m=1

ℓ 6=m

K ∗
(
AℓAmei(φℓ−φm)/ε

)∥∥∥
W

.Using,
eiy·k/ε+z = −iε

k

|k|2
· ∇ye

iy·k/ε+z (z ∈ C),we an perform a partial integration w.r.t y, and rewrite
K ∗

(
AℓĀmei(φℓ−φm)/ε

)
=

∫

Rd

K(x − y)Aℓ(y)Ām(y)ei(φℓ(y)−φm(y))/ε dy

= iε

∫

Rd

kℓ − km

|kℓ − km|2
· ∇y

(
K(x − y)Aℓ(y)Ām(y)

)
ei(φℓ(y)−φm(y))/ε dy.To show that the boundary terms vanish, assume �rst that Aj ∈ S(Rd), the set ofShwartz funtions (for whih the boundary terms learly vanish). Sine S(Rd)is dense in L1(Rd), Fourier transformation implies that S(Rd) is also dense in
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W (Rd). Consequently, the fat that the expressions on both sides are norm-boundedsesquilinear forms establishes the above formula.Using kℓ 6= km ∈ Rd, we know that Λℓ,m := kℓ−km

|kℓ−km|2
∈ Rd is well de�ned andonsequently

K ∗
(
AℓĀmei(φℓ−φm)/ε

)
= − iε(Λℓ,m·∇K) ∗

(
AℓĀmei(φℓ−φm)/ε

)

+ iεK ∗
((

Λℓ,m·∇(AℓĀm)
)
ei(φℓ−φm)/ε

)
.Using the estimate (3.2) and Lemma 3.4 (with J = 1) we get

‖K ∗
(
AℓĀmei(φℓ−φm)/ε

)
‖W 6 ε‖Λℓ,m·∇̂K‖L∞‖Aℓ‖W‖Am‖W

+ ε‖K̂‖L∞‖Λℓ,m·∇(AℓĀm)‖W .Invoking again Lemma 3.4 (with kj = 0, cj = 0) and Lemma 3.2 ii, we onlude
∥∥∥

J∑

ℓ,m=1

ℓ 6=m

K ∗
(
AℓĀmei(φℓ−φm)/ε

)∥∥∥
W

6 ε
J∑

ℓ,m=1

ℓ 6=m

(
d|Λℓ,m|‖∇̂K‖L∞‖Aℓ‖W‖Am‖W + 2‖K̂‖L∞|Λℓ,m|‖∇Aℓ‖A‖Am‖W

)

6 ε|Λ|∞‖A‖A
(
d‖∇̂K‖L∞‖A‖A + 2‖K̂‖L∞‖∇A‖A

)where ‖∇̂K‖L∞ = max
n=1,...,d

‖∂̂xn
K‖L∞ , and

‖∇A‖A =

J∑

ℓ=1

‖∇Aℓ‖A =

J∑

ℓ=1

d∑

n=1

‖∂xn
Aℓ‖W .This, together with (4.2) yields the estimate (4.1). �Remark 4.2. Proposition 4.1 shows that ‖YR‖W = O(ε) and thus an indeed beonsidered a part of the remainder. Note that in the proof it is essential to invokea stationary-phase type argument �rst, before starting to take estimates. In fatwe would not sueed to show that ‖YR‖W = O(ε), if we would estimate YR in itsoriginal form.By ombining the results of Lemma 3.6 and Proposition 4.1, we obtain the fol-lowing result.Corollary 4.3. Under the assumptions of Lemma 3.6 and Proposition 4.1, thereexists, for every T > 0, a onstant CR(T ) > 0, independent of ε > 0, suh that theremainder R(uε

app) given by (2.12) satis�es(4.3) ‖R(uε
app)‖W 6 εγCR ∀ t ∈ [0, T ], ∀ ε > 0,where

γ =

{
2 if α ∈ {1} ∪ [2,∞),
α if α ∈ (1, 2).



11Proof. Lemma 3.6 guarantees the existene of the norms ‖A(t, ·)‖A, ‖∇A(t, ·)‖A,
‖∆A(t, ·)‖A < ∞ for all t ∈ [0,∞), whih are independent of ε > 0 and ontinuousin t. Hene, taking their maximum over t ∈ [0, T ], we obtain (4.3) from (3.5), (3.6),(4.1) and the de�nition (2.12) of R(uε

app). �With the estimate of Corollary 4.3 on R(uε
app) at hand, we an �nally statethe proof of our main theorem, whih follows the basi ideas established in [13℄ forjustifying the nonlinear Shrödinger equation as a modulation equation for dispersivewaves.Proof of Theorem 1.2. We onsider a �xed T > 0 and introdue the following salederror rε between the original solution uε to (1.3) subjet to the initial data (1.2) andthe approximation (1.6):

εβrε := uε−uε
app,with a parameter β > 0 to be spei�ed below. Hene, rε(0) = 0. From (3.4) andLemma 3.6 we know that there exists a onstant CA > 0, independent of ε, suhthat ‖uε

app(t, ·)‖W 6 CA, for all t ∈ [0, T ]. Sine rε(0) = 0, it follows ‖uε
0‖W 6 CA.Consequently, for any D > CA, Lemma 3.3 yields the existene of a unique solution

uε ∈ C([0, T0], W (Rd)) for some T0 > 0 with ‖uε(t)‖W 6 D for t ∈ [0, T0].Moreover, from (1.3) and (2.2) it follows that rε satis�es
iε∂tr

ε +
ε2

2
∆rε = εα−β

(
M(uε

app + εβrε) −M(uε
app)

)
− ε−βR(uε

app)with M(u) = (K ∗ |u|2)u for t 6 τ := min{T0, T}, and by Duhamel's formula andLemma 3.2 iii. we obtain
‖rε(t)‖W 6 εα−β−1

∫ t

0

‖M(uε
app(τ) + εβrε(τ)) −M(uε

app(τ))‖W dτ

+ ε−β−1

∫ t

0

‖R(uε
app(τ))‖W dτ,

(4.4)for all t 6 τ . Writing
M(u + r) −M(u) =

(
K ∗ (ur̄ + ūr + |r|2)

)
(u + r) + (K ∗ |u|2)r,the estimate (3.3) gives(4.5) ‖M(u + r) −M(u)‖W 6 ‖K̂‖L∞(3‖u‖2

W + 3‖u‖W‖r‖W + ‖r‖2
W ) ‖r‖W .Hene, replaing u = uε

app and r = εβrε, and realling β > 0, we obtain for any
C > 0 and ε0 ∈ (0, 1], suh that 3εβ

0CAC + ε2β
0 C2 = C2

A, that(4.6) ‖M(uε
app + εβrε) −M(uε

app)‖W 6 εβCM ‖rε‖W ∀ ε 6 ε0, t 6 τwhere CM := 4‖K̂‖L∞C2
A, as long as ‖rε‖W 6 C.Inserting the bounds (4.6) and (4.3) into (4.4), and realling that ε0 6 1, α > 1,

τ 6 T , we onsequently obtain for β ∈ (0, γ−1]

‖rε(t)‖W 6 CRT + CM

∫ t

0

‖rε(τ)‖W dτ ∀ ε 6 ε0, t 6 τ.



12By Gronwall's lemma this yields
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