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AbstratThis paper deals with error estimates for spae-time disretizations in theontext of evolutionary variational inequalities of rate-independent type. Afterintroduing a general abstrat evolution problem, we address a fully-disreteapproximation and provide a priori error estimates. The appliation of theabstrat theory to a semilinear ase is detailed. In partiular, we provideexpliit spae-time onvergene rates for the isothermal Souza-Aurihio modelfor shape-memory alloys.1 IntrodutionThe present analysis is onerned with error estimates for spae-time disretizationsin the ontext evolutionary variational inequalities of rate-independent type. Morepreisely, letQ be a Hilbert spae, E : [0, T ]×Q → R with T > 0 and Ψ : Q → [0,∞)be the energy and dissipation funtionals, respetively. We assume that E(t, ·) and Ψare ontinuous and onvex. Moreover, as is ommon in modeling hysteresis e�et inmehanis, we assume that the system is rate-independent whih amounts in askingthat Ψ is positively homogeneous of degree 1, i.e., Ψ(γv) = γΨ(v) for all γ ≥ 0.The aim of this work is to show that the solutions q : [0, T ] → Q of the non-smoothdi�erential inlusion
0 ∈ ∂Ψ(q̇(t)) + DqE(t, q(t)) a.e. in (0, T ) (1.1)an be well-approximated by spatially disretized time-inremental minimizationproblems. The di�ulty here is the non-smoothness of the subdi�erential operator

∂Ψ(·) as well as the nonlinearity of the map q 7→ DqE(t, q). In the linear asethis would redue to lassial evolutionary variational inequalities for whih thenumeris is well studied, see e.g. [HaR99, ACZ99, AlC00, COV06, CKO06, Car99,LiB96, LiB97, OrP04℄.In partiular, we are here spei�ally interested in a semi-linear ase where thepotential energy has the following form
∀q̂ ∈ Q : E(t, q̂)

def
=

1

2
〈Aq̂, q̂〉Q + H(q̂) − 〈ℓ(t), q̂〉Q. (1.2)Here A is a symmetri positive de�nite operator, H is a di�erentiable and onvexfuntional and ℓ ∈ C1([0, T ],Q′) is the external loading. This setting is loselyrelated to the isothermal Souza-Aurihio model for shape-memory alloys (SMA).1



The latter are metalli alloys showing some surprising thermo-mehanial behav-ior, namely, strongly deformed speimens regain their original shape after a ther-mal yle (shape-memory e�et). Moreover, within some spei� (suitably high)temperature range, they are super-elasti, meaning that they fully reover ompa-rably large deformations. These features are not present (at least to this extent)in most materials traditionally used in Engineering and, thus, are at the basis ofinnovative and ommerially valuable appliations. Nowadays, shape-memory alloysare suessfully used in many appliations among whih biomedial devies (vasu-lar stents, arhwires, endo-guidewires) and MEMS (atuators, valves, mini-grippersand positioners). The Souza-Aurihio model here onsidered is a phenomenolog-ial, small-deformation model desribing both the shape memory and the supere-lasti e�et (although in the present isothermal redution no shape memory e�etis atually reprodued). The reader is referred to [SMZ98, AuS01, AuP04, ARS09℄for the derivation and the mehanis and [AuS04, AuS05, MiP07, AMS08℄ for themathematial analysis.The paper is organized as follows. After introduing more preisely in Setion 2our assumptions, we reall a well-posedness result from [MiT04℄. Then an errorestimate for spae-time disretizations is derived. To do so, we hoose a sequeneof partitions { 0 = tτ0 < tτ1 < · · · < tτkτ = T } of the time interval [0, T ] with
max{ tτk − tτk−1 : k = 1, ..., kτ } ≤ τ and a sequene (Qh)h>0 of �nite-dimensionalspaes exhausting Q. Then, the spae-time disretized inremental minimizationproblem

qk
τ,h

def
= Argmin

{
E(tτk, q̂h) + Ψ(q̂h−qk−1

τ,h )
∣∣ q̂h ∈ Qh

}has a unique solution by uniform onvexity. Thus, it is possible to de�ne the piee-wise a�ne interpolants qτ,h : [0, T ] → Qh.Our error estimates rely on an abstrat approximation ondition. We refer to (2.10)for its most general version and give here, for brevity, a slightly strengthened form:
∃C > 0 ∀h ∈ (0, 1] ∀(t, qh, w) ∈ [0, T ]×Qh×Q ∃vh ∈ Qh :

〈DqE(t, qh), vh−w〉Q+Ψ(vh−w) ≤ Chβ
(
1+‖qh‖2

Q

)
‖w‖Q.

(1.3)Under suitable additional assumption we onstrut a onstant C suh that
‖qτ,h(t)−q(t)‖Q ≤ C

(
hβ/2 +

√
τ + ‖qτ,h(0)−q(0)‖Q

)
. (1.4)In Setion 3 we show that ondition (1.3) an be established by assuming that

H and Ψ are lower order, if ompared with A. This means there exists a big-ger spae X with Q ⊂ X and X ′ ⊂ Q′ suh that Ψ : X → [0,∞) is ontinuousand that DqH ∈ C1,Lip(Q,X ′). The power β then relates to an interpolation esti-mate. Moreover, for any suitable initial ondition q(0), we an �nd qh(0) suh that
‖qh(0)−q(0)‖Q = O(hβ/2), whih provides the desired onvergene of spae-timedisretizations. We emphasize that our onvergene rates are obtained without anyfurther assumptions on the smoothness of the solutions to be approximated. Thisis partiularly remarkable in onnetion with linearized elastoplastiity. Indeed,2



up to now, onvergene rates for linearized elastoplastiity have been obtained in[AlC00℄ (lassial theory) and [DE∗07℄ (strain-gradient theory), by assuming highersmoothness-in-time on the solutions. Here instead the onvergene analysis followsunder natural regularity onditions. Note however that our overall assumptions willorrespond to the ourrene of gradient terms and, in partiular, lassial linearizedelastoplastiity annot be diretly aommodated in our setting.Eventually, we show in Setion 4 that the abstrat result obtained for semi-linearproblems remains also valid for the isothermal Souza-Aurihio model. Relatedonvergene results for models of phase transformations in shape-memory alloyswere obtained in [KMR05, MiR06, MPP08℄, however, there no onvergene rateswere obtained. In fat, for the relevant models the uniqueness of solutions is notknown and hene, only onvergene of suitable subsequenes has been established.2 An abstrat approximation resultWe onsider a Hilbert spae Q with dual Q′. The norm of Q and the duality produtbetween Q′ and Q are denoted by ‖·‖Q and 〈·, ·〉Q, respetively. For some referenetime T > 0 we are given an energy funtional E : [0, T ] ×Q → R and a dissipationpotential Ψ : Q → [0,∞). We assume that Ψ is positively homogeneous of degree1, whih makes the system rate-independent. Moreover, Ψ will be assumed to bebounded on bounded sets and to satisfy the triangle inequality. Hene, we have that
∀γ > 0 ∀q ∈ Q : Ψ(γq) = γΨ(q), (2.1a)
∃cΨ > 0 ∀q ∈ Q : Ψ(q) ≤ cΨ‖q‖Q, (2.1b)
∀q1, q2 ∈ Q : Ψ(q1+q2) ≤ Ψ(q1) + Ψ(q2). (2.1)Notie that (2.1a) and (2.1) imply that Ψ is onvex.In this abstrat setion we pose quite general onditions on E that will be spei�edto the semilinear ase in the following setion. Finally, in Setion 4, we will showthat these onditions are satis�ed for the Souza-Aurihio model for phase transfor-mations in SMA, see [MiP07, AMS08℄. To simplify the presentation we give slightlystronger onditions than those that are really needed. We use the onvention that afuntion f ∈ Ck(Q, Y ) is k times Fréhet di�erentiable suh that the kth derivativeis still ontinuous and bounded on bounded sets. We let

E ∈ C3([0, T ] ×Q,R), (2.2a)
∃κ > 0 : E(t, ·) is κ-uniformly onvex, i.e, D2

qE(t, q) ≥ κI, (2.2b)We onsider the following doubly nonlinear evolution equation
0 ∈ ∂Ψ(q̇(t)) + DqE(t, q(t)) a.e. in (0, T ). (2.3)3



As usual, (˙) denotes the time derivative d
dt
. We say that q is a solution of the rate-independent system (Q, E ,Ψ) if q ∈ W 1,1([0, T ],Q) and (2.3) holds. We say that qsolves the initial-value problem (Q, E ,Ψ, q0) if additionally q(0) = q0 holds.Using the de�nition of the subdi�erential ∂Ψ(q̇), relation (2.3) turns out to beequivalent to the variational inequality

∀v ∈ Q : 〈DqE(t, q(t)), v−q̇(t)〉Q + Ψ(v) − Ψ(q̇(t)) ≥ 0. (2.4)We de�ne the set of stable states at time t via
S(t)

def
=

{
q ∈ Q

∣∣ ∀q̂ ∈ Q : E(t, q) ≤ E(t, q̂) + Ψ(q̂−q)
}
. (2.5)Sine 1-homogeneity of Ψ implies ∂Ψ(q̇) ⊂ ∂Ψ(0) we see that (2.3) implies q(t) ∈

S(t) a.e. in (0, T ). This an be seen as a stati stability ondition, whih has tohold for all t ∈ [0, T ] by ontinuity of DqE and the losedness of ∂Ψ(0), entailingthe natural restrition q0 ∈ S(0) for the initial datum. The following results provideuseful a priori estimtates.Proposition 2.1 Assume that (2.1) and (2.2) hold.(a) Then, for all t ∈ [0, T ] we have
q ∈ S(t) ⇐⇒ −DqE(t, q) ∈ ∂Ψ(0). (2.6)(b) There is a onstant CR

0 > 0 suh that
q ∈ S(t) =⇒ ‖q‖Q ≤ CR

0 , ‖DqE(t, q)‖Q′ ≤ cΨ and (2.7a)
∀q̂ ∈ Q : E(t, q) +

κ

2
‖q̂−q‖2

Q ≤ E(t, q̂) + Ψ(q̂−q). (2.7b)() If (t, q0) ∈ [0, T ] ×Q and q∗ minimizes q 7→ E(t, q) + Ψ(q−q0), then q∗ ∈ S(t).Proof. Part (a) follows from the very de�nition of subdi�erential, for more details,the reader is referred to [MiT04℄ . Moreover, (2.7b) is an immediate onsequene ofthe fat that q ∈ S(t) is the unique minimizer of the funtional q̂ 7→ E(t, q̂)+Ψ(q̂−q),whih is still κ-uniformly onvex (f. [MPP08, Theorem 4.1℄).To establish (2.7a) we �rst observe that η ∈ ∂Ψ(0) implies ‖η‖Q′ ≤ cΨ beause of(2.1b). Now let Λ = supt∈[0,T ] ‖DqE(t, 0)‖Q′ and estimate
κ‖q‖2

Q = κ‖q−0‖2
Q ≤ 〈DqE(t, q)−DqE(t, 0), q−0〉

≤
(
‖DqE(t, q)‖Q′+‖DqE(t, 0)‖Q′

)
‖q‖Q ≤

(
cΨ+Λ

)
‖q‖Q,whih implies that (2.7a) holds with CR

0 =
(
cΨ+Λ

)
/κ. This proves Part (b).Part () follows easliy form Part (a), sine the minimizer satis�es −DqE(t, q∗) ∈

∂Ψ(q∗−q0) ⊂ ∂Ψ(0). �4



We treat now the question of the error estimate of spae-time disretizations. Letus hoose a set of parameters h ∈ (0, 1] (mesh sizes) having in mind the limit h→ 0and let Qh be losed subspaes of Q. Typially, Qh is a �nite-dimensional subspaeof Q, like a �nite-element spae. By onvention, let Q0
def
= Q to inlude the full asevia h = 0.It is onvenient to introdue the set of stable states Sh(t) for any t ∈ [0, T ] by simplyreplaing Q by Qh in (2.5).We reall now that for all h ∈ [0, 1] the rate-independent variational inequality(2.4) restrited to Qh admits a unique solution qh : [0, T ] → Qh for any givenstable initial data q0

h, i.e, q0
h ∈ Sh(0). This existene theory has been developed in[MiT04℄ and is based on the onstrution of a sequene of inremental minimizationproblems. The theory avoids any ompatness arguments and uses smoothnessto obtain strong onvergene. More preisely, we onsider a seond approximationparameter τ ∈ (0, T ] (time step) and a partition Πτ = {0 = tτ0 < tτ1 < . . . < tτkτ = T}with

tτk − tτk−1 ≤ τ for k = 1, . . . , kτ .We let q0
τ,h

def
= q0

h and we onsider the following inremental problems:(IP)τ,h

{for k = 1, . . . , kτ �nd
qk
τ,h ∈ Argmin{ E(tτk, q̂h)+Ψ(q̂h−qk−1

τ,h ) | q̂h ∈ Qh

}
.By uniform onvexity and ontinuity, whih implies weak lower semiontinuity, thesolutions qk

τ,h exist and are uniquely determined. We de�ne an approximate solution
qτ,h : [0, T ] → Qh as the pieewise a�ne interpolants given by

qτ,h(t)
def
=

tτ
k
−t

tτ
k
−tτ

k−1

qk−1
τ,h +

t−tτ
k−1

tτ
k
−tτ

k−1

qk
τ,h for t ∈ [tτk−1, t

τ
k], k = 1, . . . , kτ , (2.8)where qk

τ,h solves (IP)τ,h.Then, for eah �xed h ∈ [0, 1], we show that a subsequene of qτ,h has a limit as τtends to 0 and this limit funtion qh : [0, T ] → Qh satis�es (2.4), where Q is replaedby Qh.In rate-independent problems uniqueness results and Lipshitz-ontinuous depen-dene on the initial data are rather exeptional, as usually strong assumptions onthe nonlinearities are needed, see [MiT04, MiR07℄. In the present ase these assump-tions hold and we are able to onlude for the onvergene of the whole sequene
qτ,h to the unique solution of (Qh, E ,Ψ, q0

h). Let us summarize this disussion in thefollowing statement, whih is a slight generalization of Theorem 7.1 in [MiT04℄, inpartiular sine we state uniformity in h ≥ 0.Theorem 2.2 Assume (2.1) and (2.2). Then, for all h ∈ [0, 1] and all q0
h ∈ Sh(0),there exists a unique solution qh ∈ CLip([0, T ],Qh) of the initial-value problem5



(Q, E ,Ψ, q0
h). Moreover, there exist positive onstants CR

0 , CR
1 and C̄ suh that,for all h ∈ [0, 1] and all partitions Πτ , we have

‖qτ,h(t)‖Q ≤ CR
0 , ‖qh(t)‖Q ≤ CR

0 for all t ∈ [0, T ]; (2.9a)
‖q̇τ,h(t)‖Q ≤ CR

1 , ‖q̇h(t)‖Q ≤ CR
1 for a.a. t ∈ [0, T ]; (2.9b)

‖qτ,h(t)−qh(t)‖Q ≤ C̄
√
τ for all t ∈ [0, T ]. (2.9)The important fat is that estimate (2.9) for the time approximation is uniform in

h. The reader is referred to the Appendix for the detailed proof of (2.9) whih is aruial ingredient to obtain the error estimate of spae-time disretizations. Condi-tion (2.9a) follows from Propostion 2.1 by ombining parts (b) and (). Conerning(2.9b), we leave the veri�ation to the reader sine it su�es to follow the ideasdeveloped in [MiT04℄.We are now addressing the question of the limit h→ 0. For this, we have to imposesuitable onditions that allow us to approximate elements in Q via elements of Qh.Again we will use smoothness and uniform onvexity in the spirit of Setion 7.2in [MiT04℄. The approximation ondition for our error bounds involves additionalsymmetri operators Bh ∈ Lin(Q,Q′) and reads as follows:
∃CA, CB > 0 ∀h ∈ (0, 1] ∀t ∈ [0, T ], qh ∈ Sh(t), q ∈ S(t), w ∈ Q ∃vh ∈ Qh :

|〈Bhq, q〉Q| ≤ CBhβ, (2.10a)
〈DqE(t, qh), vh−w〉Q+Ψ(vh−w) ≤ CA

(
hβ+‖qh−q‖2

Q

)
‖w‖Q+〈Bhq, w〉Q. (2.10b)This ondition is formulated in suh a way that we still see the interplay between thepotential fores DqE(t, q) and the dissipation Ψ, beause of the de�nition of S and

Sh. Moreover, the stability sets are usually muh smaller to turn (2.10) into weakerstatements than those obtained by onsidering qh and q in large balls. Clearly,ondition (1.3) implies (2.10) with Bh ≡ 0.Theorem 2.3 Assume that Q, Qh, E and Ψ satisfy (2.1), (2.2), and that (2.10)hold. Then, there exists a onstant C∗ > 0 suh that, for any h ∈ (0, 1], q0
h ∈ Sh(0),any partition Πτ , and any q0 ∈ S(0), the unique solution q of the initial-valueproblem (Q, E ,Ψ, q0) satis�es the estimate

‖qτ,h(t)−q(t)‖Q ≤ C∗

(
hβ/2+

√
τ+‖q0

h−q0‖Q
) for all t ∈ [0, T ], (2.11)where qτ,h : [0, T ] → Qh is de�ned via (2.8) with q0

τ,h = q0
h.There are two possible strategies to establish the desired result. For eah �xed

h ∈ (0, 1] we may disretize in time and show that the error between the time-disrete qτ,h and time-ontinuous solutions qh an be ontrolled by √
τ , uniformly in

h. Then, we an use variational inequalities on the time-ontinuous level to estimate
‖qh(t)−q(t)‖2

Q. This is the approah of the proof given below. Another alternative6



would be to onsider a �xed time-disretization and to estimate ‖qk
τ,h−qk

τ‖2
Q uni-formly with respet to τ and k = 1, . . . , kτ (f. [AMS08℄).In the following, the notations for the onstants introdued in the proofs are validonly in the proof.Proof. Sine the �rst term in the right-hand side of

‖qτ,h(t)−q(t)‖Q ≤ ‖qτ,h(t)−qh(t)‖Q + ‖qh(t)−q(t)‖Q, (2.12)is already estimated in (2.9) it remains to estimate the seond one. Sine qh solves
(Qh, E ,Ψ, q0

h) and q solves (Q, E ,Ψ, q0) we have the two variational inequalities
∀vh ∈ Qh : 〈DqE(t, qh(t)), vh−q̇h(t)〉Q + Ψ(vh) − Ψ(q̇h(t)) ≥ 0, (2.13)
∀v ∈ Q : 〈DqE(t, q(t)), v−q̇(t)〉Q + Ψ(v) − Ψ(q̇(t)) ≥ 0, (2.14)whih hold a.e. in (0, T ). We may hoose v = q̇h(t) in (2.14) and add it to (2.13),obtaining

〈DqE(t, qh(t)), vh−q̇h(t)〉Q + 〈DqE(t, q(t)), q̇h(t)−q̇(t)〉Q + Ψ(vh) − Ψ(q̇(t)) ≥ 0.Employing the triangle inequality (2.1) we �nd
〈DqE(t, qh(t))−DqE(t, q(t)), q̇h(t)−q̇(t)〉Q ≤ 〈DqE(t, qh(t)), vh−q̇(t)〉Q + Ψ(vh−q̇(t)).Sine qh(t) ∈ Sh(t) and q(t) ∈ S(t) we an use (2.10b) and �nd

〈DqE(t, qh(t))−DqE(t, q(t)), q̇h(t)−q̇(t)〉Q
≤ CA

(
hβ+‖qh(t)−q(t)‖2

Q

)
‖q̇(t)‖Q + 〈Bhq(t), q̇(t)〉Q,

(2.15)where we took advantage from the fat that vh in (2.13) was arbitrary. De�ne now
γ(t)

def
= 〈DqE(t, qh(t))−DqE(t, q(t)), qh(t)−q(t)〉Q ≥ κ‖qh(t)−q(t)‖2

Q, (2.16)where we used the κ-uniform onvexity of E . We have
γ̇ = 〈∂tDqE(t, qh)−∂tDqE(t, q), qh−q〉Q + 2〈DqE(t, qh)−DqE(t, q), q̇h−q̇〉Q

+ 〈DqE(t, q)−DqE(t, qh)+D2
qE(t, qh)[qh−q], q̇h〉Q

+ 〈DqE(t, qh)−DqE(t, q)+D2
qE(t, q)[q−qh], q̇〉Q.Using the smoothness of E , f. (2.2), (2.15) implies that there exists C1 > 0 (inde-pendent of h) suh that

γ̇ ≤ 0 + 2CACR
1 h

β + 2〈Bhq, q̇〉Q + C1

(
‖q̇‖Q+‖q̇h‖Q

)
‖qh−q‖2

Q.Owing to Theorem 2.2, (2.16), and the notation Ĉ def
= 2CR

1 max
(
CA, C1

), we deduethat
γ̇ ≤ Ĉ

(
hβ+

γ

κ

)
+ 2〈Bhq, q̇〉Q.7



Multipliation by e−
bCt/κ and integration over (0, t) results in

γ(t)e−
bCt/κ ≤ γ(0) + κ

(
1−e−

bCt/κ
)
hβ +

∫ t

0

2e−
bCs/κ〈Bhq(s), q̇(s)〉Qds.We multiply now by e

bCt/κ and integrate by parts the last term on the right-handside. Sine Bh is a symmetri operator, we obtain
γ(t) ≤ γ(0)e

bCt/κ + κ
(
e

bCt/κ−1
)
hβ +

[
e

bC(t−s)/κ〈Bhq(s), q(s)〉Q
]t

0

+
bC
κ

∫ t

0

e
bC(t−s)/κ〈Bhq(s), q(s)〉Qds.Sine q(t) ∈ S(t), ondition (2.10a) allows us to estimate the last two terms on theright-hand side, and we obtain

κ‖qh(t) − q(t)‖2
Q ≤ γ(t) ≤ e

bCt/κ
(
γ(0) + ĉ hβ) where ĉ = κ + 2CB. (2.17)Note that q(0) and qh(0) are bounded, uniformly with respet to h. Hene weonlude that there exists C2 > 0 (independent of h) suh that γ(0) ≤ C2‖q0

h−q0‖2
Q.This implies that the solutions q : [0, T ] → Q and qh : [0, T ] → Qh of the rate-independent systems (Q, E ,Ψ, q0) and (Qh, E ,Ψ, q0

h), respetively, satisfy
‖qh(t)−q(t)‖2

Q ≤ 1

κ
e

bCT/κ
(
C2‖q0

h−q0‖2
Q + ĉ hβ).Together with (2.12) this ompletes the proof. �Remark 2.4 From the proof it is lear that we may replae the symmetri linearoperators Bh in (2.10) by more general funtionals Bh ∈ C1(Q,R). Instead of(2.10a) one requires |Bh(q)| ≤ CBhβ, and 〈Bhq, w〉 is replaed by 〈DqBh(q), w〉 in(2.10b) and elsewhere.3 Spei�ation to the semi-linear aseIn this setion, we apply the abstrat theory developed above to the ase where theenergy has a leading-order quadrati part and a lower-order nonlinear part H thatis still onvex. Moreover, the dissipation potential will also be of lower-order. Then,we will be able to exploit the situation where the approximation of points q ∈ Q viapoints qh ∈ Qh has a order of onvergene in the weaker norm ‖·‖X , where X is aBanah spae suh that Q ⊂ X densely and ontinuously and X ′ ⊂ Q′. We will usethe symbol 〈·, ·〉X for the duality pairing between X ′ and X . Reall that we havethat

∀x′ ∈ X ′ ∀q ∈ Q : 〈x′, q〉X = 〈x′, q〉Q.8



More preisely, the energy funtional has the following form:
∀t ∈ [0, T ] ∀q ∈ Q : E(t, q)

def
= 1

2
〈Aq, q〉Q + H(q) − 〈ℓ(t), q〉Q, (3.1a)where

A ∈ Lin(Q,Q′), A = A
∗, and ∃κ > 0 ∀q̂ ∈ Q : 〈Aq̂, q̂〉Q ≥ κ‖q̂‖2

Q, (3.1b)
H ∈ C3(Q; R), H : Q → R onvex, and DqH ∈ C0(Q;X ′), (3.1)
ℓ ∈ C3([0, T ];X ′). (3.1d)We all ℓ the external loading and H the hardening potential. Clearly, (3.1) impliesthat E satis�es assumptions (2.2) and that the derivative is semilinear, namely

DqE(t, q) = Aq + DqH(q) − ℓ(t).For the dissipation funtional Ψ we strengthen the ondition (2.1) as follows:
Ψ : Q → [0,∞) satis�es (2.1) and ∃CΨ > 0 ∀q ∈ X : Ψ(q) ≤ CΨ‖q‖X . (3.2)The next result establishes a new a priori estimate for solutions, or more generallyfor stable states. Taking advantage of the semilinear struture we obtain a boundfor ‖Aq‖X ′, whih is ruial to establish the approximation ondition (2.10b). Forthis result, we introdue the notations CH

1
def
= sup‖q‖Q≤CR

0
‖DqH(q)‖X ′ and Cℓ

0
def
=

supt∈[0,T ]‖ℓ(t)‖X ′.Proposition 3.1 Assume that (3.1) and (3.2) hold. Then, there exists a onstant
CX suh that for all (t, q) with q ∈ S(t) we have DqE(t, q),Aq ∈ X ′, ‖DqE(t, q)‖X ′ ≤
CΨ, and ‖Aq‖X ′ ≤ CX .Proof. By Proposition 2.1, there exists a onstant CR

0 > 0 suh that ‖q‖Q ≤ CR
0and −DqE(t, q) ∈ ∂Ψ(0) for all q ∈ S(t). The seond ondition in (3.2) implies thatevery η ∈ ∂Ψ(0) ⊂ Q′ satis�es |〈η, v〉| ≤ CΨ‖v‖X . Thus, we have η ∈ X ′ ⊂ Q′and ‖η‖X ′ ≤ CΨ for every η ∈ ∂Ψ(0). We �nd Aq = DqE(t, q) − DqH(q) + ℓ(t) =

−η − DqH(q) + ℓ(t) ∈ X ′ with the bound
‖Aq‖X ′ ≤ ‖η−DqH(q)+ℓ(t)‖X ′ ≤ CΨ + CH

1 + Cℓ
0.Thus, the assertion holds with CX def

= CΨ + CH
1 + Cℓ

0. �As a orollary, every solution of (Q, E ,Ψ) satis�es ‖Aq(t)‖X ′ ≤ CX for all t ∈ [0, T ].To satisfy the approximation ondition we have to �nd vetors vh ∈ Qh approxi-mating a given w ∈ Q in a suitable way. For this we assume the existene of linearoperators Ph : Q → Qh with the following properties. There exist positive onstants
CP

0 and CP

i and positive exponents αi for i = 1, 2, 3, suh that for all h ∈ (0, 1],
v ∈ Q, and vh ∈ Qh we have

‖Phv‖Q ≤ CP

0 ‖v‖Q, (3.3a)
‖(Ph−I)v‖X ≤ CP

1 h
α1‖v‖Q, (3.3b)

‖(P∗
hA−APh)v‖Q′ ≤ CP

2 h
α2‖v‖Q, (3.3)

‖(Ph−I)vh‖Q ≤ CP

3 h
α3‖vh‖Q, (3.3d)9



where I denotes the identity on Q.In Subsetion 4.2 we will see that the above onvergene rates an be easily realizedin pratie. In partiular, if Ph is a projetion, then (3.3d) holds with CP

3 = 0 andany α3 > 0. Moreover, if Ph ommutes with A like Galerkin projetions, then (3.3)holds with CP

2 = 0 and any α2 > 0. We keep the more general setting here, sinein general ases the Galerkin projetion may not work well with the funtionals Hand Ψ, see e.g. [AMS08, MiR06℄.In light of the above proposition the following result will be useful in the sequel.It provides an approximation result for q ∈ Q in the Q-norm under the additionalassumption of higher regularity, i.e., Aq ∈ X ′.Lemma 3.2 Assume (3.1b) and (3.3). Then, there exists CP

4 > 0 suh that foreah h ∈ (0, 1] and q ∈ Q with Aq ∈ X ′ we have the estimate
‖(Ph−I)q‖Q ≤ CP

4 max
{(
hα1‖q‖Q‖Aq‖X ′

)1/2
, hα2‖q‖Q, hα3/2‖q‖Q

}
. (3.4)Proof. To estimate ηh

def
= ‖(Ph−I)q‖Q we employ A via (3.1b) and (3.3). Using theabbreviation R def

= ‖q‖Q we obtain
κη2

h ≤ 〈A(Ph−I)q, (Ph−I)q〉Q
= 〈(P∗

hA−APh)(Ph−I)q, q〉Q + 〈A(Ph−I)Phq, q〉Q − 〈A(Ph−I)q, q〉Q
≤ ηhC

P

2 h
α2R+ CP

3 h
α3‖Phq‖Q‖A‖Lin(Q,Q′)R + ‖Aq‖X ′‖(Ph−I)q‖X

≤ ηhC
P

2 h
α2R+ CP

3 C
P

0 h
α3‖A‖Lin(Q,Q′)R

2 + ‖Aq‖X ′CP

1 h
α1R

≤ κ

2
η2

h +
1

2κ

(
CP

2

)2
h2α2R2 + CP

3 C
P

0 h
α3‖A‖Lin(Q,Q′)R

2 + ‖Aq‖X ′CP

1 h
α1R,where we used y1y2 ≤ κ

2
y2

1 + 1
2κ
y2

2 in the last passage. Caneling the �rst term onthe right-hand side we have the desired estimate. �Before formulating the main theorem we give the typial situation we have in mind.Note that in the examples 3.3 and 3.7, the derivative with respet to x is denotedby (·)′.Example 3.3 Consider Ω = (0, 1), Q = H1
0(Ω), ‖q‖2

Q =
∫ 1

0
(q′(x))2 dx, X = L2(Ω),and Au = −(au′)′ where a ∈ Cθ([0, 1]) with a(x) ≥ κ > 0 for all x ∈ Ω and

θ ∈ (0, 1]. For h ∈ (0, 1] subdivide Ω into k subintervals of equal length, suhthat 1 ≥ hk > 1−1/k. Then, we de�ne Qh as the ontinuous and pieewise a�nefuntions on the orresponding intervals. Moreover Ph as the projetor de�ned via
(Phq)

′(x) = k
∫ j/k

(j−1)/k
q′(y) dy for x ∈

(
j−1
k
, j

k

). Then, (3.3) holds with the exponents
α1 = 1, α2 = θ, arbitrary α3 > 0, and the onstants CP

0 = 1, CP

1 = 1/π, CP

2 =
‖a‖Cθ([0,1]), and CP

3 = 0 .The approximation in Q provided in Lemma 3.2 is not always optimal. If a ∈
C1([0, 1]), then Aq ∈ X ′ = L2(Ω) implies q ∈ H2(Ω) and, hene, ‖(Ph−I)q‖H1 ≤
Ch‖q‖H2, while the lemma just gives the bound h1/2.10



Using all the above assumptions we will now be able to establish the approximationondition and hene ontrol the spae-time disretization error via Theorem 2.3. Inaddition, we also onstrut approximate initial onditions q0
h ∈ Sh(0) whih have thesame approximation order. Note that the error estimate provides the same order ofapproximation as is obtained via Ph in Lemma 3.2.Theorem 3.4 Assume (3.1), (3.2) and (3.3). Then, there exists Csl

∗ > 0 suh thatfor all q0 ∈ S(0), h ∈ (0, 1], q0
h ∈ Sh(0), and all partitions Πτ we have

‖qτ,h(t)−q(t)‖Q ≤ Csl
∗

(
hβ/2+

√
τ+‖q0−q0

h‖Q
) for all t ∈ [0, T ] (3.5)with β def

= min{α1, 2α2, α3}, where q : [0, T ] → Q is the solution of (Q, E ,Ψ, q0) and
qτ,h : [0, T ] → Qh is de�ned via (2.8) with q0

τ,h = q0
h.Moreover, there exists a positive onstant Csl

0 suh that for eah q0 ∈ S(0) thereexists q0
h ∈ Sh(0) suh that ‖q0

h−q0‖Q ≤ Csl
0 h

β/2.The proof of this result is deomposed in two propositions. The �rst part, giving theestimate (3.5), follows diretly from Theorem 2.2 if we establish the approximationondition (2.10). The seond part about the existene of good q0
h is ontained inProposition 3.6.Proposition 3.5 Assume (3.1), (3.2), and (3.3). Then, the approximation on-dition (2.10) holds with vh = Phw, Bh

def
= −

(
(A(Ph−I)+(A(Ph−I))∗

), and β =
min{α1, 2α2, α3} where αi, i = 1, 2, 3, are de�ned in (3.3).Proof. We �x t ∈ [0, T ] and take any q ∈ S(t), qh ∈ Sh(t), and w ∈ Q. ByPropositions 2.1 and 3.1 and by (3.3b) we have

‖q‖Q ≤ CR
0 , ‖qh‖Q ≤ CR

0 , ‖Aq‖X ′ ≤ CX , ‖vh−w‖X ≤ CP

1 h
α1‖w‖Q. (3.6)With the de�nition (3.1a) of E and assumptions (3.1) and (3.2), we get

〈DqE(t, qh), vh−w〉Q + Ψ(vh−w) = 〈Aqh+DqH(qh)−ℓ(t), vh−w〉Q + Ψ(vh−w)

≤ 〈A(qh−q), vh−w〉Q +
(
‖Aq‖X ′+‖DqH(qh)‖X ′+‖ℓ(t)‖X ′+CΨ

)
‖vh−w‖X .Using CH

1 and Cℓ
0 as de�ned above, we �nd

〈DqE(t, qh), vh−w〉Q + Ψ(vh−w)

≤ 〈A(qh−q), vh−w〉Q +
(
CX+CH

1 +Cℓ
0+C

Ψ
)
CP

1 h
α1‖w‖Q.

(3.7)Sine α1 ≥ β the seond term in the above right hand side is as required in (2.10b).Hene, it remains to estimate the �rst term on the right-hand side of (3.7). Reallingthe de�nition of Bh and using vh = Phw some elementary rearrangements give
〈A(qh−q), vh−w〉Q = 〈A(qh−q), (Ph−I)w〉Q
= 〈(P∗

hA−APh)(qh−q), w〉Q + 〈A(Ph−I)qh, w〉Q + 〈Aq, (Ph−I)w〉Q + 〈Bhq, w〉Q.11



Using (3.3) and Young's inequality , we obtain
〈A(qh−q), (Ph−I)w〉Q
≤

(
CP

2 h
α2‖qh−q‖Q+CP

3 ‖A‖Lin(Q,Q′)h
α3‖qh‖Q+CP

1 ‖Aq‖X ′hα1
)
‖w‖Q + 〈Bhq, w〉Q

≤
(1

2

(
CP

2

)2
h2α2+

1

2
‖qh−q‖2

Q+CP

3 C
R
0 ‖A‖Lin(Q,Q′)h

α3+CP

1 C
Xhα1

)
‖w‖Q+〈Bhq, w〉Q.Inserting this into (3.7) we have established (2.10b).To obtain (2.10a) we simply use 〈Bhq, q〉Q = −2〈Aq, (Ph−I)q〉Q and obtain

|〈Bhq, q〉Q| ≤ 2‖Aq‖X ′‖(Ph−I)q‖X ≤ 2CXCP

1 h
α1‖q‖Q ≤ 2CXCP

1 C
R
0 h

α1 ,whih gives (2.10a). This �nishes the proof. �The next proposition supplies a useful initial ondition q0
h for the spatially disretizedrate-independent systems (Qh, E ,Ψ). For a given q0 ∈ Q and h ∈ (0, 1] we de�ne

q0
h

def
= Argmin{E(0, q̂h)+Ψ(q̂h−Phq

0) | q̂h ∈ Qh}. (3.8)By the uniform onvexity of E(0, ·) the value is uniquely de�ned. Moreover, thetriangle inequality (2.1) implies
E(0, q0

h) ≤ E(0, q̂h)+Ψ(q̂h−Phq
0)−Ψ(q0

h−Phq
0) ≤ E(0, q̂h)+Ψ(q̂h−q0

h),for all q̂h ∈ Qh, i.e. q0
h ∈ Sh(0). We now prove that it is lose to Phq

0 and q0 if
q0 ∈ S(0).Proposition 3.6 Assume (3.1), (3.2), and (3.3). Then, there exists Csl

0 > 0 suhthat for all q0 ∈ S(0) and all h ∈ (0, 1] the value q0
h ∈ Qh de�ned via (3.8) satis�es

‖q0
h−q0‖Q ≤ Csl

0 h
β/2, (3.9)with β = min{α1, 2α2, α3} where αi, i = 1, 2, 3, are de�ned in (3.3).Proof. Sine q0 ∈ S(0) we an apply (2.7b) for q̂ = q0

h, we obtain
κ

2
‖q0

h−q0‖2
Q ≤ E(0, q0

h) − E(0, q0) + Ψ(q0
h−q0)

≤ E(0, q0
h) − E(0, q0) + Ψ(q0

h −Phq
0) + Ψ(Phq

0 − q0)

≤ E(0,Phq
0) + E(0, q0) + Ψ((Ph−I)q0),

(3.10)where we have used the triangle inequality (2.1) in the seond estimate and thefat that q0
h is a minimizer in the third. De�ne

I(q0,Phq
0)

def
=

∫ 1

0

〈DqE(0, q0+s(Ph−I)q0)−DqE(0, q0), (Ph−I)q0〉Qds.12



Thus using Taylor's formula, (3.2) and Proposition 3.1, we dedue from (3.10) that
κ

2
‖q0

h−q0‖2
Q ≤ I(q0,Phq

0) + 〈DqE(0, q0), (Ph−I)q0〉Q + Ψ((Ph−I)q0)

≤ I(q0,Phq
0) + ‖DqE(0, q0)‖X ′‖(Ph−I)q0‖X+CΨ‖(Ph−I)q0‖X

≤ I(q0,Phq
0) + 2CΨCP

1 h
α1‖q0‖Q.

(3.11)For I(q0,Phq
0)) we use that, by (3.3a) and (2.9a), we know ‖Phq

0‖Q ≤ CP

0 C
R
0 . Onthe ball of radius (1+CP

0 )CR
0 the seond derivative of E is bounded by a onstant

CE
2 > 0 and we obtain I(q0,Phq

0) ≤ CE
2

2
‖(Ph−I)q0‖2

Q. Sine q0 ∈ S(0), Proposition3.1 yields ‖Aq0‖X ′ ≤ CX . Thus, Lemma 3.2 implies that there exists CI > 0 suhthat I(q0,Phq
0) ≤ CIhβ . Hene we infer from (3.11) the desired result. �Finally, we notie that the power of h in (3.3b) and (3.3) depends on the hoie of

X . Of ourse, the optimal hoie is to make X as big as allowed by the ondition(3.2) for Ψ. We illustrate this in the following example, whih gives a �rst examplefor onvergene rates of spae-time disretizations.Example 3.7 We onsider the situation of Example 3.3 with Ω = (0, 1), Q =

H1
0(Ω), E(t, q) =

∫ 1

0

(
1
2
(q′(x))2+H(q(x))−ℓ(t, x)·q(x)

)
dx and Ψ(q̇) =

∫ 1

0
|q̇| dx. Weassume that H ∈ C3(R; R) is onvex and that ℓ ∈ C1([0, 1]; L∞(Ω)). Thus, theabstrat nonsmooth di�erential inlusion (1.1) takes the expliit form

0 ∈ Sign
(
q̇(t, x)

)
− q′′(t, x) + DqH(q(t, x)) − ℓ(t, x) for (t, x) ∈ [0, T ] × Ω,

q(t, 0) = q(t, 1) = 0 for t ∈ [0, T ].Here �Sign� denotes the multi-valued signum funtion with Sign(0) = [−1, 1].As in Example 3.3 the subspaes Qh ontain the pieewise a�ne funtions on anequidistant partitions of Ω = (0, 1) and Ph : Q → Qh are the orthogonal Galerkinprojetors. Then, taking X = Lp(Ω) with p ∈ [1,∞], we may prove that the poweris α1 = α̂(p)
def
= min

(
1, 1

2
+1

p

) in (3.3b). Sine α2 and α3 may be taken as big as welike, our main approximation result (3.5) in Theorem 3.4 gives the following errorbound
‖qτ,h(t)−q(t)‖H1 ≤ Csl

∗

(√
τ+hbα(p)/2+‖qτ,h(0)−q(0)‖H1

) for t ∈ [0, T ].By hoosing p ∈ [1, 2] we obtain the spatial onvergene rate h1/2.4 Appliation to isothermal Souza-Aurihio model4.1 The isothermal Souza-Aurihio modelLet us start by brie�y realling some modeling issues. The reader is referred to[SMZ98, AuP04, AuP02, ARS07℄ for additional details and motivation.13



We onsider a material with a referene on�guration Ω ⊂ R
d with d ∈ {2, 3}. Weassume that Ω is an open bounded set with Lipshitz boundary. This body mayundergo displaements u : Ω → Rd and phase transformations. The latter will beharaterized by a mesosopi internal variable z : Ω → R

d×ddev where R
d×ddev is thespae of d× d tensors with vanishing trae. In partiular, the tensor z stands as theinelasti part of the deformation due to the martensiti phase transformation.The set of admissible displaements F is hosen as a suitable subspae of H1(Ω; Rd)by presribing homogeneous Dirihlet data on the measurable subset ΓDir of ∂Ω, i.e.,

F def
=

{
u ∈ H1(Ω; Rd)

∣∣ u = 0 on ΓDir }
.Non-homogeneous Dirihelet onditions ould be onsidered as well by letting u =

ũ + uDir with ũ ∈ F . The internal variable z belongs to Z def
= H1(Ω; Rd×ddev ) and welet Q def

= F × Z.We hoose X def
= XF × XZ where, given ζ ∈ [0, 1/2),
XF

def
= L2(Ω; Rd) ×H−ζ(ΓNeu; Rd), XZ

def
= L2(Ω; Rd×ddev )where ΓNeu def

= ∂Ω \ ΓDir. Moreover, we will denote by 〈·, ·〉XF
the duality pairingbetween X ′

F and XF . In partiular, note that the injetion i : Q → X givenby iu
def
= (u, γu), where γ : H1(Ω) → L2(ΓNeu) in the standard trae operator, isontinuous and dense. Hene, one has that
X ′ = X ′

F × X ′
Z =

(
L2(Ω; Rd) ×Hζ

0 (ΓNeu; Rd)
)
× L2(Ω; Rd×ddev ) ⊂ Q′.We will denote the states by q

def
= (u, z). The linearized strain tensor is given by

e(u)
def
= 1

2
(∇u+∇uT) ∈ Rd×d

sym where Rd×d
sym is the spae of symmetri d×d tensorsendowed with the salar produt v:w def

= tr(vTw) and the orresponding norm |v|2 def
=

v:v for all v, w ∈ R
d×d
sym . Here (·)T and tr(·) denote the transpose and the trae ofthe tensor , respetively. We assume that ΓDir has positive surfae measure so thatKorn's inequality holds, i.e. there exists CKorn > 0 suh that
∀u ∈ F : ‖e(u)‖2

L2(Ω;Rd×dsym )
≥ CKorn‖u‖2

H1(Ω;Rd). (4.1)For more details on Korn's inequality and its onsequenes, we refer to [KoO88℄ or[DuL76℄.The stored-energy potential takes the following form
E(t, u, z)

def
=

∫

Ω

(
W (x, e(u)(x), z(x))+

ν

2
|∇z(x)|2

)
dx− 〈l(t), u〉XF

. (4.2)Here ν is a positive oe�ient that is expeted to measure some nonloal interatione�et for the internal variable z, whereas W : Ω × Rd×d
sym × R

d×ddev → R is the stored-energy density and reads
W (x, e(u)(x), z(x))

def
=

1

2

(
(e(u)(x)−z(x)):C(e(u)(x)−z(x))

)
+ Ĥ(z(x)).14



In the latter, C is the elasti tensor, Ĥ : R
d×ddev → R represents the hardeningpotential. For simpliity, we will omit any dependene on the material point x ∈ Ω.Moreover l(t) denotes an applied mehanial loading of the form

〈l(t), u〉XF

def
=

∫

Ω

fappl(t, x)·u(x)dx+

∫

ΓNeu gappl(t, x)·u(x)dΓ, (4.3)where fappl and gappl are given body fores and a surfae trations on ΓNeu.In [SMZ98, AuS01, AuP04℄, the authors are interested in Ĥ = HSoAu with
HSoAu(z) def

= c1
√
δ2+|z|2 +

c2
2
|z|2 +

((|z|−c3)+)4

δ(1+|z|2) , (4.4)where c1 > 0 is an ativation threshold for initiation of martensiti phase transfor-mations, c2 > 0 measures the ourrene of hardening with respet to the internalvariable z, and c3 > 0 represents the maximum modulus of transformation strainthat an be obtained by alignment of martensiti variants. The original model isobtained in the limit δ → 0 in (4.4) and ν → 0 in (4.2). More preisely, Ĥ = Horgis de�ned as follows
Horg(z) def

= c1|z| +
c2
2
|z|2 + χ(z),where χ : R

d×ddev → [0,∞] is the indiator funtion of the ball {
z ∈ R

d×ddev ∣∣ |z| ≤ c3
}.To model the hystereti behavior of shape-memory materials, we de�ne the dissipa-tion potential as follows

ψ(v)
def
=

∫

Ω

ρ|v(x)|dx, where ρ > 0. (4.5)The material onstitutive relation reads as the following doubly nonlinear di�erentialinlusion (
0

∂ψ(ż)

)
+

(
∂uE(t, q)
∂zE(t, q)

)
∋

(
0
0

)
, (4.6)where ∂uE(t, q) = −div (C(e(u)−z))−l(t), ∂zE(t, q) = −C(e(u)−z)+∂zĤ(z)−ν∆z.Hene, the �rst omponent provides the elasti equilibrium equations, whereas theseond omponent gives the �ow law for the internal variable z.De�ning q = (u, z), Ψ(q̇) = ψ(ż), and 〈ℓ(t), q〉Q = 〈l(t), u〉XF
, system (4.6) an berewritten in the abstrat form

∂Ψ(q̇) + Aq + DqH(q) − ℓ(t) ∋ 0, (4.7)where H(q)
def
=

∫
Ω
H(u(x), z(x))dx with H(u, z) = Ĥ(z) − c2

2
|z|2 and

A
def
=

(
−div(Ce(·)) div (C(·))

−Ce(·) C(·) − ν∆(·) + c2I(·)

)
. (4.8)15



Here we assume that the elastiity tensor C is a symmetri positive de�nite map,i.e.
∃µ > 0 ∀e ∈ R

d×d
sym : e:C:e ≥ µ|e|2. (4.9)By assuming fappl ∈ C3([0, T ]; L2(Ω; Rd)) and gappl ∈ C3([0, T ];Hζ

0(ΓNeu; Rd)) in(4.3) we readily hek that ℓ ∈ C3([0, T ];X ′) (see (3.1d)). Moreover, we may provethat the funtional H built on H = HSoAu satis�es (3.1). Furthermore, by using(4.9), we infer that (3.1b) holds for A de�ned in (4.8). Then it follows that (3.1) issatis�ed. This is however not the ase for the original model with Horg, the readeris referred to [AMS08℄ for some disussion on the limit (ν, δ) → (0, 0).Existene and uniqueness results for a temperature dependent variant of (4.7) wereobtained in [MiP07℄. Following [AuS01℄ a funtion Ĥ(z, θ) = HSoAu(z, θ) is on-sidered by allowing the onstants ci(θ), i = 1, 2, 3, in (4.4) and C(θ) to depend onthe temperature θ. Then, the authors assumed that the temperature is given as anapplied load, θ = Θ(t, x), while here we treat a simpler ase where the temperatureis onstant. The assumption to onsider the temperature given as an applied loadis aeptable if the hanges of the loading are slow and the body is small in at leastone diretion. Hene, the exessive or missing heat an be balaned through theenvironment.4.2 The spatial disretizationBefore introduing the spatial disretization, we shall reinfore our assumptionsby asking Ω to be a polyhedron. This requirement is quite lassial and basiallymeant to simplify the forthoming presentation. In partiular, our analysis an begeneralized to pieewise smooth domains by means of additional tehnialities (see,for instane, [BrS94, Cia02℄). Moreover, for the sake of de�niteness we require thateah fae of ∂Ω is ontained either in ΓDir or in ΓNeu.Our spae-disrete analysis will follow from the H1+σ regularity of the assoiatedboundary value problem for linearized elastostatis and the Neumann problem.Namely, we expliitly require that Ω, ΓDir, and C satisfy the following ondition:
∃σ ∈ (0, 1] ∃C̃ > 0 ∀f ∈ X ′

F ∀g ∈ L2(Ω) :

‖uf‖H1+σ(Ω;Rd) ≤ C̃‖f‖X ′
F

and ‖ζg‖H1+σ(Ω) ≤ C̃‖g‖L2(Ω),
(4.10)where uf ∈ F and ζg ∈ H1(Ω) are the unique solution u and ζ , respetively, of

∀v ∈ F :

∫

Ω

Ce(u):e(v)dx = 〈f, v〉XF
,

∀η ∈ H1(Ω) :

∫

Ω

c2ζη + ν∇ζ ·∇ηdx =

∫

Ω

gηdx.The latter regularity requirement is quite natural and is ful�lled (with σ = 1)when ΓNeu = ∅ and Ω is either smooth [Cia86, Theorem 2.2-4, p.99℄ or a onvex16



polyhedron, see [Gri89℄ in 2D and [DKV88, EbF99℄ in 3D. Non-onvex polyhedronsan also be onsidered ( possibly with σ < 1) and results for the mixed Neumann-Dirihlet onditions are also available [EbF99℄. Additional details on regularityissues and asymptoti developments of solutions near orner points may be foundin [Kon67, Dau88, Ni92, Kne06℄, among others.Let us start from the following lemma whih is ruial to obtain the error estimatesfor spae-time disretizations of the Souza-Aurihio model. The lemma relates toProposition 3.1 where we now exploit the hoie X = XF × XZ . Another impor-tant feature is that the oupling between the elastiity problem and the Neumannproblöem for the internal variable is of lower order.Lemma 4.1 If (4.10) holds, then there exists CX
1 > 0 suh that for f ∈ X ′ theunique q ∈ Q solving Aq = f in Q′ satis�es

‖q‖H1+σ(Ω;Rd×R
d×ddev ) ≤ CX

1 ‖f‖X ′, (4.11)where σ ∈ (0, 1] is de�ned in (4.10).Proof. Owing to the oerivity (3.1b) of A we readily hek that there exists C1 > 0suh that
‖q‖Q ≤ ‖f‖Q′/κ ≤ C1‖f‖X ′. (4.12)Letting q = (u, z) and f = (f1, f2) ∈ X ′

F × X ′
Z , we have Aq = f if and only if

∀v ∈ F :

∫

Ω

Ce(v):e(u)dx =

∫

Ω

(−div(Cz))·vdx+ 〈f1, v〉XF
, (4.13)

∀w ∈ Z :

∫

Ω

(c2w:z+ν∇w:∇z)dx =

∫

Ω

(
f2+C(e(u)−z)

)
:wdx. (4.14)Using (4.12), the X ′-norm of the right-hand side (

f1−div(Cz), f2+C(e(u)−z)
) isbounded by C2‖f‖X ′. Moreover, (4.14) onsists of deoupled Neumann problemsfor the omponents of z. Thus, employing (4.10) we dedue

‖q‖H1+σ(Ω;Rd×R
d×ddev ) ≤ C̃‖(f1−div(Cz), f2+Ce(u))‖X ′ ≤ C̃C2‖f‖X ′,whih is the desired result. �We shall de�ne the spatial disretization by letting Fh and Zh be �nite-dimensionalsubspaes of F and Z, respetively. In partiular, assume to be given a regulartriangulation {Tk} of Ω (f. [QuV94℄) and hoose Fh and Zh to be the subspaesof ontinuous, pieewise polynomials of �xed degree m ≥ 1 on {Tk}. Finally, let

Qh
def
= Fh ×Zh and assume to be given linear projetors Πh : Q → Qh ful�lling

∀s ∈ (0, 1] ∃CΠ > 0 : ‖(Πh−I)q‖Q ≤ CΠhs‖q‖H1+s(Ω;Rd×R
d×ddev ). (4.15)17



The latter an be realized, for instane, by letting Πh be the L2 orthogonal projetor.The interpolation error ontrol of (4.15) is well-known for s = 1 and follows from[HP∗05, Lemma 5.6℄ for s ∈ (0, 1).The operator Ph : Q → Qh is instead de�ned to be the Galerkin projetion via A.Namely, for all q ∈ Q, we let Phq
def
= q̂h, where q̂h ∈ Qh is the unique solution of

〈Aq̂h, ph〉Q = 〈Aq, ph〉Q for all ph ∈ Qh. (4.16)It remains to prove that Ph de�ned above ful�lls (3.3); then we are in the positionto apply Theorem 3.4 to obtain expliit a priori error bounds for our spae-timedisretization of the quasistati evolution problem for the Souza-Aurihio model.Theorem 4.2 Assume that (4.10) holds. Then there exist CSoAu
∗ > 0 suh that forall h ∈ (0, 1] and all partitions Πτ of [0, T ], we have

‖qτ,h(t)−q(t)‖Q ≤ CSoAu
∗

(
hσ/2+

√
τ
) for all t ∈ [0, T ], (4.17)where q : [0, T ] → Q is a solution of (Q, E ,Ψ) and qτ,h : [0, T ] → Qh is de�ned via(2.8) and the initial ondition qτ,h(0) = Argmin

{
E(0, q̂h)+Ψ(q̂h−Phq(0))

∣∣ q̂h ∈ Qh

}.Proof. By the de�nition (4.16) we have Ph ◦ Ph = Ph and (3.3d) holds for any
α3 ≥ 0. Moreover, by using (4.16) we readily hek that, for all p, q ∈ Q,

〈(P∗
hA−APh)q, p〉Q = 〈Aq,Php〉Q − 〈APhq, p〉Q(4.16)

= 〈Aq,Php〉Q − 〈APhq,Php〉Q = 〈A(q−Phq),Php〉Q
(4.16)
= 0.Hene, (3.3) holds for any α2 ≥ 0. Further (3.3a) holds with CP

0 = ‖A‖Lin(Q,Q′)/κ,beause
κ‖Phq‖2

Q ≤ 〈APhq,Phq〉Q
(4.16)
= 〈Aq,Phq〉Q ≤ ‖A‖Lin(Q,Q′)‖q‖Q‖Phq‖Q.Finally, let us hek for property (3.3b) by means of the lassial duality tehniqueby Aubin and Nitshe [Aub67, Nit68℄. Fix q ∈ Q and, by letting JX : X → X ′be the Riesz mapping, de�ne ϕ ∈ Q as the unique solution of Aϕ = JX (Ph−I)q.Then, using A = A

∗ for arbitrary ϕh ∈ Qh we have
‖(Ph−I)q‖2

X = 〈JX (Ph−I)q, (Ph−I)q〉X = 〈Aϕ, (Ph−I)q〉Q
= 〈A(Ph−I)q, ϕ〉Q

(4.16)
= 〈A(Ph−I)q, ϕ−ϕh〉Q ≤ CP

5 ‖q‖Q‖ϕ−ϕh‖Qwhere CP

5
def
= ‖A‖Lin(Q,Q′) suph∈(0,1] ‖Ph−I‖Lin(Q,Q). Choosing ϕh = Πhϕ and exploit-ing (4.15) for s = σ with σ from (4.10) we arrive at

‖(Ph−I)q‖2
X ≤ CP

5 ‖q‖Q‖(Πh−I)ϕ‖Q ≤ CP

5 ‖q‖QCΠhσ‖ϕ‖H1+σ(Ω;Rd×R
d×ddev ).Using the de�nition of ϕ and the regularity theory provided in Lemma 4.1 we on-lude

‖(Ph−I)q‖2
X ≤ CP

5 ‖q‖QCΠhσCX
1 ‖(Ph−I)q‖X ,whih is the desired approximation result (3.3b) with α1 = σ. Hene, applyingTheorem 3.4 with β = α1 = σ, the desired result follows. �18



Remark 4.3 In the speial ase of a onvex referene domain Ω for ΓNeu = ∅, weobtain (4.17) with σ = 1.AppendixThe aim of this setion is to give the proof of (2.9). We follow the ideas developedin [MiT04℄ and keep trak of all onstants to see that they do not depend on h.Proof. We �rst reall that there exists CR
0 > 0 suh that all the solutions satisfy thea priori bound

qτ,h(t) ∈ BCR
0

def
=

{
q ∈ Q

∣∣‖q‖Q ≤ CR
0

} for all τ ∈ (0, T ], h ∈ [0, 1], t ∈ [0, T ](see Theorem 2.2).Let now the partition Πτ def
= {0 = tτ0 < tτ1 < · · · < tτkτ

= T} be given and de�ne Πτjby suessive bisetions, namely
Πτj

def
= {tτℓ + 2−jr(tτℓ − tτℓ−1) : ℓ = 1, . . . , kτ , r = 0, 1, . . . , 2j}.We shall assoiate to these partitions the orresponding solutions qτj ,h of the inre-mental problems for (Qh, E ,Ψ, qh(0)). We want to ompare qτj ,h and qτj+1,h. To doso, we de�ne E1 and E2 as follows: for tτk ∈ Πτj+1 , let t̄τk def

= max{sτ
n ∈ Πτj | sτ

n ≤ tτk},
E1(tτk, q)

def
= E(t̄τk, q) and E2(tτk, q)

def
= E(tτk, q) for tτk ∈ Πτj+1. Notie that qτj ,h and

qτj+1,h are the inremental solutions obtained with E1 and E2 on the partition Πτj+1 .For the sake of simpliity let us introdue the following notations:
∀tτk ∈ Πτj+1 : q1,k

τ,h

def
= qτj ,h(t

τ
k) and q2,k

τ,h

def
= qτj+1,h(t

τ
k),and ek

τ,h
def
= q1,k

τ,h−q2,k
τ,h and ηkµ

def
= µk−µk−1 where µ stands for tτ , qj

τ,h and eτ,h (and
γτ,h, see below). Sine qj

τ,h solves the inremental problems (IP)j,τ,h, we have
∀vh ∈ Qh : 〈DqE j(tτk, q

j,k
τ,h), vh−ηkq

j
τ,h〉Q + Ψ(vh) − Ψ(ηkq

j
τ,h) ≥ 0. (4.18)Choosing vh = ηkq

3−j
τ,h and adding the equations for j = 1, 2 gives

〈DqE1(tτk, q
1,k
τ,h)−DqE2(tτk, q

2,k
τ,h), ηkq

1
τ,h−ηkq

2
τ,h〉Q ≤ 0. (4.19)De�ne

γk
τ,h

def
=〈DqE1(tτk, q

1,k
τ,h)−DqE1(tτk, q

2,k
τ,h), q1,k

τ,h−q2,k
τ,h〉Q ≥ κ‖q1,k

τ,h−q2,k
τ,h‖2

Q=κ‖ek
τ,h‖2

Q. (4.20)Let us estimate the inrement
ηkγτ,h

def
= γk

τ,h − γk−1
τ,h = 〈ηk(DqE1(tτk, q

1,k
τ,h)−DqE1(tτk, q

2,k
τ,h)), e

k−1
τ,h 〉Q

− 〈DqE1(tτk, q
1,k
τ,h)−DqE1(tτk, q

2,k
τ,h), ηkeτ,h〉Q − 2〈DqE1(tτk, q

2,k
τ,h)−DqE2(tτk, q

2,k
τ,h), ηkeτ,h〉Q

+ 2〈DqE1(tτk, q
1,k
τ,h)−DqE2(tτk, q

2,k
τ,h), ηkeτ,h〉Q.19



Let Ak ∈ Lin(Q,Q′) be the symmetri operator de�ned by
Ak

def
=

∫ 1

0

D2
qE1(tτk, q

2,k
τ,h+θe

k
τ,h)dθ.We get Ake

k
τ,h = DqE1(tτk, q

1,k
τ,h) − DqE1(tτk, q

2,k
τ,h), thus

〈ηk(DqE1(tτk, q
1,k
τ,h)−DqE1(tτk, q

2,k
τ,h)), e

k−1
τ,h 〉Q

− 〈DqE1(tτk, q
1,k
τ,h)−DqE1(tτk, q

2,k
τ,h), ηkeτ,h〉Q

= 〈Ake
k
τ,h−Ak−1e

k−1
τ,h , e

k−1
τ,h 〉Q − 〈Ake

k
τ,h, ηkeτ,h〉Q

= −〈Akηkeτ,h, ηkeτ,h〉Q + 〈(Ak−Ak−1)e
k−1
τ,h , e

k−1
τ,h 〉Q.

(4.21)By onvexity of E1(tτk, ·), we have
∀y ∈ Q : 〈Aky, y〉Q ≥ 0,and sine D2

qE is Lipshitz ontinuous on [0, T ] × BR for all R > 0,
‖Ak−Ak−1‖Lin(Q,Q′) ≤ CE,R

(
|tτk−tτk−1|+‖ηkq

1
τ,h‖Q+‖ηkq

2
τ,h‖Q

)where CE,R depends only on E and R > 0 suh that R ≥ maxτ,h

{
‖ηkq

j
τ,h‖Q; j =

1, 2, tτk ∈ Πτj+1

} and BR denotes the ball of radius R. Using (4.19), it follows that
ηkγτ,h ≤ CE,R

(
|tτk−tτk−1|+‖ηkq

1
τ,h‖Q+‖ηkq

2
τ,h‖Q

)
‖ek−1

τ,h ‖2
Q

+ 2‖DqE1(tτk, q
2,k
τ,h)−DqE2(tτk, q

2,k
τ,h)‖Q′‖ηkeτ,h‖Q.

(4.22)Sine E(t, ·) is κ-uniformly onvex, the inremental solutions are Lipshitz ontinu-ous, i.e.
∀j = 1, 2 : ‖ηkq

j
τ,h‖Q ≤ CR

1 |tτk−tτk−1|, (4.23)where CR
1 > 0 is independent of h and τ (f. Theorem 2.2). Carrying (4.23) and(4.20) in (4.22), and observing that ‖ηkeτ,h‖Q ≤ ‖ηkq

1
τ,h‖Q + ‖ηkq

2
τ,h‖Q, we obtain

ηkγτ,h ≤ CE,R

κ
(1+2CR

1 )γk−1
τ,h |tτk−tτk−1| + 4ρCR

1 |tτk−tτk−1|,where
ρ

def
= max

tτ
k
∈Πτj+1

sup
q∈B

CR
0

‖DqE1(tτk, q)−DqE2(tτk, q)‖Q′.Let us denote C4 = max
{
CE,R(1+2CR

1 )/κ, 4CR
1

}, we infer
γk

τ,h ≤ γk−1
τ,h

(
1+C4(t

τ
k−tτk−1)

)
+ ρC4(t

τ
k−tτk−1).Sine γ0

τ,h = 0, by indution over k, we �nd
γk

τ,h ≤ C4ρ

n∑

k=1

(tτk−tτk−1)

n∏

j=k+1

(
1+C4(t

τ
j−tτj−1)

)
≤ C4ρe

C4TT.20



Using (4.20), it follows that
‖q1,k

τ,h−q2,k
τ,h‖2

Q ≤ C4e
C4TT

κ
ρ. (4.24)Owing to the de�nitions of E1 and E2, we infer that there exists a onstant C5 > 0suh that

ρ ≤ C5 max
tτ
k
∈Πτj+1

(tτk−tτk−1) ≤ C52
−jτ,whih implies that

∀t ∈ [0, T ] : ‖qτj+1,h(t)−qτj ,h(t)‖Q ≤ C62
−j/2

√
τ , where C6 =

√
C4T eC4T

κ
C5.Note that (qτj ,h(t))j∈N is a Cauhy sequene whih limit qh : [0, T ] → Qh is theunique solution for (Qh, E ,Ψ, qh(0)). By adding all these estimates, we infer

∀t ∈ [0, T ] : ‖qτ,h(t)−qh(t)‖Q ≤
∞∑

j=0

C62
−j/2

√
τ ≤ 4C6

√
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