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1Abstrat. We investigate a global-in-time variational approah to abstrat evolutionby means of the weighted energy-dissipation funtionals proposed by Mielke & Ortiz[MO08℄. In partiular, we fous on gradient �ows in Hilbert spaes. The main resultis the onvergene of minimizers and approximate minimizers of these funtionals tothe unique solution of the gradient �ow. Sharp onvergene rates are provided and theonvergene analysis is ombined with time-disretization. Appliations of the theory tovarious lasses of paraboli PDE problems are presented. In partiular, we fous on twoexamples of mirostruture evolution from [CO08℄.1. IntrodutionAssume we are given a real Hilbert spae H with salar produt (·, ·) and orrespondingnorm |·|. Moreover, let the funtional φ : H → (−∞,∞] be proper, lower semiontinuous,bounded from below, and λ-onvex for some λ ∈ R, i.e., u 7→ φ(u) − (λ/2)|u|2 is onvex.Finally, let f ∈ L2(0, T ;H), and u0 ∈ D(φ)
.

= {u ∈ H : φ(u) < ∞}. This note isonerned with the lassial gradient �ow(1.1) u′ + ∂φ(u) ∋ f a.e. in (0, T ), u(0) = u0.Gradient �ows an be regarded as the paradigm of dissipative evolution. They arisealmost ubiquitously in onnetion with appliations and have hene attrated a onstantattention during the last four deades starting from the fundamental work by K	omura[K	om67℄, Crandall-Pazy[CP69℄, and Brezis [Bre71, Bre73b℄. It is beyond our pur-poses to even attempt to review the huge existing literature on gradient �ows. Let ushowever mention that, even restriting to the present quite lassial setting [Bre73b℄,relation (1.1) stems in a variety of di�erent appliations suh as heat ondution, the Ste-fan problem, the Hele-Shaw ell, porous media, paraboli variational inequalities, somelasses of ODEs with obstales, degenerate paraboli PDEs, and the mean urvature �owfor Cartesian graphs, among many others [NSV00℄, see Setion 7 below. More reently,following the pioneering work by Otto [Ott01℄, an even larger lass of PDE problemshave been translated into gradient �ows by resorting to probability spaes endowed withthe Wasserstein metri. The reader is referred to the reent monograph by Ambrosio,Gigli, & Savaré [AGS05℄ for a olletion of results (let us however stress that the metritheory is beyond the reah of the analysis presented here).The general gradient-�ow theory, although quite developed, is however not yet pro-viding a sound desription of the evolution of nonlinear systems that develop evolvingmirostrutures. For these systems, the energy φ is generally not lower semiontinuousand equilibrium states whih minimize φ do not exist. At the stationary level, a lassialsolution to this obstrution is the relaxation of the funtional φ. Namely, one hanges φwith its lower semiontinuous envelope s−φ and interprets the respetive minimizationas an e�etive or marosopi problem. In the evolution ase, the natural idea wouldbe to introdue a funtional on entire trajetories whose minimizers solve the gradient�ow (1.1) and onsider its relaxation. Moving from these onsiderations Mielke & Or-tiz [MO08℄ introdued a variational reformulation of evolution problems as (limits of)minimizers of a lass of global-in-time funtionals. These funtionals feature the sumof the (saled) energy and the dissipation, integrated in time via an exponentially de-aying weight. The resulting so-alled weighted energy-dissipation (WED) funtionals
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Iε : H1(0, T ;H) → (−∞,∞] read, in the ase of the gradient �ow (1.1), as(1.2) Iε(v)

.

=

∫ T

0

e−t/ε

(

1

2
|v′|2 +

1

ε

(

φ(v) − (f, v)
)

) dt.We will hek in Subsetion 2.4 that, for all ε small, the funtional Iε admits a uniqueminimizer in the losed onvex set K(u0ε)
.

= {v ∈ H1(0, T ;H) : v(0) = u0ε} where u0εis a suitable approximation of u0 (see below).The WED funtional approah has been originally applied in [MO08℄ to the desriptionof rate-independent evolution, whih, roughly speaking, orresponds to replaing 2 by 1 in(1.2). Later on, the analysis of the rate-independent ase has been extended and adaptedto time-disretizations in [MS08℄.As for the gradient �ow situation, a disussion on a linear ase is ontained in [MO08℄together with a �rst example of relaxation. More reently, two additional examples ofrelaxation related with miro-struture evolution have been provided by Conti & Ortiz[CO08℄, see Setion 7. In the above-mentioned papers, the problem of proving the on-vergene uε → u is left open. This question is solved here and our main result reads asfollows.Theorem 1.1 (Convergene). uε → u uniformly in H.In the easiest possible setting, namely the salar and linear ase of(1.3) H = R, φ(u) = −u2/2, f = 0, u0 = 1, T = 1,the onvergene result of Theorem 1.1 is illustrated in Figure 1.
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Figure 1: Convergene in the speial ase (1.3). As ε → 0, the minimizers of Iε (dashedlines) approah the solution of the gradient �ow (solid line). Note that minimizers ful�llthe arti�ial homogeneous Neumann boundary ondition at T (see (1.4)).



3Besides the stated uniform onvergene, muh more is true for we are in the positionof providing a quantitative statement, even in �ner topologies (see Subsetion 5.1 below).Moreover, the assumptions on u0 an be substantially weakened (Subsetion 5.2) and weobtain some novel regularity results as a by-produt (Subsetion 5.3). Furthermore, theonvergene analysis an be extended to the ase of sequenes of approximate minimizers(Subsetion 5.6) and ombined with time-disretization (Setion 6). Finally, some appli-ation of the abstrat theory to a olletion of examples of linear and nonlinear paraboliproblems is provided in Setion 7.An important step toward the proof of Theorem 1.1 is the analysis of the Euler systemfor Iε in K(u0ε). In partiular, we prove that the minimizer uε ful�lls
− εu′′ + u′ + ∂φ(u) ∋ f a.e. in (0, T ),(1.4a)
u(0) = u0ε,(1.4b)
u′(T ) = 0.(1.4)Namely, to minimize Iε is equivalent to perform an ellipti-in-time regularization of thegradient �ow (1.1). We shall stress that, at all levels ε > 0, ausality is lost. Consequently,the onvergene for ε → 0 is generally referred to as the ausal limit of (1.4). As theproblem above is seond order in time, an extra boundary ondition (1.4) at the �nalpoint T is needed and our hoie for a homogeneous Neumann ondition is motivated bysimpliity. Other hoies may be onsidered and a spei� alternative, originally proposedin [MO08℄, is ommented in Subsetion 5.7.Before moving on, let us reall that the idea of taking the ausal limit in an ellipti-in-time regularization of a paraboli problem is not new. In the linear ase, some results anbe found in the lassial monograph by Lions & Magenes [LM72℄. As for the nonlinearase, this proedure has been followed by Ilmanen [Ilm94℄ for proving existene andpartial regularity of the so-alled Brakke mean urvature �ow of varifolds. In [Gio96,Set. 4℄ a onjeture suggests the weighted funtional

u 7→
∫

Ω×(0,∞)

e−t/ε

[

|utt|2 +
1

ε2

(

|∇u|2 + u2k
)

] dx dtas ellipti regularization for studying the wave equation utt = ∆u− ku2k−1.Besides the WED funtional approah here onsidered, a number of di�erent variationalpriniples have been proposed for haraterizing entire trajetories of evolution systems.In the linear realm, we shall mention Biot's work on irreversible Thermodynamis [Bio55℄and Gurtin's priniple for visoelastiity and elastodynamis [Gur63, Gur64a, Gur64b℄among many others (see also the survey by Hlavá£ek [Hla69℄). In the nonlinear set-ting, a ruial result is the Brezis, Ekeland, & Nayroles priniple [BE76a, BE76b,Nay76a, Nay76b℄ whih spei�ally fouses on the ase of onvex funtionals φ. The lit-erature on this priniple is vast and the reader is referred to the reent monograph byGhoussoub [Gho08℄ and the papers [Ste08a, Ste08, Ste08b, Vis08℄ for additional infor-mation. Apart from the onvex ase, we shall reord the variational priniple from DeGiorgi, Marino, & Tosques whih atually paved the way to the analysis of gradient�ow evolution in metri spaes (see [AGS05, MST89, RMS08, RSS08℄, for instane). Fi-nally, we mention Visintin [Vis01℄, where generalized solutions are obtained as minimalelements of a ertain partial-order relation on the trajetories.



4 2. PreliminariesWe shall ollet here some notation, general assumptions, and a seletion of lassialresults on λ-onvex funtions and the orresponding gradient �ows.2.1. Convexity and λ-onvexity. Throughout the paper H is a real Hilbert spae withsalar produt (·, ·) and norm | · |. Given the funtional φ : H → (−∞,∞] with e�etivedomain D(φ) = {u ∈ H : φ(u) <∞}, we reall that its Fréhet subdi�erential ∂φ : H →
2H is de�ned as

v ∈ ∂φ(u) i� u ∈ D(φ) and lim inf
w→u

φ(w) − φ(u) − (v, w − u)

|w − u| ≥ 0.We denote by D(∂φ) the orresponding domain D(∂φ)
.

= {u ∈ H : ∂φ(u) 6= ∅}. Thefuntional φ is said to be proper if D(φ) 6= ∅ and λ-onvex for some given λ ∈ R, if
v 7→ ψ(v) = φ(v) − λ

2
|v|2 is onvex.Equivalently, φ is λ-onvex if and only if

φ(ru+ (1 − r)v) ≤ rφ(u) + (1 − r)φ(v) − λ

2
r(1 − r)|u− v|2 ∀u, v ∈ H, 0 ≤ r ≤ 1.Let us expliitly remark that D(ψ) = D(φ), D(∂ψ) = D(∂φ), and ∂φ(v) = ∂ψ(v) + λvfor all v ∈ D(∂φ). In partiular, the set ∂φ(v) turns out to be onvex and losed. Hene,it possesses a unique element of minimal norm whih we indiate by (∂φ(u))◦.A ruial tool in Convex Analysis is the Moreau-Yosida approximation ψδ : H → R ofthe proper, onvex, and lower semiontinuous funtion ψ : H → (−∞,∞] given, for all

δ > 0, by
ψδ(u) = inf

v∈H

( |v − u|2
2δ

+ ψ(v)

)

∀u ∈ H.Reall that ψδ ∈ C1,1(H) and that one has [Bre73b℄(2.1) |Dψδ(u)| ≤ |(∂ψ(u))◦| and Dψδ(u) → (∂ψ(u))◦ ∀u ∈ D(∂ψ).For any proper funtional φ : H → (−∞,∞] we denote by s−φ the orrespondinglower semiontinuous envelope or relaxation, lassially de�ned bys−φ(u)
.

= inf
{

lim inf
k→∞

φ(uk), uk → u strongly in H
}

.2.2. Funtion spaes. Standard notation for spaes of vetor-valued funtions as Lp(0, T ;H),
C([0, T ];H), W 1,p(0, T ;H), and Hs(0, T ;H) will be used throughout, f. [LM72℄. More-over, we will onsider the following haraterizations of Besov spaes [BL76, Thm. 6.2.4,p. 142℄

Bs
p q(0, T ;H)

.

= (Lp(0, T ;H),W 1,p(0, T ;H))s,q 0 < s < 1, 1 ≤ p, q ≤ ∞,

B−s
p′ q′(0, T ;H)

.

= (Bs
p q(0, T ;H))′ 0 < s < 1, 1 ≤ p, q <∞where p′ and q′ are onjugate to p and q, respetively; and (X, Y )s,q denotes Lq interpo-lation. Let us reall the identi�ations [Tri95, Rem. 4, p. 179℄, for all 0 < s < 1,

Hs(0, T ;H) = Bs
2 2(0, T ;H),

Cs([0, T ];H) = (L∞(0, T ;H),W 1,∞(0, T ;H))s,∞,



5where the latter is the spae of Hölder ontinuous funtions endowed with the norm
‖u‖Cs([0,T ];H)

.

= ‖u‖C([0,T ];H) + sup
t6=r

|u(t) − u(r)|
|t− r| .2.3. General assumptions and well-posedness for (1.1). Unless otherwise stated,throughout this analysis we shall assume the following

φ : H → (−∞,∞] is proper, lower semiontinuous, bounded from belowand u 7→ ψ(u)
.

= φ(u) − λ

2
|u|2 is onvex,(2.2a)

f ∈ L2(0, T ;H),(2.2b)
u0 ∈ D(φ).(2.2)Note that the lower-bound request for φ an be weakened and is here hosen for the sakeof simpliity only. As for the λ-onvexity assumption, note that any C1,1 perturbation ofa onvex funtion turns out to be λ-onvex (but see (5.6) below).We assume from the very beginning that

minψ = ψ(0) = 0.This an be ahieved without loss of generality simply by replaing ψ (and hene φ), f ,and u0, by
ψ̃(u)

.

= ψ(u+ v) − (η, u)− ψ(v), f̃
.

= f − η, ũ0
.

= u0 − vfor some �xed v ∈ D(∂ψ) with η ∈ ∂ψ(v).Let us reall that, the well-posedness of the gradient �ow (1.1) follows from the lassialtheory of [K	om67, CP69, Bre71, Bre73b℄ (see also [AGS05℄). Indeed, the assumption
u0 ∈ D(φ) an be weakened to u0 ∈ D(∂φ). In this ase as well, a strong solution
u ∈ H1lo(0, T ;H) of (1.1) uniquely exists.2.4. Well-posedness for the minimum problem. In the onvex ase

λ−
.

= max{0,−λ} = 0assumptions (2.2a)-(2.2b) guarantee that Iε admits a (unique) minimizer in K(w0) forany w0 ∈ H . As for the general λ-onvex ase, existene and uniqueness of minimizersfollow by letting ε be small enough. More preisely, we have the following.Proposition 2.1 (Well-posedness for the minimum problem). Let φ : H → (−∞,∞] be
λ-onvex, f ∈ L2(0, T ;H), and w0 ∈ H. Letting ε be small enough, the funtional Iε is
κε-onvex in K(w0) with respet to the metri of H1(0, T ;H) for(2.3) κε

.

= ε2e−T/ε.In partiular, Iε is uniformly onvex in K(w0).Additionally, if φ is lower semiontinuous, then Iε admits a unique minimizer in K(w0).



6Proof. Let us start by deomposing Iε into the sum of a quadrati part Qε and a onvexremainder Rε as follows.
Iε(u) =

(
∫ T

0

e−t/ε

(

1

2
|u′|2 − λ−

2ε
|u|2
))

+

(
∫ T

0

1

ε
e−t/ε

(

ψ(u) − (f, u)
)

)

.

= Qε(u) +Rε(u).(2.4)In order to handle Qε, we will exploit the auxiliary funtion v(t) .

= e−t/(2ε)u(t). As wereadily have that(2.5) e−t/(2ε)u′(t) = v′(t) +
1

2ε
v(t),the value Qε(u) an be rewritten in terms of v as

Qε(u) =

∫ T

0

(

1

2
|v′|2 +

1

2ε
(v′, v) +

1 − 4ελ−

8ε2
|v|2
)

=

∫ T

0

(

1

2
|v′|2 +

1 − 4ελ−

8ε2
|v|2
)

+
1

4ε
e−T/ε|u(T )|2 − 1

4ε
|u(0)|2

.

= Vε(v) +
1

4ε
e−T/ε|u(T )|2 − 1

4ε
|u(0)|2.(2.6)Moreover, by possibly letting ε be small, standard omputations lead to

e−T/ε‖u‖2
L2(0,T ;H) ≤ ‖v‖2

L2(0,T ;H) ≤ ‖u‖2
L2(0,T ;H),(2.7)

ε2e−T/ε‖u‖2
H1(0,T ;H) ≤ ‖v‖2

H1(0,T ;H) ≤ ε−2‖u‖2
H1(0,T ;H).(2.8)Let now θ ∈ [0, 1] and u1, u2 ∈ K(w0) be given. Moreover, de�ne vi(t)

.

= e−t/2εui(t)for i = 1, 2. Arguing as in (2.6), for all ε small enough one dedues that
Qε

(

θu1 + (1 − θ)u2

)

= Vε(θv1 + (1 − θ)v2) +
1

4ε
e−T/ε|θu1(T ) + (1 − θ)u2(T )|2 − 1

4ε
|w0|2

≤ θVε(v1) + (1 − θ)Vε(v2) −
θ(1 − θ)

2

∫ T

0

(

|v′1 − v′2|2 +
1 − 4ελ−

4ε2
|v1 − v2|2

)

+
θ

4ε
e−T/ε|u1(T )|2 +

1 − θ

4ε
e−T/ε|u2(T )|2 − 1

4ε
|w0|2

= θQε(u1) + (1 − θ)Qε(u2) −
θ(1 − θ)

2

∫ T

0

(

|v′1 − v′2|2 +
1 − 4ελ−

4ε2
|v1 − v2|2

)

≤ θQε(u1) + (1 − θ)Qε(u2) −
θ(1 − θ)

2
‖v1 − v2‖2

H1(0,T ;H).By exploiting the �rst estimate in (2.8), we have proved thatQε is κε-onvex inK(w0) withrespet to the metri of H1(0, T ;H). As Iε = Qε +Rε and Rε is onvex, the κε-onvexityof Iε follows as well.One the uniform onvexity of Iε in K(w0) is established, the existene of a uniqueminimizer is a onsequene of the Diret Method whenever lower semiontinuity is as-sumed. �



7The proof of Proposition 2.1 entails the existene of ε∗ > 0, possibly depending on λ−only, suh that, for all ε ∈ (0, ε∗), the funtional Iε has a unique minimizer in K(w0). Thisan be seen as a manifestation of the fat that, for small ε, we are lose to the (ausal)initial-value problem, where we an expet existene and uniqueness. In the following,the parameter ε will be assumed to ful�ll ε ∈ (0, ε∗) throughout.Note that, for large values of the parameter ε, existene of minimizers may fail. Let usgive an example for this fat. In order to keep the presentation simple, we shall onsidera salar example, i.e. H = R, by dropping the lower boundedness assumption on φ. Weonsider
φ(u) = −u

2

4
, f = 0, w0 = 0.By �xing ε = 1, for simpliity, the orresponding WED funtional reads

I1(u)
.

=

∫ T

0

e−t

( |u′|2
2

− u2

4

)and we readily hek that I1 is 2-homogeneous, namely I1(αu) = α2I1(u).Let us �rstly prove that inf I1 = −∞ in K(0), in partiular no global minimizer exists.To this aim it su�es to onsider v(t) .

= et/2 − 1 and ompute
I1(v) = −T

8
+

1

4
(e−T − 1) + (1 − e−T/2)so that, for T suitably large, I1(v) < 0. Then, by homogeneity, we have that I1(αv) → −∞as α→ ∞.We now turn our attention to loal minimizers. The Euler equation for I1 is

−u′′ + u′ − u

2
= 0whih, letting u(0) = 0, is solved by uα(t)

.

= αet/2 sin(t/2) for all α ∈ R.If T 6= (3/2 + 2k)π, no hoie of α 6= 0 ful�lls u′α(T ) = 0. Namely, uα is not a loalminimizer for α 6= 0. Moreover, the trajetory δv (with v as above and δ > 0 small) is anadmissible perturbation of the trivial solution and I1(δv) = δ2I1(v) < 0 = I1(0). Namely,
u = 0 is not a loal minimizer either.If T = (3/2 + 2k)π, all α ∈ R give rise to a solution of the Euler system and one hasthat I1(uα) = 0. Still, exatly as for u = 0 (see above), the funtions uα are not loalminimizers as

I1(uα + αδv) = α2I1(u1 + δv) = α2

(

I1(u1) + δ2I1(v) + δ

∫ T

0

e−t

(

u′v′ − 1

2
uv

))

= α2δ2I1(v) +
α2δ

2

∫ T

0

(e−t/2 − 1) sin(t/2) < α2δ2I1(v) < 0 = I1(uα)and uα + αδv is a strit ompetitor of uα, for δ small.Uniqueness of minimizers diretly follows by uniform onvexity if φ is onvex or ε issmall (see above). In the general λ-onvex ase a uniqueness result for large ε is howevernot to be expeted. Indeed, by letting
φ(u) = IB(u) − u2

4
, f = 0, w0 = 0,



8where IB is the indiator funtion of the interval B .

= [−eT/2, eT/2], as the trajetory vis suh that I1(v) < 0 (for T large) and the funtional is even, we have that I1 has twosymmetri minimizers (global).2.5. Approximation of the initial datum. As we have already mentioned in the In-trodution, the initial datum u0 of the gradient �ow (1.1) is approximated here by asequene u0ε and the minimization of Iε will take plae in K(u0ε). Following Brezis[Bré73a℄ (see also [BS94, Bre75℄), we introdue the interpolation sets Dr,p ⊂ H for
0 < r < 1, 1 ≤ p ≤ ∞ as

Dr,p = {u ∈ D(∂ψ) : ε 7→ ε−r|u− Jεu| ∈ Lp
∗(0, 1)}where Jε = (id+ ε∂ψ)−1 is the standard resolvent operator and Lp

∗(0, 1) is the Lp spaeendowed with the Haar measure dε/ε. We will use the equivalene [Bré73a, Thm. 2℄
u0 ∈ Dr,p i� 









∃ε ∈ [0, 1] 7→ v(ε) : v ∈W 1,1lo (0, 1],ontinuous in [0, 1], v(0) = u0, v(ε) ∈ D(∂ψ) a.e., and
ε1−r

(

|(∂ψ(v(ε)))◦| + |v′(ε)|
)

∈ Lp
∗(0, 1).As we have that u0 ∈ D(φ) ≡ D(ψ) ≡ D1/2,2 and D1/2,2 ⊂ D1/2,∞ [Bre75, Thm. 6℄, we�x from the very beginning the sequene u0ε

.

= v(ε) → u0 in H in suh a way that(2.9) ε−1/2|u0 − u0ε| + ε1/2|(∂φ(u0ε))
◦| ≤ c0,for some �xed c0 > 0 (reall that (∂φ(u))◦ = (∂ψ(u))◦ + λu). Note that the �rst term inthe left-hand side above is under ontrol as

|u0 − u0ε| ≤
∫ ε

0

|v′(e)| de ≤ ε1/2

(
∫ ε

0

(

|v′(e)|e1/2
)2de
e

)1/2

≤ ε1/2‖e 7→ e1/2v(e)‖L2
∗
(0,1).In partiular, we will use the fat that

φ(u0ε) = φ(u0) + ((∂φ(u0ε))
◦, u0ε − u0) ≤ φ(u0) + c20.(2.10)Note that, as we shall omment below, in ase u0 ∈ D(∂φ) no approximation u0ε isatually needed and the minimization of Iε ould be onsidered in the �xed K(u0) as well.A onrete example of sets Dr,p is provided in Subsetion 7.1.2.6. Time-disretization. In the following, we shall also be onsidering the lassialtime-disretization of the gradient �ow (1.1) by means of the so-alled impliit Eulersheme whih, given n ∈ N and the onstant time-step τ = T/n, onsists in the system(2.11) u0 = u0 and ui − ui−1

τ
+ ∂φ(ui) ∋ f i for i = 1, . . . , n.



9Whenever a suitable approximation (f 1, . . . , fn) ∈ Hn of f is given, the latter systemturns out to admit a unique solution (u0, u1, . . . , un) ∈ Hn+1 for τ small. In fat, (2.11)is equivalent to the suessive minimization problems(2.12) u0 = u0 and ui = Argmin
u∈H

( |u− ui−1|2
2τ

+ φ(u) − (f i, u)

) for i = 1, . . . , n,where all of the funtionals above are uniformly onvex (for small τ) and lower semion-tinous.Given any vetor (v0, . . . , vn) ∈ V n+1 (V = H, R), we will denote by vτ : (0, T ] → Vand vτ : [0, T ] → V the orresponding bakward pieewise onstant and pieewise a�neinterpolants on the time-partition. Namely, we have
vτ (t) = vi, vτ (0) = v0, vτ (t) = αi(t)v

i + (1 − αi(t))v
i−1for t ∈ ((i− 1)τ, iτ ], i = 1, . . . , n,where αi(t) = (t−(i−1)τ)/τ , for i = 1, . . . , n. Finally, we will also set δvi = (vi−vi−1)/τ ,so that, in partiular, δvτ = v′τ . A basi onvergene result for (2.11) is ombined withthe error analysis by Ambrosio, Gigli, & Savaré [AGS05℄ (see also [NSV00℄) in thefollowing.Lemma 2.2 (Convergene of time-disretizations). Let (f 1

τ , . . . , f
n
τ ) be suh that f τ → fstrongly in L2(0, T ;H) and (u0

τ , . . . , u
n
τ ) solve (2.11). Then uτ → u strongly in H1(0, T ;H)where u solves (1.1).By letting f ≡ 0 and τ small enough (in partiular λτ > −1), we have that(2.13) |(u− uτ )(t)| ≤ c1

√
τφ(u0)e

−2λτ t where λτ
.

= ln

(

1 + λτ

τ

)where c1 depends solely on λ. Moreover, if u0 ∈ D(∂φ) we also have(2.14) |(u− uτ )(t)| ≤ c2τ |(∂φ(u0))
◦|e−2λτ twhere c2 depends solely on λ.Note that the fator e−2λτ t in (2.13)-(2.14) essentially plays the role of the exponential

e−2λt. In partiular, if λ > 0 the error onstant deays whereas if λ < 0 it deterioratesexponentially with time. Although we restrit here to the error ontrol for f ≡ 0 for thesake of simpliity, the non-homogeneous ase an be onsidered as well. The reader isreferred to [NSV00℄ for some results in this diretion.3. Euler equationAs already mentioned in the Introdution, our analysis relies on the spei� strutureof the Euler equation for Iε, namely its linearity with respet to the time-derivatives. Theaim of this setion is to provide some detail on the Euler system and we shall start formthe following.



10Theorem 3.1 (Euler equation). Let uε minimize Iε in K(u0ε). Then, uε ∈ H2(0, T ;H)and there exists a funtion ξε ∈ L2(0, T ;H) suh that
− εu′′ε + u′ε + ξε = f a.e. in (0, T ),(3.1)
uε(0) = u0ε,(3.2)
u′ε(T ) = 0,(3.3)
ξε ∈ ∂φ(uε) a.e. in (0, T ).(3.4)3.1. Analysis of a regularized onvex problem. For the sake of proving Theorem3.1, we fous on a regularized problem �rst. Let ψδ be the Yosida approximation of ψ atlevel δ > 0. We have the following.Lemma 3.2. There exists a unique uδ ∈ H2(0, T ;H) suh that

− εu′′δ + u′δ + Dψδ(uδ) = f a.e. in (0, T ),(3.5)
uδ(0) = u0ε,(3.6)
u′δ(T ) = 0.(3.7)Proof. By possibly rede�ning Dψδ as Dψδ(· + u0ε), we assume with no loss of generalitythat u0ε = 0. Let V = {u ∈ H1(0, T ;H) : u(0) = 0} and denote by V ′ the orrespondingdual. A weak formulation of (3.5)-(3.7) is provided by the equation Au+Bu = ℓ, where

A, B : V → V ′ and ℓ ∈ V ′ are given, for all v ∈ V , by
〈Au, v〉 .

= ε

∫ T

0

(u′, v′) +

∫ T

0

(u′, v),

〈Bu, v〉 .

=

∫ T

0

(Dψδ(u), v),

〈ℓ, v〉 .

=

∫ T

0

(f, v)where 〈·, ·〉 denotes the duality pairing between V ′ and V . The linear operator A isoerive as
〈Au, u〉 = ε

∫ T

0

|u′|2 +
1

2
|u(T )|2 ∀u ∈ V.On the other hand, B is learly monotone and ontinuous. Hene, A + B is maximalmonotone and oerive [Bar76, Cor. 1.1, p. 39℄. Namely, Au +Bu = ℓ admits at least asolution u ∈ V [Bar76, Cor. 1.3, p. 48℄. Finally, as A is strongly monotone, this solutionis unique.Equation Au+Bu = ℓ reads(3.8) ε

∫ T

0

(u′, v′) =

∫ T

0

(−u′ −Dψδ(u) + f, v) ∀v ∈ VBy hoosing v ∈ V suh that v(T ) = 0 we reover u ∈ H2(0, T ;H) and that relation (3.5)holds. Hene, again from (3.8), by using the already established (3.5) one also has that
ε
(

− u′(T ), v(T )
)

= 0 for all v ∈ V and (3.7) follows. �The forthoming disussion of Subsetion 4.1 will in partiular entail the validity ofthe following estimate.



11Lemma 3.3 (Estimate on uδ). Let uδ solve (3.5)-(3.7). Then(3.9) ‖uδ‖H2(0,T ;H) ≤ cwhere c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, and ε but not on δ.3.2. Proof of Theorem 3.1. Let us assume with no loss of generality λ = −λ− ≤ 0,deompose the funtional Iε into its onvex and its non-onvex part as Iε = Cε +Nε, andextend it to the whole L2(0, T ;H), namely, for v ∈ L2(0, T ;H), we let
Cε(v)

.

=

∫ T

0

e−t/ε

(

1

2
|v′|2 +

1

ε

(

ψ(v) − (f, v)
)

) for v ∈ K(u0ε) and ∞ otherwise,
Nε(v)

.

= −λ
−

2ε

∫ T

0

e−t/ε|v|2.We shall now ompute subdi�erentials in the weighted spae L2(0, T, e−t/εdt;H). As Nεis learly C1, one has that
∂Iε = ∂Cε + DNε in L2(0, T, e−t/εdt;H).As the minimality of u implies that 0 ∈ ∂Iε(u), what is now needed is a desription ofthe set ∂Cε(u) as, learly, DNε(u) = −λ−u/ε. We shall prove that ∂Cε(u) = Aε(u) wherethe possibly multivalued operator Aε is de�ned on D(Aε)

.

= {v ∈ H2(0, T ;H)∩K(u0ε) :
v′(T ) = 0} as

Aε(u)
.

=
1

ε

(

− εu′′ + u′ + ∂Ψε(u) − f
)

.In the latter, the integral funtional Ψε : L2(0, T ;H) → (−∞,∞] is given by
Ψε(u)

.

=







∫ T

0

e−t/εψ(u) dt if t 7→ ψ(u(t)) ∈ L1(0, T ),

∞ else,and the subdi�erential ∂Ψε is again taken in L2(0, T, e−t/εdt;H).Let us �rstly hek that Aε(u) ⊂ ∂Cε(u). Let η ∈ L2(0, T ;H) suh that η ∈ ∂Ψε(u),namely η ∈ ∂ψ(u) almost everywhere. For all w ∈ K(u0ε) we ompute that
1

ε

∫ T

0

e−t/ε
(

− εu′′ + u′ + η − f, w − u
)

=

∫ T

0

(

(−e−t/εu′)′, w − u
)

+
1

ε

∫ T

0

e−t/ε
(

η − f, w − u
)

=

∫ T

0

e−t/ε
(

u′, w′ − u′
)

+
1

ε

∫ T

0

e−t/ε
(

η − f, w − u
)

=
1

2

∫ T

0

e−t/ε
(

|w′|2 − |u′ − w′|2 − |u′|2
)

+
1

ε

∫ T

0

e−t/ε
(

ξ − f, w − u
)

η∈∂Ψ(u)

≤ 1

2

∫ T

0

e−t/ε
(

|w′|2 − |u′|2
)

+
1

ε

(

Ψε(w) − Ψε(u)
)

− 1

ε

∫ T

0

e−t/ε
(

f, w − u
)

= Cε(w) − Cε(u).



12 In order to prove the onverse inlusion ∂Cε(u) ⊂ Aε(u) we shall hek that the mono-tone operator Aε is maximal [Bre73b℄, namely that, for all g ∈ L2(0, T ;H), the problem
(id + Aε)(uε) ∋ gadmits a (unique) solution uε. We proeed by regularization and passage to the limit.Let ψδ be the Yosida approximation of ψ at level δ > 0. Let now uδ solve (3.5)-(3.7) with

ψδ(·) replaed by ψδ(·) + ε| · |2/2 and f replaed by f + εg. Namely, we have that(3.10) −εu′′δ + u′δ + Dψδ(uδ) + εuδ = f + εg a.e. in (0, T )The bound (3.9) still holds, independently of δ (but depending on g) and we an extratsubsequenes, without relabeling, in suh a way that
uδ → uε weakly in H2(0, T ;H),(3.11) Dψδ(uδ) → ηε weakly in L2(0, T ;H),(3.12)pass to the limit for δ → 0 in (3.10) and (3.7), and get(3.13) −εu′′ε + u′ε + ηε + εuε = f + εg a.e. in (0, T )and (3.3), respetively. As the initial ondition (3.2) is learly satis�ed, one is left withthe proof of the inlusion (3.4). To this aim, let us test the regularized equation (3.10)by uδ and pass to the lim sup as δ → 0. We obtain by lower semiontinuity that

lim sup
δ→0

∫ T

0

(Dψδ(uδ), uδ)

= lim sup
δ→0

(

− ε

∫ T

0

|u′δ|2 − ε(u′δ(0), u0ε) −
1

2
|uδ(T )|2 +

1

2
|u0ε|2

− ε

∫ T

0

|uδ|2 +

∫ T

0

(f + εg, uδ)

)

≤ − ε

∫ T

0

|u′ε|2 − ε(u′ε(0), u0ε) −
1

2
|uε(T )|2 +

1

2
|u0ε|2 − ε

∫ T

0

|uε|2 +

∫ T

0

(f + εg, uε)(3.13)
=

∫ T

0

(ηε, uε).The above lim sup estimate is su�ient for identifying the limit ηε [Bre73b, Prop. 2.5,p. 27℄. In partiular, we have proved that uε solves (id+Aε)(uε) ∋ g and the assertion ofthe Theorem follows. 4. Proof of Theorem 1.14.1. Key estimate. Given the minimizer uε of Iε in K(u0ε) we have heked that uεsolves (3.1)-(3.4). The proof of Theorem 1.1 onsists in a diret ontrol of the distanebetween uε and the solution u of the gradient �ow (1.1). This hek is performed inSubsetion 4.2. The key step in the omputation is the validity of some estimates on uεwhih are independent of ε. Let us state this ruial point in the following lemma.



13Lemma 4.1 (Key estimate). Let uε minimize Iε in K(u0ε). For all ε small there existsa onstant c > 0 depending on ‖f‖L2(0,T ;H), |u0|, and c0, but independent of ε suh that
ε ‖u′′ε‖L2(0,T ;H) + ε1/2 ‖u′ε‖L∞(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ c,(4.1)where ξε is de�ned in Theorem 3.1.The full proof of this result will be ahieved by means of a time-disretization tehniqueand is postponed to Subsetion 6.5. Let us however provide here a simpli�ed argumentin ase we have(4.2) ξε ∈W 1,1(0, T ;H) and ξε(0) = (∂φ(u0ε))

◦.Note that the latter, being false in general, diretly follows from uε ∈ H2(0, T ;H) as soonas φ is smooth, say φ ∈ C1,1.Heneforth the symbol c will denote a positive onstant, possibly varying from line toline and depending on ‖f‖L2(0,T ;H), |u0|, and c0 but independent of ε.From equation (3.1) we learly have that −εu′′ε + u′ε + ξε is in L2(0, T ;H). Our aim isnow to dedue separate bounds for the three terms above. We argue as follows
∫ T

0

|εu′′ε |2 +

∫ T

0

|u′ε|2 +

∫ T

0

|ξε|2

=

∫ T

0

| − εu′′ε + u′ε + ξε|2 + 2

∫ T

0

(εu′′ε , u
′
ε) − 2

∫ T

0

(u′ε, ξε) + 2

∫ T

0

(εu′′ε , ξε)

=

∫ T

0

|f |2 + 2

∫ T

0

(εu′′ε , u
′
ε) − 2

∫ T

0

(u′ε, ξε) + 2

∫ T

0

(εu′′ε , ξε)

=

∫ T

0

|f |2 + ε|u′ε(T )|2 − ε|u′ε(0)|2 − 2φ(uε(T )) + 2φ(u0ε) + 2

∫ T

0

(εu′′ε , ξε).The last term above may be ontrolled by virtue of (4.2) as
2

∫ T

0

(εu′′ε , ξε) = −2ε
(

u′ε(0), ξε(0)
)

− 2ε

∫ T

0

(u′ε, ξ
′
ε)

≤ ε|u′ε(0)|2 + ε|ξε(0)|2 − 2ελ

∫ T

0

|u′ε|2(4.3)where we have used u′(T ) = 0 and the λ-onvexity of φ. Hene, by olleting theseomputations we have that
1

2

∫ T

0

|εu′′ε |2 +
1 + 2ελ

2

∫ T

0

|u′ε|2 +
1

2

∫ T

0

|ξε|2 + φ(uε(T ))

≤ φ(u0ε) +
ε

2
|ξε(0)|2 +

1

2

∫ T

0

|f |2 ≤ c+ cε|ξε(0)|2,where, in the last inequality, we have used (2.10). Now, by taking ε small with respet to
λ in suh a way that(4.4) 2ελ− ≤ 1/2,we onlude that

ε‖u′′ε‖L2(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ c+ cε1/2|(∂φ(u0ε))
◦|.(4.5)



14 Classial interpolation between L2(0, T ;H) andH1(0, T ;H) (f. [LM72, BL76℄ or equiv-alently by Gagliardo-Nirenberg) we obtain
‖u′ε‖C0([0,T ];H) ≤ c‖u′ε‖1/2

L2(0,T ;H)‖u′ε‖
1/2

H1(0,T ;H)

= c
(

‖u′ε‖L2(0,T ;H) + ‖u′ε‖1/2

L2(0,T ;H)‖u′′ε‖
1/2

L2(0,T ;H)

)

≤ c
(

1 + |(∂φ(u0ε))
◦|
)

,(4.6)so that (4.1) follows from (2.9).Besides the regular ase φ ∈ C1,1, the above argument an be easily adapted to thesituation where ∂φ is single-valued. This an be done my means of a nested approximationargument via Moreau-Yosida approximations in (4.3).4.2. Proof of Theorem 1.1. The strategy of this proof is elementary. We shall diretlyompare the minimizer uε of Iε and the unique solution u of the gradient �ow (1.1).In partiular, take the di�erene between (1.1) and the Euler equation (3.1), test it on
wε

.

= u− uε, and integrate in time getting
ε

∫ t

0

|w′
ε|2 +

1

2
|wε(t)|2 +

∫ t

0

(ξ − ξε, wε)

=
1

2
|u0 − u0ε|2 + ε

∫ t

0

(u′, w′
ε) − ε(u′ε(t), wε(t)) + ε(u′ε(0), u0 − u0ε),(4.7)where ξ ∈ ∂φ(u) almost everywhere. Using λ-onvexity we �nd

ε

∫ t

0

|w′
ε|2 +

1

2
|wε(t)|2 + λ

∫ t

0

|wε|2

= |u0 − u0ε|2 + ε

∫ t

0

(

|u′|2 + |w′
ε|2
)

+ ε2|u′ε(t)|2 +
1

4
|wε(t)|2 +

ε2

2
|u′ε(0)|2.Owing to Lemma 4.1 and applying Gronwall's Lemma, we readily ompute that

ε

2

∫ t

0

|w′
ε|2 +

1

4
|wε(t)|2

≤ c

(

|u0 − u0ε|2 + ε

∫ t

0

|u′|2 + ε2|u′ε(t)|2 + ε2|u′ε(0)|2
)

≤ cε,(4.8)where now c depends on λ− as well. The strong onvergene uε → u in C([0, T ];H) follows.Let us observe that, by inspeting the proof of Lemma 4.1, in ase u0 ∈ D(∂φ) one realizesthat no approximation of the initial datum is atually needed and the onvergene resultholds for minimizers of Iε in K(u0) as well.5. Extensions and omments5.1. Sharper statements. The proof of Theorem 1.1 an be made preise in two di�erentdiretions. Firstly, the onvergene proof is quantitative for we have obtained an expliitonvergene rate. Seondly, we an exploit real interpolation in order to hek onvergenein some �ner topology as well.



15Let us refer to [BL76℄ for notation and results on real interpolation between Banahspaes, in partiular for the de�nition of (C([0, T ];H), H1(0, T ;H))η,1 whih is used inthe following result.Theorem 5.1 (Sharper onvergene result). For 0 < η < 1 we have that
‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1

≤ cε(1−η)/2,(5.1)where c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, T , λ−, and η, but not on ε.Proof. By interpolation we have that
‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1

≤ c‖u− uε‖1−η
C([0,T ];H)‖u− uε‖η

H1(0,T ;H)(4.8)
≤ cε(1−η)/2ε0 = cε(1−η)/2,(5.2)and the result is established. �Let us make onrete this disussion in the Hilbert sale Hs(0, T ;H). Realling that

(C([0, T ];H), H1(0, T ;H))η,1 ⊂ (L2(0, T ;H), H1(0, T ;H))η,2

= Bη
2 2(0, T ;H) = Hη(0, T ;H),we get the following.Corollary 5.2 (Strong onvergene in Hη(0, T ;H)). For 0 < η < 1 we have that(5.3) ‖u− uε‖Hη(0,T ;H) ≤ cε(1−η)/2where c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, T , λ−, and η, but not on ε.5.2. Weaker assumptions. The above results an be easily extended to the ase when(5.4) u0 ∈ Dr,∞ for some 0 < r < 1.Let us ask for a sequene u0ε ∈ D(∂φ) suh that u0ε → u0 strongly in H and (see (2.9))(5.5) ε−r|u0 − u0ε| + ε1−r|(∂φ(u0ε))

◦| ≤ c0,for some c0 > 0. The arguments leading to the key estimate (4.1) still holds (note that(2.10) is ful�lled) and we dedue that
ε‖u′′ε‖L2(0,T ;H) + ε1/2‖u′ε‖L∞(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ cεr−1/2.In partiular, estimate (4.8) turns out to be
ε

2

∫ t

0

|w′
ε|2 +

1

4
|wε(t)|2 ≤ c

(

|u0 − u0ε|2 + ε

∫ t

0

|u′|2 + ε2|u′ε(t)|2
)

≤ cε2r,and uniform onvergene holds for all r > 0. Of ourse, the onvergene rates of Theorem5.1 are to be modi�ed as follows
‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1

≤ c‖u− uε‖Hη(0,T ;H) ≤ cεr−η/2.Some onretization of this onstrution in the frame of linear paraboli PDEs is given inSubsetion 7.1.The λ-onvexity assumption on the funtional an be relaxed to(5.6) ∃λ : [0,∞) → R suh that φ is λ(r)-onvex on {|u| ≤ r} for all r ≥ 0.



16This assumption inludes the ase of a C2 funtional whih is not C1,1. Indeed, by testing(3.1) by u′ε and taking the integral on (0, T ), one has that
ε

2
|u′(0)|2 +

∫ T

0

|u′ε|2 + φ(uε(T )) = φ(u0ε) +

∫ T

0

(f, u′ε).In partiular, a bound in H1(0, T ;H) for uε, independent of ε, follows and it su�es to�x r .

= supε,t |uε(t)| in (5.6) and repeat the argument of Lemma 4.1 with λ = λ(r) �xed.5.3. Regularity result. A regularity theory for the gradient �ow (1.1) in the Höldersale Cs([0, T ];H) has been outlined by Savaré in [Sav96℄ where he proves that
u0 ∈ D(∂φ) and f ∈ B

−1/2
2 1 (0, T ;H) ⇒ u ∈ C([0, T ];H),

u0 ∈ D(∂φ) and f ∈ B
1/2
2 1 (0, T ;H) ⇒ u ∈W 1,∞(0, T ;H).Although lassial nonlinear interpolation [Tar70, Tar72℄ does not diretly apply to thepresent situation, some intermediate regularity is expeted. At level 1/2, we readily havethat

D1/2,2 = D(φ),

(B
−1/2
2 1 (0, T ;H), B

1/2
21 (0, T ;H))1/2,2 = L2(0, T ;H),

(C([0, T ];H),W 1,∞(0, T ;H))1/2,∞ = C1/2([0, T ];H)and nothing has to be proved for the intermediate regularity
u0 ∈ D(φ) and f ∈ L2(0, T ;H) ⇒ u ∈ C1/2([0, T ];H)follows at one from H1(0, T ;H) ⊂ C1/2([0, T ];H).On the other hand, we are in the position of ompleting this regularity theory forweaker assumptions on the initial data u0 (but keeping f ∈ L2(0, T ;H) �xed). Indeed,we have that the following regularity result, whih is, to our knowledge, new even in thelassial onvex setting for φ.Lemma 5.3 (Regularity).
u0 ∈ Dr,∞, f ∈ L2(0, T ;H) =⇒ u ∈ Cr([0, T ];H).The result follows easily from the fat that, in ase u0 ∈ Dr,∞, one has

ε1−r‖uε‖W 1,∞(0,T ;H) + ε−r‖u− uε‖C([0,T ];H) ≤ c,as the latter entails in partiular that
u ∈ (C([0, T ];H),W 1,∞(0, T ;H))s,∞ = Cs([0, T ];H).5.4. Sharpness of the onvergene rates. Although spei� situations (see below)exhibit a stronger onvergene rate, in general the above proved error bounds are sharpas the estimates (reall (4.8))

‖u− uε‖C([0,T ];H) ≤ cε1/2+δ(5.7)
‖u− uε‖H1(0,T ;H) ≤ cεδ(5.8)are false for all δ > 0.



17We shall prove this fat by ontraditing the maximal regularity u ∈ H1(0, T ;H) viainterpolation. In partiular, assume (5.7). From (4.8) we have that, for all 0 < η < 1,
‖u− uε‖Cη/2([0,T ];H) ≤ c‖u− uε‖(C([0,T ];H),C1/2([0,T ];H))η,∞

≤ c‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1
≤ c ε(1−η)(1/2+δ).Choosing η suh that(5.9) 1/2 = (1 − η)(1/2 + δ)and realling (4.1) we get that

ε1/2‖uε‖W 1,∞(0,T ;H) + ε−1/2‖u− uε‖Cη/2([0,T ];H) ≤ c.Hene, by interpolation we have that
u ∈ (Cη/2([0, T ];H),W 1,∞(0, T ;H))1/2,∞ = Cs([0, T ];H) for s =

1

2

η

2
+

1

2
1 >

1

2
.On the other hand, as we surely have that, for any s > 1/2, there exist funtions in

H1(0, T ;H) whih do not belong to Cs([0, T ];H), this learly amounts to a ontradition.A similar (easier) argument proves the sharpness in H1(0, T ;H). Indeed, assume (5.8).Then, estimate (4.1) ensures that
ε1/2‖uε‖W 1,∞(0,T ;H) + ε−δ‖u− uε‖H1(0,T ;H) ≤ c.Choosing the interpolation level 0 < δ < 1 we obtain

u ∈ (H1(0, T ;H),W 1,∞(0, T ;H))δ,∞

⊂ (C1/2([0, T ];H),W 1,∞(0, T ;H))δ,∞

= Cr([0, T ];H) with r = δ +
1 − δ

2
=

1 + δ

2
>

1

2
,whih again is ontraditing the maximal regularity u ∈ H1(0, T ;H).Note that the above proofs rely on the hoie of a general datum f ∈ L2(0, T ;H) anda more regular setting ould give rise to better onvergene rates. Let us stress that wedo not presently know if strong onvergene holds in H1(0, T ;H). On the other hand, wehave just proved that no rate in H1(0, T ;H) an be expeted.5.5. Speial ase of (1.3). In the spei� situation of the salar and linear ase of (1.3),some improved onvergene rate of uε is available. In partiular, one an expliitly provethat

|(u− uε)(t)| = ε
(

e(t−1)/ε−1 − e−1/ε−t−1
)

≤ 2ε

e
,so that a linear onvergene rate is ahieved in C([0, T ];H), see Figure 2.Moreover, strong onvergene in H1(0, 1) holds with rate 1/2 as we have that

‖u− uε‖H1(0,1) ∼
√
ε

(

1

2e2
+

2

e

)

.
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Figure 2: The onvergene rate in C[0, T ] in the speial ase (1.3). The solid line is thefuntion ε 7→ max[0,T ] |u− uε| and the dashed line is linear in ε (log-log sale).5.6. Approximate minimizers, relaxation. The onvergene result of Theorem 1.1an be extended to the ase of quali�ed sequenes of approximate minimizers of thefuntional Iε.Theorem 5.4 (Convergene for approximate minimizers). Let vε ∈ K(u0ε) be suh that(5.10) Iε(vε) ≤ inf
K(u0ε)

Iε + αε, αε = o(ε2e−T/ε) as ε→ 0.Then vε → u in C([0, T ];H).Note that the above statement an be generalized in the many diretions ommentedabove. In partiular, a onvergene rate in C([0, T ];H) an be derived and the requirementon αε an be weakened in ase φ is onvex.Proof. Let vε ful�ll (5.10) and ε be small enough. Moreover, let uε denote the minimizerof Iε in K(u0ε). By using the κε-onvexity of Iε from Proposition 2.1 we readily obtainthat, for all θ ∈ [0, 1),
Iε(uε) ≤ Iε

(

θuε + (1 − θ)vε

)

≤ θIε(uε) + (1 − θ)Iε(vε) −
θ(1 − θ)

2
κε‖uε − vε‖2

H1(0,T ;H).Dividing by 1 − θ and taking θ → 1 we get that
κε

2
‖uε − vε‖2

H1(0,T ;H) ≤ Iε(vε) − min
K(u0ε)

Iε ≤ αε.As αε = o(κε) for ε → 0, we have heked that uε − vε → 0 in H1(0, T ;H) and theassertion follows from Theorem 1.1. �



19The onvergene result of Theorem 5.4 may be extended in the diretion of relaxation.In partiular, sequenes of approximate minimizers onverge even if φ is not λ-onvexnor lower semiontinuous, provided that s−Iε is itself a WED funtional for a λ-onvexand lower semiontinuous potential. This is the ase, for instane, for the two relaxationexamples of Subsetions 7.5-7.6 below.Corollary 5.5 (Convergene without onvexity and lower semiontinuity). Assume thats−Iε is a WED funtional ful�lling (2.2a)-(2.2b). Moreover, let vε ∈ K(u0ε) be suh that
Iε(vε) ≤ inf

K(u0ε)
Iε + αε, αε = o(ε2e−T/ε) as ε→ 0.Then vε → u in C([0, T ];H).Proof. Let uε be the unique minimizer of s−Iε in K(u0ε). As we learly have thats−Iε(vε) ≤ Iε(vε) ≤ inf

K(u0ε)
Iε + αε = s−Iε(uε) + αε,we are in the position of applying diretly Theorem 5.4 to the funtional s−Iε and on-lude. �5.7. Another hoie for the arti�ial boundary ondition in T . The hoie of thehomogeneous Neumann boundary ondition in T for (1.4a) is just motivated by the sake ofsimpliity and one may wonder if other possibilities would give rise to better onvergeneresults. We shall not disuss here this issue in full generality but rather onsider theoriginal setting by Mielke & Ortiz [MO08℄ where the funtional Īε : H1(0, T ;H) →

(−∞,∞] given by
Īε(v)

.

=

∫ T

0

e−t/ε

(

1

2
|v′|2 +

1

ε

(

φ(v) − (f, v)
)

) dt+ e−T/ε
(

φ(v(T )) − (fT , v(T ))
)

,for a given fT ∈ H , are onsidered instead. The orresponding Euler system inludes(1.4a)-(1.4b) along with the boundary ondition(5.11) u′(T ) + ∂φ(u(T )) ∋ fT .By hoosing fT = f(T ) for f regular, the above ondition is enforing, independently of
ε, the attainment of the gradient �ow equation (1.1) at the �nal time T .The results of this paper an be equivalently stated for minimizers vε of Īε in K(u0ε)and the orresponding proofs just follow from the (sometimes tehnial) adaptation of thepresent ones to that ase. In partiular, the onvergene vε → u in C([0, T ];H) holds.The di�erene in onsidering vε may be related to the fat that we impose no arti�ialonstraint on the �rst time-derivative in T . On the other hand, by asking for (5.11) weare (formally) imposing v′′ε (T ) = 0.Despite the fat that the very same analytial results are available for the two di�erenthoies of boundary onditions in T (and that the same sharpness of onvergene ratesan be heked, see Subsetion 5.4), the use of Īε instead of Iε ould show some advantagein some situation. In the very spei� salar and linear ase of (1.3) an illustration of theuniform onvergene of vε is given in Figure 3. The plots in Figures 1 and 3 are produedby the same hoies of ε. In partiular, it is evident that that the trajetory vε are loser
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Figure 3: The onvergene result in the speial ase (1.3). As ε → 0, the minimizers of
Īε (dashed lines) approah the solution of the gradient �ow (solid line).
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Figure 4: The funtions ε 7→ ‖u − uε‖C[0,T ](solid) and ε 7→ ‖u − vε‖C[0,T ] (dashed) in a
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Figure 5: The funtions ε 7→ ‖u− uε‖H1(0,T )(solid) and ε 7→ ‖u− vε‖H1(0,T ) (dashed) in alog-log sale.to u than the former uε. Expliit onvergene rates an be easily omputed for vε in thespei� ase of (1.3) from
|(u− vε)(t)| ∼ 4ε2

(

e(t−1)/ε−1 − e−1/ε−t−1
)

≤ 4ε2

e
,

‖u− vε‖H1(0,1) ∼
2
√

2ε

e
.The omparison between the onvergene rates for uε and vε are reported in Figures 4-5.



215.8. Cauhy argument. An alternative strategy for the proof of Theorem 1.1 is that ofdiretly heking that uε is a Cauhy sequene in C([0, T ];H). By taking the di�erenebetween the Euler equation (3.1) at level ε and the same equation at level µ, testing it on
w

.

= uε − uµ, and integrating in time one gets that
ε

∫ t

0

|w′|2 +
1

2
|w(t)|2 +

∫ t

0

(ξε − ξµ, w)

= ε(w′(t), w(t)) − ε(w′(0), w(0)) +
1

2
|w(0)|2 + (ε− µ)

∫ t

0

(u′′µ, w).Let us now exploit λ-onvexity and integrate by parts the last term in the above right-handside obtaining
ε

∫ t

0

|w′|2 +
1

2
|w(t)|2 + λ

∫ t

0

|w|2

≤ ε(w′(t), w(t)) − ε(w′(0), w(0)) +
1

2
|w(0)|2

+ (ε− µ)(u′µ(t), w(t)) − (ε− µ)(u′µ(0), w(0))− (ε− µ)

∫ t

0

(u′µ, w
′)

=
1

2
|w(0)|2 + (εu′ε(t) − µu′µ(t), w(t)) − (εu′ε(0) − µu′µ(0), w(0))− (ε− µ)

∫ t

0

(u′µ, w
′)

≤ |w(0)|2 +
1

4
|w(t)|2 + cε2‖u′ε‖2

C([0,T ],H) + cµ2‖u′µ‖2
C([0,T ],H)

+ (ε+ µ)‖u′µ‖L2(0,T ;H)‖w′‖L2(0,T ;H)where we have exploited Lemma 4.1. In partiular, we have that
ε

∫ t

0

|w′|2 +
1

4
|w(t)|2 + λ

∫ t

0

|w|2 ≤ c(ε+ µ)and the Cauhy harater in C([0, T ];H) follows by Gronwall's Lemma. One uε is provedto admit a strong limit u it is standard to hek that indeed u solves (1.1).The advantage of this argument with respet to the former proof of Theorem 1.1 isthat it does not rely on the well-posedness of the limiting gradient �ow (1.1). This fatallows us to state a modi�ation of Theorem 1.1 as follows.Proposition 5.6 (Convergene without lower semiontinuity). Let φ be proper, boundedbelow, λ-onvex but not neessarily lower semiontinuous. Moreover let f ∈ L2(0, T ;H),
u0 ∈ D(φ), u0ε ful�ll (2.9), and uε solve the Euler system (3.1)-(3.3). Then, uε → ustrongly in C([0, T ];H) and weakly in H1(0, T ;H) where u is the only solution of thegradient �ow(5.12) u′ + ∂φ(u) ∋ f a.e. in (0, T ), u(0) = u0,where ∂φ is the strong × weak losure of ∂φ in H ×H, namely
∂φ(u)

.

= {ξ ∈ H : ∃(uk, ξk) → (u, ξ) strongly × weakly in H ×H and ξk ∈ ∂φ(uk)}.Proof. As the ompatness of the sequene uε in C([0, T ];H) (has well as its boundednessin H1(0, T ;H)) has been already established, owing to Lemma 4.1 and by passing to thelimit in (3.1) we get the assertion. �



22 For the sake of illustrating the above result, let us remark that(5.13) ∂φ ⊂ ∂(s−ψ),the inlusion being strit. First of all, we have that ∂φ = ∂ψ + λ id, where ∂ψ is theorresponding losure of ∂ψ (note that ∂ψ does not oinide with ∂ψ as ψ may be notlower semiontinuous).On the one hand, by exploiting the very de�nition of subdi�erential and relaxation wereadily get that ∂ψ ⊂ ∂(s−ψ). Indeed, let η ∈ ∂ψ(u). Then there exists (uk, ηk) → (u, η)strongly × weakly suh that
(ηk, wk − uk) ≤ ψ(wk) − ψ(uk) ≤ ψ(wk) − s−ψ(uk) ∀wk ∈ H.Fix now w ∈ H and hoose wk → w to be suh that ψ(wk) → s−ψ(w). By passing tothe lim inf in the above inequality we get that η ∈ ∂(s−ψ)(u).On the other hand, let H = R and φ be de�ned by

φ(u)
.

=







0 for u < 0
1 for u = 0
∞ otherwiseso that we immediately ompute the relaxations−φ(u) =

{

0 for u ≤ 0
∞ otherwise.The orresponding subdi�erentials read

∂φ(u) =

{

0 for u < 0
∅ otherwise,

∂φ(u) =

{

0 for u ≤ 0
∅ otherwise,

∂(s−φ)(u) =







0 for u ≤ 0
[0,∞) for u = 0
∅ otherwise.In partiular, the inlusion in (5.13) is strit.Note that, from the one hand, Proposition 5.6 is more general than Theorem 1.1 as thelower semiontinuity assumption on φ is dropped. This would in priniple open the way torelaxation. On the other hand, Proposition 5.6 diretly assumes the existene of solutionsto the Euler system (3.1)-(3.3), a irumstane that we hek for lower semiontinuousfuntionals only (see Theorem 3.1).6. Time-disretizationThe onvergene result of Theorem 1.1 an be e�iently ombined with time-disretizationwhih, in turn, provides a sound frame for the proof of Lemma 4.1 out of the regular aseof (4.2).



23We start by realling the notation for the onstant time-step τ = T/n and introduingthe funtional Iετ de�ned on disrete trajetories (v0, . . . , vn) ∈ Hn+1 as
Iετ(v

0, . . . , vn) =

n
∑

i=1

ρi
ετ

τ

2

∣

∣

∣

∣

vi − vi−1

τ

∣

∣

∣

∣

2

+

n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )
(

φ(vi) − (f i, vi)
)

.Here, the weights (ρ1
ετ , . . . , ρ

n
ετ ) are given by(6.1) ρi

ετ =

(

ε

τ + ε

)i for i = 1, . . . , n.In partiular, (ρ1
ετ , . . . , ρ

n
ετ ) is nothing but the solution of the onstant time-step impliitEuler disretization of the problem ρ′ + ρ/ε = 0 with initial ondition ρ(0) = 1. As thishoie ensures that, for i = 1, . . . , n− 1,(6.2) ρi

ετ − ρi+1
ετ =

τ

ε
ρi+1

ετ > 0,and we have by Lemma 2.2 that ρετ (t) → e−t/ε uniformly as τ → 0 for ε > 0 �xed, thefuntional Iετ may be regarded as a quadrature of the time-ontinuous funtional Iε.Before moving on, let us motivate our spei� hoie for the funtional Iετ . First ofall, we reall that the inremental minimization sheme of (2.12) in equivalent to
u0 = u0 and ui = Argmin

u∈H

(

1

2

∣

∣

∣

∣

u− ui−1

τ

∣

∣

∣

∣

2

+
φ(u) − (f i, u)

τ
− φ(ui−1) − (f i−1, ui−1)

τ

)for i = 1, . . . , n.(6.3)Indeed, the latter is nothing but (2.12) where, at eah level i, we have added the inonse-quential term −(φ(ui−1)− (f i−1, ui−1))/τ . Here, the point f 0 ∈ H is assumed to be given(its atual value being irrelevant).The latter minimization problems are usually solved sequentially. On the other hand,a diret omputation shows that
Iετ (v

0, . . . , vn)

=
n
∑

i=1

ρi
εττ

(

1

2

∣

∣

∣

∣

vi − vi−1

τ

∣

∣

∣

∣

2

+
φ(vi) − (f i, vi)

τ
− φ(vi−1) − (f i−1, vi−1)

τ

)

− ρn
ετ

(

φ(vn) − (fn, vn)
)

+ ρ1
ετ

(

φ(v0) − (f 0, v0)
)

.(6.4)Hene, the minimization of Iετ in Kτ (u0ε)
.

= {(v0, . . . , vn) ∈ Hn+1 : v0 = u0ε}roughly orresponds to ollet all the minimization problems in (6.3) in a single on-strained minimization problem for the entire disrete trajetory (u0, . . . , un). This inpartiular motivates our referene to the values ρi
ετ as Pareto weights in analogy withthe orresponding notion in multi-objetive optimization [Cla90℄. More spei�ally, as

ρ1
ετ ≫ ρ2

ετ ≫ · · · ≫ ρn
ετ for ε → 0, it turns out that, by minimizing Iετ , a muh largerpriority is aorded to the �rst minimum problem in (6.3) with respet to the seond, tothe seond with respet to the third, and so on. Hene, the limit ε → 0 again formallyorresponds to ausality restoring, see also [MS08℄.Exatly as in the time-ontinuous situation, in ase φ is onvex, the funtional Iετ turnsout to be uniformly onvex for all ε. In partiular, a unique minimizer of Iετ in Kτ (w0)



24exists for all w0 ∈ H . The same holds true for general λ-onvex funtionals whenever εand τ are hosen to be small enough. Indeed, we have the following.Proposition 6.1 (Well-posedness of the disrete minimum problem). For ε and τ smalland all w0 ∈ H, the funtional Iετ admits a unique minimizer in Kτ (w0).Proof. This argument is the disrete analogue of the proof of Proposition 2.1. In parti-ular, we start by deomposing Iετ into a quadrati part Qετ and a onvex remainder Rετas
Iετ (u

0, . . . , un)

=

(

n
∑

i=1

τ

2
ρi

ετ

∣

∣δui
∣

∣

2 −
n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )
λ−

2
|ui|2

)

+

(

n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )
(

ψ(ui) − (f i, ui)
)

)

.

= Qετ (u
0, . . . , un) +Rετ (u

0, . . . , un).The result follows by heking that, for small ε and τ , the funtional Qετ is uniformlyonvex on Kτ (w0). To this aim, for all (u0, . . . , un) ∈ K(w0) let (v0, . . . , vn) be de�ned as
vi .

=
√

ρi
ετu

i. Then, we ompute that (see (2.5))
δui =

1
√

ρi−1
ετ

δvi + viδ

(

1
√

ρi
ετ

)

=
1

√

ρi
ετ

(

rετδv
i +

1 − rετ

τ
vi

)where rετ
.

=
√

ε/(ε+ τ). By observing that ρi
ετ−ρi+1

ετ = ρi
ετ (1−r2

ετ ), the valueQετ (u
0, . . . , un)an hene be rewritten as

Qετ (u
0, . . . , un) =

n
∑

i=1

τ

2

(

r2
ετ |δvi|2 +

(1 − rετ )
2

τ 2
|vi|2 +

2rετ(1 − rετ)

τ
(δvi, vi)

)

−
n−1
∑

i=1

(1 − r2
ετ)λ

−

2
|vi|2

=
n
∑

i=1

τr2
ετ

2
|δvi|2 +

(1 − rετ )
2

2τ
|vn|2 +

n−1
∑

i=1

[

(1 − rετ )
2

2τ
− (1 − r2

ετ)λ
−

2

]

|vi|2

+
rετ (1 − rετ )

τ

(

1

2
|vn|2 +

1

2

n
∑

i=1

|vi − vi−1|2 − 1

2
|w0|2

)

.As we readily hek that
[

(1 − rετ )
2

2τ
− (1 − r2

ετ )λ
−

2

]

→ 1

2τ
− λ−

2
as ε→ 0,for all ε and τ small (depending on λ− only), the funtional Qετ turns out to be uniformlyonvex in K(w0). �The main result of this setion is the onvergene of minimizers of the time-disretefuntional Iετ to solutions of the gradient �ow (1.1) as the time-step τ and the ausalparameter ε go to 0. To this aim, we assume for the very beginning that f τ → f stronglyin L2(0, T ;H). This onvergene holds, for instane, if f τ is built on loal means. Wehave the following.



25Theorem 6.2 (Convergene + disretization). uετ → u in C([0, T ];H) as ε+ τ → 0.6.1. Disrete Euler equation. The funtional Iετ is the quadrati perturbation of aonvex funtional. Hene, its Fréhet subdi�erential is readily omputed and, letting
(u0

ε, . . . , u
n
ε ) be the minimizer of Iετ in Kτ (u0ε), from 0 ∈ ∂Iετ (u

0
ε, . . . , u

n
ε ) we have thatthere exist ξi

ε ∈ ∂φ(ui
ε), i = 1, . . . , n− 1, suh that

0 ∈
n
∑

i=1

ρi
εττ(δu

i
ε, δv

i) +

n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )(ξi
ε − f i, vi) ∀(v0, . . . , vn) ∈ Kτ (0).The �rst term in the above right-hand side reads (reall that v0 = 0)

n
∑

i=1

ρi
εττ(δu

i
ε, δv

i) =
n−1
∑

i=1

(ρi
ετδu

i
ε − ρi+1

ετ δui+1
ε , vi) + ρn

ετ (δu
n
ε , v

n),and, by using (6.2), we have that
ρi

ετδu
i
ε − ρi+1

ετ δui+1
ε = (ρi

ετ − ρi+1
ετ )δui

ε + ρi+1
ε (δui

ε − δui+1
ε )

=
τ

ε
ρi+1

ετ δui
ε + ρi+1

ετ (δui
ε − δui+1

ε ).On the other hand, again form (6.2) we have that
n−1
∑

i=1

(ρi
ετ − ρi+1

ετ )(ξi
ε − f i, vi) =

n−1
∑

i=1

τ

ε
ρi+1

ε (ξi
ε − f i, vi).Hene, the minimizer (u0

ε, . . . , u
n
ε ) of Iετ in Kτ (u0ε) ful�lls the disrete Euler equation (see(3.1)-(3.4))

− ε
δui+1

ε − δui
ε

τ
+ δui

ε + ξi
ε = f i for i = 1, . . . , n− 1,(6.5a)

u0
ε = u0ε,(6.5b)
δun

ε = 0,(6.5)
ξi
ε ∈ ∂φ(ui

ε) for i = 1, . . . , n− 1.(6.5d)
6.2. Key estimate at the disrete level. Our next aim is to reprodue at the disretelevel the key estimate (4.1). Note that the regularity in time in (4.2) is not needed hereas integration by parts is here replaed by summation.Let us �x with no loss of generality ξ0

ε = (∂φ(u0ε))
◦. For the sake of notationalsimpliity, we let vi

ε = δui+1
ε for i = 1, . . . , n− 1. The Euler equation (6.5a) ensures that
n−1
∑

i=1

τ
∣

∣−εδvi
ε + δui

ε + ξi
ε

∣

∣

2
=

n−1
∑

i=1

τ |f i|2



26and we shall now proeed to the proof of separate bounds on the three terms in theleft-hand side above. In partiular, we have that
n−1
∑

i=1

τ
(

ε2|δvi
ε|2 + |δui

ε|2 + |ξi
ε|2
)

=
n−1
∑

i=1

τ | − εδvi
ε + δui

ε + ξi
ε|2 + 2ε

n−1
∑

i=1

τ(δvi
ε, δu

i
ε) − 2

n−1
∑

i=1

τ(δui
ε, ξ

i
ε) + 2ε

n−1
∑

i=1

τ(δvi
ε, ξ

i
ε)

=
n−1
∑

i=1

τ |f i|2 + 2ε
n−1
∑

i=1

τ(δvi
ε, δu

i
ε) − 2

n−1
∑

i=1

τ(δui
ε, ξ

i
ε) + 2ε

n−1
∑

i=1

τ(δvi
ε, ξ

i
ε).

(6.6)We now aim at ontrolling the last three terms in the above right-hand side. We havethat
2ε

n−1
∑

i=1

τ(δvi
ε, δu

i
ε) = −ε|δu1

ε|2 − ε
n−1
∑

i=1

|vi
ε − vi−1

ε |.(6.7)Moreover, by exploiting λ-onvexity, one omputes that
−2

n−1
∑

i=1

τ(δui
ε, ξ

i
ε) = 2

n−1
∑

i=1

(ui−1
ε − ui

ε, ξ
i
ε)

≤ 2

n−1
∑

i=1

(

ψ(ui−1
ε ) − ψ(ui

ε) −
λ

2
|ui

ε|2 +
λ

2
|ui−1

ε |2 − λ

2
|ui

ε − ui−1
ε |2

)

= 2φ(u0ε) − 2φ(un−1
ε ) − λ

n−1
∑

i=1

|ui
ε − ui−1

ε |2

= 2φ(u0ε) − 2φ(un−1
ε ) − λτ

n−1
∑

i=1

τ |δui
ε|2.(6.8)Finally, again λ-onvexity ensures that

2ε

n−1
∑

i=1

τ(δvi
ε, ξ

i
ε) = −2ε(δu1

ε, ξ
1
ε) − 2ε

n−1
∑

i=2

τ(δui
ε, δξ

i
ε)

≤ −2ε(δu1
ε, ξ

0
ε ) − 2λε

n−1
∑

i=1

τ |δui
ε|2.(6.9)Now, taking into aount (6.7)-(6.8), estimate (6.6) beomes

1

2

n−1
∑

i=1

τ
(

ε2|δvi
ε|2 +

(

1 + λ(2ε+ τ)
)

|δui
ε|2 + |ξi

ε|2
)

+
ε

2
|δu1

ε|2 +
ε

2

n−1
∑

i=1

|vi
ε − vi−1

ε | + φ(un−1
ε )

≤ 1

2

n−1
∑

i=1

τ |f i|2 − ε(δu1
ε, ξ

0
ε) + φ(u0ε).(6.10)



27In partiular, as soon as λ−(2ε+ τ) ≤ 1/2 (see (4.4)), we reall (2.9)-(2.10) and onludethat
ε2

n−1
∑

i=1

τ
∣

∣δvi
ε

∣

∣

2
+

n
∑

i=1

τ |δui
ε|2 +

n−1
∑

i=1

τ |ξi
ε|2 ≤ c,(6.11)where c depends on ‖f‖L2(0,T ;H), |u0|, and c0.We now aim at reproduing estimate (4.6). Let for brevity zi

ε = δui
ε = vi−1

ε . Estimate(6.11) yields that both zετ and εv′ετ are bounded in L2(0, T − τ ;H) independently of εand τ . Let us now handle the di�erene zετ − vετ as follows.
‖zετ − vετ‖2

L2(0,T−τ ;H) =

n−1
∑

i=1

∫ iτ

(i−1)τ

|zi
ε − (αi(t)zi+1

ε + (1 − αi(t))zi
ε)|2dt

=

n−1
∑

i=1

(
∫ iτ

(i−1)τ

(αi(t))2dt) |zi+1
ε − zi

ε|2 =
τ 2

3

n−1
∑

i=1

τ

∣

∣

∣

∣

zi+1
ε − zi

ε

τ

∣

∣

∣

∣

2

=
τ 2

3

n−1
∑

i=1

τ |δvi|2 =
τ 2

3
‖v′ετ‖2

L2(0,T−τ ;H).(6.12)In partiular, we have that
‖vετ‖L2(0,T−τ ;H) ≤ ‖zετ‖L2(0,T−τ ;H) +

τ√
3
‖v′ετ‖L2(0,T−τ ;H) ≤ c

(

1 +
τ

ε

)Hene, we have
‖vετ‖C0([0,T−τ ];H) ≤ c‖vετ‖1/2

L2(0,T−τ ;H)‖vετ‖1/2

H1(0,T−τ ;H)

≤ c
(

1 +
τ

ε

)1/2
(

(

1 +
τ

ε

)2

+
1

ε2

)1/4

≤ c

(

1 +
τ 1/2

ε1/2

)(

1 +
τ 1/2

ε1/2
+

1

ε1/2

)

≤ c

(

1 +
1

ε1/2
+
τ 1/2

ε

)

.(6.13)This bound is the disrete ounterpart to (4.6) (reall (2.9)).6.3. Proof of Theorem 6.2. This argument is nothing but the disrete analogue ofthe proof of Theorem 1.1. Let (u0, u1, . . . , un) solve the impliit Euler sheme (2.11) and
(u0

ε, u
1
ε, . . . , u

n
ε ) minimize Iετ loally in Kτ (u0ε). Test (2.11) by wi

ε = ui − ui
ε getting

(δui, wi
ε) + φ(ui) +

λ

2
|wi

ε| ≤ φ(ui
ε) + (f i, wi

ε) for i = 1, . . . , n− 1.Test now (6.5a) by −wi
ε and obtain that

−ε
τ
(δui+1

ε − δui
ε,−wi

ε) + (δui
ε,−wi

ε) + φ(ui
ε) +

λ

2
|wi

ε| ≤ φ(ui) − (f i, wi
ε)for i = 1, . . . , n− 1.(6.14)Take the sum of the last two inequalities, multiply it by τ , and sum for i = 1, . . . , m ≤ n−1getting

ε
m
∑

i=1

(δui+1
ε − δui

ε, w
i
ε) +

m
∑

i=1

τ(δwi
ε, w

i
ε) + λ

m
∑

i=1

τ |wi
ε|2 ≤ 0.(6.15)



28We easily handle the �rst term above by omputing
ε

m
∑

i=1

(δui+1
ε − δui

ε, w
i
ε) = −ε

m
∑

i=1

τ(δui
ε, δw

i
ε) + ε(δum+1

ε , wm
ε ) − ε(δu1

ε, w
0
ε).Hene, (6.15) entails that

ε
m
∑

i=1

τ |δwi
ε|2 +

1

2
|wm

ε |2

≤ 1

2
|w0

ε |2 + λ−
m
∑

i=1

τ |wi
ε|2 + ε

m
∑

i=1

τ(δui, δwi
ε) − ε(δum+1

ε , wm
ε ) + ε(δu1

ε, w
0
ε).In partiular, by letting 4λ−τ < 1, as u′τ is bounded in L2(0, T ;H) independently of τ ,we have proved by the disrete Gronwall Lemma that

|wm
ε |2 ≤ c

(

ε+ ε2|δum+1
ετ |2 + ε2|δu1

ε|2
)for some onstant c > 0 depending also on λ− but independent of ε and τ . Reall nowthe bound (6.13) and obtain that

|wm
ε |2 ≤ c

(

ε+ ε2

(

1 + ε−1/2 +
τ 1/2

ε

)2
)

≤ c(ε+ τ).Hene, we have heked that maxi=1,...,n−1 |wi
ε| ≤ c(ε + τ). In fat, this bound an beextended to i = n as wn

ε = wn−1
ε . In partiular, we have proved that wετ → 0 in

C([0, T ];H) as ε+ τ → 0. Finally, the strong onvergene uετ → u in C([0, T ];H) followsfrom Lemma 2.2.More spei�ally, in ase φ is lower semiontinuous and f ≡ 0, by exploiting the errorontrol in (2.13)-(2.14), we have proved the joint onvergene rates
‖u− uετ‖C([0,T ];H) ≤ c

(

ε+ τ
)1/2

.Note that, in this ase, the sub-optimality of the rate τ 1/2 is already expeted for theEuler sheme (reall (2.13)). Namely, the present funtional approah is not deteriorat-ing onvergene with respet to the time-step size. Let us mention that the above jointonvergene result an be speialized for establishing quantitative onvergene in interpo-lation spaes and allowing for less-regular initial data in the spirit of Subsetions 5.1 and5.2.6.4. Limit τ → 0 for ε > 0: onvergene to the Euler equation. By letting λ ≥ 0and ε > 0 be �xed and passing to the limit in the time-step τ we an prove the following.Theorem 6.3 (τ → 0 for ε > 0). Let λ ≥ 0 and (u0
ε, . . . , u

n
ε ), (ξ1

ε , . . . , ξ
n−1
ε ) solve (6.5).Then, there exists non-relabeled subsequenes suh that uετ → uε weakly in H1(0, T ;H)and ξετ → ξ weakly in L2(0, T ;H) where (uε, ξε) solves (3.1)-(3.4).Sketh of the proof. Let (ui

ε, ξ
i
ε) ∈ HN+1 × HN−1 solve (6.5) and de�ne vi

ε = δui+1
ε for

i = 1, . . . , n − 1. Our �rst aim is to pass to the limit in the disrete equations (6.5a),



29(6.5)-(6.5d) written in the ompat form
− εv′ετ + u′ετ + ξετ = f ετ a.e. in (0, T − τ),(6.16)
vετ (T − τ) = 0,(6.17)
ξετ ∈ ∂φ(uετ ) a.e. in (0, T − τ).(6.18)Owing to estimates (6.11)-(6.12) we �nd a pair (uε, ξε) suh that, by extrating not rela-beled subsequenes (and possibly onsidering standard projetions for t > T − τ),

uετ → uε weakly in H1(0, T ;H),

vετ → u′ε weakly in H1(0, T ;H),

ξετ → ξε weakly in L2(0, T ;H).The above onvergenes su�e for ensuring that equations (3.1)-(3.3) hold. Moreover, wehave
lim sup

τ→0

∫ T−τ

0

(ξετ , uετ )

≤ lim sup
τ→0

(

− ε

∫ T−τ

0

|u′ετ |2 − ε(vετ(0), u0ε) −
1

2
|uετ(T − τ)|2 +

1

2
|u0ε|2 +

∫ T−τ

0

(f τ , uετ )
)

≤ −ε
∫ T

0

|u′|2 − ε(u′(0), u0ε) −
1

2
|u(T )|2 +

1

2
|u0ε|2 +

∫ T

0

(f, u)

=

∫ T

0

(ξ, u),

(6.19)and the inlusion (3.4) follows again from the lassial [Bre73b, Prop. 2.5, p. 27℄. �Note that the above proof an be adapted to the non-onvex ase λ < 0 by additionallyrequiring some ompatness on the sublevels of φ. Hene, the extrated sequenes wouldful�ll the strong onvergene [Sim87, Cor. 4℄, namely
uετ → uε strongly in C([0, T ];H).This onvergene su�es in order to pass to the limit in
ξετ − λuετ ∈ ∂ψ(uετ ) a.e. in (0, T )and get that
ξε − λuε ∈ ∂ψ(uε) a.e. in (0, T ).Namely, inlusion (3.4) holds.6.5. Proof of the key estimate. Let us �nally ome to the proof of Lemma 4.1. Byreonsidering the argument of Subsetion 6.2 and Theorem 6.3 we readily have that, given

g ∈ L2(0, T ;H), the solution (uε, ηε) ∈ H2(0, T ;H) × L2(0, T ;H) of
− εu′′ε + u′ε + ηε = g a.e. in (0, T ),(6.20)
uε(0) = u0ε,(6.21)
u′ε(T ) = 0,(6.22)
ηε ∈ ∂ψ(uε) a.e. in (0, T )(6.23)



30is the limit (the omponent uε being unique) of a disrete problem whih in turn ful�llsthe expeted estimates. In partiular, by passing to the limit we �nd that there exists apositive onstant c > 0 depending on |g|L2(0,T ;H), |u0|, and c0 suh that
ε‖u′′ε‖L2(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ηε‖L2(0,T ;H) ≤ c.(6.24)Moreover, arguing exatly as in Subsetion 4.1, we also have that(6.25) ε1/2 ‖u′ε‖L∞(0,T ;H) ≤ c.Take now uε to be the minimizer of Iε on K(u0ε). Owing to Theorem 3.1 we have that,indeed, uε solves (6.20)-(6.23) (along with the assoiated seletion ηε = ξε − λuε) withthe datum g replaed by f − λuε. Hene, in order to onlude for Lemma 4.1, what weare atually left to prove is that the norm ‖uε‖L2(0,T ;H) is uniformly bounded in terms ofdata for all minimizers. This is however a standard estimation argument. Test (3.1) by

uε + αu′ε (α ≥ 0 to be determined later) and integrate in time getting
αε

2
|u′ε(0)|2 + (ε+ α)

∫ T

0

|u′ε|2 +
1

2
|uε(T )|2 − λ−

∫ T

0

|uε|2 + αφ(uε(T ))

≤ −ε(u′ε(0), u0ε) +

∫ T

0

(f, uε + αu′ε) +
1

2
|u0ε|2 + αφ(u0ε).(6.26)By taking α large enough (preisely, by taking α/λ− (for λ 6= 0) stritly larger than the�rst eigenvalue of the one-dimensional Laplaian in (0, T ) with non-homogeneous Dirihletand homogeneous Neumann onditions in 0 and T , respetively) we onlude for

‖uε‖H1(0,T ;H) ≤ cwhere now c > 0 depends on |f |L2(0,T ;H), |u0|, c0, and λ−.7. Appliations7.1. Linear paraboli PDEs. Let the bounded Lipshitz domain Ω ⊂ R
n be given and

f ∈ L2(Ω × (0, T )) and u0 ∈ H2(Ω) ∩ H1
0 (Ω). Then, the minimizers uε in K(u0) of theWED funtionals given by

u 7→







∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t +
1

2ε
|∇u|2 − 1

ε
fu

) for u ∈ L2(0, T ;H1
0(Ω))

∞ otherwiseonverge to the solution of the heat equation(7.1) ut − ∆u = f a.e. in Ω × (0, T )supplemented with the initial ondition and with homogeneous Dirihlet onditions (otherboundary onditions an be onsidered as well) in the following sense
max
t∈[0,T ]

‖u(t) − uε(t)‖L2(Ω) ≤ cε1/2,(7.2)
‖u− uε‖Hη(0,T ;L2(Ω)) ≤ cε(1−η)/2 for all 0 < η < 1.(7.3)Note that, given (7.2), onvergene (7.3) is equivalent to

(

∫ T

0

∫ T

0

‖(u− uε)(t) − (u− uε)(s)‖2
L2(Ω)

|t− s|1+2η
dt ds)1/2

≤ cε(1−η)/2 for all 0 < η < 1.



31Analogous onlusions hold for more general initial data u0. De�ne φ to be the Dirihletintegral
φ(u)

.

=
1

2

∫

Ω

|∇u|2, D(φ)
.

= H1
0 (Ω).We readily haraterize the orresponding interpolation set Dr,2 for 0 < r < 1. Indeed,one has that [Bre75, Thm. 2℄ u0 ∈ Dr,2 i� there exists ε 7→ v(ε) ∈ H2(Ω) ∩ H1

0 (Ω) suhthat ε 7→ ε1−r‖∆v(ε)‖L2(Ω) ∈ L2
∗(0, 1), and ε 7→ ε−r‖u0 − v(ε)‖L2(Ω) ∈ L2

∗(0, 1). Thispreisely amounts to say that
u0 ∈

(

L2(Ω), H2(Ω) ∩H1
0 (Ω)

)

r,2
≡







H2r(Ω) for 0 < r < 1/4

H
1/2
0 0 (Ω) for r = 1/4

H2r
0 (Ω) for 1/4 ≤ r < 1

(7.4)where Hs
0(Ω), 1/2 < s < 2 and H1/2

0 0 (Ω) lassially denote the spaes of funtions whosetrivial extension to R
n belongs to Hs(Rn) and H1/2(Rn), respetively [LM72℄ (note that

Hs
0(Ω), 1/2 < s < 2 is the losure in Hs(Ω) of the spae of ompatly supported smoothfuntions whereas H1/2

0 0 (Ω) is not).Choose now u0 ful�lling (7.4) for some 0 < r < 1 and let ε 7→ u0ε ∈ H2(Ω) ∩ H1
0 (Ω)be suh that ε 7→ ε1−r‖u0ε‖H2(Ω), ε 7→ ε−r‖u0 − u0ε‖L2(Ω) ∈ L2

∗(0, 1). Then, the uniqueminimizers uε of the WED funtionals over K(u0ε) ful�ll
max
t∈[0,T ]

‖u(t) − uε(t)‖L2(Ω) ≤ cεrand quantitative onvergene in Hη(0, T ;L2(Ω)) holds as well. Obvious modi�ationslead to the more general linear paraboli equation ut − div(A∇u) = f where the boundedfuntion A : Ω → R
n×n takes symmetri and uniformly positive de�nite values.Let now Ω be C1,1 or onvex, u0 ∈ H2(Ω)∩H1

0 (Ω), and u0ε be suitable approximationsin the same spirit above. De�ne
u 7→







∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t +
1

2ε
|∆u|2 − 1

ε
fu

) for u ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω))

∞ otherwise.The minimizers to the latter, onstrained to ful�ll uε(·, 0) = u0ε almost everywhere in Ω,ful�ll (7.2)-(7.3) where u is the solution of the biharmoni equation
ut + ∆2u = f a.e. in Ω × (0, T )subjet to the initial ondition, homogeneous Dirihlet onditions on u and homogeneousNeumann onditions on ∆u (again other boundary onditions may be onsidered).We may reollet the above examples (as well as a variety of other symmetri paraboliproblems of order 2k) in the following abstrat setting. Let the Hilbert spaes H and Vbe given with the injetion V ⊂ H being dense. Moreover, let the bilinear and symmetriform a : V × V → R be oerive and ontinuous and de�ne

u 7→







∫ T

0

e−t/ε

(

1

2
|u′|2 +

1

2ε
a(u, u) − 1

ε
(f, u)

) for u ∈ L2(0, T ;V )

∞ otherwise.Then, the minimizers of the above WED funtionals (suitably onstrained to ful�ll initialonditions) onverge in H , uniformly with respet to time, to a solution of the abstrat



32linear equation
u′ + Au = f a.e. in (0, T )where the linear operator A : H → H is de�ned by (Au, v)

.

= a(u, v) for all v ∈ V and
u ∈ D(A)

.

= {v ∈ V : sup|z|=1 a(v, z) < ∞}. Indeed, in the same spirit of (7.2)-(7.3),muh more is true as we have that
max
t∈[0,T ]

‖u(t) − uε(t)‖H ≤ cε1/2,(7.5)
‖u− uε‖Hη(0,T ;H) ≤ cε(1−η)/2 for all 0 < η < 1.(7.6)7.2. Paraboli variational inequalities. Under the above assumptions, let now g ∈

H1(Ω) be given with g ≤ 0 on ∂Ω and onsider the WED funtionals
u 7→























∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t +
1

2ε
|∇u|2 − 1

ε
fu

) for u ∈ L2(0, T ;H1
0(Ω))with u(·, t) ≥ g(·) a.e.

∞ otherwise.Then, (suitably onstrained) minimizers onverge in C([0, T ];H) to a solution of theparaboli obstale problem
∫

Ω

ut(u− v) +

∫

Ω

∇u · ∇(u− v) ≤
∫

Ω

f(u− v) ∀v ∈ K, a.e. in (0, T )where the onvex set K is de�ned by K .

= {v ∈ H1
0 (Ω) : v ≥ g a.e.}. More preisely, theerror estimates (7.2)-(7.3) hold. Within the abstrat setting introdued in the previoussubsetion, a variety of other onstraints an be disussed as well.Next, letW : R → R be a λ-onvex and smooth funtion. Then, (suitably onstrained)minimizers of

u 7→















∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t +
1

2ε
|∇u|2 +

1

2ε
W (u) − 1

ε
fu

) for u ∈ L2(0, T ;H1
0(Ω))

∞ otherwiseonverge in the sense of (7.2)-(7.3) to solutions of the reation-di�usion equation
ut − ∆u+W ′(u) = f a.e. in Ω × (0, T ).The hoie W (u) = (u2 − 1)2 orresponds to the so-alled Allen-Cahn equation.7.3. Quasi-linear paraboli PDEs. Let F : Ω × R

n → [0,+∞) be suh that:
F (x, ·) ∈ C1(Rn) for a.e. x ∈ Ω,(7.7)
F (x, ·) is onvex and F (x, 0) = 0 for a.e. x ∈ Ω,(7.8)
F (·, ξ) is measurable for all ξ ∈ R

n.(7.9)Then, we an set b .

= ∇ξF : Ω×R
n → R

n. We assume that, for a given p > 1, F satis�esthe growth onditions
∃c, C > 0 suh that F (x, ξ) ≥ c|ξ|p − C,

|b(x, ξ)| ≤ C(1 + |ξ|p−1) for a.e. x ∈ Ω and all ξ ∈ R
n.(7.10)



33Let us now onsider the WED funtionals
u 7→







∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t +
1

ε
F (·,∇u)− 1

ε
fu

) for u ∈ L2(0, T ;L2(Ω) ∩W 1,p
0 (Ω))

∞ otherwise.In the latter, homogeneous Dirihlet onditions are onsidered, other hoies being pos-sible. The present analysis ensures that minimizers of the above funtionals, suitablyonstrained as for initial values, onverge in the sense of (7.2)-(7.3) to a solution of thequasilinear equation
ut − div b(·,∇u) = f a.e. in Ω × (0, T ).In partiular, the hoie F (x, ξ)

.

= |ξ|p/p gives rise to the so-alled p-Laplaian equation,whereas the hoie F (x, ξ)
.

= (1 + |ξ|2)1/2 orresponds to the mean urvature �ow forCartesian surfaes (note however that the latter does not diretly �t into this theorybeause of a lak of lower semiontinuity).7.4. Degenerate paraboli PDEs. Assume we are given β : R → R monotone andontinuous with β(0) = 0 and superlinear growth at in�nity [Bre73b℄. De�ne j to bethe only onvex funtion suh that β = j′ and j(0) = 0. We now introdue the WEDfuntionals on H1(0, T ;H−1(Ω)) given by
u 7→























∫ T

0

e−t/ε

(

1

2
‖ut‖2

H−1(Ω) +
1

ε

∫

Ω

(

j(u) − fu
)

) for u ∈ L2(0, T ;L2(Ω))with j(u) ∈ L1(Ω × (0, T ))

∞ otherwise.Quali�ed minimizers of the latter funtional onverge in H−1(Ω), uniformly in time, to asolution of the following degenerate paraboli equation
ut − ∆β(u) = f in Ω × (0, T )in a distributional sense, along with homogeneous Dirihlet boundary onditions for β(u).More preisely, we have that (7.5)-(7.6) hold for H = H−1(Ω). In partiular, the hoie

β(u)
.

= (u−1)+−u− orresponds to the lassial two-phase Stefan problem, β(u)
.

= |u|m−2ufor m > 2 leads to the porous medium equation. The multivalued ase β(u) = ∂I[0,1](subdi�erential of the indiator funtion of the interval [0, 1]), related to the Hele-Shawell equation, an be handled as well.7.5. Evolution of mirostruture in a bistable bar. In [CO08℄ Conti & Ortizonsider the WED funtionals
Fε(u)

.

=







∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t −
1

ε
fu

) if |ux| = 1 a.e.
∞ elsesuggested by a modelization of branhing in martensite in a one-dimensional bar oupyingthe referene domain Ω = (0, 1). The funtion u : Ω × (0, T ) → R represents the bardisplaement, the system is onstrained in the two phases ux = 1 and ux = −1, noontribution from the interfaial energy is onsidered, and f stands for an applied bodyfore (see [KM94℄).



34 For �xed ε > 0, the funtional Fε fails to be lower semiontinuous with respet to theweak topology of H1(0, T ;L2(Ω)). The argument in [CO08, Thm. 3.1℄ entails thats−Fε(u) =

∫ T

0

∫

Ω

e−t/ε

(

1

2
u2

t + I[−1,1](ux) −
1

ε
fu

)where the relaxation is taken with respet to the weak topology in H1(0, T ;L2(Ω)) (notethat the atual proof in [CO08℄ is onerned with the weak topology in H1(Ω × (0, T ))instead) and I[−1,1] is the indiator funtion of the interval [−1, 1]. This omputation isby no means trivial as the interplay between energy and dissipation has to be arefullytaken into aount. In this spei� ase, s−Fε oinides with the onvexi�ation of Fε.Note however that this is not the ase in general, see [MO08, Se. 5.1℄.From this omputation, Conti & Ortiz onjeture that the WED formalism an be ofsome use for desribing mirostruture evolution. In partiular, at a �xed level ε > 0, thenet e�et of relaxation is that of allowing solutions u with |ux| < 1 whih may thereforebe interpreted as the weak limit of a �ne evolving mirostruture.The analysis in [CO08℄ left open the issue of onsidering ε → 0, namely of extendingthe above interpretation to the ausal limit. We are in the position of �lling this gap. Fixan initial ondition (say u0 = 0 as in [CO08℄, for simpliity) and homogeneous Dirihletboundary onditions. Note that s−Fε is oerive with respet to the weak topologyin H1(0, T ;L2(Ω)) on K(0) (see again [CO08, Thm. 3.1℄). Hene, at eah level ε, thefuntional s−Fε admits a unique minimizer uε inK(0) (along with homogeneous Dirihletboundary onditions) and, by applying our results, uε onverges uniformly in L2(Ω) andweakly in H1(0, T ;L2(Ω)) to a funtion u solving(7.11) u′ + ∂IC(u) ∋ f a.e. in (0, T ), u(0) = 0.Here IC is the indiator funtion of the nonempty onvex and losed set
C

.

= {u ∈ H1
0 (Ω) : |ux| ≤ 1 a.e.}.In partiular, the latter entails that u : [0, T ] → H1

0 (Ω) ful�lls
∫ 1

0

(
∫ x

0

(ut − f)

)

(p− ux) ≤ 0 ∀p ∈ L2(Ω) with |p| ≤ 1 a.e. in Ω and ∫

Ω

p = 0,a.e. in (0, T ), u(·, 0) = 0 a.e. in Ω.Moreover, our onvergene analysis may be extended to the ase of approximate mini-mizers of the original unrelaxed funtional Fε. In partiular, as s−Fε turns out to be theWED funtional orresponding to the onvex and lower semiontinuous potential
u 7→

∫

Ω

(

I[−1,1](ux) −
1

ε
fu

)

,we are in the position of applying Corollary 5.5 and dedue that all (quali�ed) sequenesof approximate minimizers of Fε onverge to the unique solution of (7.11) in the sense of(7.2)-(7.3).An illustration of this solution for a onstant body fore f is given in [CO08, Fig.4℄.



357.6. Surfae roughening by island growth. A seond example of relaxation in [CO08℄onerns the WED funtionals
Fε(u)
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=
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t −
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ε
fu

) if ∇u ∈ K a.e.
∞ elsewhere Ω

.

= [0, 1]2 and
K

.

= {(0,±1), (±1, 0)}.These funtionals are onsidered in onnetion with the phenomenon of island growth andoarsening during the epitaxial growth of thin �lms. In partiular, u : Ω → R representsthe height of the thin �lm surfae, f is a given deposition rate, andK is the set of preferredslopes (see [ORS99℄)For �xed ε > 0 the relaxation of Fε with respet to the weak topology ofH1(0, T ;L2(Ω))reads [CO08, Thm. 4.1℄s−Fε(u)
.

=
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0

∫

Ω

e−t/ε

(

1

2
u2

t + IoK(∇u) − 1

ε
fu

)where IoK is the indiator funtion of the onvex hull oK of K, namelyoK = {(x, y) ∈ R
2 : |x| + |y| ≤ 1}.By inspeting the spei� form of s−Fε, in [CO08℄ the marosopi behavior of theevolving thin �lm in the ausal limit ε→ 0 is onjetured to orresponds to the gradient�ow along with the hoie

φ(u)
.

= −
∫

Ω

fu if ∇u ∈ oK and φ(u)
.

= ∞ else,the e�et of the mirostruture being that of relaxing the original onstraint ∇u ∈ Kto the weaker ∇u ∈ oK (in partiular, solutions with ∇u ∈ int oK are interpreted asweak limits of evolving mirostrutures).This fat is on�rmed by our onvergene result. Indeed, the funtionals s−Fε are(onvex and) lower semiontinuous. Hene, they admit unique minimizers uε in K(0) (theinitial ondition 0 is hosen for simpliity and referene with [CO08℄) and the sequene
uε onverges uniformly in L2(Ω) to the unique gradient �ow(7.12) u′ + ∂IM (u) ∋ f a.e. in (0, T ), u(0) = 0where M .

= {v ∈ H1
0 (Ω) : ∇v ∈ oK}.Convergene also holds for approximate minimizers of the original unrelaxed funtional

Fε. Indeed, as the relaxation s−Fε is the WED funtional related to the onvex and lowersemiontinuous potential
u 7→

∫

Ω

(

IoK(∇u) − 1

ε
fu

)

,Corollary 5.4 ensures that all (quali�ed) sequenes of approximate minimizers of Fε on-verge to the unique solution of (7.12) in the sense of (7.2)-(7.3). The reader is referred to[CO08, Fig. 5℄ for an illustration of a thin �lm evolution developing island growth undera onstant deposition rate.
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