
Weierstraÿ-Institutfür Angewandte Analysis und Stohastikim Forshungsverbund Berlin e.V.Preprint ISSN 0946 � 8633On existene and approximation for a 3D model ofthermally-indued phase transformations inshape-memory alloysAlexander Mielke1, 2, Laetitia Paoli3, Adrien Petrov1submitted: 4th June 2008
1 Weierstraÿ-Institutfür Angewandte Analysis und StohastikMohrenstr. 3910117 Berlin, GermanyE-Mail: mielke�wias-berlin.depetrov�wias-berlin.de

2 Institut für MathematikHumboldt-Universität zu BerlinRudower Chaussee 2512489 Berlin, Germany
3 LaMUSE (Laboratoire de Mathématiques de l'Université de Saint-Etienne)23 rue Paul Mihelon,42023 Saint-Etienne Cedex 02, FraneE-Mail: laetitia.paoli�univ-st-etienne.frNo. 1330Berlin 2008

2000 Mathematis Subjet Classi�ation. 49J40, 74C05, 74F05, 74M05, 74N30.Key words and phrases. Shape-memory materials, rate-independent energeti formulation,temperature-indued phase transformation, di�erential inlusion, onvergene for spae-time dis-retization..A.P. was supported by the Deutshe Forshungsgemeinshaft through the projet C18 �Analysisand numeris of multidimensional models for elasti phase transformation in a shape-memoryalloys� of the Researh Center Matheon. Moreover, L.P. wishes to thank for the kind hospitalityof WIAS as well as the friendly atmosphere there..



Edited byWeierstraÿ-Institut für Angewandte Analysis und Stohastik (WIAS)Mohrenstraÿe 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



AbstratThis paper deals with a three-dimensional model for thermal stress-induedtransformations in shape-memory materials. Mirostruture, like twined mar-tensites, is desribed mesosopially by a vetor of internal variables ontainingthe volume frations of eah phase. We assume that the temperature variationsare presribed. The problem is formulated mathematially within the energetiframework of rate-independent proesses. An existene result is proved andtemporal regularity is obtained in ase of uniform onvexity. We study alsospae-time disretizations and establish onvergene of these approximations.1 IntrodutionThe good performanes of shape-memory alloys (SMA) in appliations to relative�elds like biomedial, aeronautial or engineering stimulate the interest in the devel-opment of di�erent models. These alloys have some surprising thermo-mehanialbehavior namely severely deformed materials an reover their original shape aftera thermal yle (shape-memory e�et). In the mathematial literature, many one-dimensional models are available but multi-dimensional models allowing for multi-axial loadings and anisotropies are rarely presented. In [MiT99, MTL02℄ suh modelswere introdued for the isothermal setting and a �rst existene result was provided.This paper deals with the quasi-stati evolution of shape-memory materials in asmall-strain regime under non-isothermal onditions. In [SMZ98, AuS01, AuP04℄ amodel for polyrystalline shape-memory materials is proposed where phase transfor-mations are driven by stress or temperature hanges, and it is analyzed in [AuS04,AuS05, MiP07, AMS08℄. In this model the mesosopi average of the transforma-tion strain used an internal variable and hene it is restrited to situations whereisotropy and equal elasti onstants in austenite and martensite an be assumed.Here we treat a more advaned model whih allows to desribe eah pure phase in-dependently, like in the isothermal models onsidered in [CaP01, MTL02, GMH02,KMR05, RoK06, GHH07℄.Following [Mie07, MiP07℄ we assume here that the temperature θ is given a priori asan applied load θ = θappl(t, x). This assumption is used in engineering models andit is aeptable if the body is small in at least one diretion. Then, the exessiveor missing heat an be balaned through the environment. While the existeneresult will be a diret onsequene of the general theory of energeti solutions forrate-independent proesses, we present here an approah whih states existene ofsolutions as a onsequene of onvergene of spae-time disretizations. Using the1



ideas of Γ-onvergene for rate-independent proesses developed in [MRS08℄ we showthat for arbitrary sequenes of partitions of the time interval and for arbitrary �nite-dimensional approximations of the underlying Banah spae we obtain sequenes ofdisrete solutions that are a priori bounded and preompat. Any limit point ofthis sequene will be a solution of the full problem. As in general uniqueness ofsolutions for the full problem is not true, it annot be expeted that the full sequeneonverges. A similar approah, in a more general setting is followed in [MiR06℄.Our model is based on a stored-energy density W and a dissipation distane D.The stored-energy density W (x, e, z, θ) depends on the material point x ∈ Ω, thein�nitesimal strain e = e(u) = 1
2
(∇u+∇uT) for the displaement u : Ω → Rd, thepresribed temperature θ = θappl(t, x), and the vetor of phase frations z : Ω →

Z = onv{ê1, . . . , êN}, the onvex hull in RN . Here N is the total number of phases,in an austenite-martensite phase transformation this inludes the austenite and allvariants of martensite. In general, z ∈ onv{ê1, . . . , êN} is a phase mixture, andthe verties z = ê1, . . . , êN orrespond to the pure phases suh that W (·, êk, ·, ·)orresponds to the stored-energy density of a pure phase, whih an be adapted tomeasured data. The total stored energy takes the following form
E(t, u, z)

def
=

∫

Ω

(
W (x, e(u+uDir(t)), z, θappl(t)) +

σ

2
|∇z|2

)
dx− 〈l(t), u〉, σ > 0,where uDir and l denote the time-dependent Dirihlet boundary data and appliedloading, respetively. To model the dissipation via phase transformations we intro-due a dissipation distane D : Ω×Z ×Z → [0,∞) and de�ne the total dissipationdistane D via

D(z0, z1)
def
=

∫

Ω

D(x, z0(x), z1(x))dx.The natural funtion sets for the unknown q
def
= (u, z) is Q

def
= F × Z with Z

def
=

H1(Ω;Z). As the time-dependent onditions on ΓDir ⊂ ∂Ω are inorporated in uDir,we de�ne the spae of admissible displaements via
F

def
= { u ∈ H1(Ω; Rd)

∣∣ u = 0 on ΓDir }.Then, our problem an be posed in the energeti formulation for rate-independentproblems. For a given initial value (u(0), z(0)) ∈ Q, we have to �nd a funtion
(u, z) : [0, T ] → Q (with T > 0) suh that for all t ∈ [0, T ], the global stabilityondition (S) and the global energy balane (E) are satis�ed, i.e.(S) ∀(ū, z̄) ∈ Q : E(t, u(t), z(t)) ≤ E(t, ū, z̄) + D(z(t), z̄),(E) E(t, u(t), z(t)) + VarD(z; [0, t]) = E(0, u(0), z(0)) +

∫ t

0

∂sE(s, u(s), z(s))ds,where the dissipation VarD(z; [0, t]) is de�ned as the supremum over all �nite parti-tions 0 ≤ t0 < t1 < . . . < tn ≤ t of ∑n
j=1 D(z(tj−1), z(tj)).2



The paper is organized as follows. In Setion 2, we give a more detailed desriptionof the mehanial model and the mathematial formulation of the problem withinthe energeti formulation theory of rate-independent systems (Q, E ,D). In Setion3, we speify the full assumptions and state our existene result by applying thesame tehniques as in [Mie07, MiP07℄. More preisely, we show that for any stableinitial data q(0), an energeti solution exists. We also provide a series of furtherproperties of the funtional E that will be used in the later setions.In Setion 4, the temporal smoothness is obtained assuming uniform onvexity of
W (x, ·, ·, θ) and D(x, z0, z1) = ψ(x, z1−z0). Finally in Setion 5, we disuss theonvergene of spae-time disretizations of the problem. For this we hoose asequene (Πτ )τ>0 of partitions {0 = tτ0 < tτ1 < · · · < tτNτ

= T} of the time interval
[0, T ] with max{ tτk − tτk−1 : k = 1, ..., Nτ } ≤ τ . Moreover, we hoose a sequene
(Qh)h>0, Qh

def
= Fh × Zh, of �nite-dimensional spae approximations exhausting Q.We obtain a sequene qτ,h : [0, T ] → Q of pieewise onstant interpolants. The maintheorem states that this sequene has a subsequene (qτn,hn)n∈N suh that for all

t ∈ [0, T ] we have qτn,hn(t) → q(t), where q : [0, T ] → Q is a solution for (Q, E ,D).In Setion 6, we disuss several models for the stored-energy density W , whih inthis ontext is alledmixture funtion [MiT99, Mie00, CaP01, MTL02℄ or free energyof mixing in [HaG02, GMH02, GHH07℄. In partiular, we larify the assumptionsthat are needed to apply the results obtained in the previous setions.2 Mehanial model and mathematial formulationWe onsider a material with a referene on�guration Ω ⊂ Rd with d ∈ {2, 3}.We assume that Ω is an open bounded set with a 1-regular smooth boundary (see[RaT83℄). This body may undergo displaements u : Ω → Rd and phase transforma-tions. The latter will be haraterized by a mesosopi internal variable z : Ω → Zwhere Z is the Gibbs simplex, assoiated with the N pure phases ê1, . . . êN ∈ RN ,where êj is the jth unit vetor, i.e.,
Z

def
= onv{ê1, . . . , êN}

def
=

{
z =

N∑

i=1

λiêi

∣∣∣ 0 ≤ λi ≤ 1,
N∑

i=1

λi = 1
}
⊂ R

N . (2.1)The set of admissible displaements F is hosen as a suitable subspae of H1(Ω; Rd)by presribing Dirihlet data on the subset ΓDir of ∂Ω, i.e.,
F

def
=

{
u ∈ H1(Ω; Rd)

∣∣ u|ΓDir = 0
}
.Note that the physial displaement is u + uDir, where uDir : [0, T ] → H1(Ω; Rd) ispresribed a priori. Throughout the paper we onsider the extension of uDir(t) to Ω,but atually only the trae on ΓDir would be needed. The internal variable z belongsto

Z
def
=

{
z ∈ H1(Ω; RN) | z(x) ∈ Z a.e. x ∈ Ω

}
.3



We will denote the norm in Q
def
= F ×Z by ‖·‖Q and q def

= (u, z).We assume also that the material behavior depends on the temperature θ, whihwill be onsidered as a time dependent given parameter. Therefore we will not solvean assoiated heat equation but we will treat θ as an applied load and we denoteit by θappl : [0, T ] × Ω → [θmin, θmax]. This approximation for the temperature isused in engineering models and is justi�ed when the hanges of the loading areslow and the body is small in at least one diretion: in suh a ase, exess of heatan be transported very fast to the surfae of the body and then radiated into theenvironment.We will denote by Rd×d
sym the spae of symmetri d×d tensors endowed with the salarprodut v:w def

= tr(vTw) and the orresponding norm is given by |v|2
def
= v:v for all

v, w ∈ Rd×d
sym . Here (·)T and tr(·) denote the transpose and the trae of the matrix

(·), respetively. The linearized strain tensor is given by e = e(u)
def
= 1

2
(∇u+∇uT) ∈

Rd×d
sym. We assume that ∂Ω is smooth enough and that the surfae measure ∫

ΓDir 1dais positive suh that Korn's inequality holds, i.e. there exists cKorn > 0 suh that
∀u ∈ F : ‖e(u)‖2

L2 ≥ cKorn‖u‖2
H1. (2.2)For more details on Korn's inequality and its onsequenes, we refer to [KoO88℄ or[DuL76℄.The stored-energy potential takes the following form

E(t, u, z)
def
=

∫

Ω

(
W (x, e(u+uDir(t))(x), z(x), θappl(t, x)) +

σ

2
|∇z(x)|2

)
dx

− 〈l(t), u〉,

(2.3)where the stored-energy density W : Ω × Rd×d
sym × Z × [θmin, θmax] → R desribes thematerial behavior. Here σ is a positive oe�ient that is expeted to measure somenonloal interation e�et for the internal variable z and l(t) denotes an appliedmehanial loading of the form

〈l(t), u〉
def
=

∫

Ω

fappl(t, x)·u(x)dx+

∫

∂Ω

gappl(t, x)·u(x)dγ.The main point in the model is the hoie of the stored-energy density W . Fornotational simpliity, we will omit any dependene on the material point x ∈ Ω, asit is standard to generalize the approah to this ase. For the pure phases z = êkit is lear that W (·, êk, ·) : Rd×d
sym × [θmin, θmax] → R an be adjusted to the measuredelastiity onstants of this phase. However, the hoie for true mixtures z ∈ Z is notso obvious. In [MiT99, Mie00, MTL02℄ it was suggested to derive W as a mixturefuntion via ross-quasionvexi�ation:

Wmix(e, z, θ) = inf
{∫

Td

W (e+e(ṽ)(y), z̃(y), θ)dy
∣∣∣ ṽ ∈ H1(Td; R

d),

z =

∫

Td

z̃(y)dy, z̃ ∈ L1(Td; {ê1, ..., êN})
}
,

(2.4)4



where Td = (R/Z)d is the d-dimensional torus, i.e., ṽ and z̃ are periodi funtions.In [HaG02, GMH02, GHH07℄ this funtion is alled free energy of mixing. Thepoint of this onstrution is that W (·, z, θ) is still quasionvex, whih is an essen-tial prerequisite for onstruting solutions. All this theory was developed for �xedtemperature levels and may be muh too di�ult to be arried through for givenmaterial models for the pure phases. In [Mie07, Eqn. (3.7)℄ another modeling idea isused by interpolating in thermal way, suh that for onvex W (·, êk, θ), k = 1, ..., Nthe resulting funtion W (·, z, θ) is still onvex.If eah W (·, êk, θ) is a quadrati funtion and the assoiated elastiity tensor is thesame for all phases, then it is shown in [Mie00, MTL02℄ that W takes the form
Wmix(e, z, θ) =

N∑

k=1

zk

[1

2
(e−Ek(θ)):C(θ):(e−Ek(θ)) + wtherm

k (θ)
]

+ wmix(z, θ) (2.5)
=

1

2
(e−E(z, θ)):C(θ):(e−E(z, θ)) + w̃(z, θ),where C(θ) denotes the elastiity tensor, Ek(θ) is the transformation strain of phase kwith E(z, θ)

def
=

∑N
k=1 zkEk(θ) being the e�etive transformation strain for a mixture,and wmix(·, θ) : Z → (−∞, 0] is onvex and satis�es wmix(êk, θ) = 0 for all k =

1, . . . , N . In [CaP01, HaG02, GMH02, GHH07℄ it was shown that this model an beused quite e�etively in engineering appliations. See Setion 6 for more disussionof the mixture funtion W .Our funtional E also inludes a gradient term σ
2
|∇z|2 whih is mainly introduedfor mathematial purposes. It will be essential to introdue this term for obtain-ing the neessary ompatness of the abstrat theory. After we have averaged themirostruture by allowing for nontrivial phase mixtures, we have to penalize todrasti hanges in the mixture omposition. This has the disadvantage that we an-not allow for interfaes between the pure austenite and a twined pair of martensitevariants (also alled habit plane). However, our theory would work equally well, ifthe gradient term would be replaed by a weaker term like

∫

Ω×Ω

σ
|z(y)−z(x)|2

|y−x|d+2s
dxdyfor s ∈ (0, 1), whih leads to the Sobolev spae Hs(Ω) instead of H1(Ω) for thede�nition of Z. For s < 1/2 pieewise onstant funtions are ontained in Hs(Ω),and hene habit planes would have �nite energy. For notational onveniene werestrit to the ase s = 1.To model the hystereti behavior of shape-memory materials, we also have to de-sribe the dissipation as a onstitutive law, sine this is largely independent of theenergy landsape, f. [Rou02, AGR03, Rou04℄. Again, the energy dissipated in aphase transformation between two pure phases an be measured given the values

D(x, êj, êk). It is shown in [MTL02℄ that from these values there is a anonial way(via optimal transport theory) to �nd a funtion D : Ω×Z ×Z → [0,∞) suh that5



the dissipation between two states z0, z1 ∈ Z takes the form
D(x, z0, z1) = ψ(x, z1−z0), (2.6)where the dissipation potential ψ(x, ·) : RN

0 → R, with RN
0

def
= {v ∈ RN |

∑N
j=1 vj =

0} is onvex and positively homogeneous of degree 1, i.e. for all γ ≥ 0 and v ∈ R
N
0 ,

ψ(x, γv) = γψ(x, v).At the moment, we do not assume thatD is de�ned via ψ, but postulate a dissipationdistane D : Z × Z → [0,∞) satisfying the following two properties whih implythat D is a quasi-distane. (As forW , we suppress the x-dependene of D from nowon.)
D(z0, z1) = 0 ⇐⇒ z0 = z1, (2.7a)
∀ z1, z2, z3 ∈ Z : D(z1, z3) ≤ D(z1, z2) +D(z2, z3). (2.7b)Note that symmetry D(z1, z2) = D(z2, z1) is not needed, whih may be useful asthe dissipated energy for transforming from austenite to martensite and vie versamay be di�erent. Finally, the total dissipation distane between two internal states

z0, z1 ∈ Z is de�ned via
D(z0, z1)

def
=

∫

Ω

D(z0(x), z1(x))dx. (2.8)The evolution is assumed to be governed by the energeti formulation of rate inde-pendent proesses as introdued in [MTL02, MiT04, Mie05, MaM05, FrM06℄. Morepreisely, a funtion q : [0, T ] → Q is alled an energeti solution of the rate-independent problem assoiated with E and D if for all t ∈ [0, T ], the global stabilityondition (S) and the global energy balane (E) are satis�ed, i.e.(S) ∀q̄ = (ū, z̄) ∈ Q : E(t, q(t)) ≤ E(t, q̄) + D(z(t), z̄),(E) E(t, q(t)) + VarD(z; [0, t]) = E(0, q(0)) +

∫ t

0

∂sE(s, q(s))ds.The dissipation VarD is de�ned via
VarD(z; [r, s])

def
= sup

{ n∑

j=1

D(z(tj−1), z(tj))
∣∣∣n ∈ N, r ≤ t0 < t1 < . . . < tn ≤ s

}for all (r, s) ∈ [0, T ]2 suh that r < s.As it is detailed in [MiT04, Mie05℄, we an interpret the energeti formulation as aweak form of the assoiated evolution law de�ned by elasti equilibrium and the �owrule for the internal variable z. In partiular, if the funtional E(t, ·) is onvex and
D is given in the form (2.6), then the energeti formulation (S) and (E) is equivalent6



to the following doubly nonlinear evolution law:elasti equilibrium 



−div∂eW (e(u+uDir), z, θappl) = fappl in Ω,

u = uDir on ΓDir,
∂eW (e(u+uDir), z, θappl)ν = gappl on ΓNeu;�ow rule 0 ∈ ∂ψ(ż) + ∂zW (e(u+uDir), z, θappl) + ∂χZ(z) in Ω,

(2.9)
where ∂ without subsript denotes the set-valued subdi�erential of a onvex funtion.In fat, under the assumptions of Setion 4 the energeti solutions satisfy (2.9) aswell.3 The existene resultIn this setion we ollet the assumptions on the onstitutive funtions W and Dand on the data θappl, l, and uDir that allow us to apply the abstrat existene theoryfor energeti solutions to the rate-independent system (Q, E ,D). Thus, we will justhek that the assumptions of the result in [FrM06℄ are satis�ed. In fat, virtuallythe same assumptions will be used in Setion 5 to obtain the onvergene result,whih is again an existene result, as existene is not assumed beforehand. Afterstating the existene result, we will ollet a number of properties of the energyfuntional E , whih will be useful in the later setions.For the presribed temperature pro�le θappl, the external loading l, and the Dirihletboundary ondition uDir we assume

θappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax])), (3.1a)
l ∈ C1([0, T ]; (H1(Ω; Rd))′), (3.1b)

uDir ∈ C1([0, T ]; H1(Ω; Rd)). (3.1)For the stored-energy density W : R
d×d
sym × Z × [θmin, θmax] → R we impose thefollowing onditions. In Setion 6, we will show that these onditions are satis�edby some of the funtions W introdued in the previous setion.Assumptions on W . There exist positive onstants C, c, CW

0 , CW
1 , Cθ, Cθ

0 , Cθ
1 ,

Ce, Ce
0 , Ce

1 , an exponent p̂ ∈ (0, 2), and a nondereasing funtion ω : [0,∞) →
[0,∞) with limτ→0+ ω(τ) = 0 suh that for all e, e1, e2 ∈ Rd×d

sym, z, z1, z2 ∈ Z and
7



θ, θ1, θ2 ∈ [θmin, θmax], we have
W (·, z, θ) is stritly onvex, (3.2a)
W, ∂θW ∈ C0(Rd×d

sym×Z×[θmin, θmax]; R), (3.2b)
∂eW ∈ C0(Rd×d

sym×Z×[θmin, θmax]; R
d×d
sym), (3.2)

c
(
|e|2+|z|2

)
− C ≤W (e, z, θ) ≤ C

(
|e|2+|z|2

)
+ C, (3.2d)

|∂eW (e, z, θ)|2 + |∂θW (e, z, θ)| ≤ CW
1

(
W (e, z, θ)+CW

0

)
, (3.2e)∣∣∂θW (e, z, θ1)−∂θW (e, z, θ2)

∣∣ ≤ Cθ
1

(
W (e, z, θ1)+C

θ
0

)
ω(|θ1−θ2|), (3.2f)

∣∣∂eW (e, z, θ1)−∂eW (e, z, θ2)
∣∣2 ≤ Ce

1

(
W (e, z, θ1)+C

e
0

)
ω(|θ1−θ2|), (3.2g)∣∣∂θW (e1, z1, θ)−∂θW (e2, z2, θ)

∣∣ (3.2h)
≤ Cθ(|e1−e2|+|z1−z2|)(1+|e1+e2|+|z1+z2|),∣∣∂eW (e1, z1, θ)−∂eW (e2, z2, θ)

∣∣ ≤ Ce(|e1−e2|+|z1−z2|), (3.2i)
|W (e, z1, θ)−W (e, z2, θ)| ≤ C(1+|e|)bpω(|z1−z2|). (3.2j)For the dissipation distane we impose (2.7) and

∃ c1, c2 > 0 ∀z1, z2 ∈ Z : c1|z1−z2| ≤ D(z1, z2) ≤ c2|z1−z2|. (3.3)We prove now that the energeti formulation (S) and (E) has at least one solution
q : [0, T ] → Q for any given stable initial data q0 = (u0, z0) ∈ Q, i.e. q0 ∈ Q satis�esthe global stability ondition (S) at t = 0. The existene theory for (S) and (E)has been developed in [MaM05, FrM06, Mie05℄ and is based on the onstrutionof a sequene of inremental minimization problems. More preisely, for a givenpartition Π = {0 = t < t1 < . . . < tn = T}, we de�ne the inremental problems asfollows:(IP)Π {for k = 1, . . . , n �nd

qk
def
= (uk, zk) ∈ Argmin{E(tk, q̄) + D(zk−1, z̄) | q̄ = (ū, z̄) ∈ Q

}
.Let the pieewise onstant interpolant qΠ : [0, T ] → Q be de�ned by qΠ(t) = qj for

t ∈ [tj, tj+1) for j = 0, . . . , n−1 and qΠ(T ) = qn. Then one shows that a subsequeneof (qΠ)Π has a limit and this limit funtion satis�es the energeti formulation (S)and (E).Note that our statement given here is slightly stronger than the one obtained in theabstrat setting. First, we state that not only the z-omponent of q onverges butalso the u-omponent. Seond, we provide strong onvergene in Q, i.e., in the normtopology of H1(Ω).Theorem 3.1 Assume that W and D satisfy (2.7), (3.2), and (3.3) and that thedata uDir, l, and θappl satisfy (3.1). Let q0 ∈ Q be stable for t = 0. Then there existsan energeti solution q = (u, z) : [0, T ] → Q suh that q0 = (u(0), z(0)) and
u ∈ L∞([0, T ]; H1(Ω; Rd)),

z ∈ L∞([0, T ]; H1(Ω;Z)) ∩ BV([0, T ]; L1(Ω;Z)).8



Moreover, let Πk = {0 = tk0 < tk1 < . . . < tkNk
= T}, k ∈ N, be a sequene ofpartitions with �neness ∆(Πk)

def
= max{tkj − tkj−1 : j = 1, . . . , Nk} tending to 0 for

k → ∞. Let qΠk
def
= (uΠk , zΠk) : [0, T ] → Q be the pieewise onstant interpolantsassoiated with the inremental problems (IP)Πk

, then there exist a subsequene q̄n def
=

qΠkn and an energeti solution q̂ : [0, T ] → Q suh that for all t ∈ [0, T ] the followingholds
q̄n(t) → q̂(t) in Q, (3.4a)

E(t, q̄n(t)) → E(t, q̂(t)), (3.4b)
VarD(z̄n; [0, t]) → VarD(ẑ; [0, t]). (3.4)Proof. We use the abstrat result of [FrM06℄ whih relies on the following abstratassumptions (i)�(v), where F and Z are onsidered as topologial spaes arryingthe weak topology of H1(Ω).(i) ∀z1, z2, z3 ∈ Z : D(z1, z2) = 0 ⇔ z1 = z2 and D(z1, z3) ≤ D(z1, z2)+D(z2, z3),(ii) D : Z × Z → [0,∞) is ontinuous,(iii) ∀t ∈ [0, T ] : E(t, ·) : Q → [0,∞) has ompat sublevels,(iv) there exists CE

0 , C
E
1 > 0 suh that for all q ∈ Q:

E(t, q) <∞ =⇒

{
E(·, q) ∈ C1([0, T ]) and
|∂tE(t, q)| ≤ CE

1 (E(t, q)+CE
0 ),(v) ∀η > 0 ∀ε > 0 ∃δ > 0 ∀q ∈ Q ∀t1, t2 ∈ [0, T ] :

(
E(0, q) ≤ η, |t1−t2| ≤ δ

)
=⇒ |∂tE(t1, q)−∂tE(t2, q)| < ε.Property (i) follows from the de�nition (2.8) of the dissipation potential D andthe onditions (2.7) and (3.3). The latter ondition also implies that D(z1, z2) isbounded from above and below by the norm of z1−z2 in L1(Ω). Hene, D is stronglyontinuous in L1(Ω), and the ompat embedding of H1(Ω) into L1(Ω) provides (ii).On the one hand, E(t, ·) is oerive beause of (3.2d) and (2.2). Moreover E(t, ·) isweakly lower semiontinuous, as the integrand is onvex in (∇u,∇z) and ontinuousin (u, z,∇u,∇z). This provides (iii). Finally, (iv) and (v) will be obtained inProposition 3.3.Sine the assumptions (i)�(v) are ful�lled, [FrM06, Thm. 3.4℄ or [Mie05, Thm. 5.2℄are appliable, and the statement of theorem follows, exept for (3.4a), where only

z̄n(t) ⇀ ẑ(t) is inferred.To obtain the onvergene of ūn(t) we note that by onstrution ūn(t) minimizesthe energy E(τ(n, t), ·, z̄n(t)), where τ(n, t) is the largest point in Πkn
not exeeding9



t. Sine we have τ(n, t) → t and z̄n(t) ⇀ ẑ(t), we may infer Part of Lemma 3.4 toobtain (3.4a). �Now we ollet some properties of E and D that we will use in the next setions.Lemma 3.2 Let the assumptions (3.1), (3.2a), (3.2b), (3.2d), (2.7) and (3.3) hold.Then, the energy funtional E : [0, T ]×Q → R is weakly lower semi-ontinuous andstrongly ontinuous, and oerive:
∃C0, c0 > 0 ∀(t, q) ∈ [0, T ] ×Q : C0‖q‖

2
Q − c0 ≤ E(t, q) ≤ c0‖q‖

2
Q + c0. (3.5)The dissipation distane D : Z ×Z → [0,∞) is weakly ontinuous.Proof. First, let us observe that Korn's inequality (2.2), Young's inequality and(3.2d) lead to

E(t, q) ≥
ccKorn

4
‖u‖2

H1 +min
(
c,
σ

2

)
‖z‖2

H1 −C|Ω| −
1

ccKorn ‖l(t)‖2
(H1)′ −c‖e(uDir(t))‖

2
L2for all (t, q) ∈ [0, T ] ×Q. Similarly, (3.2d) implies

E(t, q) ≤

(
2C+

1

2

)
‖u‖2

H1+max
(
C,
σ

2

)
‖z‖2

H1+C|Ω|+
1

2
‖l(t)‖2

(H1)′+2C‖e(uDir(t))‖
2
L2 ,and, by using (3.1), we may onlude that (3.5) holds.The weak lower semi-ontinuity of E(t, · ) : Q → R follows from the onvexity of theintegrand in highest derivatives of (u, z), namely (e(u),∇z). Weak ontinuity of Dis a onsequene of the strong ontinuity of D with respet to the norm in L1(Ω)and the ompat embedding of Z ⊂ H1(Ω; RN) into L1(Ω; RN).It remains to show the strong ontinuity of E . For this assume (tn, qn) → (t∗, q∗). Us-ing (3.5) the sequene (

E(tn, qn)
)

n∈N
is bounded, and we may hoose a subsequene

(tnj
, qnj

)j∈N suh that
E(tnj

, qnj
) → E∗,

∀a.a. x ∈ Ω : (enj
(x), znj

(x), θappl(tnj
, x)) → (e∗(x), z∗(x), θappl(t, x)),

∃γ ∈ L2(Ω) ∀j ∈ N : |(enj
, znj

)| ≤ γ a.e. in Ωwith enj
= e

(
unj

+ uDir(tnj
)
) for all j ∈ N. Thus, we may pass to the limit in

E(tnj
, qnj

) =

∫

Ω

W (e(unj
+uDir(tnj

)), znj
, θappl(tnj

))dx+
σ

2
‖∇znj

‖2
L2 − 〈l(tnj

), unj
〉,by applying Lebesgue's theorem and using (3.1). We obtain E∗= limj→∞ E(tnj

, qnj
) =

E(t∗, q∗) and, by uniqueness of the limit, the whole sequene (E(tn, qn))n∈N onvergesto E(t∗, q∗). �10



We hek now the last two assumptions (iv) and (v) of the abstrat result of [FrM06℄,whih are needed to obtain Theorem 3.1. To do so, we �rst observe that the regular-ity assumptions on W and the data uDir, l and θappl imply that E(·, q) ∈ C1([0, T ])for all q ∈ Q and we derive an expliit formula for ∂tE(·, q). Then using the assump-tions (3.2e) to (3.2i) we obtain an estimate of |∂tE(t, q)| in terms of E(t, q) and weestablish (v), whih an be interpret as an uniform ontinuity property for ∂tE(·, q)on energy sublevels.Proposition 3.3 Let us assume that (3.1) and (3.2b) to (3.2i) hold. Then E sat-is�es the following properties:(P1) Let q = (u, z) ∈ Q. Then E(·, q) lies in C1([0, T ]) and
∂tE(t, q) =

∫

Ω

∂eW (e(u+uDir(t)), z, θappl(t)) e(u̇Dir(t))dx

+

∫

Ω

∂θW (e(u+uDir(t)), z, θappl(t)) θ̇appl(t)dx− 〈l̇(t), u〉.

(3.6)(P2) There exist CE
0 , C

E
1 > 0 suh that |∂tE(t, q)| ≤ CE

1

(
E(t, q)+CE

0

) for all (t, q) ∈
[0, T ] ×Q.(P3) For eah ε > 0 and E ∈ R+ there exists δ > 0 suh that for all (s, t, q) ∈
[0, T ]2 ×Q with E(0, q) ≤ E and |s−t| ≤ δ we have |∂tE(s, q)−∂tE(t, q)| < ε.Estimate (P2) together with Gronwall's lemma leads to

E(t, q) ≤ exp(CE
1 |t−s|)(E(s, q)+CE

0 ) − CE
0 for all s, t ∈ [0, T ]. (3.7)This estimate is ruial to derive a priori estimates, also in the time-disrete setting.Proof. First we infer from (3.1) and (3.2b) to (3.2e) that E(·, q) ∈ C1([0, T ]) andthat (3.6) holds.For (P2), one an see that assumptions (3.1) and Cauhy-Shwarz's inequality leadto

|∂tE(t, q)| ≤
1

2

∫

Ω

|∂eW̃ (t, θappl(t))|
2 dx+

1

2
‖e(u̇Dir(t))‖

2
L2

+ Θ

∫

Ω

|∂θW̃ (t, θappl(t))|dx+
1

2
‖u‖2

H1 +
1

2
‖l̇(t)‖2

(H1)′ ,

(3.8)where Θ
def
= ‖θ̇appl(·)‖C0([0,T ];L∞) and W̃ (s, θ)

def
= W (e(u+uDir(s)), z, θ). Carrying(3.2e) into (3.8), we have

|∂tE(t, q)| ≤
(1

2
+Θ

)∫

Ω

CW
1

(
W̃ (t, θappl(t))+C

W
0

)
dx

+
1

2
‖u‖2

H1 +
1

2
‖e(u̇Dir(t))‖

2
L2 +

1

2
‖l̇(t)‖2

(H1)′ ,11



whih implies using (2.3) that
|∂tE(t, q)| ≤

(1

2
+CW

1

(1

2
+Θ

))(
E(t, q)+‖u‖2

H1+C1

)
, (3.9)where C1

def
= ‖e(u̇Dir)‖

2
C0([0,T ];L2) + ‖l‖2

C0([0,T ];(H1)′) + ‖l̇‖2
C0([0,T ];(H1)′) + CW

0 |Ω|. Using(3.5) in (3.9), the announed result (P2) follows immediately.To derive estimate (P3) we use the deompositions
|∂tE(s, q)−∂tE(t, q)| ≤ Ie(s, t) + Iθ(s, t) + Il(s, t), where (3.10a)
Ie(s, t)

def
=

∫

Ω

∣∣∂eW̃ (s, θappl(s)) e(u̇Dir(s))−∂eW̃ (t, θappl(t)) e(u̇Dir(t))∣∣dx, (3.10b)
Iθ(s, t)

def
=

∫

Ω

∣∣∂θW̃ (s, θappl(s)) θ̇appl(s)−∂θW̃ (t, θappl(t)) θ̇appl(t)
∣∣dx, (3.10)

Il(s, t)
def
=

∣∣〈l̇(s)−l̇(t), u〉| ≤ ‖l̇(s)−l̇(t)‖(H1)′‖u‖H1 ≤ ‖l̇(s)−l̇(t)‖(H1)′

√
E+c0

C0
, (3.10d)where we used (3.5) for the last estimate.Eah term on the right hand side of (3.10a) is estimated separately by using theassumptions on W introdued above. Sine E(0, q) ≤ E, one dedues from (2.3),(3.5) and (3.7) that ∫

Ω

W̃ (s, θappl(s))dx ≤ ρ(E), (3.11)where ρ(E)
def
= exp(CE

1 T )(E+CE
0 )−CE

0 + sups∈[0,T ]‖l(s)‖(H1)′

√
E+c0

C0
. Using (3.1) theright-hand side of (3.11) is bounded independently of s and q. Let us now observethat

Ie(s, t) ≤

∫

Ω

∣∣∂eW̃ (s, θappl(s))
(
e(u̇Dir(s))−e(u̇Dir(t)))∣∣dx+ Ievar(s, t), (3.12)where

Ievar(s, t) def
=

∫

Ω

∣∣(∂eW̃ (s, θappl(s))−∂eW̃ (t, θappl(s))
)
e(u̇Dir(t))∣∣dx

+

∫

Ω

∣∣(∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))
)
e(u̇Dir(t))∣∣dx.Using Cauhy-Shwarz's inequality and (3.2e), the �rst term on the right-hand sideof (3.12) is estimated by

∫

Ω

∣∣∂eW̃ (s, θappl(s))
(
e(u̇Dir(s))−e(u̇Dir(t)))∣∣dx

≤
(
CW

1

∫

Ω

W̃ (s, θappl(s))dx+ CW
1 CW

0 |Ω|
)1/2

‖e(u̇Dir(s))−e(u̇Dir(t))‖L2.12



Introduing (3.11) in the latter estimate, we dedue that there exists C̃E
1 > 0 suhthat ∫

Ω

∣∣∂eW̃ (s, θappl(s))
(
e(u̇Dir(s))−e(u̇Dir(t)))∣∣dx

≤ C̃E
1 ‖e(u̇Dir(s))−e(u̇Dir(t))‖L2 .

(3.13)For Ievar we use (3.2i) and Cauhy-Shwarz's inequality to �nd
Ievar(s, t) ≤ η

(
Ce‖e(uDir(s))−e(uDir(t))‖L2

+ ‖∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))‖L2

)
,

(3.14)where η def
= ‖e(u̇Dir(·))‖C0([0,T ];L2). By (3.1a) we have

∀a.e. x ∈ Ω : ω(|θappl(s, x)−θappl(t, x)|) ≤ ω̄s,t
def
= ω(‖θappl(s)−θappl(t)‖L∞)

≤ ω
(
Θ|s−t|

)
.

(3.15)Hene, (3.2g) yields the estimate
‖∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))‖

2
L2 ≤ Ce

1

(∫

Ω

W̃ (t, θappl(t))dx+ Ce
0|Ω|

)
ω̄s,t,whih implies thanks to (3.11) that

‖∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))‖
2
L2 ≤ Ce

1

(
ρ(E)+Ce

0 |Ω|
)
ω̄s,t. (3.16)Carrying (3.16) into (3.14), and observing that e(u̇Dir(·)) ∈ C0([0, T ]; L2(Ω; Rd×d

sym)),one dedues that there exists C̃E
2 > 0 suh that

Ievar(s, t) ≤ C̃E
2

(
‖e(uDir(s))−e(uDir(t))‖L2+

√
ω̄s,t

)
. (3.17)Finally, we insert (3.13) and (3.17) in (3.12) and obtain

Ie(s, t) ≤ C̃E
1 ‖e(u̇Dir(s))−e(u̇Dir(t))‖L2

+ C̃E
2

(
‖e(uDir(s))−e(uDir(t))‖L2+

√
ω̄s,t

)
.

(3.18)Using the same deomposition for Iθ as for Ie, we have
Iθ(s, t) ≤

∫

Ω

∣∣∂θW̃ (s, θappl(s))(θ̇appl(s)−θ̇appl(t))
∣∣dx+ Iθvar(s, t), (3.19)where

Iθvar(s, t) def
=

∫

Ω

∣∣(∂θW̃ (s, θappl(s))−∂θW̃ (t, θappl(s))
)
θ̇appl(t)

∣∣dx

+

∫

Ω

∣∣(∂θW̃ (t, θappl(s))−∂θW̃ (t, θappl(t))
)
θ̇appl(t)

∣∣dx.13



Using (3.2e), the �rst term on the right hand side of (3.19) an be estimated asfollows
∫

Ω

∣∣∂θW̃ (s, θappl(s))(θ̇appl(s)−θ̇appl(t))
∣∣dx

≤
(
CW

1

∫

Ω

W̃ (s, θappl(s))dx+ CW
1 CW

0 |Ω|
)
‖θ̇appl(s)−θ̇appl(t)‖L∞,whih implies using one again (3.11) that there exists C̃E

3 > 0 suh that
∫

Ω

∣∣∂θW̃ (s, θappl(s))(θ̇appl(s)−θ̇appl(t))
∣∣dx ≤ C̃E

3 ‖θ̇appl(s)−θ̇appl(t)‖L∞. (3.20)To estimate Iθvar we �rst dedue from (3.2f), (3.2h), Cauhy-Shwarz's inequalityand (3.15) that
Iθvar(s, t) ≤ Θ

(
Cθ‖1+|e(uDir(s))+e(uDir(t))+2e(u)|+2|z|‖L2

‖e(uDir(s))−e(uDir(t))‖L2

+ Cθ
1

(∫

Ω

W̃ (t, θappl(t))dx+ Cθ
0 |Ω|

)
ω̄s,t

)
.

(3.21)With Cauhy-Shwarz's inequality, (3.5), (2.3), e(uDir(·)) ∈ C0([0, T ]; L2(Ω; Rd×d
sym))we infer that ‖1+|e(uDir(s))+e(uDir(t))+2e(u)|+2|z|‖L2 is bounded independentlyof t, s and q. Hene, using (3.11), we dedue that there exists C̃E

4 > 0 suh that
Iθvar(s, t) ≤ C̃E

4

(
‖e(uDir(s))−e(uDir(t))‖L2+ω̄s,t

)
. (3.22)Carrying (3.20) and (3.22) into (3.19), we obtain

Iθ(s, t) ≤ C̃E
3 ‖θ̇appl(s)−θ̇appl(t)‖L∞+C̃E

4

(
‖e(uDir(s))−e(uDir(t))‖L2+ω̄s,t

)
. (3.23)Realling that (3.1) assumes that θappl, l and uDir are C1, the ompatness of [0, T ]implies uniform ontinuity of the derivatives. Hene, (3.10d), (3.18), (3.23), and

ω̄s,t ≤ ω
(
Θ|s−t|

) lead to the existene of a nondereasing funtion ωE : [0,∞) →
[0,∞) with ωE(τ) → 0 for τ ց 0 suh that

|∂tE(s, q)−∂tE(t, q)| ≤ ωE(|s−t|),whenever E(0, q) ≤ E. This onludes the proof. �Next we introdue the set of stable states de�ned as follows
S(t)

def
=

{
q ∈ Q

∣∣ ∀q̄ ∈ Q : E(t, q) ≤ E(t, q̄) + D(z, z̄)
}
. (3.24)Let us observe that (S) is equivalent to q(t) = (u(t), z(t)) ∈ S(t).14



Lemma 3.4 Let the assumptions (3.1), (3.2a) to (3.2e), (3.2j), (2.7) and (3.3) hold.If tn → t∗, zn ⇀ z∗, qn = (un, zn) ∈ S(tn), and sup
n∈N

E(tn, qn) <∞, then
E(tn, qn) → E(t∗, q∗) and qn → q∗ = (u∗, z∗) in Q strongly, (3.25)where u∗ = Argmin E(t∗, · , z∗).Proof. We reall that by (3.2a) the funtional F ∋ u 7→ E(t, u, z) is stritly onvex.Hene, by weak lower semiontinuity there is for eah pair (t, z) ∈ [0, T ]×Z a uniqueminimizer u = U(t, z).We �rst use the oerivity (3.5) to see that the sequene (un)n∈N is bounded in

F . Thus, there exists a onvergent subsequene (unj
)j∈N and ũ with qnj

⇀ q̃ =
(ũ, z∗) for j → ∞. Sine E is weakly lower semiontinuous, we infer E(t∗, q̃) ≤
lim infj→∞ E(tnj

, qnj
).Using the stability of qn and testing with q∗ = (u∗, z∗) we have

E(tn, qn) ≤ E(tn, q∗) + D(zn, z∗)

≤ E(t∗, q∗) +
(
exp(CE

1 |tn−t∗|) − 1
)
(E(t∗, q∗) + CE

0 ) + D(zn, z∗).Passing to the limit n → ∞ gives lim supn→∞ E(tn, qn) ≤ E(t∗, q∗). Sine u∗ is theunique minimizer, we have
E(t∗, q∗) ≤ E(t∗, ũ, z∗) ≤ lim inf

j→∞
E(tnj

, qnj
) ≤ lim sup

n→∞

E(tn, qn) ≤ E(t∗, q∗).Thus, we onlude that E(tn, qn) → E(t∗, q∗) and that ũ is equal to the uniqueminimizer u∗. This also shows that the whole sequene onverges: un ⇀ u∗.It remains to show that the onvergene must in fat be strong, whih will fol-low from the ruial property that the integrand of (e, z, A) 7→ W (e, z, θ) + σ
2
|A|2is stritly onvex in (e, A). First we employ (3.7) to onlude that we also have

E(t∗, qn) → E(t∗, q∗), sine E(tn, qn)−E(t∗, qn) an be estimated via C|tn−t∗|. Nextobserve that E(t∗, ·) is the sum of the two weakly lower semi-ontinuous funtionals
I1 : q 7→

∫
Ω
W (e(u + uDir(t∗)), z, θappl(t∗)) dx and I2 : q 7→

∫
Ω

σ
2
|∇z|2 dx and thelinear funtional −〈l(t∗), ·〉. Thus, we have Ik(qn) → Ik(q∗) for k = 1, 2. The ase

k = 2 yields zn → z∗ in H1(Ω; RN) strongly, sine in Hilbert spaes weak onvergeneplus onvergene of the norms implies strong onvergene.To establish strong onvergene of the u-omponent, we introdue q̂n = (un, z∗) andemploy ondition (3.2j) to obtain
|I1(q̂n)−I1(qn)| ≤

∫

Ω

C(1+|e(un + uDir(t∗))|)
bp ω(|zn(x)−z∗(x)|)dx

≤ C2bp/2
(
|Ω| + ‖e(un + uDir(t∗))‖

2
L2

)bp/2
‖ω(|zn−z∗|)‖Lp̄, (3.26)where we used Hölder's inequality with p̄ = 2/(2−p̂) ∈ (1,∞). In (3.26) the �rstfator is bounded beause of weak onvergene. The seond fator ‖ω(|zn−z∗|)‖Lp̄15



onverges to 0, sine ω(|zn−z∗|) is uniformly bounded by ω(diam(Z)) and sine
|zn−z∗| → 0 in L2(Ω). Thus, we onlude

|I1(q̂n)−I1(q∗)| ≤ |I1(q̂n)−I1(qn)| + |I1(qn)−I1(q∗)| → 0.In I1(q̂n) the integrand is x 7→ W (x, e(un(x) + uDir(t∗, x)), z∗(x), θ(t∗, x)) where
W (x, ·, z, θ) : Rd×d

sym → R is stritly onvex and we an apply [Vis84, Thm. 3℄ toonlude e(un) → e(u∗) in L2(Ω; Rd×d
sym) strongly, whih means un → u∗ in H1(Ω; Rd)strongly.

�The assumptions on the presribed temperature pro�le θappl, the external loading l,the Dirihlet boundary ondition uDir and the stored energy density W given above,allow us to prove that the power ∂tE(t, q) is loally Lipshitz ontinuous with respetto q uniformly with respet to t. This property will play a key role in the proof ofthe Lipshitz ontinuity of energeti solutions, whih will be established in the nextsetion.Lemma 3.5 Assume (3.1), (3.2b) to (3.2e), (3.2h) and (3.2i) hold. Then, for all
R > 0 there exists a onstant CR > 0 suh that

∀t ∈ [0, T ] ∀q1, q2 ∈ Q with ‖q1‖Q, ‖q2‖Q ≤ R :

|∂tE(t, q1)−∂tE(t, q2)| ≤ CR‖q1−q2‖Q.
(3.27)Proof. We let ei

def
= e(ui+uDir(t)) and W̃ (ei, zi)

def
= W (e(ui+uDir(t)), zi, θappl(t)) for

i = 1, 2. Realling η def
= ‖e(u̇Dir(·))‖C0([0,T ];L2) and Θ

def
= ‖θ̇appl(·)‖C0([0,T ];L∞) and usingCauhy-Shwarz's and Hölder's inequality we infer that

|∂tE(t, q1)−∂tE(t, q2)| ≤ η
(∫

Ω

∣∣∂eW̃ (e1, z1)−∂eW̃ (e2, z2)
∣∣2 dx

)1/2

+ Θ

∫

Ω

∣∣∂θW̃ (e1, z1)−∂θW̃ (e2, z2)
∣∣dx

+ ‖l̇(t)‖(H1)′‖u2−u1‖H1,whih, using (3.2h) and (3.2i), implies
|∂tE(t, q1)−∂tE(t, q2)| ≤ CθΘ

(∫

Ω

(|e1−e2|+|z1−z2|)(1+|e1+e2|+|z1+z2|)dx
)

+ Ceη
(∫

Ω

(|e1−e2|+|z1−z2|)
2 dx

)1/2

+ ‖l̇(t)‖(H1)′‖u2−u1‖H1 .

≤
(
Ceη+CθΘK(t, q1, q2)

)(
‖u1−u2‖H1+‖z1−z2‖L2

)

+ ‖l̇(t)‖(H1)′‖u2−u1‖H1 ,where K(t, q1, q2)
def
=

√
|Ω|+ ‖z1‖L2 + ‖z2‖L2 + ‖u1‖H1 + ‖u2‖H1 +2‖uDir(t)‖H1. Using(3.1) the desired estimate is established. �16



4 Temporal regularity via uniform onvexityIn this setion we study a better ase, where E(t, ·) is uniformly onvex and D(z0, z1)only depends on the di�erene z1 − z0. The arguments follow the method developedin [MiT04, Set. 7℄, see also [MiR07℄.We assume thatW is αW -uniformly onvex jointly in the �rst two arguments, namelythere exists a modulus of onvexity αW > 0 suh that for all e1, e2 ∈ R
d×d
sym, z1, z2 ∈ Zand λ ∈ [0, 1], we have

∀θ ∈ [θmin, θmax] : W (eλ, zλ, θ) ≤ (1−λ)W (e1, z1, θ) + λW (e2, z2, θ)

−
αW

2
λ(1−λ)

(
|e2−e1|

2+|z2−z1|
2
)
,

(4.1)where eλ
def
= (1−λ)e1 + λe2 and zλ

def
= (1−λ)z1 + λz2. With qλ def

= (1−λ)q1 + λq2, wehave
E(t, qλ) ≤ (1−λ)E(t, q1) + λE(t, q2) −

κ̂

2
λ(1−λ)‖q2−q1‖

2
B,where κ̂ def

= min(αW , σ) and ‖q‖2
B

def
= ‖e(u)‖2

L2 + ‖z‖2
H1 . Using Korn's inequality (2.2),we �nd ‖q‖2

B ≥ min(cKorn, 1)‖q‖2
Q. Hene, we dedue

∀q1, q2 ∈ Q ∀t ∈ [0, T ] ∀λ ∈ [0, 1] :

E(t, qλ) ≤ (1−λ)E(t, q1) + λE(t, q2) −
κ

2
λ(1−λ)‖q2−q1‖

2
Q,

(4.2)where κ = κ̂min(cKorn, 1). In other words, E(t, · ) is κ-uniformly onvex on Q.The next result establishes that in the present setting energeti solutions are Lips-hitz ontinuous in time, whih essentially relies on the uniform onvexity (4.2) of
E(t, ·) and on assumption (2.6) for the dissipation D whih implies the onvexity ofthe dissipation distane D(q, ·) : Q → [0,∞].Notie that the dissipation distane is alled translation invariant, if D satis�es(2.6). Then, D(z0, z1) = Ψ(z1−z0) with Ψ(v) =

∫
Ω
ψ(v(x)) dx and Ψ plays the roleof a (possible unsymmetri) L1 norm.Theorem 4.1 (Lipshitz ontinuity). Assume that (2.6), (2.7), (3.1), (3.2b)to (3.2e), (3.2h), (3.2i), (3.3) and (4.1) hold. Then, any energeti solution q isLipshitz ontinuous. More preisely, let R def

= ‖q‖L∞([0,T ];Q) and CR > 0 given by theLemma 3.5 then ‖q̇(t)‖Q ≤ 2CR

κ
for a.e. t ∈ [0, T ] with κ from (4.2).Proof. We �rst prove that uniform onvexity allows us to improve the stability (S)into the following stronger statement:

∀ s ∈ [0, T ] ∀ q̂ ∈ Q : E(s, q(s)) +
κ

2
‖q̂−q(s)‖2

Q ≤ E(s, q̂) + Ψ(q̂−q(s)). (4.3)Indeed, �x s ∈ [0, T ] and de�ne the funtional J via J (q̂) = E(s, q̂) + Ψ(q̂−q(s))for all q̂ ∈ Q. Sine q is an energeti solution and hene satis�es (S), we know that17



q(s) is a global minimizer of J . Moreover, sine Ψ is onvex we obtain that J is
κ-uniformly onvex on Q by using (4.2). Thus, for q̂ ∈ Q and λ ∈ (0, 1) we let
qλ = (1−λ)q̂ + λq(s) and we obtain

J (q(s)) +
κ

2
λ(1−λ)‖q̂−q(s)‖2

Q ≤ J (qλ) +
κ

2
λ(1−λ)‖q̂−q(s)‖2

Q

≤ (1−λ)J (q̂) + λJ (q(s)).Subtrating λJ (q(s)) and dividing by (1−λ) gives J (q(s))+ κ
2
λ‖q̂−q(s)‖2

Q ≤ J (q̂).Now the de�nition of J and the limit λ → 1 lead to the desired estimate (4.3).Hene, for all s, t ∈ [0, T ] suh that s ≤ t, by hoosing q̂ = q(t) we get
κ

2
‖q(t)−q(s)‖2

Q ≤ E(s, q(t)) − E(s, q(s)) + D(z(s), z(t))

≤ E(s, q(t)) − E(s, q(s)) + VarD(z, [s, t])

= −

∫ t

s

∂rE(r, q(t))dr +

∫ t

s

∂rE(r, q(r))dr ≤ CR

∫ t

s

‖q(r)−q(t)‖Qdr.The seond estimate omes from the de�nition of VarD, the third identity followsfrom the energy identity (E) and from the additivity property of the dissipation, i.e.VarD(z, [0, t]) = VarD(z, [0, s]) + VarD(z, [s, t]),and the last one results from (3.27). We onlude by applying the following Lemma4.2. �Lemma 4.2 Let q ∈ L∞([0, T ];Q) and C > 0 be given suh that, for all s, t ∈ [0, T ]suh that s ≤ t, we have
κ

2
‖q(t)−q(s)‖2

Q ≤ C

∫ t

s

‖q(r)−q(t)‖Qdr.Then, q ∈ CLip([0, T ];Q) with ‖q̇(t)‖Q ≤ 2C
κ

for a.e. t ∈ [0, T ].The proof is a simple adaptation of the proof of Theorem 7.5 in [MiT04℄.5 Convergene of the spae-time disretizationIn this setion we treat the question of onvergene of spatially and temporallydisretized problems. As we do not have uniqueness of solutions for the full problem,we annot expet onvergene of the whole approximation sequene. But, as in theexistene theorem 3.1, we will obtain onvergene of subsequenes to solutions ofthe full problem. The approah here follows the abstrat Γ-onvergene theorydeveloped in [MRS08℄ and the speialization to general numerial approahes in18



[MiR06℄. However, for the speial model at hand, we an show more than is statedin the above-mentioned general papers. Hene, we provide a full independent proofhere.For the time disretization we onsider τ ∈ (0, T ) and a partition Πτ = {0 = tτ0 <
tτ1 < . . . < tτkτ = T} with

tτk − tτk−1 ≤ τ for k = 1, . . . , kτ .In partiular, we do not assume our partitions to be equidistant.For the spatial disretization we hoose a set of length parameters h > 0 aumu-lating at h = 0 and let Fh and Vh be losed subspaes of F and V = H1(Ω; RN),respetively. Typially, Fh and Vh are �nite dimensional subspaes of F and V ,like �nite-element spaes or Galerkin subspaes. We let Qh
def
= Fh × Zh, with

Zh = {zh ∈ Vh | zh(x) ∈ Z a.e. in Ω} = Z ∩ Vh. We assume that the sets Qhsatisfy the standard density assumption:
∀q ∈ Q ∃(qh)h>0 : qh ∈ Qh and qh → q strongly in Q. (5.1)By onvention, let Q0

def
= F0 ×Z0 = F ×Z.To have some spei� spatial disretization in mind, we may assume that Ω is apolyhedral domain and that ΓDir ⊂ ∂Ω is a �nite union of faes of Ω. Then, foreah h > 0 hoose a triangulation Th of Ω, suh that all edges have at most length

h. Now, let Vh be the spae of funtions that are a�ne on eah polyhedron of Th.Hene Vh ⊂ H1(Ω) and we let Fh = Vh ∩F and Zh = Vh ∩Z. It is then standard in�nite-element theory to show the density property (5.1).We approximate the initial ondition q0 by [q0]
h ∈ Qh and we onsider the followinginremental problems:(IP)τ,h

{for k = 1, . . . , kτ �nd
qτ,h
k

def
= (uτ,h

k , zτ,h
k )∈Argmin{E(tτk, q̂

h)+D(zτ,h
k−1, ẑ

h) | q̂h def
= (ûh, ẑh)∈Qh

}
.We de�ne now the approximate solution qτ,h : [0, T ] → Q as the right-ontinuouspieewise onstant approximation, namely

qτ,h(t)
def
=

{
qτ,h
k−1 for tτk−1 ≤ t < tτk, k = 1, . . . , kτ ,

qτ,h
kτ for t = T.

(5.2)It is onvenient to introdue the set of stable states Sh(t) for any t ∈ [0, T ] by simplyreplaing Q by Qh in (3.24). Observe that if h = 0 then S0(t) = S(t). Moreover,we de�ne ητ,h
k

def
= E(tτk, q

τ,h
k ) and δτ,h

k

def
= D(zτ,h

k−1, z
τ,h
k ).The next result, whih is fundamental for the energeti approah (f. [MiT99,MTL02℄), shows that the fully impliit inremental minimization problem (IP) issuited perfetly for the energeti formulation (S) and (E). At the time-disrete levelwe again obtain stability and a two-sided energy estimate. This will allow us to de-rive suitable a priori estimates. The essential feature is that D satis�es the triangleinequality. 19



Proposition 5.1 Assume that (2.7), (3.3), (3.1), (3.2b), (3.2) and (3.2d) hold.Then the inremental problems (IP)τ,h admit a solution (qτ,h
k )1≤k≤kτ . Moreover wehave disrete stability: qτ,h

k ∈ Sh(t
τ
k), (5.3)disrete upper energy estimate:

∀k ∈ {1, . . . , kτ} : ητ,h
k − ητ,h

k−1 + δτ,h
k ≤

∫ tτ
k

tτ
k−1

∂tE(t, qτ,h
k−1)dt, (5.4)disrete lower energy estimate:

∀k ∈ {2, . . . , kτ} : ητ,h
k − ητ,h

k−1 + δτ,h
k ≥

∫ tτ
k

tτ
k−1

∂tE(t, qτ,h
k )dt. (5.5)Proof. The existene of minimizers in eah inremental step is a diret onsequeneof the oerivity of E(t, · ) : Q → R, the nonnegativity of D and the weak lowersemiontinuity of E and D. Of ourse, all these properties remain valid, if theminimization is restrited to the losed subspae Qh ⊂ Q.For the disrete stability we use �rst that qτ,h

k , k = 1, . . . , kτ , is a minimizer and that
D satis�es the triangle inequality (see (2.7b) and integrate over Ω): for all q̂h ∈ Qhwe have
E(tτk, q

τ,h
k ) ≤ E(tτk, q̂

h) + D(zτ,h
k−1, ẑ

h) −D(zτ,h
k−1, z

τ,h
k ) ≤ E(tτk, q̂

h) + D(zτ,h
k , ẑh), (5.6)whih yields immediately (5.3). Sine qτ,h

k ∈ Argmin{E(tτk, q̂
h) + D(zτ,h

k−1, ẑ
h) | q̂h ∈

Qh

} we may hoose q̂h = qτ,h
k−1 and �nd

ητ,h
k − ητ,h

k−1 + δτ,h
k ≤ E(tτk, q

τ,h
k−1) − ητ,h

k−1 =

∫ tτ
k

tτ
k−1

∂tE(t, qτ,h
k−1)dt.On the other hand, we rewrite (5.6) for qτ,h

k−1 hoose q̂h = qτ,h
k , and obtain

ητ,h
k − ητ,h

k−1 + δτ,h
k ≥ ητ,h

k − E(tτk−1, q
τ,h
k ) =

∫ tτ
k

tτ
k−1

∂tE(t, qτ,h
k )dt.Thus, (5.4) and (5.5) are established. �To investigate the asymptotis when τ and h tend to 0 we need a ompatnessargument suited for the rate-independent ase. The following version of Helly'sseletion priniple is a simpli�ed version of the abstrat result given in the Appendixof [MaM05℄.Proposition 5.2 (Helly's seletion priniple) Let D be given by (2.8) with Dsatisfying (2.7) and (3.3). Let (zn)n∈N with zn : [0, T ] → Z satisfying

∃C > 0 ∀n ∈ N : VarD(zn; [0, T ]) ≤ C and sup
t∈[0,T ]

‖zn(t)‖H1(Ω) ≤ C, (5.7)20



then there exist a subsequene (znj
)j∈N, a nondereasing funtion δ : [0, T ] → R, anda limit proess z : [0, T ] → Z suh that for all s, t ∈ [0, T ] with s ≤ t, we have

znj
(t) ⇀ z(t) in H1(Ω), δ(t) = lim

j→∞
VarD(znj

; [0, t]),

VarD(z; [s, t]) ≤ δ(t) − δ(s).
(5.8)Our main result states now that the spae-time disretization de�ned via (IP)τ,hgenerating the approximants qτ,h : [0, T ] → Q has the desirable properties (i) thatthe sequene of approximants is preompat (whih an be understood as the �sta-bility of the numerial algorithm�) and (ii) that any limit point of the sequeneof approximants is an energeti solution for the rate-independent system (Q, E ,D)(whih an be understood as �onsisteny of the numerial algorithm�). It should benoted that we do not need to make any assumptions of the order how the �neness

τ of the partitions or the �neness h of the spatial disretization tend to 0.Theorem 5.3 (Convergene of the approximate solution). Assume that E ,
D and q0 satisfy the same assumptions as in Theorem 3.1. Let [q0]

h ∈ Qh be suhthat
[q0]

h → q0 in Q. (5.9)Then, there exist a subsequene (τn, hn)n∈N tending to (0, 0) and an energeti solution
q : [0, T ] → Q for (Q, E ,D) with q(0) = q0 and

u ∈ L∞([0, T ]; H1(Ω; Rd)),

z ∈ L∞([0, T ]; H1(Ω;Z)) ∩ BV([0, T ]; L1(Ω;Z)),suh that for all t ∈ [0, T ] the following onvergenes hold:
qτn,hn(t) → q(t) strongly in Q, (5.10a)

E(t, qτn,hn(t)) → E(t, q(t)), (5.10b)
VarD(qτn,hn; [0, t]) → VarD(q; [0, t]). (5.10)Proof. The main steps of the proof are the similar those in [MRS08, MiR06℄, butour energy E is better behaved and thus we are able to obtain more preise results.For t ∈ [0, T ] let us introdue the notations

ητ,h(t)
def
= E(t, qτ,h(t)), ηh

0
def
= E(0, [q0]

h), δ
τ,h

(t)
def
= VarD(zτ,h; [0, t]) (5.11)and let us reall ητ,h

k = E(tτk, q
τ,h
k ) and δτ,h

k = D(zτ,h
k−1, z

τ,h
k ).Step 1: A priori estimates. One an observe that (P2) and (3.7) lead to

∀k ∈ {1, . . . , kτ} :

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt ≤

(
exp(Cε

1(t
τ
k−t

τ
k−1))−1

)
(ητ,h

k−1+C
ε
0). (5.12)21



Carrying (5.12) into (5.4), we get
ητ,h

k + δτ,h
k ≤ exp(Cε

1(t
τ
k−t

τ
k−1))(η

τ,h
k−1+C

ε
0) − Cε

0 , (5.13)and observing that δτ,h
k ≥ 0, we obtain by indution

∀k ∈ {1, . . . , kτ} : ητ,h
k + Cε

0 ≤

k∏

j=1

exp(Cε
1(t

τ
j−t

τ
j−1))(η

h
0+Cε

0)

= exp(Cε
1t

τ
k)(η

h
0+Cε

0).

(5.14)Hene, with (5.2), (3.5) and (3.7), we dedue that
∀t ∈ [0, T ] : −c0 ≤ ητ,h(t) ≤ exp(Cε

1t)(η
h
0+Cε

0) − Cε
0 . (5.15)Next we estimate the dissipated energy δτ,h

(t) by using (5.13), (5.14) and (3.5): forall t ∈ [0, T ]

δ
τ,h

(t) ≤ δ
τ,h

(T ) =
kτ∑

k=1

δτ,h
k

≤ ηh
0 − ητ,h

kτ +

kτ∑

k=1

(
exp(Cε

1t
τ
k)− exp(Cε

1t
τ
k−1)

)
(ηh

0+Cε
0)

≤ exp(Cε
1T )ηh

0 +
(
c0+(exp(Cε

1T ) − 1)Cε
0

)

≤ exp(Cε
1T )

(
ηh

0+ max(c0, C
ε
0)

)
.

(5.16)
Let us onsider now the total variation Var(ητ,h; [0, T ]) of ητ,h on [0, T ]. Reallingthat

ητ,h(t) = E(t, qτ,h(t)) =

{
E(t, qτ,h

k−1) for tτk−1 ≤ t < tτk, k = 1, . . . , kτ ,

E(T, qτ,h
kτ ) for t = T,we obtainVar(ητ,h; [0, T ]) ≤

kτ∑

k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt+

kτ∑

k=1

∣∣ητ,h
k −E(tτk, q

τ,h
k−1)

∣∣

≤
kτ∑

k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt+

kτ∑

k=1

|ητ,h
k −ητ,h

k−1| +
kτ∑

k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt

= I1 + I2 with I1
def
= 2

kτ∑

k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt and I2

def
=

kτ∑

k=1

|ητ,h
k −ητ,h

k−1|.On the one hand, using (5.12), (5.14) and summing for k = 1, . . . , kτ , we obtain
I1 ≤ 2

kτ∑

k=1

exp(Cε
1(t

τ
k − tτk−1) − 1)(ητ,h

k−1 + Cε
0) ≤ 2

(
exp(Cε

1T )−1
)
(ηh

0+Cε
0). (5.17)22



On the other hand, by (5.4) and (5.5), we have
I2 ≤ δ

τ,h
(T ) +

kτ∑

k=1

max
(∫ tτ

k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt,

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k )|dt

)

+ max
(
0, ηh

0−E(tτ1, q
τ,h
1 )

)
.

(5.18)But (P2) and (3.7) lead to
∫ tτ

k

tτ
k−1

|∂tE(t, qτ,h
k )|dt ≤

∫ tτ
k

tτ
k−1

Cε
1(E(t, qτ,h

k )+Cε
0)dt

≤
(
exp(Cε

1(t
τ
k−t

τ
k−1)−1)

)
(E(tτk, q

τ,h
k )+Cε

0)

≤
(
exp(Cε

1(t
τ
k−t

τ
k−1)−1

)
exp(Cε

1(t
τ
k−t

τ
k−1))(η

τ,h
k−1+C

ε
0)

≤
(
exp(Cε

1(t
τ
k−t

τ
k−1)−1

)
exp(Cε

1T )(ητ,h
k−1+C

ε
0)

(5.19)
and thus, with (5.12)

max
(∫ tτ

k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt,

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k )|dt

)

≤
(
exp(Cε

1(t
τ
k−t

τ
k−1)−1

)
exp(Cε

1T )(ητ,h
k−1+C

ε
0).Moreover, we know from (3.5) that E(tτ1, q

τ,h
1 ) ≥ −c0. Hene, using (5.17), (5.18)and (5.19), we obtain, for all t ∈ [0, T ],Var(ητ,h; [0, t]) ≤ Var(ητ,h; [0, T ]) ≤

(
exp(Cε

1T )−1
)
(ηh

0+Cε
0)

(
exp(Cε

1T )+2
)

+ δ
τ,h

(T ) + max
(
0, ηh

0+c0
)
.

(5.20)But, with (3.5), we have also
ηh

0 = E(0, [q0]
h) ≤ c0‖[q0]

h‖2
Q+c0, (5.21)and sine ([q0]

h)h>0 onverges to q0 in Q, we infer that ηh
0 is bounded from aboveindependently of h. Hene, (5.15), (5.16) and (5.20) imply that |ητ,h(t)|, δτ,h

(t) =
VarD(zτ,h; [0, t]) and Var(ητ,h; [0, t]) are bounded independently of t, τ and h. Usingthe oerivity (3.5) and (3.3) we have found a onstant C > 0 suh that for all
τ, h > 0 the approximants satisfy the bounds

sup
t∈[0,T ]

‖qτ,h(t)‖H1(Ω) ≤ C, ‖zτ,h‖BV([0,T ],L1(Ω)) ≤ C, Var(ητ,h; [0, T ]) ≤ C. (5.22)Using (P2) of Proposition 3.3 we also have a bound for the power
∀τ, h > 0 ∀t ∈ [0, T ] : |∂tE(t, qτ,h(t))| ≤ C. (5.23)Step 2. Seletion of subsequenes. We have prepared all the assumptions forHelly's seletion priniple as stated in Proposition 5.2. Hene, applying both the23



lassial Helly's theorem and Proposition 5.2, we infer that there exists a subsequene
(τn, hn)n∈N suh that for all t ∈ [0, T ], we have

ητn,hn(t) → η(t), δ
τn,hn

(t) → δ(t),

zτn,hn(t) ⇀ z(t) in Z, VarD(z; [0, t]) ≤ δ(t)
(5.24)with η ∈ BV([0, T ]; R), δ : [0, T ] → R a nondereasing funtion, and z : [0, T ] → Z.We want to show that the u-omponent also onverges along this subsequene. Forthis we de�ne

sn(t)
def
= max

{
tτn

j ∈ Πτn
∣∣ tτn

j ≤ t
}
,then we have qτn,hn(t) = qτn,hn(sn(t)) ∈ Sh(s

n(t)). Thus, using sn(t) → t and
zτn,hn(t) ⇀ z(t) we an argue as in Lemma 3.4 to onlude that

qτn,hn(t) → q(t) = (u(t), z(t)) strongly in Q,

ητn,hn(t) → η(t) = E(t, q(t)),
(5.25)where u(t) = Argmin E(t, · , z(t)). Indeed, using the stability of qτn,hn(t) at sn(t) andtesting by q̂hn

∈ Qhn
we have

E(sn(t), qτn,hn(t)) ≤ E(sn(t), q̂hn
) + D(zτn,hn(t), ẑhn

)and using (3.7)
E(t, qτn,hn(t)) = ητn,hn(t) ≤ exp

(
Cε

1 |t− sn(t)|
)(
E(sn(t), qτn,hn(t)) + Cε

0

)
− Cε

0

≤ exp
(
Cε

1|t− sn(t)|
)(
E(sn(t), q̂hn

) + D(zτn,hn(t), ẑhn
) + Cε

0

)
− Cε

0 .By the density assumption (5.1) we may hoose q̂hn
suh that q̂hn

→ q(t), and usingthe strong ontinuity of E we obtain lim supn→∞ ητn,hn(t) ≤ E(t, q(t)). Then we ob-tain as in Lemma 3.4 that the whole sequene (qτn,hn(t))n∈N onverges weakly to q(t)in Q. By weak lower semiontinuity we again have E(t, q(t)) ≤ lim infn→∞ ητn,hn(t).Thus, the seond statement in (5.25) is established. Finally the strong onvergenefollows as in Lemma 3.4 by strit onvexity.Now we employ Lemma 3.5 and obtain that the power ∂tE(t, qτn,hn(t)) also onverges
∂tE(t, qτn,hn(t)) → ∂tE(t, q(t)) for all t ∈ [0, T ]. (5.26)Step 3. Stability of the limit q. To prove that q(t) ∈ S(t) we take an arbitrary

q̂ ∈ Q and have to show E(t, q(t)) ≤ E(t, q̂) + D(z(t), ẑ). To do so, we apply thedensity assumption (5.1) and obtain a sequene q̂n ∈ Qhn
with q̂n → q̂. Sine

qτn,hn(t) ∈ Shn
(sn(t)) we have

E(sn(t), qτn,hn(t)) ≤ E(sn(t), q̂n) + D(zτn,hn(t), ẑn).Using the onvergenes sn(t) → t, qτn,hn(t) → q(t), and q̂n → q̂, we an pass to thelimit and obtain the desired stability. 24



Step 4. Upper energy estimate. The upper energy estimate on [0, t] followsfrom the disrete upper energy estimate obtained above for the solutions of theinremental problems. Using (3.7) and (5.14) we �nd that there exists C > 0 suhthat
E(t, qτ,h(t)) + VarD(zτ,h; [0, t]) ≤ ητ,h

k−1 + VarD(zτ,h; [0, tτk−1]) + C(exp(CE
1 τ)−1),if tτ,h

k−1 ≤ t < tτ,h
k , whih implies thanks to (5.4) that

ητ,h(t) + δ
τ,h

(t) ≤ ηh
0 +

∫ t

0

∂tE(s, qτ,h(s))ds+ C(exp(CE
1 τ)−1).Notie that (5.9) and (5.25) imply that limh→0 η

h
0 = E(0, q0) = η(0). Then, with(5.23), (5.24) and (5.26), we get at the limit

E(t, q(t)) + VarD(z; [0, t]) ≤ η(t) + δ(t) ≤ E(0, q0) +

∫ t

0

∂tE(s, q(s))ds. (5.27)Step 5. Lower energy estimate. Let us prove now the lower energy estimate.As it has been observed in [MTL02, MiT04℄, it will be derived diretly from thestability property and not from the disrete lower energy inequality. See also [Mie05,Prop. 5.7℄ for an abstrat result.With (5.23) we infer that t 7→ ∂tE(t, q(t)) belongs to L∞([0, T ]). Thus, using alassial result about Lebesgue's integral (see [FrM06℄), for eah t ∈ (0, T ] thereexists a sequene of partitions Πn def
= {0 = tn0 < tn1 < . . . < tnNn

= t} of [0, t] with�neness ∆(Πn)
def
= max{tnj −t

n
j−1 | j = 1, . . . , Nn} tending to 0, suh that

∫ t

0

∂tE(s, q(s)) ds = lim
n→∞

Nn∑

j=1

∂tE(tnj , q(t
n
j ))(tnj −t

n
j−1).For j ∈ {1, . . . , Nn} we have q(tnj−1) ∈ S(tnj−1), and by hoosing q̄ = q(tnj ) we obtain

E(tnj−1, q(t
n
j−1)) ≤ E(tnj−1, q(t

n
j )) + D(q(tnj−1), q(t

n
j ))

= E(tnj , q(t
n
j )) + D(q(tnj−1), q(t

n
j )) −

∫ tnj

tnj−1

∂tE(s, q(tnj ))ds.After summation over j = 1, . . . , Nn, we �nd
E(t, q(t))−E(0, q(0))+VarD(q; [0, t]) ≥

Nn∑

j=1

∫ tnj

tnj−1

∂tE(s, q(tnj ))ds

≥
Nn∑

j=1

∂tE(tnj , q(t
n
j ))(tnj −t

n
j−1)+

Nn∑

j=1

µn
j ,

(5.28)
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where µn
j

def
=

∫ tnj
tnj−1

(
∂tE(s, q(tnj ))−∂tE(tnj , q(t

n
j ))

)
ds. Then (P3) implies that thereexists a nondereasing funtion ωE : [0,∞) → [0,∞) with ωE(τ) → 0 for τ ց 0 and

E ≥ supt∈[0,T ] c0‖q(t)‖
2
Q + c0 suh that

|µn
j | ≤ (tnj −t

n
j−1)ω

E(tnj −t
n
j−1) ≤ (tnj −t

n
j−1)ω

E(∆(Πn)). (5.29)Then passing to the limit in (5.28) as ∆(Πn) tends to zero, we obtain
E(t, q(t)) − E(0, q(0)) + VarD(q; [0, t]) ≥

∫ t

0

∂tE(s, q(s))ds.Now, let us reall that VarD(q; [0, t]) = VarD(z; [0, t]) ≤ δ(t) with (5.24) and that
E(t, q(t)) = η(t). Then, the lower and upper energy estimates imply

η(0) +

∫ t

0

∂tE(s, q(s))ds ≤ E(t, q(t)) + VarD(q; [0, t])

≤ η(t) + δ(t) ≤ η(0) +

∫ t

0

∂tE(s, q(s))ds.Hene, all inequalities are in fat equalities and we dedue that δ(t) = VarD(q; [0, t]).Thus, all assertions in (5.10) are established. �Remark 5.4 Let us observe that, with the hoie Fh = F and Vh = V for all h > 0,we obtain diretly the existene of an energeti solution q = (u, z) of (S) and (E).6 Disussion of stored-energy densitiesHere we address some possible stored-energy densities W : Rd×d
sym ×Z× [θmin, θmax] →

R, that ful�ll the assumptions made in the previous setions. Exept for somegrowth bounds for the di�erent partial derivatives the ruial assumptions are thestrit onvexity of W (·, z, θ) : Rd×d
sym → R in (3.2a) or the muh more restritiveassumption of uniform onvexity of W (·, ·, θ) : Rd×d

sym × Z → R from (4.1).In [MiT99, Mie00, MTL02℄ the mixture funtion Wmix (see (2.4)) was introduedand further analyzed. Using the theory developed in [MTL02, Setion 4℄ it followsthat starting from onvex pure phases W (·, êk, θ) the resulting Wmix(·, z, θ) is stillonvex for eah z ∈ Z. Moreover, if all W (·, êk, θ) are quadrati and have the sameelasti tensor, then Wmix take the quadrati form given in (2.5). However, it shouldbe noted that even in this simple ase the funtion Wmix(·, ·, θ) is in general notjointly onvex in (e, z). The general theory states that wmix(·, θ) : Z → R is onvex,but the desired onvexity of Wmix(·, ·, θ) in (2.5) needs that
w̃(·, θ) : z 7→wmix(z, θ) +

1

2

( N∑

k=1

zkEk(θ):C(θ):Ek(θ) − E(z, θ):C(θ):E(z, θ)
)

+

N∑

k=1

zkw
therm
k (θ) 26



is onvex. For N = 2 onvexity holds if and only if E1 and E2 are symmetriallyrank-1-onneted, see [Mie00, GMH02℄. Clearly, we have onvexity of Wmix withrespet to e ∈ Rd×d
sym in all these ases. If additionally w̃ is uniformly onvex in z,then also Wmix de�ned in (2.5) is uniformly onvex with respet to (e, z).In the next lemma, we larify the assumptions on wmix, C and E whih imply that

Wmix satis�es the assumptions (3.2). Then, we may dedue that all the results givenabove are also valid in the partiular ase where W = Wmix. The veri�ation is leftto the reader.Lemma 6.1 Assume that wmix, C, Ej and wtherm
j satisfy wmix, ∂θwmix ∈ C0(Z ×

[θmin, θmax]; R), C ∈ C1([θmin, θmax]; Lin(Rd×d
sym; Rd×d

sym)), Ej ∈ C1([θmin, θmax]; R
d×d
sym) and

wtherm
j ∈ C1([θmin, θmax]) for j = 1, . . . , N . Further assume that there exist Cθ

mix and
αC > 0 suh that for all z1, z2 ∈ Z, e ∈ Rd×d

sym and θ ∈ [θmin, θmax] we have
∣∣∂θwmix(z1, θ)−∂θwmix(z2, θ)

∣∣ ≤ Cθ
mix|z1−z2| and e:C(θ):e ≥ αC|e|

2.Then Wmix de�ned in (2.5) satis�es the assumptions (3.2).If additionally, there exists αmix > 0 suh that w̃(·, θ) is αmix-uniformly onvex forall θ ∈ [θmin, θmax], then the joint uniform onvexity (4.1) for W = Wmix also holds.In general, it is muh too di�ult to alulateWmix expliitly. Hene, it is neessaryto model suitably. The general theory in [MTL02℄ states that ∇u 7→Wmix(e(u), z, θ)is always quasionvex and that z 7→ Wmix(e, z, θ) is always onvex. Of ourse,ross-quasionvexity is even stronger, but very di�ult to haraterize. So we needto interpolate between the pure phases Wk(·, θ) = W (·, êk, θ) by making suitableassumptions. Throughout we assume that eah Wk is stritly onvex with respetto e. Here, we are now able to treat muh more general funtions Wk. Again wemay take an a�ne interpolation plus a mixture term
Wmix(e, z, θ) =

N∑

k=1

zkWk(e, θ) + wmix(z, θ) for z =
N∑

k=1

zkêk.Clearly, we keep strit onvexity with respet to e.In [Mie07℄ a more general interpolation is suggested in the form
Wmix(e, z, θ) =

1

β(θ)
ln

( N∑

k=1

zk exp
(
β(θ)Wk(e, θ)

))
+ wmix(z, θ),where the limit β ց 0 orresponds to the a�ne interpolation given in the formula be-fore. It is simple to see that upper and lower bounds like c|e|2−C ≤ Wk ≤ C|e|2+Cdiretly arry over to Wmix. The good message is that also (strit) onvexity in e ismaintained. To prove this it is su�ient to show that s 7→ w(s) = Wmix(e+sẽ, z, θ)27



is onvex in s ∈ R for all e, ẽ ∈ R
d×d
sym . We let wk(s) = Wk(e+sẽ, θ) and assume, forsimpliity, that all wk are twie di�erentiable, then we obtain

w′′ = exp(−β(w−wmix))
N∑

k=1

zk exp(βwk)w
′′
k + β exp(−2β(w−wmix))

(( N∑

k=1

zk exp(βwk)
)( N∑

k=1

zk exp(βwk)(w
′
k)

2
)
−

( N∑

k=1

zk exp(βwk)w
′
k

)2
)
.Obviously the �rst sum is nonnegative, and the last term in big parentheses isnonnegative as well by a simple appliation of the Cauhy-Shwarz inequality.The above disussion shows that there is a wide variety of possible mixture funtions
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