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AbstratThis paper disusses the onvergene of kineti variational inequalitiesto rate-independent quasi-stati variational inequalities. Mathematial for-mulations as well as existene and uniqueness results for kineti and rate-independent quasi-stati problems are provided. Sharp a priori estimates forthe kineti problem are derived that imply that the kineti solutions onvergeto the rate-independent ones, when the size of initial perturbations and therate of appliation of the fores tend to 0. An appliation to three-dimensionalelasti-plasti systems with hardening is given.1 IntrodutionMartins et al. [MS*04, MMP07℄ have disussed the onnetion between kinetiand quasi-stati problems in mehanis, whih is a problem of singular perturbations.They used the distint time sales involved in kineti and quasi-stati problems, andperformed a hange of variables in the governing system of kineti equations thatonsists of replaing the physial time t by a loading parameter τ = εt. This leadsto a system of equations where the derivatives with respet to the loading parameterappear multiplied by ε. The quasi-stati problem and its solutions are expeted tobe approahed when ε tends to 0. In this paper the notions di�er slightly fromthose in many engineering papers. On the one hand, often the term �quasi-stati�is used for mehanial systems, where the kineti term Mq̈ is dropped, but variousfrition mehanisms (like visous frition) may still be kept. This also inludes thespei� ase of rate-independent frition, whih is present in many plastiity models.Sine we are interested in that ase in the remainder of this paper we simply write�rate-independent system� to indiate �rate-independent quasi-stati systems�. Onthe other hand, we use the term �kineti problem� for the mehanial problem withinlusion of the inertial term Mq̈ (whih is also often known as �dynami problem�).We present here a generalization of the onvergene result obtained in [MMP07℄ togeneral evolutionary variational inequalities inluding three-dimensional elastoplas-tiity with hardening. In ontrast to [MMP07℄, where Yosida regularization andtime di�erentiation were used, we rely on a di�erene quotient tehnique that isniely adapted to nonsmooth variational inequalities and allows for relatively sim-ple, expliit bounds. More preisely, we prove that the kineti evolutions remainlose to a rate-independent path when the load is applied su�iently slowly and thekineti evolutions start su�iently lose to that rate-independent path. In other1



words, we prove the stability of the quasi-stati path in the sense of the de�nition in[MS*04, MMP07℄.The paper is organized as follows. In Setion 2, the mathematial formulations forkineti and rate-independent problems as well as existene results are presented.We provide a priori estimates for the kineti problem in Setion 3. For example,using the slow time τ = εt one of our results shows that the unique solution of theproblem
ε2Mq

′′(τ) + Aq(τ) + ∂R(q′(τ)) ∋ ℓ(τ), q(0) = q0, q
′(0) = 0, (1.1)with (·)′ = d

dτ
(·) and Aq0 + ∂R(0) ∋ ℓ(0), satis�es the a priori bound

‖εM1/2
q
′′(τ)‖H+‖A1/2

q
′(τ)‖H ≤ C

(
‖ℓ′(0)‖∗+

∫ τ

0

‖ℓ′′(s)‖∗ ds
) for a.e τ ∈ [0, T0],where C is independent of ε, ℓ, and q0. These estimates enable us to ompare thekineti solution to the rate-independent one in Setion 4. If qε solves (1.1) and q̄solves (1.1) with ε = 0, we obtain

(
‖εM1/2

q
′
ε(τ)‖2

H + ‖A1/2(qε(τ)−q̄(τ))‖2
H

)1/2

≤
(
‖εM1/2

q
′
ε(0)‖2

H + ‖A1/2(qε(0)−q̄(0))‖2
H

)1/2
+ Cℓ

√
ε,where Cℓ is given expliitly in terms of ℓ ∈ W2,1([0, T0];D(A−1/2)). In Setion 5, weshow that this onvergene result an be applied for three-dimensional elastoplas-tiity with linear kinemati hardening.2 Mathematial formulationWe start with a Hilbert spae H with dual H∗, the dual pairing and the normare respetively denoted by 〈 · , · 〉 : H × H∗ → R and ‖ · ‖H. Let V be suh that

V ⊂ H ⊂ V ∗ with dual V ∗. We denote by A : H → H∗ a symmetri, stritlypositive operator with the domain of A1/2 suh that D(A1/2) = V . We use belowthe following norms: ‖ · ‖ def
=

√
〈A · , · 〉, ‖ · ‖∗ def

=
√

〈 · , A−1 · 〉 and the following semi-norm: | · |M def
= ‖M1/2 · ‖H . We onsider the variational inlusion

Mq̈(t) + Aq(t) + ∂R(q̇(t)) ∋ l(t), (2.1)where (˙) denotes the time derivative d
dt

(), M is a mass matrix operator, and l servesas input datum, also alled external loading in mehanis. The dissipation funtional
R : H → [0,∞] is assumed to be onvex, lower-semiontinuous, homogeneous ofdegree 1, i.e., R(γq) = γR(q) for all γ ≥ 0 and q ∈ H . Its subdi�erential is givenby ∂R(v) =

{
σ ∈ H∗ | ∀w ∈ H : R(w) ≥ R(v) + 〈σ, w−v〉

}. Using the de�nition ofthe subdi�erential ∂R(q̇) leads to the variational inequality
∀v ∈ H : 〈Mq̈+Aq−l(t), v−q̇〉 + R(v) −R(q̇) ≥ 0. (2.2)2



The energy assoiated with (2.1) is given by E(t, q, q̇) = 1
2
〈Mq̇, q̇〉+ 1

2
〈Aq, q〉−〈l(t), q〉.The orresponding rate-independent system is obtained from (2.1) resaling timevia τ = εt, letting ℓ(τ) = l(τ/ε) and taking the limit ε → 0:

Aq̄(τ) + ∂R(q̄′(τ)) ∋ ℓ(τ), (2.3)where (·)′ = d
dτ

(·) and the energy is given by Ē(τ, q̄, ˙̄q) = 1
2
〈Aq̄, q̄〉 − 〈ℓ(τ), q̄〉. Anal-ogously to the kineti system, the variational inequality assoiated with (2.3) is

∀v̄ ∈ H : 〈Aq̄−ℓ(τ), v̄−q̄′〉 + R(v̄) −R(q̄′) ≥ 0. (2.4)Sine we are interested in elastoplastiity, we want to be able to treat the ase that
M is degenerate. Thus, we assume that it has blok struture and that q deomposesinto two omponents orrespondingly, i.e., H = H1 × H2, V = V1 × V2, q

def
= (u, z)with u ∈ H1 and z ∈ H2 and

M
def
=

(
m 0
0 0

)
, A

def
=

(
a11 a12

a21 a22

)
, R(q̇)

def
= R̃(ż), l(t)

def
=

(
f(t)
0

)
. (2.5)For m we assume that it is invertible, more preisely

m = m∗ ∈ Lin(H1, H1) and m−1 ∈ Lin(H1, H1). (2.6)We denote by R∗(·) the Legendre transform of R̃(·). The assumptions on R implythat R∗ has the form I{0}×K , where K
def
= ∂R̃(0) is a losed onvex set in H∗

2 . Thenusing the previous notations, the variational inlusion (2.1) an be rewritten in aform that may be studied using the theory of maximal monotone operators, namelythe governing kineti system
{

mü+ a11u + a12z = f(t),

ż + ∂R̃∗(a21u+a22z) ∋ 0,
(2.7)together with the initial onditions

(u̇(0), q(0)) = (u̇(0), u(0), z(0)) = (u̇0, u0, z0) = (u̇0, q0). (2.8)The rate-independent system (2.3) an be rewritten as
{

a11ū + a12z̄ = f̄(τ),

z̄′ + ∂R̃∗(a21ū+a22z̄) ∋ 0,
(2.9)where f̄(τ) = f(τ/ε), with initial onditions

q̄(0) = (ū(0), z̄(0)) = (ū0, z̄0) = q̄0. (2.10)Existene and uniqueness results for the kineti and the rate-independent problemfollow from [Gr78b℄ and [Gr78a, Joh78℄, respetively. In what onerns the kinetiproblem, the theory of maximal monotone operators is used for this purpose. Thereader an �nd this theory in many textbooks, see, e.g., [Bre73, Zei85℄. In [Gr78b℄it is assumed that l ∈ W1,2([0, T ]; H) but it an be easily proved, using [ShS97,Thm.A℄, that the same result remains valid for l ∈ W1,1([0, T ]; H).3



Proposition 2.1 Assume that (u̇0, q0) ∈ H1 ×V suh that 0 ∈ a21u0+a22z0+∂R̃(0)is satis�ed and l = (f, 0)T ∈ W1,1([0, T ]; H1×{0}). Then there exists a uniquesolution q ∈ W1,∞([0, T ]; V ) that solves (2.7) and (2.8). This solution additionallysatis�es Mq ∈ W2,∞([0, T ]; H).The existene and uniqueness theory for the rate-independent ase is lassial, seee.g. [Gr78a, Joh78℄ or the surveys [Kre99, Thm. 3.6℄, [Mie05, Thm. 2.1℄.Proposition 2.2 Assume that q̄0 ∈ V and ℓ ∈ W1,∞([0, T0]; V
∗) suh that ℓ(0) ∈

Aq̄0 + ∂R(0) is satis�ed. Then, the variational inequality (2.4) and hene also (2.9)have a unique solution q̄ ∈ W1,∞([0, T0]; V ) satisfying (2.10).In partiular, the solutions of (2.3) satisfy the relation
〈Aq̄′(s), q̄′(s)〉 = 〈ℓ′(s), q̄′(s)〉 for a.e. s ∈ [0, T0]. (2.11)Indeed, onsider the variational inequality (2.4) with v̄ = λq̄′(s), divide by λ andlet λ → ∞. We obtain 〈Aq̄(τ)−ℓ(τ), q̄′(s)〉+R(q̄′(s)) ≥ 0 for all τ ∈ [0, T0] and a.a.

s ∈ [0, T0]. Moreover, for s = τ we have the opposite inequality by taking v̄ = 0 in(2.4). Di�erentiating with respet to τ we �nd (2.11), from whih we easily obtainthe a priori estimate
‖q̄′(τ)‖ ≤ ‖ℓ′(τ)‖∗ for a.a. τ ∈ [0, T0]. (2.12)Remark 2.3 In what onerns the rate-independent problem, Johnson [Joh78℄formulates the plastiity problem as a variational inequality thereby extending theformulation of Duvaut & Lions [DuL76℄ to the ase of a hardening material. Us-ing Yosida regularization, the author has proved existene of a strong solution and,under some assumptions, he obtained a regularity result for the veloity �eld. Anal-ogous results were obtained by Gröger [Gr78a℄, but remained largely unknown inthe western world.3 A priori estimates for the kineti problemThe aim of this setion is to provide a priori estimates for the problem whih allowus to ontrol the term Mq̈ in H instead of the usual estimates in V ∗. The problemours through the fat that ∂R is nonsmooth and lassial tehniques for smoothproblems do not su�e. One way to handle this is to use Yosida regularizationleading to smooth systems and to show that a priori estimates stay uniform in theregularization parameter, see [MMP08℄. Here we hoose a di�erent tehnique thatis based on di�erene quotients.To explain the methods we start with the basi energy estimate. We onsider asolution and let E(t)
def
= E(t, q(t), q̇(t)). Using 〈σ, q̇〉 ≥ 0 for all σ ∈ ∂R(q̇) weimmediately �nd

d

dt
E(t) ≤ −〈l̇(t), q(t)〉. (3.1)4



Our a priori estimates an be derived most easily by using the quadrati form B :
V × H × V ∗ → R de�ned via

B[q, q̇, l]
def
= |q̇|2M + ‖q−A−1l‖2 + ‖l‖2

∗. (3.2)The onstrution is suh that for solutions we have
B[q(t), q̇(t), l(t)] = 2E(t, q(t), q̇(t)) + 2‖l(t)‖2

∗ = 2E(t) + 2‖l(t)‖2
∗. (3.3)Moreover, one an notie that

1

g2

(
‖q‖2+|q̇|2M+‖l‖2

∗
)
≤ B[q, q̇, l] ≤ g2

(
‖q‖2+|q̇|2M+‖l‖2

∗
)
, (3.4)with g

def
= 1+

√
5

2
≈ 1.618 is the golden ratio.We now let β(t) = B[q(t), q̇(t), l(t)] and, ombining (3.1), (3.3) and (3.4) gives

d

dt
β(t) ≤ ‖l̇(t)‖∗

(
2‖q(t)‖+4‖l(t)‖∗

)
≤ ‖l̇(t)‖∗4g

√
2
√

β(t).Dividing by 2
√

β and integrating both sides we �nd the estimate
√

β(t) ≤
√

β(s) + 2g
√

2

∫ t

s

‖l̇(τ)‖∗ dτ for 0 ≤ s ≤ t ≤ T.This provides a �rst, simple a priori bound for (q, M1/2q̇) in V × H in terms of theinitial onditions, namely, using (3.4) we �nd
(
‖q(t)‖2+|q̇(t)|2M

)1/2 ≤ g2
(
‖q(0)‖2+|q̇(0)|2M+‖l(0)‖2

∗
)1/2

+ 2g2
√

2

∫ t

0

‖l̇(τ)‖∗ dτ.
(3.5)Similarly, using (3.3) we obtain the a priori bound for the energy, namely

E(t) ≤
(√

E(0)+‖l(0)‖2
∗ + 2g

∫ t

0

‖l̇(τ)‖∗ dτ
)2

− ‖l(t)‖2
∗.The above estimates are just preliminary, but they already show the essential featurethat the loading l appears on the right-hand side with a L1 integral of l̇ whereasthe left-hand side provides an L∞ estimate for (q, M1/2q̇) in V × H . The ruialobservation is now that the analogous estimate holds for the di�erene of two solu-tions, even if we treat di�erent loadings l. These estimates are well known (see e.g.,[Kre99, Mie05℄) but we repeat it for the readers onveniene and to have expliitonstants.Proposition 3.1 Let l1, l2 ∈ W1,1([0, T ]; V ∗) and q1 and q2 be solutions of (2.1) withright-hand sides l1 and l2 respetively, then w = q1−q2 satis�es, for all t ∈ [0, T ],the estimate

B[w(t), ẇ(t), l1(t)−l2(t)]
1/2 ≤ B[w(0), ẇ(0), l1(0)−l2(0)]1/2

+ 2g
√

2

∫ t

0

‖l̇1(τ)−l̇2(τ)‖∗ dτ.
(3.6)5



Proof. We use the variational inequalities (2.2) for q1 and q2 respetively and insertas test funtions v1 = q̇2 and v2 = q̇1, respetively. Adding these two inequalitiesleads to a anellation of all terms involving R and we �nd, with l = l1 − l2,
d

dt

(1

2
|ẇ|2M +

1

2
‖w‖2 − 〈l, w〉

)
≤ −〈l̇, w〉.For β(t) = B[w(t), ẇ(t), l(t)] we �nd the estimate

d

dt
β(t) ≤ ‖l̇(t)‖

(
2‖q(t)‖ + 4‖l(t)‖

)
≤ ‖l̇(t)‖4g

√
2
√

β(t).Now (3.6) is obtained as above. �We apply this result for deriving a priori estimates for the derivatives. Reall thatCorollary 2.1 states q ∈ W1,∞([0, T ]; V ) and Mq ∈ W2,∞([0, T ]; H). The idea is toonsider di�erene quotients as a multiple of the di�erene between a solution andits time translation.For arbitrary funtions y ∈ L∞([0, T ]; Y ), h > 0, and t ∈ [0, T−h] we use thenotation
δhy(t)

def
=

1

h

(
y(t+h)−y(t)

)
.We use the fat that the norm of di�erene quotients an be bounded by the normof the derivative. For all p ∈ [1,∞] and y ∈ W1,p([0, T ]; Y ) we have

‖δhy‖Lp([0,T−h];Y ) ≤ ‖ẏ‖Lp([0,T ];Y ). (3.7)For p ∈ (1,∞] the left-hand side even onverges to the right-hand side for h → 0.Applying Proposition 3.1 with q1(t) = q(t+h) and q2(t) = q(t) and dividing by h > 0we immediately �nd the a priori estimate
B[δhq(t), δhq̇(t), δhl(t)]

1/2 ≤ B[δhq(s), δhq̇(s), δhl(s)]
1/2

+ 2g
√

2

∫ t

s

‖δhl̇(τ)‖∗ dτ,
(3.8)for all 0 ≤ s ≤ t ≤ T−h. If it would be possible to pass to the limit h ց 0 onthe right-hand side, then we would �nd the desired a priori bound for (q, M1/2q̇)in W1,∞([0, T ]; V × H). However, in the general situation the initial onditions

q(0) = q0 ∈ V and u̇(0) = u̇0 ∈ H1 do not guarantee the boundedness
lim sup

hց0

(
‖δhq(0)‖ + |δhq̇(0)|M

)
< ∞.Even the additional assumptions u̇0 ∈ V1 and l(0) ∈ ∂R(0) + Aq(0) do not help.Here we have to make an additional assumption, whih allows us to handle thenonsmoothness. For onsisteny we let l0 = l(0) = limhց0 l(h).

∃ ρ > 0 ∃ l̂ ∈ W2,1([−ρ, 0]; V ∗) ∃ q = (u, z) ∈ W1,∞([−ρ, 0]; V ) :

(q(0),u̇(0),l̂(0))=(q0,u̇0,l0), u ∈ W2,∞([−ρ,0];H1), (2.1) is satis�ed on [−ρ,0].
(3.9)6



Sine l in (3.9) is de�ned on the t-interval [−ρ, 0] the ondition l0 = l̂(0) = limsր0 l̂(s)is needed to guarantee that the onatenation of l̂ and l : [0, T ] → V ∗ is ontinuous,and we will denote this onatenation simply by l : [−ρ, T ] → V ∗ in the sequel. Thisondition also implies that the stability ondition l(0) ∈ ∂R(0)+Aq0 holds and thatthe following limits for h ց 0 exist:
δhq(−h) → Q̇ in V, δhu̇(−h) → Ü in H1, δhl(−h) → L̇ in V ∗.Remark 3.2 There are two ases where this ondition an be easily satis�ed. The�rst one will be essential in the next setion.(i) If u̇0 = 0, then we may hoose q(t) = q0 for all t ∈ [−ρ, 0] and let l̂(t) = l0.The limits then read Q̇ = 0, Ü = 0, and L̇ = 0.(ii) If u̇0 ∈ V1 and if the blok struture of (2.5) is present, we may hoose q(t) =

q0 + t(u̇0, 0)T and let l̂(t) = l0 + tA(u̇0, 0)T. The limits here read Q̇ = (u̇0, 0)T,
Ü = 0, and L̇ = A(u̇0, 0)T.Theorem 3.3 Let l ∈ W2,1([0, T ]; V ∗) and (q0, u̇0) ∈ V × V1 be given suh thatondition (3.9) holds. Then, the unique solution q of (2.7) and (2.8) satis�es the apriori estimate
B[q̇(t), (ü(t), 0)T, l̇(t)]1/2 ≤ B[Q̇, (Ü , 0)T, L̇]1/2

+ 2g
√

2
(
‖L̇−l̇(0)‖∗ +

∫ t

0

‖l̈(τ)‖∗ dτ
)
.

(3.10)Proof. The idea is to onatenate the arti�al solution q ∈ W1,∞([−ρ, 0]; V ) and thegiven solution q ∈ W1,∞([0, T ]; V ) as well as the loadings. The imposed onditionsat t = 0 guarantee that we have a solution on all of [−ρ, T ] and estimate (3.8)holds for −ρ ≤ s ≤ t ≤ T−h. In partiular we may hoose s = −h and we seethat the �rst term on the right-hand side of (3.8) onverges to the �rst term on theright-hand side of (3.10).The seond term on the right-hand side of (3.8) an be estimated expliitly by takingare of the fat, that l : [−h, T ] → V ∗ is de�ned pieewise. With
∫ t

−h

‖δhl̇(τ)‖∗ dτ =
1

h

∫ 0

−h

‖l̇(τ+h)−l̇(τ)‖∗ dτ +

∫ t

0

‖δhl̇(τ)‖∗ dτ,we see that the �rst term onverges to ‖L̇−l̇(0)‖∗, sine on the one hand l̇(τ) → L̇as −h < τ < 0 and l̇ ∈ C0([−ρ, 0]; V ∗) and on the other hand l̇(τ+h) → l̇(0) for theanalogous reasons. Finally the seond term an be estimated by (3.7) with p = 1applied to y = l̇, and the result is established. �7



4 Rate-independent limit ε → 0To onsider systems with very slow loading rates we introdue the slow proess time
τ = εt and assume that the loading l used in (2.1) and Setion 3 is given in theform l(t) = ℓ(εt), where now ℓ : [0, T0] → H∗ is �xed, and the loading rate ε > 0eventually tends to 0. We introdue

qε(τ) = (uε(τ), zε(τ))
def
= (u(τ/ε), z(τ/ε)) = q(τ/ε)for the solution as a funtion of the slow proess time.Applying this transformation to system (2.1) and using that the rate-independentfrition term remains unhanged, as ∂R(·) is homogeneous of degree 0, we arrive atthe resaled problems

ε2Mq
′′
ε (τ) + Aqε(τ) + ∂R(q′

ε(τ)) ∋ ℓ(τ), qε(0) = q0, u
′
ε(0) = u1, (4.1)and

Aq̄(τ) + ∂R(q̄′(τ)) ∋ ℓ(τ), q̄(0) = q̄0. (4.2)The whole theory in Setion 3 remains valid when M is replaed by ε2M and ˙(·) by
(·)′ with now |q′

ε|ε2M = ε|q′
ε|M = ε‖M1/2

q
′
ε‖H .As in [MMP08℄ we have the following estimate between the kineti solution qε andthe rate-independent quasistati limit q̄.Proposition 4.1 Assume that ℓ ∈ W1,1([0, T0]; V

∗), (M(u1, 0)T, q0) ∈ H × V and
q̄0 ∈ V . Then, for all τ ∈ [0, T0] we have

ε2|q′
ε(τ)|2M + ‖qε(τ)−q̄(τ)‖2 ≤ ε2|(u1, 0)T|2M + ‖q0−q̄0‖2

+ 2 ε2
(

ess sup
s∈[0,T0]

|q′′
ε (s)|M

)∫ τ

0

|q̄′(s)|M ds.Proof. Theorem 3.3 guarantees that all quantities on the right-hand side are �nite.To obtain the estimate we use the standard trik of adding the orresponding vari-ational inequalities, f. (2.2) and (2.4), but now in the slow proess time. Choosing
v = q̄′ and v̄ = q

′
ε all terms involving R anel and we obtain 〈ε2Mq

′′
ε , q

′
ε−q̄′〉 +

〈A(qε−q̄), q′
ε−q̄′〉 ≤ 0. Integrating over [0, τ ] yields

ε2|q′
ε(τ)|2M + ‖qε(τ)−q̄(τ)‖2 ≤ ε2|(u1, 0)T|2M + ‖q0−q̄0‖2 + 2

∫ τ

0

〈ε2Mq
′′
ε (s), q̄′(s)〉 ds.The Cauhy-Shwarz inequality and taking out the essential supremum provides thedesired result. �The �nal result provides an estimate between qε and q̄ that is expliitly given interms of the data. For this we need the a priori estimates on the solutions q̄ and8



qε derived in Setion 2 and 3, respetively. Moreover, following [MMP08℄ we willestimate the distane between qε and q̄ by introduing a speial intermediate solution
q̂ε for whih Theorem 3.3 is appliable. In our ase, this speial kineti solution
q̂ε = (ûε, ẑε) satis�es (4.1) together with initial onditions (û′

ε(0), ûε(0), ẑε(0)) =
(0, ū0, z̄0). In partiular, we impose that the initial veloity û

′
ε(0) = 0 whereas in[MMP08℄ the initial veloity ũ

′
ε(0) = εū′

0 was used, whih lead to the additionalassumption ū′
0 ∈ V1, whih is not needed any more. Nevertheless, our �nal estimate(4.3) is the same as the one obtained in [MMP08℄.Theorem 4.2 Let the above assumptions on M , A and R hold and assume ℓ =

(f̄ , 0)T ∈ W2,1([0, T0], V
∗). For q̄0 ∈ V with ℓ(0) ∈ ∂R(0) + Aq̄0 ⊂ {0} ×H2 let q̄ bethe unique solution of (4.2). For arbitrary q0 = (u0, z0) ∈ V and u1 ∈ H1 satisfying

0 ∈ a21u0+a22z0 + ∂R̃(0) let qε be the unique solution of (4.1). Then the di�erenebetween qε and q̄ an be estimated via
(
|εq′

ε(τ)|2M + ‖qε(τ)−q̄(τ)‖2
)1/2 ≤

(
|(εu1, 0)T|2M+‖q0−q̄0‖2

)1/2
+

√
εC[ℓ](τ), (4.3)where

C[ℓ](τ)
def
= 2g2

√
2 µ

∫ τ

0

‖ℓ′(s)‖∗ ds
(
‖ℓ′(0)‖∗ +

∫ τ

0

‖ℓ′′(s)‖∗ ds
) and µ

def
= sup

‖v‖=1

|v|M .Proof. Proposition 2.1 provides the existene of the speial kineti solution q̂ε solving(4.1) with q̂ε(0) = q̄0 and û
′(0) = 0. This hoie allows us to satisfy ondition (3.9)via Part (i) in Remark 3.2. Using Q′ = U ′′ = L′ = 0 estimate (3.10) provides the apriori bound

ε|q̂′′
ε (τ)|M ≤ gB[q̂′

ε(τ), q̂′′
ε (τ), ℓ′(τ)]1/2 ≤ gB[0, 0, 0]1/2 + C1[ℓ](τ),with C1[ℓ](τ)

def
= 2g2

√
2
(
‖ℓ′(0)‖∗ +

∫ τ

0
‖ℓ′′(s)‖∗ ds

), and the right-hand side is inde-pendent of ε. Now Proposition 4.1 an be used to obtain
ε2|q̂′

ε(τ)|2M + ‖q̂ε(τ)−q̄(τ)‖2 ≤ 2C1[ℓ](τ)

∫ τ

0

ε|q̄′(s)|M ds ≤ εC[ℓ](τ), (4.4)where we used |q̄′(s)|M ≤ µ‖q̄′(s)‖ ≤ µ‖ℓ′(s)‖∗ with the last estimate following from(2.12). For the di�erene between the given solution qε and the speial solution q̂εwe use Proposition 3.1 and obtain, beause of ℓ1 = ℓ2 = ℓ, the simple estimate
ε2|q′

ε(τ)−q̂
′
ε(τ)|2M + ‖qε(τ)−q̂ε(τ)‖2

≤ ε2|(u1, 0)T|2M + ‖q0−q̄0‖2 for all τ ∈ [0, T0].
(4.5)Taking the square roots of (4.4) and (4.5) and using the triangle inequality givesthe desired result. �In [DuL76, Ch.V.3.5℄ the limit ε → 0 is used to prove existene for the quasistatiase. However, the visoplasti ase is treated there, i.e., the visosity parameter9



µ > 0 (see [DuL76, p.234℄) and the neessary ε-independent a priori estimatesorresponding to our estimate (3.10) are simply obtained by di�erentiating in time.The onvergene stated in [DuL76℄ is weak ∗ only, whereas our result providesquantitative error estimates.5 Elasti-plasti systems with hardeningWe relate now the result obtained in the Theorem 4.2 to an elasti-plasti modelwith linear kinemati hardening whih leads to a generalization of the onvergeneresult obtained by Martins et al. in [MMP08℄.We onsider a material with a referene on�guration Ω ⊂ R
d with d ∈ {2, 3}.We assume that Ω is an open bounded set with a 1-regular smooth boundary (see[RaT83℄) and |Ω| < ∞. This body may undergo displaements u(τ, · ) : Ω → R

d.The plasti strain will be haraterized by z = epl : Ω → S
d
0 where S

d
0 is the spaeof symmetri d × d tensors with vanishing trae. Further, we will denote by S

d thespae of symmetri d × d tensors endowed with the salar produt v:w
def
= tr(vTw)and the orresponding norm is given by |v|2 def

= v:v for all v, w ∈ S
d. Here tr(·)denotes the trae of the matrix (·).The set of admissible displaements F is hosen as a suitable subset of W1,2(Ω; Rd)by presribing Dirihlet data on the subset ΓDir of ∂Ω, i.e.,

F def
=

{
u ∈ W1,2(Ω; Rd) | u|ΓDir = 0

}
.The plasti variables epl belongs to Z def

= L2(Ω; Sd
0) and the linearized strain tensor

e = e(u) is given by e(u)
def
= 1

2
(∇u+∇uT) ∈ S

d. We assume that ∂Ω is smoothenough and that mes(ΓDir) > 0 suh that the Korn's inequality holds, i.e. thereexists cKorn > 0 with
∀u ∈ F :

∫

Ω

|e(u)|2 dx ≥ cKorn‖u‖2
W1,2 . (5.1)For more details on Korn's inequality and its onsequenes, we refer to [DuL76℄ or[KoO88℄.We onsider now the following kineti equation

ε2ρu′′ − div(E(e(u)−epl)) = ℓext(τ), x ∈ Ω, τ ∈ [0, T0], (5.2)where ρ > 0, ℓext are the density and the applied mehanial loading respetively; Eis a symmetri, uniformly positive de�nite elastiity tensor. The behavior of plastielement is haraterized by the plasti �ow rule in the form
−E(e(u)−epl) + Hepl + ∂R(e′pl) ∋ 0, x ∈ Ω, τ ∈ [0, T0], (5.3)where H is a symmetri, uniformly positive de�nite hardening tensor. The dissipa-tion potential is given by

R̃(e′pl) def
=

∫

Ω

R(x, e′pl(x)) dx,10



with R ∈ L∞lo(Ω̄ × S
d
0) suh that there exist r1, r2 with 0 < r1 < r2 with
∀ (x, v) ∈ Ω̄ × S

d
0 : r1|v| ≤ R(x, v) ≤ r2|v|.We assume also that R(x, ·) : S

d
0 → [0,∞) is 1-homogeneous and onvex. Notiethat (5.3) is equivalent to

e′pl ∈ ∂R∗(
E(e(u)−epl) − Hepl), x ∈ Ω, τ ∈ [0, T0], (5.4)where R∗ is the Legendre transform of R(·). From (5.2) and (5.4), we �nally obtainthe governing system

ε2ρu′′ = div(E(e(u)−epl)) − ℓext(τ),

e′pl ∈ ∂R∗(
E(e(u)−epl) − Hepl), }

x ∈ Ω, τ ∈ [0, T0], (5.5)together with Dirihlet boundary onditions
u = 0 on ΓDir × [0, T0], (5.6)and initial onditions

(u(0), u′(0), epl(0)) = (u0, u1, e
0pl). (5.7)The orresponding rate-independent system is then

0 = div(E(e(u)−epl)) − ℓext(τ),

e′pl ∈ ∂R∗(
E(e(u)−epl) − Hepl), }

x ∈ Ω, τ ∈ [0, T0], (5.8)with Dirihlet boundary onditions ū = 0 on ΓDir × [0, T0], and initial onditions
(ū(0), ēpl(0)) = (ū0, ē

0pl). (5.9)Further, the energy assoiated with (5.5) is given by
E(τ, u, epl, u′) =

1

2

∫

Ω

(
ρ|εu′|2 + (e(u)−epl):E(e(u)−epl) + epl:Hepl) dx − 〈ℓext(τ), u〉.For a given external loading ℓext, a given elastiity tensor E and a given hardeningtensor H with

ℓext ∈ C1([0, T0]; W
1,2(Ω; Rd)∗), (5.10a)

E ∈ L∞(Ω;Lin(Sd, Sd)) with E(x) ≥ η1 a.e., (5.10b)
H ∈ L∞(Ω;Lin(Sd

0, S
d
0)) with H(x) ≥ η1 a.e., (5.10)where η > 0, we reall existene and uniqueness result for kineti and rate-independ-ent problems. First, one an identify H = H1 × H2

def
= L2(Ω; Rd) × L2(Ω; Sd

0) and
V = V1 × V2

def
= F × H2. Seond, (5.5) and (5.8) an be rewritten in the form of(2.7) and (2.9), respetively. More preisely, one has to hoose a11 = −div(Ee(·)),

a12 = div(E(·)), a21 = −Ee(·), a22 = E(·)+H(·), f(τ) = ℓext(τ) and m = ε2ρ. Then,Proposition 2.1 gives the following result.11



Proposition 5.1 Assume that (5.10) holds and that (u0, u
′
0, e

0pl) ∈ F ×F ×Z suhthat 0 ∈ E(epl0−e(u0)) + He0pl + ∂R(0) ⊂ Z is satis�ed. Then there exists a uniquesolution (u, epl) ∈ W1,∞([0, T0]; V ) that solves (5.6) and (5.7).The existene and uniqueness theory for the rate-independent elastoplastiity prob-lem is standard, see [Gr78a, Joh78℄.Proposition 5.2 Assume that (5.10) holds and that (ū0, ē
0pl) ∈ F × Z suh that

(ℓext(0), 0)T ∈ A(ū0, ē
0pl)T + {0} × ∂R(0) ⊂ F × Z is satis�ed. Then, there exists aunique solution (ū, ēpl) ∈ W1,∞([0, T0]; V ) that solves (5.8) and (5.9).Applying Theorem 4.2 and using (5.1), we dedue the following result.Corollary 5.3 Assume that (5.10) holds and (u0, u

′
0, e

0pl) ∈ F×F×Z and (ū0, ē
0pl) ∈

F×Z satisfy 0 ∈ E(e0pl−e(u0))+He0pl+∂R(0) and (ℓext(0), 0)T ∈ A(ū0, ē
0pl)T+{0}×

∂R(0), respetively. Then there exist c, C > 0 suh that for all ε > 0, we have
(
‖ερ1/2u′(τ)‖2

L2+‖u(τ)−ū(τ)‖2
W1,2+‖epl(τ)−ēpl(τ)‖2

L2

)1/2

≤ c
(
‖ερ1/2u′

0‖2
L2+‖u0−ū0‖2

W1,2+‖e0pl−ē0pl‖2
L2

)1/2
+ C

√
ε,for all τ ∈ [0, T0].Referenes[Bre73℄ H. Brezis. Opérateurs maximaux monotones et semi-groupes de ontrations dansles espaes de Hilbert. North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematis Studies, No. 5. Notas de Matemátia (50).[DuL76℄ G. Duvaut and J.-L. Lions. Inequalities in mehanis and physis. Springer-Verlag, Berlin, 1976. Translated from the Frenh by C. W. John, Grundlehren derMathematishen Wissenshaften, 219.[Gr78a℄ K. Gröger. Zur Theorie des quasi-statishen Verhaltens von elastish-plastishenKörpern. ZAMM Z. Angew. Math. Meh., 58(2): 81�88, 1978.[Gr78b℄ K. Gröger. Zur Theorie des dynamishen Verhaltens von elastish-plastishenKörpern. ZAMM Z. Angew. Math. Meh., 58(11): 483�487, 1978.[Joh76℄ C. Johnson. Existene theorems for plastiity problems. J. Math. Pures Appl.(9), 55(4):431�444, 1976.[Joh78℄ C. Johnson. On plastiity with hardening. J. Math. Anal. Appl., 62(2):325�336,1978.[KoO88℄ V.A. Kondrat'ev and O.A. Oleinik. Boundary-value problems for the systemof elastiity theory in unbounded domains. Korn's inequalities. Russian Math.Surveys, 43-5, 65�119, 1988. 12
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