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AbstratEnergeti solutions to rate-independent proesses are usually onstruted viatime-inremental minimization problems. In this work we show that all energetisolutions an be approximated by inremental problems if we allow approximateminimizers, where the error in minimization has to be of the order of the timestep. Moreover, we study sequenes of problems where the energy funtionals havea Γ-limit.1 IntrodutionEnergeti solutions to rate-independent proesses were introdued in [MiT99,MiT04℄ andfurther developed for example in [MaM05, FrM06℄; a reent survey is [Mie05℄. Theyallow for a mathematial treatment of a variety of evolution problems in the materialsienes, for example in elastoplastiity [HaR99, OrR99, CHM02℄, phase transitions inshape-memory alloys [AuP02,MTL02,AuS05,KMR05℄ and rak formation in brittle ma-terials [FrM98, DFT05℄. Reently, in [MRS07℄ sequenes of suh proesses have beenstudied in the framework of Γ-onvergene and onditions were derived that guaranteethat solutions of the problems in the sequene admit a limit point solving the limit prob-lem. Here we go the opposite diretion and show that every solution to the limit problemoriginates from time-disrete solutions to the approximate problems. This shows thatthe limit problem an be used e�etively in the study of sequenes of rate-independentproblems. Roughly speaking, the theory in [MRS07℄ states that the solution set is uppersemi-ontinuous in the Γ-limit, whereas here we study the lower semi-ontinuity.We now desribe the general framework in order to introdue the main ideas. Preisetehnial assumptions are postponed until Setions 2 and 4.Let the state spae Q of the system be the produt of two Hausdor� topologial spaes
F and Z. As we will deal with sequenes rather than with general topology tools, alltopologial notions are to be understood in a sequential sense. For example, ompatnessalways means sequential ompatness. Here F orresponds to the elasti (or, more gen-erally, non-dissipative) and Z to the internal (or dissipative) variables. This splitting istypial in ontinuum mehanis with dissipation, see [HaN75,ZiW87,HaR99,Fré02℄. Thesystem itself is modeled by two funtionals: an energy-storage funtional E : [0, T ]×Q →
R∞ := R ∪ {+∞} and a dissipation distane D : Z ×Z → [0,∞]. The triple (Q, E ,D) isalled an energeti rate-independent system.The energy E models the elasti or non-dissipative part of the problem and depends onthe proess time via a time-dependent loading. The value D(z0, z1) denotes the minimaldissipated energy when the state is hanged from z0 ∈ Z to z1 ∈ Z. Beause of this1



physial interpretation, we require the triangle inequality and the positivity D(z1, z2) = 0if and only if z1 = z2. However, we do not require D to be symmetri as the physialdissipation might not have this property, e.g. in elastoplastiity [HaR99℄, in rak for-mation in brittle materials [FrM98,DFT05℄, or in damage [Fré02,BMR07℄. Although Dats only on the dissipative part Z of the underlying state spae Q, for q1 = (φ1, z1) and
q2 = (φ2, z2) we also write D(q1, q2) when in fat we mean D(z1, z2).For a proess z : [0, T ] → Z (only in the dissipation part of the state spae) and s, t ∈
[0, T ], de�ne the total dissipation DissD(z; [s, t]) of z in the subinterval [s, t] to be the totalvariation of z with respet to the quasimetri D, i.e.

DissD(z; [s, t]) := sup

{ N
∑

j=1

D(z(τj−1), z(τj)) : s = τ0 < · · · < τN = t, N ∈ N

}

.Again, for a proess q : [0, T ] → F × Z = Q with t 7→ (φ(t), z(t)), we also write
DissD(q; [s, t]) when we really mean DissD(z; [s, t]).An energeti solution to the evolution system assoiated with E and D is a proess q :
[0, T ] → Q that satis�es the stability ondition (S) and the energy balane (E) for all
t ∈ [0, T ]:(i) E(t, q(t)) ≤ E(t, q̂) + D(q(t), q̂) for all q̂ ∈ Q (S)(ii) E(t, q(t)) + DissD(q; [0, t]) = E(0, q(0)) +

∫ t

0

∂tE(τ, q(τ)) dτ (E)In this ase, we also say that q is a solution of the energeti rate-independent system
(Q, E ,D).The so-alled stable sets

S(t) :=
{

q ∈ Q : E(t, q) < ∞ and E(t, q) ≤ E(t, q̂) + D(q, q̂) for all q̂ ∈ Q
}play a vital role in the theory and allow ondition (S) to be rephrased into

q(t) ∈ S(t) for all t ∈ [0, T ]. (S')Additionally to (S) & (E), we presribe a stable initial value q(0) = q0 ∈ S(0).In the ase that Q is a Banah spae, E is onvex and di�erentiable, and D is giventhrough D(z1, z2) = R(z2 − z1) with a onvex, 1-homogeneous potential R : Z → [0,∞],this notion is equivalent to the doubly-nonlinear di�erential inlusion (f. [CoV90℄)
0 ∈ ∂R(q̇(t)) + DE(t, q(t)) in Q∗ (SF)and the variational inequality
〈DE(t, q(t)), v − q̇(t)〉 + R(v) −R(q̇(t)) ≥ 0 for all v ∈ Q, (VI)f. [MiT04,Mie05℄. In this setting, the notion of rate-independene manifests itself throughthe 1-homogeneity of R. In ontrast to (SF) and (VI), however, the energeti formulation2



(S) & (E) is derivative-free and no linear struture of Q needs to be assumed. Thisallows for the treatment of more general problems in ontinuum mehanis, f. Setion 7of [Mie05℄ for a survey.In the main existene proof of the theory one onstruts approximate solutions usinga time-inremental problem. For this, let Π = (0, t1, . . . , tN−1, T ) be a partition of theinterval [0, T ] and onsider:
{For j = 1, . . . , N , indutively �nd qj ∈ Q suh that

qj ∈ Argmin
{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
}

.
(IPΠ)The existene result is then obtained by onstruting limits of the disrete solutions

(qn
j )j=0,...,Nn

of (IPΠn), where Πn = (tn1 , t
n
1 , . . . , t

n
Nn

) is a sequene of partitions whose�neness
‖Πn‖ := max

k=1,...,Nn

(tnk − tnk−1).tends to 0 as n → ∞. Then, with the help of a generalized Helly's seletion priniple,we obtain a subsequene onverging pointwise to a limit and this limit is shown to be asolution, f. [Mie05℄ for a full exposition. One an now pose the question whether everysolution of (S) & (E) an be obtained in suh a way. This, unfortunately, is not true ingeneral (see Counterexample 2.3). For many purposes, however, it su�es to show thatwe an �nd a solution to an ε-approximate inremental problem for ε > 0 and suitablepartitions Π = (0, t1, . . . , tN−1, T ) of [0, T ]:
{For j = 1, . . . , N , indutively �nd qj ∈ Q suh that

qj ∈ Argminε

{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
}

,
(AIPΠ

ε )where we employed the set of ε-minimizers, ε ≥ 0, whih, for a funtional F : X → R∞,is de�ned as
Argminε(F ) = Argminε

{

F (x) : x ∈ X
}

:=
{

x ∈ X : F (x) ≤ infX F + ε
}

.In Setion 2, we will show the reverse approximability of all solutions to (S) & (E) bydisrete solutions to (AIPΠ
ε ) with ε = cR ‖Π‖, where cR is the reverse approximationonstant.Afterwards, we investigate reverse approximability for sequenes of problems. These aregiven through sequenes of energy funtionals (Ek)k and dissipation distanes (Dk)k. Forthe kth problem, k ∈ N∞ = N ∪ {∞}, we denote by (Sk) and (Ek) the solution on-ditions orresponding to (S) and (E), respetively. To treat suh sequenes of prob-lems, approximate inremental problems for sequenes are employed, f. [MRS07℄: Let

Π = (0, t1, . . . , tN−1, T ) be a partition of the interval [0, T ], let ε > 0, and onsider:
{For j = 1, . . . , N , indutively �nd qj ∈ Q suh that

qj ∈ Argminε

{

Ek(tj, q̂) + Dk(qj−1, q̂) : q̂ ∈ Q
}

.
(AIPΠ

k,ε)Obviously, this problem always has a solution. In Setion 4 of [MRS07℄ it is shown thatsubsequenes of solutions to (AIPΠ
k,ε) onverge (in a ertain sense) to a solution of (S∞)3



& (E∞). As for single problems, one an be interested in the reverse question: To agiven solution to (S∞) & (E∞) an one �nd solutions to the orresponding approximateinremental problems (AIPΠ
k,ε)? This question is answered positively in Setion 4.In other words, [MRS07℄ shows that the limes superior (here in the topologial or Painlevé�Kuratowski sense with respet to pointwise onvergene in Q) of (interpolants of) thetime-disrete solutions for the kth funtionals Ek and Dk on inreasingly �ner partitionsis ontained in the set of time-ontinuous solutions to the limit problem assoiated with

E∞ and D∞. We here show that also a reverse inlusion holds (with little di�erent hoiesof the partition �neness).In Setion 4 we also show that one annot expet to �nd time-ontinuous solutions to(Sk) & (Ek), whih approximate a solution to (S∞) & (E∞).Setion 5 provides a more quantitative approah by assuming that everything is de�nedin Banah spaes and that the Γ-onvergene is more expliit. In partiular, we disuss akind of bakward error analysis for spae-time disretizations for a phase transformationmodel that ould be easily be generalized to elastoplastiity as disussed in [HaR99℄.Finally, Setion 6 disusses the relations to regularization and relaxation.2 Approximation for single problemsIn this setion, the approximability of solutions to (S) & (E) by disrete solutions to(AIPΠ
ε ) is investigated.On E and D onsider the following standard assumptions, f. [Mie05℄ for an explanationof their physial relevane:Control of the power ∂tE :there exist cE

0 ∈ R, cE
1 > 0 suh that:If q ∈ Q satis�es E(s, q) < ∞ for some s ∈ [0, T ], then(i) E(., q) ∈ C1([0, T ]) and(ii) |∂tE(t, q)| ≤ cE

1 (E(t, q) + cE
0 ) for all t ∈ [0, T ].

(2.E)
Quasimetri:For all z1, z2, z3 ∈ Z :(i) D(z1, z2) = 0 if and only if z1 = z2 (positivity) and(ii) D(z1, z3) ≤ D(z1, z2) + D(z2, z3) (triangle inequality). (2.D)By the Gronwall lemma, (2.E) immediately implies
E(t, q) + cE

0 ≤ (E(s, q) + cE
0 )ecE

1
|t−s| for all t, s ∈ [0, T ], q ∈ Q. (2.1)Applying this estimate on (2.E), we get

|∂tE(t, q)| ≤ cE
1 (E(s, q) + cE

0 )ecE
1
|t−s| for all t, s ∈ [0, T ], q ∈ Q. (2.2)4



Hene, for an energeti solution q : [0, T ] → Q and for all t ∈ [0, T ], we have the a-prioriestimates
E(t, q(t)) + cE

0 ≤ (E(0, q(0)) + cE
0 )ecE

1
t, (2.3)

|∂tE(t, q(t))| ≤ cE
1 (E(0, q(0)) + cE

0 )ecE
1

t, (2.4)
DissD(q; [0, t]) ≤ (E(0, q(0)) + cE

0 )ecE
1

t, (2.5)f. Setion 3.1 in [Mie05℄.Throughout this setion, we silently assume (2.E) and (2.D) to hold. Note that while herewe only require these two onditions, for the existene of a solution all results known sofar need additional assumptions, f. [MiT04,Mie05℄.We ommene with a lemma whih allows us to estimate the energy of approximativeminimizers.Lemma 2.1. Let q : [0, T ] → Q be a solution of (S) & (E) with initial value q0 = q(0) ∈
S(0) and let Π = (0, t1, . . . , tN−1, T ) be a partition of the interval [0, T ]. Let

qj := q(tj) for j = 1, . . . , N − 1.Then, for all δ ≥ 0 there exists M = M(q0, δ) ∈ R suh that for all j = 1, . . . , N and
q∗j ∈ Argminδ

{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
}

,it holds that E(s, q∗j ) ≤ M for all s ∈ [0, T ]. Further, M(q0, δ) is monotoni in δ.Proof. First, we use the δ�minimality of q∗j to derive
E(tn, q∗j ) + D(qj−1, q

∗
j ) ≤ E(tj , qj−1) + D(qj−1, qj−1) + δ

≤ E(tj−1, qj−1) +

∫ tn

tj−1

∂tE(τ, qj−1) dτ + δ, (2.6)where we exploited D(qj−1, qj−1) = 0. We an now use the growth estimate (2.2) todedue
∫ tj

tj−1

∂tE(τ, qj−1) dτ ≤

∫ tj

tj−1

cE
1

(

E(tj−1, qj−1) + cE
0

)

ecE
1

(τ−tj−1) dτ

=
(

E(tj−1, qj−1) + cE
0

)

(

ecE
1

(tj−tj−1) − 1
)

. (2.7)The a-priori bound (2.3) on the energy of the ontinuous solution provides the neessaryinformation to estimate the term E(tj−1, qj−1). Indeed,
E(tj−1, qj−1) + cE

0 ≤
(

E(0, q0) + cE
0

)

ecE
1

tj−1 ≤
(

E(0, q0) + cE
0

)

ecE
1

T =: Lwhere L = L(q0, c
E
0 , cE

1 ) only depends on q0,cE
0 , and cE

1 . We ombine this with the previousestimates (2.6), (2.7) to get
E(tj , q

∗
j ) ≤ E(tj , q

∗
j ) + D(qj−1, q

∗
j )

≤ E(tj−1, qj−1) +
(

E(tj−1, qj−1) + cE
0

)

(

ecE
1

(tj−tj−1) − 1
)

+ δ

≤ L + L
(

ecE
1

T − 1
)

+ δ =: L1 = L1(q0, δ).5



Using (2.1) with s = tj, the result follows with M = (L1(q0, δ) + cE
0 )ecE

1
T − c0. Themonotoniity laim is lear.We are now in a position to prove that every solution of (S) & (E) gives rise to a solutionof (AIPΠ

ε ).Theorem 2.2. Let q : [0, T ] → Q be a solution of (S) & (E) with initial value q0 =
q(0) ∈ S(0). Then, there exits a onstant cR = cR(q0) > 0 suh that for any partition
Π = (0, t1, . . . , tN−1, T ) of the interval [0, T ], the values qj := q(tj), j = 1, . . . , N , solve(AIPΠ

ε ) with ε = cR ‖Π‖, i.e.
qj ∈ ArgmincR‖Π‖

{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
} for j = 1, . . . , N.The quantity cR = cR(q0) is alled the reverse approximation onstant of the problem.Proof. The energy balane (E) implies

E(tj , qj) + DissD(q; [tj−1, tj]) = E(tj−1, qj−1) +

∫ tj

tj−1

∂tE(τ, q(τ)) dτ.The stability qj−1 ∈ S(tj−1) gives E(tj−1, qj−1) ≤ E(tj−1, q̂) + D(qj−1, q̂) for all q̂ ∈ Q.Together with DissD(q; [tj−1, tj ]) ≥ D(qj−1, qj) this gives
E(tj , qj) + D(qj−1, qj) ≤ E(tj−1, q̂) + D(qj−1, q̂) +

∫ tj

tj−1

∂tE(τ, q(τ)) dτ, (2.8)and we ontinue by estimating the integral term using the growth estimate (2.4) to �nd
∫ tj

tj−1

∂tE(τ, q(τ)) dτ ≤

∫ tj

tj−1

cE
1

(

E(0, q0) + cE
0

)

ecE
1

τ dτ

≤ cE
1

(

E(0, q0) + cE
0

)

ecE
1

T (tj − tj−1). (2.9)Assuming E(tj−1, q̂) < ∞, the quantity E(tj−1, q̂) an be estimated using (2.2):
E(tj−1, q̂) = E(tj , q̂) −

∫ tj

tj−1

∂tE(τ, q̂) dτ

≤ E(tj, q̂) +

∫ tj

tj−1

cE
1

(

E(0, q̂) + cE
0

)

ecE
1

τ dτ (2.10)Now hoose q̂ := q∗j with q∗j ∈ Argminδ

{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
} for some

0 < δ ≤ min{1, ‖Π‖}. Suh a q∗j always exists, and E(s, q∗j ) < ∞ for all s ∈ [0, T ]. ByLemma 2.1, we an bound E(0, q∗j ) in (2.10) by a onstant M = M(q0, δ) ≤ M(q0, 1) =: M1(note the monotoniity of M in δ), whih does not depend on Π (or any other quantitiesexept q0). This gives
E(tj−1, q

∗
j ) ≤ E(tj, q

∗
j ) + cE

1 (M1 + cE
0 )ecE

1
T (tj − tj−1). (2.11)6



Plugging (2.9) and (2.11) into (2.8), we see
E(tj , qj) + D(qj−1, qj) ≤ E(tj, q

∗
j ) + D(qj−1, q

∗
j ) + cE

1 (E(0, q0) + M1 + 2cE
0 )ecE

1
T ‖Π‖

≤ inf
{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
}

+ δ + c̃ ‖Π‖ ,

≤ inf
{

E(tj, q̂) + D(qj−1, q̂) : q̂ ∈ Q
}

+ cR ‖Π‖where we have set c̃ := cE
1 (E(0, q0) + M1 + 2cE

0 )ecE
1

T and cR := 1 + c̃. As M1 only dependson q0, so does cR, and the proof is omplete.We lose this setion with an example showing that one annot expet approximabilityby (IPΠ) instead of (AIPΠ
ε ).Counterexample 2.3. On the spae Q = [−1, 1] and in the time interval [0, T ] = [0, 1],we onsider the potential

E(t, q) := (1 + q)(1 − q) +
t

2
qtogether with the dissipation distane D(u, v) := |v − u|. It is easily seen that thispotential ful�lls all the requirements of the theory on the ompat interval [−1, 1]. Thefuntional E(t, .) has preisely two (strit) loal minima, one at −1 and the other at

+1. There, E takes the values E(t,−1) = −t/2 and E(t, +1) = t/2, respetively. Thegraph of E(t, .) lies above the supporting hyperplane through the points (−1, E(t,−1)) =
(−1,−t/2) and (+1, E(t, +1)) = (+1, t/2); this hyperplane is represented by the linearmap q 7→ tq/2.At t = 0, the set of stable states S(0) ontains 0, beause

E(0, q) + D(0, q) = 1 − q2 + |q| ≥ 1 = E(0, 0),sine q2 ≤ |q| in [−1, 1]. The following two proesses are both solutions to the energetiformulation (S) & (E) with initial value q0 = 0 ∈ S(0):
q−(t) :=

{

0 if t = 0,

−1 if t ∈ (0, 1]
and q+(t) :=

{

0 if t = 0,

+1 if t ∈ (0, 1]We have −1, +1 ∈ S(t) for all t ∈ [0, 1]. For −1 this is lear sine −1 is the globalminimum for all t ≥ 0. For+1, the hyperplane q 7→ tq/2 supports the graph of E(t, .). Thishyperplane has at most slope 1/2; therefore, if we add the linear map q 7→ D(+1, q) = 1−q(sine q ∈ [−1, 1]) to the graph, we still have a hyperplane with negative slope −1/2supporting the graph and going through (+1, E(t, +1)). Hene, also +1 ∈ S(t). We havethus established the validity of (S) for q− and q+. Further, for t ∈ (0, 1], the energybalane (E) holds as well:
E(t, q±(t)) + DissD(q±; [0, t]) = E(t,±1) + D(0,±1) =

±t

2
+ 1

= E(0, q0) +

∫ t

0

∂tE(τ, q±(τ)) dτ7



sine ∂tE(τ, q±(τ)) = ±1/2 almost everywhere. For t = 0, the energy balane is trivial.While both q− and q+ solve (S) & (E), the inremental problem (IPΠ) will always selet
q−: In the �rst step, at time t1 > 0, we seek the global minimizer of E(t1, .) + D(0, .).But this global minimizer learly is −1. So, the disrete solution will jump to q1 = −1and, beause −1 ∈ S(t) for all t, stay there forever. Passing to the limit, we get thesolution proess q− from above. The other solution q+, however, is not seleted. Thisshows that not all solutions of (S) & (E) orrespond to disrete solutions if we only allowstrit minimizers in the inremental problem.Note that E(t, .) is the restrition of the double-well potential

(t, q) 7→ |1 − q| |1 + q| +
t

2
qto the interval [−1, 1]. We refrained from arrying out the example on a bigger spae forease of notation only; everything works just the same for bigger intervals.Hene, the this example represents physially a phase-transition problem, where the ener-gies of the two phases hange in the ourse of time due to a presribed loading (q 7→ tq/2).Our results therefore re�et that while there might be a �preferred� solution q−, anothersolution, namely q+, an also our if we allow for small (in fat, arbitrarily small) pertur-bations. This is nothing else but the instability of rate-independent evolution proessesand seems to be well in line with physial intuition.Remark 2.4. The last ounterexample also shows that the error order ε = O(‖Π‖) isoptimal: If the solution q+ is to be seleted, the disrete solution must jump from 0 to

+1 at time t1. The di�erene between E(t1,−1) and E(t1, +1) is t1, hene the error in theminimization of E(t1, .) +D(0, .) is t1 = O(‖Π‖) and nothing better than linear order anbe ahieved.In summary, the results of the this setion suggest that (AIPΠ
ε ) is better suited than (IPΠ)as a time disretization of (S) & (E). This holds espeially in numerial appliations, f.Setion 5.3 Sets of approximate and Γ-onvergeneIn this setion, we provide some auxiliary results on ε-minimizers of Γ-onverging fun-tionals. This preliminary onsiderations will be needed in the following setion. Theresult is stated in a little more generality than what is needed subsequently in order tolarify ideas and avoid too muh notational lutter.In the following, let X be a Hausdor� spae and, just like in Setion 2, all topologialnotions are to be understood in a sequential sense. The funtional F∞ : X → R∞ is alledthe (sequential) Γ-limit of the sequene (Fk)k of funtionals Fk : X → R∞, if it satis�es

8



the following two onditions:(i) For all x ∈ X and all (xk)k with xk → x the lim inf-inequality holds:
F∞(x) ≤ lim inf

k→∞
Fk(xk)(ii) For all x ∈ X there exists a reovery sequene (xk)k,i.e. xk → x andF∞(x) = lim

k→∞
Fk(xk).The (unique) Γ-limit of the sequene (Fk)k is denoted by F∞ = Γ-limk Fk.Here, only the sequential notion of Γ-onvergene is employed even though X mightnot be �rst ountable, in whih ase sequential and general topologial onepts di�er.Still, in the alulus of variations it is often more onvenient to use sequenes instead ofneighborhoods and nets. For Γ-onvergene in general topologial spaes, see [Dal93℄.We also need the following notion of uniform oerivity: A family (Fk)k, k ∈ N, offuntionals Fk : X → R∞ is alled equi-mildly oerive if there exists a ompat set

K ⊆ X with
infX Fk = infK Fk for all k ∈ N. (3.1)The �rst result of this setion shows that ε-minimizers of F∞ an be approximated arbi-trarily well by (ε + δ)-minimizers of the Fk, where δ > 0.Proposition 3.1. Let Fk : X → R∞, k ∈ N, be equi-mildly oerive funtionals andassume F∞ = Γ-limk Fk. Then, for all ε ≥ 0 and x ∈ Argminε(F∞) and all reoverysequenes (xk)k for x (in partiular xk → x) and for every δ > 0 it holds that xk ∈

Argminε+δ(Fk) for all k ≥ k0 = k0(δ) with k0(δ) su�iently large.Proof. From the onvergene of in�ma with respet to Γ-onvergene in the ase ofequi-mildly oerive funtionals [Dal93,Bra02℄, we know that infX F∞ = limk→∞ infX Fk.Hene, for k su�iently large, it holds that
|infX F∞ − infX Fk| ≤

δ

2
.Let now (xk)k be a reovery sequene at x, i.e. xk → x and F∞(x) = limk→∞ Fk(xk)(beause F∞ = Γ-limk Fk, there exists at least one suh sequene). This implies, again for

k big enough, that
|Fk(xk) − F∞(x)| ≤

δ

2
.Combining these two estimates with |F∞(x) − infX F∞| ≤ ε yields

|Fk(xk) − infX Fk| ≤ |Fk(xk) − F∞(x)| + |F∞(x) − infX F∞| + |infX F∞ − infX Fk|

≤
δ

2
+ ε +

δ

2
= ε + δ,i.e. xk ∈ Argminε+δ(Fk) for all k su�iently large.9



Remark 3.2. An inspetion of the proof reveals that if infX Fk = infX F∞ for all k ∈ N,then we do not need the assumptions of equi-mild oeriveness as it is only needed foronvergene of in�ma. This equality of in�ma is indeed easy to ful�ll in the alulus ofvariations: We an always set F ′
k := Fk+ck, where ck is hosen preisely to ensure equalityof in�ma. This translation does not hange the minimization problem assoiated with Fk,in partiular Argmin Fk = Argmin F ′

k.One ould hope to avoid the usage of the sequene (xk)k and onjeture that an ε-minimizer of F∞ is also an nε-minimizer of Fk for some n ∈ N and for k su�ientlylarge. Even if all the Fk are lower semiontinuous, however, this is not the ase as shownby the following ounterexample.Counterexample 3.3. Let X = [−1, 1] and for k ∈ N de�ne
Fk(x) :=

{

−1 if x = 1/k,

0 otherwise, and F∞(x) :=

{

−1 if x = 0,

0 otherwise.Clearly, F∞ = Γ-limk Fk and all Fk, F∞ are lower semiontinuous. However, for any
ε ∈ [0, 1), the only ε-minimizer is x = 0, but x = 0 is no (ε+δ)-minimizer of any Fk aslong as ε + δ < 1.The next ounterexample shows that in Proposition 3.1 we annot replae the Γ-limit bythe (sequential) Γ-limes inferior Γ-lim infk Fk of the sequene (Fk)k, whih is de�ned asthe funtional F∗ : X → R∞ with

F∗ = Γ-lim infk Fk := inf { lim inf
k→∞

Fk(xk) : xk → x }. (3.2)Counterexample 3.4. Let again X = [−1, 1] and for all k ∈ N de�ne
Gk(x) :=











(−1)k if x = 1/k,

−1/2 if x = 1,

0 otherwise, and G∗(x) :=











−1 if x = 0,

−1/2 if x = 1,

0 otherwise.Clearly, G∗ = Γ-lim infk Gk, but the Gk do not Γ-onverge. In fat, for x = 0, onewould need to onstrut a sequene (xk)k with −1 = G∗(0) ≥ lim supk→∞ Gk(xk). But as
G2l ≥ −1/2, it follows that lim supk→∞ Gk(xk) ≥ −1/2, whih leads to the ontradition
−1 ≥ −1/2.While for the subsequene (xkl

)l with kl = 2l + 1 and x2l+1 = 1/(2l + 1) we even have
x2l+1 ∈ Argminε(F2l+1) (without δ), the onlusion of Proposition 3.1 fails, beause weannot �nd a �whole� sequene (xk)k with xk ∈ Argminε+δ(Fk): The only, say, 1/6-minimizer of G∗ is x∗ = 0 (ε = 1/6), but any (1/6 + 1/6)-minimizer (δ = 1/6) for G2lmust be x2l = 1 and hene the sequene (xk)k annot onverge to x∗ = 0.4 Approximation for sequenes of problemsIn this setion we will show that, under suitable onvergene assumptions on the involvedfuntionals, solutions to (S∞) & (E∞) an be approximated by solutions to (AIPΠ

k,ε).10



Appliations are given in Setions 5 and 6.On the state spae Q = F × Z, onsider a sequene (Ek)k of energy-storage funtionals
Ek : [0, T ] ×Q → R∞ as well as a limit energy E∞ : [0, T ] ×Q → R∞. We require thesefuntionals to ful�ll the following assumption, where, for brevity, we denote by N∞ theset N ∪ {∞}:Uniform ontrol of the power ∂tEk:there exist cE

0 ∈ R, cE
1 > 0 suh that for all k ∈ N∞ :If q ∈ Q satis�es Ek(s, q) < ∞ for some s ∈ [0, T ], then(i) Ek(., q) ∈ C1([0, T ]) and(ii) |∂tEk(t, q)| ≤ cE
1 (cE

0 + Ek(t, q)) for all t ∈ [0, T ].

(4.E1)
Equi-oerivityFor all t ∈ [0, T ] and E ∈ R, the set
⋃

k∈N

{

q ∈ Q : Ek(t, q) ≤ E
} is relatively ompat. (4.E2)Further, let us be given a sequene (Dk)k of dissipation distanes Dk : Z × Z → [0,∞]and a limit dissipation D∞ : Z × Z → [0,∞]. We assume:Quasimetri:For all k ∈ N∞ and z1, z2, z3 ∈ Z :(i) Dk(z1, z2) = 0 if and only if z1 = z2 (positivity) and(ii) Dk(z1, z3) ≤ Dk(z1, z2) + Dk(z2, z3) (triangle inequality). (4.D)Of ourse, the Gronwall- and a-priori estimates (2.1)�(2.5) from Setion 2 now hold forall Ek with k ∈ N∞.We want the funtionals Ek and Dk to onverge to E∞ and D∞, respetively, in an appro-priate sense:

Γ-limit for Ek:For all t ∈ [0, T ] : E∞(t, .) = Γ-limk Ek(t, .).
(4.Γ1)Continuous onvergene of Dk:For all sequenes (qk)k, (q̃k)k with qk → q, q̃k → q̃ that additionallysatisfy supk∈N(Ek(t, qk) + Ek(t, q̃k)) < ∞ for one (hene all) t ∈ [0, T ] :

Dk(qk, q̃k) → D∞(q, q̃).

(4.Γ2)Note that onditions (4.Γ1) and (4.Γ2) together imply the joint Γ-onvergene E∞(t, .) +
D∞(q, .) = Γ-limk(Ek(t, .) + Dk(q, .)) for all t ∈ [0, T ] and q ∈ Q.Example 4.1. Let Q be a Banah spae equipped with weak sequential onvergene andlet Q be ompatly embedded into another Banah spae Q1. Beause Q ⊆ Q1, we anhoose the Q1�Norm ‖.‖1 as our dissipation distane for all k, i.e. D∞(u, v) = Dk(u, v) :=11



D(u, v) := ‖v − u‖1. The ompat embedding then ensures the ontinuity of D and henealso the ontinuous onvergene of Dk to D∞.This example shows that we an use the L1(Ω) norm as a weakly ontinuous dissipationdistane in H1(Ω), whih is a ommon situation in ontinuum mehanis [Mie05℄.After these preparations we an state the main approximation result. It shows thatsolutions to (S∞) & (E∞) an be �reversely approximated� by solutions to (AIPΠ
k,ε).Theorem 4.2. Let the assumptions (4.E1), (4.E2), (4.D), (4.Γ1), and (4.Γ2) hold.Moreover, let q∞ : [0, T ] → Q be a solution to (S∞) & (E∞) with initial value q0 =

q∞(0) ∈ S∞(0). Then, for all ε > 0, for all partitions Π = (0, t1, . . . , tN−1, T ) of [0, T ] with
‖Π‖ ≤ ε/(2cR) (cR = cR(q0) > 0 is the reverse approximation onstant from Theorem 2.2applied to E∞ and D∞), and for all k, there exist a disrete solution qΠ

k := (qk
0 , q

k
1 , . . . , q

k
N),de�ned on the partition Π, of the approximate inremental problem (AIPΠ

k,ε) assoiatedwith Ek and Dk, suh that qk
j → q(tj) as k → ∞.Proof. The main idea of the proof is to �rst onstrut a disrete solution to (AIPΠ

∞,ε/2)and then show how this disrete solution an be hanged to yield an solution of (AIPΠ
k,ε)for k su�iently large. In detail, however, some further tehnialities are needed.As E∞ and D∞ ful�ll all the prerequisites of Theorem 2.2, for a partition Π su�iently�ne, i.e. ‖Π‖ ≤ ε/(2cR), we an �nd a disrete ε/2-solution q̃Π = (q̃0, q̃1, . . . , q̃N) for(AIPΠ

∞,ε/2), i.e.
q̃j ∈ Argminε/2

(

E∞(tj , .) + D∞(q̃j−1, .)
) for j = 1, . . . , N.Note that Theorem 2.2 uses the hoie q̃j = q(tj).By assumptions (4.Γ1) and (4.Γ2) we have E∞(tj, .) + D∞(q̃j−1, .) = Γ-limk(Ek(tj , .) +

Dk(q̃j−1, .)). Condition (4.E2) provides the equi-mild oeriveness (3.1) (in fat, take
E := E∞(tj , q̃j−1) + 1 and observe that infQ

(

Ek(tj , .) + Dk(q̃j−1, .)
)

≤ Ek(tj , q̃j−1) ≤ E forall k large enough). Hene, using Proposition 3.1 for eah q̃j we �nd reovery sequenes
(qk

j )k with qk
j → q̃j as k → ∞ and

Ek(tj, q
k
j ) + Dk(q̃j−1, q

k
j ) ≤ infQ

(

Ek(tj , .) + Dk(q̃j−1, .)
)

+
ε

2
+

ε

6
(4.1)for all j = 1, . . . , N and k su�iently large.Beause qk

j → q̃j as k → ∞ and the energies are bounded for k su�iently large (f. (4.1)),the ontinuous onvergene assumption (4.Γ2) shows Dk(q
k
j , q̃j) → 0 and Dk(q̃j , q

k
j ) → 0as k → ∞, i.e.

max
{

Dk(q
k
j , q̃j),Dk(q̃j , q

k
j )

}

≤
ε

6
(4.2)for all j = 1, . . . , N and k su�iently large.So far we have onstruted sequenes and seleted some k0 = k0(ε) large enough suhthat (4.1) and (4.2) are ful�lled for all qk

j with k ≥ k0. We still need to show that these
qk
j form a disrete solution to (AIPΠ

k,ε). 12



For all k ≥ k0 and all j = 2, . . . , N , we �nd by the triangle inequality and estimate (4.2)
infQ

(

Ek(tj, .) + Dk(q̃j−1, .)
)

≤ infQ
(

Ek(tj , .) + Dk(q
k
j−1, .)

)

+ Dk(q̃j−1, q
k
j−1)

≤ infQ
(

Ek(tj , .) + Dk(q
k
j−1, .)

)

+
ε

6
. (4.3)In the ase j = 1, we have qk

0 = q̃0 = q0 for all k and hene (4.3) also holds for j = 1.Now, using �rst the triangle inequality, then (4.1) and (4.2), and �nally (4.3), we dedue
Ek(tj, q

k
j ) + Dk(q

k
j−1, q

k
j ) ≤ Ek(tj , q

k
j ) + Dk(q̃j−1, q

k
j ) + Dk(q

k
j−1, q̃j−1)

≤ infQ
(

Ek(tj , .) + Dk(q̃j−1, .)
)

+
ε

2
+

ε

6
+

ε

6

≤ infQ
(

Ek(tj , .) + Dk(q
k
j−1, .)

)

+
ε

2
+

ε

6
+

ε

6
+

ε

6
= infQ

(

Ek(tj, .) + Dk(q
k
j−1, .)

)

+ ε. (4.4)But this is just qk
j ∈ Argminε

(

Ek(tj , .) + Dk(q
k
j−1, .)

) for j = 1, . . . , N , and the existeneof solutions to (AIPΠ
k,ε) is shown for k ≥ k0 = k0(ε). Trivially, we an �ll up this sequenefor k < k0 with arbitrary solutions to (AIPΠ

k,ε). The laim qk
j → q̃j = q(tj) is lear by thehoie of the qk

j and Theorem 2.2.To formulate the next result we have to strengthen the onditions on the sequentialonvergene on Q, suh that we are able to extrat from a double sequene a suitablediagonal sequene. For E ∈ R we introdue the sublevel sets
Λ(E) =

{

q ∈ Q : there exists (t, k) ∈ [0, T ] × N∞ with Ek(t, q) ≤ E
}

.The assumption reads as follows.There exists a metri d : Q×Q → [0,∞)suh that for all E ∈ R and for all qk ∈ Λ(E), k ∈ N∞ :

qk → q∞ if and only if d(qk, q∞) → 0. (4.5)The �nal result states that every solution of the energeti system (Q, E∞,D∞) an beapproximated by solutions of the approximate inremental problems (AIPΠn

kn,εn
), if thepartitions Πn, εn → 0, and kn → ∞ are hosen suitably.Theorem 4.3. Let the assumptions of Theorem 4.2 and the new assumption (4.5) hold.Moreover, let q∞ : [0, T ] → Q be a solution to (S∞) & (E∞) with initial value q0 =

q∞(0) ∈ S∞(0). Then, for every sequene εn → 0, there exists a sequene of partitions
Πn = (0, tn1 , . . . , t

n
N(n)−1, T ) of [0, T ] with ‖Πn‖ → 0 as n → ∞, a sequene (kn)n of problemindies with kn → ∞ as n → ∞, and disrete solution qΠn

kn
:= (qkn

0 , qkn

1 , . . . , qkn

N(n)), de�nedon the partition Πn, of the approximate inremental problem (AIPΠn

kn,εn
) assoiated with

Ekn
and Dkn

suh that the pieewise onstant interpolants qn : [0, T ] → Q of these disretesolutions onverge on a dense subset T of [0, T ] to the solution q∞.13



Proof. We use a sequene of nested partitions Πn ⊆ Πn+1 with ‖Πn‖ ≤ εn/(2cR), where
cR = cR(q0) > 0 is the reverse approximation onstant from Theorem 2.2. Then, T :=
⋃

n∈N
Πn is dense in [0, T ].Applying Theorem 2.2 we �nd, for eah n ∈ N, a sequene (

(qn,k
j )j=0,...,N(n)

)

k∈N
in QN(n)of solutions to (AIPΠn

k,εn
), suh that

qn,k
j → q(tnj ), E(tnj , q

n,k
j ) → E(tnj , q(t

n
j )) for all n ∈ N j = 0, ..., N(n).With E := sup

{

E∞(t, q(t)) : t ∈ [0, T ]
}

< ∞ (f. [Mie05℄), we �nd K(n) ∈ N, suh that
max

{

Ek(t
n
j , q

n,k
j ) : j = 0, 1, ..., N(n)

}

≤ E+1 for all k ≥ K(n). Thus, we an employassumption (4.5) on the set Λ(E+1) and obtain, for �xed n ∈ N,
δ(n, k) = max

{

d(qn,k
j , q(tnj )) : j = 0, 1, ..., N(n)

}

→ 0 for k → ∞.Choose the subsequene (kn)n∈N suh that kn ≥ K(n) and δ(n, kn) ≤ 1/n and de�ne thesolutions (qkn

0 , ..., qkn

N(n)) via qkn

j = qn,kn

j . Sine the sequene of partitions is nested, foreah t ∈ T there exists a m(t) suh that t ∈ Πn for n ≥ m(t), i.e., t = tnJ(t,n). Thus,
d(qn(t), q(t)) = d(qn,kn

J(t,n), q(t
n
J(t,n))) ≤ δ(n, kn) ≤ 1/n for n ≥ m(t).This is the desired onvergene result, and the theorem is established.Remark 4.4. The onvergene result in Theorem 4.3 an be strengthened to onvergenefor all t ∈ [0, T ]. For this, one �rst uses the ideas in the proof of Helly's seletion priniple(f. e.g. [MaM05,MRS07℄) to show that zn(t) → z∞(t) for all t. For this one uses theuniform a priori bound on the dissipation and inludes all jump points of z∞ into T .Next, one needs to impose the further assumption that the global minimizer φ = Φ(t, z)of E(t, ·, z) is unique. Then, it an be shown φn(t) → φ(t) as well, f. [MaM05℄.Just like in Setion 2, we annot expet strit approximability of solutions to (S∞) &(E∞) by disrete solutions of (IPΠ
k ) instead of (AIPΠ

k,ε). This, in fat, has been settledalready in Counterexample 2.3, beause the latter shows that even for a onstant sequeneof funtionals, we annot get strit approximability.To onlude this setion, we further show that one annot expet approximability of solu-tions to (S∞) & (E∞) by time-ontinuous solutions to (Sk) & (Ek) instead of approximatetime-inremental solutions to (AIPΠ
k,ε).Counterexample 4.5. Consider the state spae Q = [0, 1], the time interval [0, T ] =

[0, 2] and the energy funtionals
E∞(t, q) := −q and Ek(t, q) :=

q2

2k
− q for k ∈ Nfor t ∈ [0, 2] and q ∈ R. Also, hoose Dk(q1, q2) = D∞(q1, q2) := D(q1, q2) := |q2 − q1|. Asinitial value we selet q0 = 0. This setting an be seen as a degenerately onvex problemin the limit k = ∞ with stritly onvex approximations for k ∈ N. The proess

q∞(t) :=

{

0 if t ∈ [0, 1),

1 if t ∈ [1, 2], 14



is one of the many solutions of the rate-independent formulation assoiated with E∞ andD.The stable states S∞(t) are easily seen to be the whole spae, i.e. S∞(t) = S∞(0) = [0, 1],thus the stability ondition is trivially ful�lled. For t ∈ [0, 1), the energy balane is trivialand for t ∈ [1, 2] we have
E∞(t, q∞(t)) + DissD(q∞; [0, t]) = E∞(t, 1) + D(0, 1) = −1 + 1 = 0

= E∞(0, q0) +

∫ t

0

∂tE∞(τ, q∞(τ)) dτ.Hene, q∞ is an energeti solution of (S∞) & (E∞). We now show that q∞ annot beapproximated by solutions to (Sk) & (Ek).For all k ∈ N, the stable sets Sk(t) = Sk(0) again are the whole spae [0, 1], sine it holdsfor all q, q̂ ∈ [0, 1] that
Ek(t, q̂) + D(q, q̂) − Ek(t, q) =

q̂2 − q2

2k
+ (q − q̂) + |q̂ − q|

=

{

(q̂2 − q2)/(2k) if q̂ ≥ q

(q − q̂)(2 − (q̂ + q)/(2k)) ≥ (q − q̂)(2 − k−1) if q̂ < q

}

≥ 0,i.e. q ∈ Sk(t). Now, the zero-proess qk ≡ 0 trivially is a solution of (Sk) & (Ek) andbeause the problem is stritly onvex and the stable sets are onvex, we immediatelyget the uniqueness of this solution [Mie05, Theorem 4.2℄. But, obviously, the zero-proessdoes not approximate q∞ in any reasonable sense.5 Quantitative bakward error analysisIn this setion we use the shorthand E = E∞ and D = D∞. Moreover, without loss ofgenerality, we assume that the energies E(t, q) and Ek(t, q) are uniformly bounded frombelow by a positive onstant. Hene, we may hoose the onstant cE
0 to be 0.The aim of this setion is twofold. Under additional quantitative ontinuity assumptionswe prove exat estimates for the reverse approximation. Using this we then provide anexample where the Γ-onvergene is realized as numerial approximation via Galerkinsubspaes Vk ⊆ Q, where Q now is a Banah spae and the projetions Pk : Q → Vk ⊆ Qsatisfy Pkq → q for all q ∈ Q.We onsider the limit funtionals E : [0, T ] ×Q → R and D : Q×Q → [0,∞) as above.Moreover, we have funtionals Ek and Dk suh that

Ek(t, q) = +∞ for q ∈ Q \ Vk.On the other hand, the main assumptions involve ontinuity properties of E and D:
|E(t, q) − E(t, q̂)| ≤

c

2
(E(t, q) + E(t, q̂)) ‖q − q̂‖ , (5.1)

|D(q0, q1) −D(q̂0, q̂1)| ≤ c(‖q0 − q̂0‖ + ‖q1 − q̂1‖) (5.2)15



Further, we assume quanti�ed estimates on the approximations. For all q, q̃ ∈ Vk and all
t ∈ [0, T ] we have an αk > 0 suh that

|Ek(t, q) − E(t, q)| ≤ E(t, q)αk (5.3)
|Dk(q0, q1) −D(q0, q1)| ≤

αk

2
(E(t, q0) + E(t, q1)) (5.4)Lemma 5.1. Let q : [0, T ] → Q be given suh that

Eq = sup
{

E(t, q(s)) : s, t ∈ [0, T ]
}

< ∞,

δk = sup
{

‖Pkq(t) − q(t)‖ : s, t ∈ [0, T ]
}

< ∞Moreover, assume αk ≤ 1 and cδk ≤ 1/2. Then,
sup

{

E(t, Pkq(s)) : s, t ∈ [0, T ]
}

≤ 2Eq, (5.5)
sup

{

Ek(t, Pkq(s)) : s, t ∈ [0, T ]
}

≤ 4Eq. (5.6)Proof. Using (5.1) we have for q̂ := Pkq(s)

E(t, q̂) − E(t, q(s)) ≤
c

2
(E(t, q(s)) + E(t, q̂))δk,whih implies

E(t, q̂) ≤
1 + cδk/2

1 − cδk/2
E(t, q(s)) ≤

5

3
Eq.Hene, (5.5) is established and (5.6) follows by applying (5.3) to q = Pkq(s).To simplify notation in the proof of the main result of this setion (f. Theorem 5.3), weintrodue

ιk(t, q) := inf
{

Ek(t, q̂) + Dk(q, q̂) : q̂ ∈ Q
}and similarly for the limit funtionals E and D. The next result is a quantitative versionof Lemma 2.1.Lemma 5.2. Let q : [0, T ] → Q be a solution to the system assoiated with the funtion-als E and D, where E satis�es (4.E1). Then, for all s, t ∈ [0, T ] we have

ι(s, q(s)) ≤ ecE
1
|t−s|ι(t, q(s)). (5.7)Moreover, if Π = (0=t0, t1, ..., tN=T ) is a partition, then (q(tj))j solves (AIPΠ

ε(Π)) with
ε(Π) = 2(ecE

1
‖Π‖ − 1)Eq. (5.8)Proof. For estimate (5.7) hoose qρ in Argminρ E(t, .) + D(q(s), .). Then, we have

ι(s, q(s)) = E(s, q(s)) ≤ E(s, qρ) + D(q(s), qρ)

≤ ecE
1
|t−s|(E(t, qρ) + D(q(s), qρ)) ≤ ecE

1
|t−s|(ι(t, q(s)) + ρ),16



where the �rst estimate uses stability of q(s), the seond follows from (2.1), and the thirdis the de�nition of qρ. For ρ → 0 we obtain estimate (5.7).Using the energy balane (E) and (2.2) we �nd with ιj := ι(tj , qj) = E(tj, q(tj)),
E(tj , qj) + D(qj−1, qj) ≤ E(tj, qj) + DissD(q; [tj−1, tj ])

= E(tj−1, qj−1) +

∫ tj

tj−1

∂tE(τ, q(τ)) dτ ≤ ιj−1 +

∫ tj

tj−1

cE
1 ecE

1
(τ−tj−1)Eq dτ.Using (5.7) with s = tj−1 and t = tj we proeed to get

E(tj , qj) + D(qj−1, qj) ≤ ecE
1

(tj−tj−1)ι(tj , qj−1) + (ecE
1

(tj−tj−1) − 1)Eq.Using ι(tj , qj−1) ≤ E(tj, q(tj−1)) ≤ Eq and tj−tj−1 ≤ ‖Π‖, we obtain
E(tj , qj) + D(qj−1, qj) ≤ ι(tj , qj−1) + 2(ecE

1
‖Π‖ − 1)Eq,and (5.8) is established.Theorem 5.3. Let q : [0, T ] → Q be a solution to the energeti system (Q, E ,D). Letthe assumptions of Setion 4 as well as the estimates (5.1)�(5.4) hold and let δk and Eqbe de�ned as in Lemma 5.1. Then, for all k ∈ N suh that cδk ≤ 1/2 and αk ≤ 1, andall partitions Π = (0 = t0, t1, . . . , tN = T ) of [0, T ], the sequenes (Pkq(tj))j=0,...,N aresolutions to (AIPΠ

k,ε̂(k,Π)) with
ε̂(k, Π) = Eq

[

2(ecE
1
‖Π‖ − 1)Eq + 11αk + 5cδk

]

.Proof. For short notation let qk
j = Pkq(tj) and qj = q(tj). We use the assumptions (5.3)and (5.4) and the a-priori estimates (5.5) and (5.6) to estimate as follows:

Ek(tj, q
k
j ) −Dk(q

k
j−1, q

k
j ) ≤ E(tj, q

k
j ) + D(qk

j−1, q
k
j ) + 4Eqαk

≤ E(tj, qj) + D(qj−1, qj) + Eq(4αk + 3cδk). (5.9)Next we estimate ιk(tj , q
k
j−1) from below using ι(tj , qj−1). For this let ρ0 := Ek(tj, q

k
j−1) −

ιk(tj, q
k
j−1), whih implies ρ0 ≥ 0. If ρ0 = 0, then
ιk(tj, q

k
j−1) = Ek(tj , q

k
j−1) ≥ E(tj , q

k
j−1) − 2Eqαk

≥ E(tj, qj−1) − Eq(2αk + 2cδk) ≥ ι(tj , qj−1) − Eq(2αk + 2cδk). (5.10)If ρ0 > 0, we �nd, for eah ρ ∈ (0, ρ0), a qρ ∈ Vk with Ek(tj , qρ) + Dk(q
k
j−1, qρ) ≤

Ek(tj, q
k
j−1) ≤ 4Eq and qρ ∈ Argminρ(Ek(tj , .) + Dk(q

k
j−1, .). Hene, we estimate

ιk(tj, q
k
j−1) ≥ −ρ + Ek(tj , qρ) + Dk(q

k
j−1, qρ)

≥ −ρ + E(tj, qρ) + D(qk
j−1, qρ) − 7Eqαk

≥ −ρ + E(tj, qρ) + D(qj−1, qρ) − Eq(7αk + cδk)

≥ −ρ + ι(tj , qj−1) − Eq(7αk + cδk).17



Taking the limit ρ ց 0 and ombining with the ase ρ0 = 0, see (5.10), we �nd
ι(tj , qj−1) ≤ ιk(tj , q

k
j−1) + Eq(7αk + 2cδk). (5.11)We onlude by noting that Lemma 5.2 gives

E(tj , qj−1) + D(qj−1, qj) ≤ ι(tj , qj−1) + ε(Π)with ε(Π) de�ned in (5.8). Combining this with (5.9) and (5.11) we have
Ek(tj, q

k
j−1) + Dk(q

k
j−1, q

k
j ) ≤ ιk(tj, q

k
j−1) + ε(Π) + Eq(11αk + 5cδk),whih gives the desired result for ε̂(k, Π).We onsider an example for phase transitions on a smooth, bounded domain Ω ⊆ R

d with
d ≥ 2. The state spae is Q = Z = H1(Ω) with dissipation distane

D(q0, q1) := ‖q1 − q0‖L1(Ω) . (5.12)The energy funtional takes the form
E(t, q) :=

∫

Ω

1

2
|∇q(x)|2 + G(q(x)) − f(t, x)q(x) dx, (5.13)where the loading f satis�es f ∈ C1([0, T ]×Ω). The potentialG ∈ C2(R; R) has a boundedseond derivative G′′ and is oerive, i.e., there is C > 0 suh that G(q) ≥ q2/C − C. Itis important to note that G may be nononvex, suh that also E(t, .) : Q → R may benononvex. Thus, in general, the energeti solutions for the funtionals E and D will notbe ontinuous in time (even for the L1-norm). Moreover, uniqueness of solutions underan initial ondition q(0) = q0 annot be expeted, f. [Mie05℄.The lassial existene results apply (see [MiT04,MaM05℄) giving solutions

q ∈ L∞([0, T ]; H1(Ω)) ∩ BV([0, T ]; L1(Ω))for eah stable initial datum q0 ∈ H1(Ω). However, the stability ondition q(t) ∈ S(t)gives the variational inequality
∆q − G′(q) + f(t, .) ∈ ∂ Sign(0) = [−1, 1].We assume that the domain is a onvex polytope and that f is bounded. Then, elliptiregularity implies
q ∈ L∞([0, T ]; H2(Ω)).Our appliation of Γ-onvergene relates to a sequene of numerial approximations, asis disussed in muh greater detail in [MiR06℄. For this we hoose a sequenes (Tk)k oftriangulations, suh that the maximal diameters
hk = ρ(Tk) with ρ(T ) := max

{

diam(T ) : T ∈ T
}18



tend to 0. However, as our estimates are quantitative, we give estimates for all triangu-lations. Thus, we simplify the notation by using the subsript T instead of k.Let VT ⊂ Q = H1(Ω) be a spae of ontinuous, pieewise linear funtions (�nite-elementspae) assoiated with T . By PT we denote the H1-orthogonal projetion of Q onto VT ,whih satis�es
PT q → q in H1(Ω) for all ρ(T ) → 0,There exists C > 0 suh that for all q ∈ H2(Ω) : ‖PT q − q‖Q ≤ Cρ(T ) ‖q‖H2(Ω) .For any given T we de�ne
DT (q, q̂) := D(q, q̂),

ET (t, q) :=

∫

Ω

1

2
|∇q|2 dx +

∑

T∈T

vol T

d + 1

d
∑

j=0

[

G(q(XT
j ))] − f(t, XT

j )q(XT
j )

]

,where (XT
j )j=0,...,d are the verties of the tetrahedron T ∈ T . For q ∈ VT one has

|ET (t, q) − E(t, q)| ≤ E(t, q)α(T ),where the lass of triangulations must be restrited in suh a way that α(T ) → 0 for
ρ(T ) → 0. For instane, for quasi-uniform meshes one has α(T ) ≤ Cquρ(T )2, where theonstant Cqu only depends on the lower bound of the interior angles.Thus, (5.3) and (5.4) hold. Of ourse, (5.1) and (5.2) hold trivially. Moreover, δk inLemma 5.1 is given as

δT = sup
{

‖PT q(t) − q(t)‖ : t ∈ [0, T ]
}

≤ Cρ(T )‖q‖L∞([0,T ];H2(Ω)).As a result, we obtain the following reverse approximation result whih an be seen as atype of justi�ation of a bakward error analysis of spae-time disretization.Theorem 5.4. Let Q = H1(Ω) and E , D be as given in (5.12) and (5.13) with G and f asspei�ed. Let q : [0, T ] → Q solve the rate-independent energeti system (Q, E ,D). Then,there exists a onstant C∗ suh that the following holds: If Π = (0 = t0, t1, . . . , tN = T ) is apartition of [0, T ] with �neness ‖Π‖ and T is a triangulation of Ω with ‖Π‖+ρ(T )+α(T ) ≤
1/C∗, then the sequene (qTj )j=0,...,N de�ned via qTj := PT q(tj) is a solution to (AIPΠ

T ,ε)with ε = C∗

(

‖Π‖+ρ(T )+α(T )
) and satis�es ∥

∥qTj − q(tj)
∥

∥

Q
≤ C∗ρ(T ) for j = 0, 1, ..., N .6 Regularization and relaxation6.1 An example with a regularized funtionalLet the state spae Q be the Sobolev spae H1(0, 1) equipped with its weak topology.Consider the funtionals

Ek(t, z) :=

∫ 1

0

1

k
(z′′(x))2 + W (z′(x)) + G(z(x)) − f(t, x)z(x) dx, (6.1)

E∞(t, z) :=

∫ 1

0

W ∗∗(z′(x)) + G(z(x)) − f(t, x)z(x) dx, (6.2)19



where f : [0, T ] → R is a presribed loading G is as in the previous setion. The double-well potential is given via W (s) := min{(s − 1)2, (s + 1)2} and has the onvexi�ation
W ∗∗ with W ∗∗(s) = W (s) for |s| ≥ 1 and W ∗∗(s) = 0 on [−1, 1]. In order to apply Ek, weneed twie (weak) di�erentiability of z, whih is only given in the subspae H2(0, 1). Wetherefore set Ek := +∞ on H1(0, 1) \ H2(0, 1). Hene, Ek an be seen as a regularizationof E given via

E(t, z) :=

∫ 1

0

W (z′(x)) + G(z(x)) − f(t, x)z(x) dx, (6.3)whih is not weakly lower semi-ontinuous on H1(0, 1). All the Ek have losed and boundedsublevels in H2(0, 1). Owing to the ompat embedding H2(0, 1)
c
→֒ H1(0, 1), these sub-levels are ompat in the weak topology of H1(0, 1).Further, for all k we use the L1(0, 1)�norm as dissipation distane, i.e. D(u, v) := ‖v − u‖1.Thus, solutions to the rate-independent energeti system (Q, Ek,D) exist by the standardresults of the theory [MaM05,Mie05,FrM06℄ and satisfy the di�erential inlusion

0 ∈ Sign(∂tz) +
1

k
∂4

xz − ∂x(DW (∂xz)) + G′(z) − f(t, .) a.e. in (t, x) ∈ [0, T ] × Ωtogether with a smooth stable initial ondition z(0, .) = z0 ∈ H2(0, 1). Similarly, solutionsto the problem assoiated with E∞ and D satisfy
0 ∈ Sign(∂tz) − ∂x(DW ∗∗(∂xz)) + G′(z) − f(t, .) a.e. in (t, x) ∈ [0, T ] × Ω.It is well-known that the Ek Γ-onverge to E∞ and all assumptions on the Ek are alsoeasily seen to hold for adequately hosen loadings f [Mül93,Da89℄. Further, as notedin Example 4.1, the onstant sequene of dissipation distanes onverges in the requiredsense.From the results in [MRS07℄ we know that solutions to the inremental problem (IPΠ

k )for the kth problem admit a subsequene onverging to a solution of (S∞) & (E∞). Now,the results of Setion 4 imply that every solution to (S∞) & (E∞) an be approximatedby solutions to (AIPΠ
k,ε).6.2 An example for relaxationWe might enounter energy funtionals E : Q → R∞ for whih an in�mizing sequeneonverges, but the limit is no minimizer of E . Suh funtionals E annot have losedsublevels, i.e. they are not lower semiontinuous. In appliations, this situation is ausedby the development of mirostruture [Mül93,Mül99℄. In order to analyze the marosopibehavior of minimizers of suh funtionals, we an �relax� E to its lower semiontinuousenvelope E∗∗ : Q → R∞ and study the problem assoiated with the new funtional E∗∗.The framework of Γ-onvergene is designed in suh a way that if we take the Γ-limit ofthe onstant sequene (E)k, we arrive at the relaxation E∗∗ of E [Dal93,Bra02℄. Thus, wean apply the methods developed above in order to understand the onnetion betweenthe original and the relaxed problem. 20



In [MRS07℄ it is shown that the relaxed problem is not �too small�, i.e. a sequene of so-lutions to the approximate inremental problem (AIPΠ
ε ) for the original energy funtional

E admits a limit point, whih is an energeti solution to (S∗∗) & (E∗∗) for the relaxedfuntional E∗∗. In this work, we have shown that the relaxed problem also is not �toobig�, i.e. for every solution of (S∗∗) & (E∗∗) we an �nd an assoiated sequene of solutionsto (AIPΠ
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