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AbstratThis paper analyzes a model for phase transformation in shape-memoryalloys indued by temperature hanges and by mehanial loading. We as-sume that the temperature is presribed and formulate the problem withinthe framework of the energeti theory of rate-independent proesses. Exis-tene and uniqueness results are proved.1 IntrodutionShape-memory alloys (SMA) have some surprising thermo-mehanial behavior; onean observe that severely deformed alloys reover their original shape after a ther-mal yle (shape-memory e�et). The exploitation in innovative and ommeriallyvaluable appliations stimulates the interest in the development of mathematialmodels for shape-memory materials. Many underlying one-dimensional models areavailable in the literature but multi-dimensional models allowing for multiaxial load-ings and anisotropies are rare. For the isothermal setting suh models are disussedin [MTL02, GMH02, KMR05℄.In this paper, we are onerned with quasi-stati evolution of shape-memory ma-terials in a small-strain regime under non-isothermal onditions. More preisely,we study a marosopi phenomenologial model for shape-memory polyrystallinematerials undergoing phase transformation driven by stress or temperature hanges.This model was originally proposed by Souza et al. [SMZ98℄ and later addressedand extended by Aurihio et al. [AuP02, AuP04, AMS07℄. We follow the mathe-matial study of a temperature-driven phase transformation as proposed by Mielkein [Mie07℄.The temperature θ is given a priori as an applied load and we write θ = θappl(t, x).This assumption is used in engineering models and it is aeptable if the body issmall in at least one diretion. Then, the exessive or missing heat an be balanedthrough the environment.Our model is desribed by a stored-energy density W (e, z, θappl), where e = e(u) =
1
2
(∇u+∇uT) and z is a marosopi internal variable keeping trak of the phasedistribution. The potential energy takes the following form

E(t, u, z)
def
=

∫

Ω

W (e(u), z, θappl(t, ·)) +
σ

2
|∇z|2 dx − 〈l(t), u〉, σ > 0,1



where l denotes the time-dependent applied loading. Moreover we speify the dissi-pation potential by
R(ż)

def
=

∫

Ω

ρ|ż| dx = ρ‖ż‖L1(Ω), ρ > 0,where z ∈ Z
def
= W 1,2(Ω). The set F of admissible displaements is spei�ed as thosefuntions u ∈ W 1,2(Ω) satisfying the Dirihlet data at the part ΓDir ⊂ ∂Ω. Then, ourproblem an be posed like the energeti formulation for rate-independent problems.For a given initial value (u(0), z(0)) = (u0, z0) ∈ F × Z, we have to �nd a funtion

(u, z) : [0, T ] → F × Z suh that for all t ∈ [0, T ], the global stability ondition (S)and the global energy onservation (E) are satis�ed, i.e.(S) ∀(u, z) ∈ F ×Z : E(t, u(t), z(t)) ≤ E(t, ū, z̄) + R(z̄−z(t)),(E) E(t, u(t), z(t)) +

∫ t

0

R(ż(s)) ds = E(0, u0, z0) +

∫ t

0

∂sE(s, u(s), z(s)) ds.The paper is organized as follows. In Setion 2, the mathematial formulation of theproblem within the framework of the energeti theory of rate-independent proessesis presented. In Setion 3, we speify the exat assumptions, and then some help-ful estimates on the onstitutive funtion W are obtained. These estimates implythat the partial derivative ∂tE(t, u, z) is de�ned whenever E(t, u, z) < ∞. Then,with standard arguments we to show that for all stable initial data (u0, z0) an en-ergeti solution exists. Finally, in Setion 6 using uniform onvexity of E(t, ·, ·) andthe temporal smoothness of solutions obtained in Setion 5, we prove the unique-ness result. The model disussed here is muh simpler than the ones treated in[CHM02, BC*04, KMR05℄, sine it is essentially restrited to isotropi behavior inpolyrystals. However, this allows us to go muh further in the mathematial anal-ysis. For the more elaborate models only existene result are known, while here weare able to derive Lipshitz dependene of the solutions on the initial data.2 Mathematial formulationWe onsider a body with referene on�guration Ω ⊂ Rd. This body may undergophase transformation and elasti displaements u : Ω → R
d. The phase transfor-mation will be haraterized by the internal variable z : Ω → R

d×ddev denoting themesosopi transformation strain where R
d×ddev is the spae of symmetri d×d tensorswith vanishing trae. We will denote by Rd×dsym the spae of symmetri d×d tensorsendowed with the salar produt v:w

def
= tr(vTw) and the orresponding norm is givenby |v|2

def
= v:v for all v, w ∈ R

d×dsym. Here (·)T and tr(·) denote the transpose and thetrae of the matrix (·), respetively.The set of admissible displaements F def
= {u ∈ W 1,2(Ω; Rd) | u|ΓDir = 0} is hosen asa suitable subspae of W 1,2(Ω; Rd) by desribing Dirihlet data at the part ΓDir of2



∂Ω. The internal variable z lies in Z = W 1,2(Ω; Rd×ddev ). We will denote the states by
q

def
= (u, z) and the norm and the salar produt in Q

def
= F × Z by ‖·‖Q and 〈·, ·〉Q,respetively.The material behavior will depend on the temperature θ, whih will be onsideredas a time dependent given parameter. Hene, we will not solve an assoiated heatequation, but we will treat θ as an applied load and denote it by θappl : [0, T ]×Ω →

[θmin, θmax]. This approximation for the temperature is used in engineering modelsand we may justify it in the ase where the hanges of the loading are slow and thebody is small in at least one diretion suh that exess of heat an be transportedvery fast to the surfae and then radiated into the environment.The linearized strain tensor e = e(u) is given by e(u)
def
= 1

2
(∇u+∇uT) ∈ R

d×ddev . Weassume that Ω is suh that there exists cΩ > 0 suh that Korn's inequality holds,i.e.
v ∈ W 1,2(Ω; Rd) : cΩ‖v‖

2
W 1,2 ≤ ‖v‖2

L2 + ‖e(v)‖2
L2.Moreover, ΓDir ⊂ ∂Ω is assumed to be big enough suh that there exists cKorn > 0with

∀u ∈ F : ‖e(u)‖2
L2 ≥ cKorn‖u‖2

W 1,2. (2.1)For more details on Korn's inequality and its onsequenes, we refer to [DuL76℄.The potential energy takes then the following form
Ê(t, q, θ)

def
=

∫

Ω

W (e(u), z, θ) +
σ

2
|∇z|2 dx − 〈l(t), u〉, (2.2)where W : Rd×dsym×R

d×ddev ×[θmin, θmax] → R takes the form
W (e(u), z, θ)

def
=

1

2
(e(u)−z):C(θ):(e(u)−z) + h(z, θ)with h(·, θ) : R

d×ddev → R onvex. Here σ is a positive oe�ient that measures somenonloal interation e�et for the internal variable z, C(θ) is the elastiity tensorwhih depends on the temperature θ, and l(t) denotes the applied mehanial loadingin the form
〈l(t), u〉

def
=

∫

Ω

fappl(t, x)·u(x) dx +

∫

∂Ω

gappl(t, x)·u(x) dγ.Sine θ is given we denote the potential energy by E(t, q)
def
= Ê(t, q, θappl(t)).The dissipation potential is de�ned by

R(ż)
def
=

∫

Ω

ρ|ż| dx = ρ‖ż‖L1(Ω), ρ > 0. (2.3)As usual, the notation (˙) denotes the time derivative d
dt
. One an prove that R :

Z → R is onvex, lower semiontinuous and positively homogeneous of degree 1, i.e.for all γ ≥ 0 and v ∈ Z, R(γv) = γR(v). Its subdi�erential is de�ned by
∂R(v) =

{
σ ∈ Z∗

∣∣∀w ∈ Z : R(w) ≥ R(v) +

∫

Ω

σ:(w−v) dx
}

.3



The evolution of smooth proesses q : [0, T ] → Q is governed by the following doublynonlinear subdi�erential inlusion (f. [CoV90, Col92℄)
(

0
∂R(ż)

)
+

(
∂uE(t, q)
∂zE(t, q)

)
∋

(
0
0

)
, (2.4)where ∂uE(t, q) = −div (C(θ):(e(u)−z)) − l(t) and ∂zE(t, q) = −C(θ):(e(u)−z) +

∂zh(z, θ) − σ∆z. Using DqE(t, q)
def
= (∂uE(t, q), ∂zE(t, q))T and the de�nition of thesubdi�erential ∂R(ż) leads to the variational inequality

∀v ∈ Q : 〈DqE(t, q), v−q̇〉Q + R(v) −R(ż) ≥ 0. (2.5)It an be easily seen that (2.5) is equivalent to two loal onditions:(S)lo ∀v ∈ Q : 〈DqE(t, q), v〉Q + R(v) ≥ 0,(E)lo 〈DqE(t, q), q̇〉Q + R(ż) ≤ 0.Sine E(t, ·) : Q → R is onvex, our problem has an equivalent energeti formulationin the sense of rate-independent proesses, for the details the reader is referred to[MiT04, MTL02, MaM05, FrM06, Mie05℄. A funtion q : [0, T ] → Q is alled anenergeti solution of the rate-independent problem assoiated with E and R if forall t ∈ [0, T ] the global stability ondition (S) and the global energy balane (E) aresatis�ed, i.e.(S) ∀q̄ = (ū, z̄) ∈ Q : E(t, q(t)) ≤ E(t, q̄) + R(z̄−z(t)),(E) E(t, q(t)) +

∫ t

0

R(ż(s)) ds = E(0, q(0)) +

∫ t

0

∂sE(s, q(s)) ds.Following the Souza et al. [SMZ98℄ and Aurihio et al. [Aur01, AuP04℄, weare partiularly interested in h = hSA with
hSA(z, θ)

def
= c1(θ)

√
δ2+|z|2 + c2(θ)|z|

2 +
1

δ
(|z|−c3(θ))

3
+, (2.6)where ci(θ) > 0, i = 1, 2, 3, are given in term of the temperature θ. Observe that

c1(θ) is an ativation threshold for initiation of martensiti phase transformations,
c2(θ) measures the ourrene of some hardening phenomenon with respet to theinternal variable z, and c3(θ) represents the maximum modulus of transformationstrain that an be obtained by alignment of martensiti variants. Let

WSA(e, z, θ)
def
=

1

2
(e−z):C(θ):(e−z) + hSA(z, θ).For reent further development we refer to [AuS05, AuS04, AMS07℄. The originalmodel is obtained in the limit δ → 0 and σ → 0, in this ase

horg(z, θ)
def
= c1(θ)|z| + c2(θ)|z|

2 + χ(z),where χ : R
d×ddev → [0, +∞] is the indiator funtion of the ball {z ∈ R

d×ddev : |z| ≤
c3(θ)}. For mathematial purposes we need to keep δ, σ > 0 �xed.4



3 The mathematial assumptionsWe larify now the assumptions and establish some preliminary results that we willuse in the next setions. In the Appendix we will show that h(z, θ) = hSA(z, θ)ful�lls these assumptions.Assumptions on h. There exist positive onstants Ch, Ch
θj
, ch

θj
, Ch

zθ, Ch
z and

γd ∈ [3,∞) with γd ≤ 2d
d−2

if d ≥ 3 suh that for all t ∈ [0, T ], θ ∈ [θmin, θmax] and
z, ẑ ∈ R

d×ddev , we have
h ∈ C3(Rd×ddev ; C2([θmin, θmax])), (3.1a)
h(z, θ) ≥ Ch(|z|2−1), (3.1b)
∀j = 1, 2 : |∂j

θh(z, θ)| ≤ Ch
θj

(h(z, θ)+ch
θj

), (3.1)
∀i = 0, 1, 2 ∀j = 0, 1 : (3.1d)
|∂j

θ∂
i
zh(z, θ)−∂

j
θ∂

i
zh(ẑ, θ)| ≤ Ch

zθ(1+|z|+|ẑ|)γd−i−1|z−ẑ|,

∀i = 1, 2, 3 ∀j = 0, 1 : |∂j
θ∂

i
zh(z, θ)| ≤ Ch

z (1+|z|)γd−i−j. (3.1e)Assumptions on CCC. The elastiity tensor C(θ) : Rd×dsym → Rd×dsym is a symmetripositive de�nite map suh that
C ∈ C1([θmin, θmax]; Lin(Rd×dsym; Rd×dsym)), (3.2a)
∃α > 0 ∀e ∈ R

d×dsym ∀θ ∈ [θmin, θmax] : e:C(θ):e ≥ α|e|2. (3.2b)For later use, we de�ne
CC def

= sup
{
|C(θ)|

∣∣θ ∈ [θmin, θmax]} and CC

θ

def
= sup

{
|∂θC(θ)|

∣∣θ ∈ [θmin, θmax]}. (3.3)In partiular, if λ, µ ∈ C1([θmin, θmax]) with λ(θ) ≥ 0 and µ(θ) ≥ α then C(θ):z
def
=

λ(θ)tr(z)1 + 2µ(θ)z satis�es the assumptions given above. Here λ(θ) and µ(θ) aretemperature dependent Lamé oe�ients, and 1 denotes the identity matrix. Thelatter deomposition is not exploited in our analysis but it is learly suggested bythe mehanial appliation. From (3.1b) and (3.2b) we may dedue that there exist
c, C > 0 suh that

∀e ∈ R
d×dsym ∀z ∈ R

d×d
dev : W (e, z, θ) ≥ c(|e|2+|z|2) − C. (3.4)The applied temperature will insert or extrat energy aording to ∂θW (e(u), z, θappl)

θ̇appl. To ontrol this term we assume that θappl is smooth enough (f. Setion 4)and we prove in the following lemma that the derivatives ∂
j
θW exist for j = 1, 2 andthey an be estimated linearly via W .Lemma 3.1 Assume that C satis�es above assumptions and h satis�es (3.1). Thenthere exist CW

0 , CW
1 > 0 suh that for all j = 1, 2,

|∂j
θW (e, z, θ)| ≤ CW

1 (W (e, z, θ)+CW
0 ). (3.5)5



Proof. These estimates are obtained using (3.1) and (3.2). �Lemma 3.2 Under the assumptions of Lemma 3.1, for all θ1 ∈ [θmin, θmax], we have
W (e, z, θ1) + CW

0 ≤ exp(CW
1 |θ1−θ|)(W (e, z, θ)+CW

0 ). (3.6)Proof. We onsider (e, z) to be �xed and de�ne w(θ) = W (e, z, θ)+CW
0 . Lemma 3.1provides exatly |w′(θ)| ≤ CW

1 w(θ), and Gronwall's lemma yields the desired result
w(θ1) ≤ exp(CW

1 |θ1 − θ|)w(θ) for all θ, θ1 ∈ [θmin, θmax]. �4 The existene resultFor a given temperature pro�le θappl and a given external loading l with
θappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax])), (4.1a)
l ∈ C1([0, T ]; W 1,2(Ω; Rd)∗), (4.1b)we now study the potential energy E as de�ned in (2.2).Proposition 4.1 Under the above assumptions the following holds:(i) If for some (t∗, q) ∈ [0, T ] × Q we have E(t∗, q) < ∞, then E(·, q) lies in

C1([0, T ]) and
∂tE(t, q) =

∫

Ω

∂θW (e(u), z, θappl(t))θ̇appl(t) dx − 〈l̇(t), u〉. (4.2)(ii) There exist CE
0 , CE

1 > 0 suh that E(t, q) < ∞ implies that |∂tE(t, q)| ≤
CE

1 (E(t, q)+CE
0 ).(iii) For eah ε > 0 and E ∈ R there exists δ > 0 suh that E(t1, q) ≤ E and

|t1−t2| < δ imply |∂tE(t1, q)−∂tE(t2, q)| ≤ ε.Proof. Observe that (3.4) and Korn's inequality (2.1) lead to
E(t, q) ≥

ccKorn
2

‖u‖2
W 1,2 + min

(
c,

σ

2

)
‖z‖2

W 1,2 − C|Ω| −
1

2ccKorn‖l(t)‖2
(W 1,2)′ ,whih implies that there exist c0, C0 > 0 suh that

E(t, q) ≥ c0‖q‖
2
Q − C0. (4.3)6



We show now the di�erentiability of E(t, q) with respet to t using Lemma 3.1 andassumption (4.1). For all h 6= 0 and t∗ +h ∈ [0, T ] the mean-value theorem providessome s ∈ (0, 1) suh that
1

h
(E(t∗+h, q)−E(t∗, q))

=

∫

Ω

∂θW (e(u), z, θappl)θ̇appl(t∗+sh) dx − 〈l(t∗+h)−l(t∗), u〉.
(4.4)We observe that Lemma 3.2 leads to

sup
θ1∈[θmin,θmax] W (e, z, θ1) ≤ exp

(
cW
1 (θmax−θmin))(W (e, z, θappl)+CW

0

)
− CW

0 . (4.5)Sine E(t∗, q) < ∞ we have 0 ≤ W (e(u), z, θappl(t)) ∈ L1(Ω) whih implies that theright-hand side of (4.5) belongs to L1(Ω). On the other hand, (4.1a) gives θ̇appl ∈
C0([0, T ]; L∞(Ω)) and we may pass to the limit h → 0 in (4.4) using Lebesgue'stheorem. This proves (4.2).For part (ii), one an see that assumptions (4.1) lead to the following estimate

|∂tE(t, q)| ≤ Θ

∫

Ω

|∂θW (e(u), z, θappl)| dx + ‖l̇(t)‖(W 1,2)′‖u‖W 1,2, (4.6)where Θ
def
= ‖θ̇appl‖L∞ . Carrying (3.5) for j = 1 into (4.6) and using Cauhy-Shwarz's inequality, we have

|∂tE(t, q)| ≤ Θ

∫

Ω

CW
1

(
W (e(u), z, θappl)+CW

0

)
dx +

1

2
‖l̇(t)‖2

(W 1,2)′ +
1

2
‖u‖2

W 1,2,whih implies that
|∂tE(t, q)| ≤ CW

1 ΘE(t, q) +
1

2

(
1+CW

1 Θ
)
‖u‖2

W 1,2 + CW
0 CW

1 |Ω|Θ

+
1

2

(
CW

1 ‖l‖2
(W 1,2)′‖θ̇appl‖W 1,2+‖l̇‖2

(W 1,2)′

)
.

(4.7)Using (4.3) in (4.7), the desired result (ii) follows immediately.For part (iii), we use
|∂tE(t1, q)−∂tE(t2, q)| ≤ Θ

∫

Ω

|∂θW (e(u), z, θappl(t1))−∂θW (e(u), z, θappl(t2))| dx

+

∫

Ω

|∂θW (e(u), z, θappl(t1))| dx ‖θ̇appl(t1)−θ̇appl(t2)‖L∞

+ ‖l̇(t1)−l̇(t2)‖(W 1,2)′‖u‖W 1,2. (4.8)The mean-value theorem provides some s ∈ (0, 1) suh that
|∂θW (e(u), z, θappl(t1))−∂θW (e(u), z, θappl(t2))|
= |∂2

θW (e(u), z, θappl(t1+s(t2−t1)))||θappl(t1)−θappl(t2)|. (4.9)7



Introduing (3.5) in (4.9) and then using (3.6), we obtain
|∂θW (e(u), z, θappl(t1))−∂θW (e(u), z, θappl(t2))|
≤ KW

1 (W (e(u), z, θappl(t1))+CW
0 )|θappl(t1)−θappl(t2)|, (4.10)where KW

1
def
= CW

1 exp(CW
1 |θmax−θmin|). One an see that (3.5) and (3.6) lead to

|∂θW (e(u), z, θappl(t1))| ≤ KW
1 (W (e(u), z, θappl)+CW

0 ). (4.11)Carrying (4.10) and (4.11) into (4.8), we obtain
|∂tE(t1, q)−∂tE(t2, q)|

≤

∫

Ω

KW
1 (W (e(u), z, θappl(t1))+CW

0 )|θappl(t1)−θappl(t2)| dx ‖θ̇appl(t1)‖L∞

+

∫

Ω

KW
1 (W (e(u), z, θappl(t1))+CW

0 ) dx ‖θ̇appl(t1)−θ̇appl(t2)‖L∞

+ ‖l̇(t1)−l̇(t2)‖(W 1,2)′‖u‖W 1,2,whih implies that
|∂tE(t1, q)−∂tE(t2, q)|

≤

∫

Ω

KW
1 (E(t1, q)+CW

0 )) dx‖θappl(t1)−θappl(t2)‖L∞Θ

+

∫

Ω

KW
1 (E(t1, q)+CW

0 ) dx‖θ̇appl(t1)−θ̇appl(t2)‖L∞

+ KW
1 ‖l(t1)‖(W 1,2)′‖u‖W 1,2

(
‖θappl(t1)−θappl(t2)‖L∞‖θ̇appl(t1)‖L∞

+ ‖θ̇(t1)−θ̇(t2)‖L∞

)
+ ‖l̇(t1)−l̇(t2)‖(W 1,2)′‖u‖W 1,2.

(4.12)
One an observe that (4.1) leads to the following estimate

‖l̇(t1)−l̇(t2)‖(W 1,2)′ + ‖θ̇appl(t1)−θ̇appl(t2)‖L∞ ≤ ω(|t1−t2|). (4.13)Here ω : [0,∞) → [0,∞) is a modulus of ontinuity, i.e. ω is nondereasing and
ω(τ) → 0 for τ ց 0. Sine E(t1, q) ≤ E, (4.3) and (4.13) hold, there exists c̄ > 0suh that

|∂tE(t1, q)−∂tE(t2, q)| ≤ c̄
(
ω(|t1 − t2|)+|t1−t2|

)
.Thus, the proposition is established. �We prove now that the energeti formulation (S) and (E) has at least one solution q :

[0, T ] → Q for a given stable initial datum q0 ∈ Q, i.e. q0 satis�es the global stabilityondition (S) at t = 0. The existene theory was developed in [MaM05, Mie05,FrM06℄ and it is based on inremental minimization problems. More preisely, fora given partition Π = {0 = t < t1 < . . . < tN = T}, we de�ne the inrementalproblem as follows:(IP)Π { For k = 1, . . . , N �nd
qk

def
= (uk, zk) ∈ Argmin{E(tk, q̃) + R(z̃−zk) : q̃ = (ũ, z̃) ∈ Q}.8



De�ne the pieewise onstant interpolant qΠ : [0, T ] → Q with qΠ(t) = qj−1 for
t ∈ [tj−1, tj) for j = 0, . . . , N . Then, one shows that a subsequene has a limit andthis limit funtion satis�es the energeti formulation (S) and (E).Theorem 4.2 Assume that E and R satisfy the assumptions (2.1), (3.1), (3.2) and(4.1). Let q0 ∈ Q be stable for t = 0, i.e. E(0, q0) ≤ E(0, q) + R(z−z0) for all
q = (u, z) ∈ Q. Then there exists an energeti solution q = (u, z) : [0, T ] → Q with
q(0) = q0 and

u ∈ L∞([0, T ]; W 1,2(Ω; Rd)),

z ∈ L∞([0, T ]; W 1,2(Ω; Rd×d
dev )) ∩ BV ([0, T ]; L1(Ω; Rd×d

dev )).Moreover, let Πk = {0 = tk0 < tk1 < . . . < tkNk
= T}, k ∈ N, be a sequene ofpartitions with �neness ∆(Πk)

def
= max{tkj − tkj−1 : j = 1, . . . , Nk} tending to 0for k → ∞. Let qΠk

def
= (uΠk, zΠk) : [0, T ] → Q be the pieewise onstant inter-polants assoiated with the inremental problem (IP)Πk

, then there exist a subse-quene (ūn, z̄n)
def
= (uΠkn , zΠkn ) and an energeti solution q̃

def
= (ũ, z̃) : [0, T ] → Q suhthat for all t ∈ [0, T ] the following holds

z̄n(t) ⇀ z̃(t) in Z,

E(t, q̄n(t)) → E(t, q̃(t)),
∫ t

0

R( ˙̄zn(s)) ds →

∫ t

0

R( ˙̃z(s)) ds.Proof. We use the abstrat result of [FrM06℄ whih relies on the following abstratassumptions (H1)�(H5), where F and Z are onsidered as topologial spaes ar-rying the weak topology of W 1,2(Ω). All topologial notions are to be understoodin the �sequential� sense.(H1) ∀z1, z2, z3 ∈ Z: R(z1) = 0 ⇔ z1 = 0 and R(z1−z3) ≤ R(z1−z2) +R(z2−z3),(H2) R : Z → [0,∞] is ontinuous,(H3) ∀t ∈ [0, T ]: E(t, ·) : Q → [0,∞) has ompat sublevels,(H4) there exist CE
0 , CE

1 > 0 suh that for all q ∈ Q:
E(0, q) < ∞ =⇒

{
∂tE(·, q) : [0, T ] → R is ontinuous and
|∂tE(t, q)| ≤ CE

1 (E(t, q)+CE
0 ),(H5) ∀E > 0 ∀ε > 0 ∃δ > 0 :

(
E(t1, q) ≤ E, |t1−t2| ≤ δ

)
⇒ |∂tE(t1, q)−∂tE(t2, q)| <

ε. 9



(H1) follows from the de�nition (2.3) of the dissipation potential R. Sine R isstrongly ontinuous in L1(Ω), the ompat embedding of W 1,2(Ω) into L1(Ω) pro-vides (H2).On the one hand, E(t, ·) is oerive beause of (3.1b), (3.2b) and (2.1). On theother hand, by E(t, ·) is weakly lower semi-ontinuous, as the integrand is onvexin (∇u,∇z) and ontinuous in z. This provides (H3). Finally, (H4) and (H5) werealready obtained in Proposition 4.1.Sine the assumptions (H1)�(H5) are ful�lled, the abstrat theory is appliable,and the theorem is proved. �The above result does not need any onvexity assumption on h(·, θ), hene solutionsmay have jumps in general and uniqueness an not be expeted.For the original Souza-Aurihio model, i.e. δ = 0 in (2.6), but still σ > 0, it isalso possible to obtain existene of solutions. For the ase σ = 0 the question ofexistene is still open, even in the isothermal ase, see [AMS07℄.5 Temporal regularity via uniform onvexityWe assume that h(·, θ) is αh-uniformly onvex on R
d×ddev , namely there exists a mod-ulus of onvexity αh > 0 suh that for all z0, z1 ∈ R
d×ddev and λ ∈ [0, 1] we have

h(zλ, θ) ≤ (1−λ)h(z0, θ) + λh(z1, θ) −
αh

2
λ(1−λ)|z1−z0|

2, (5.1)where zλ
def
= (1−λ)z0+λz1. By (3.2b) the expression (e−z):C(θ):(e−z) is α-uniformlyonvex in (e−z). With qλ

def
= (1−λ)q0 + λq1, we onlude

∃κ̂ > 0 ∀q0, q1 ∈ Q ∀t ∈ [0, T ] ∀λ ∈ [0, 1] :

E(t, qλ) ≤ (1−λ)E(t, q0) + λE(t, q1) −
κ̂

2
λ(1−λ)‖q1−q0‖

2
B,

(5.2)where κ̂
def
= min(α, αh, σ) and ‖q‖2

B
def
= ‖e(u)−z‖2

L2 +‖z‖2
W 1,2 . Using Korn's inequality(2.1), we �nd ‖q‖B ≥ c0‖q‖Q. Hene, we dedue from (5.2) that

∀q0, q1 ∈ Q ∀t ∈ [0, T ] ∀λ ∈ [0, 1] :

E(t, qλ) ≤ (1−λ)E(t, q0) + λE(t, q1) −
κ

2
λ(1−λ)‖q1−q0‖

2
Q,

(5.3)where κ = κ̂c0. In other words, one has proved that E(t, q) is κ-uniformly onvex inthe variable q. Observe that (5.3) implies that
∀q, q̂ ∈ Q : E(t, q̂) ≥ E(t, q) + 〈DqE(t, q), q̂−q〉Q +

κ

2
‖q−q̂‖2

Q. (5.4)We establish now an estimate that is ruial to prove the temporal regularity resultgiven in Theorem 5.2. 10



Lemma 5.1 Let assumption (3.2) on C and assumption (4.1) on the loadings besatis�ed. Then for all R > 0, there exists CR > 0 suh that
∀t ∈ [0, T ] ∀q, q̂ ∈ Q with ‖q‖Q, ‖q̂‖Q ≤ R :

|∂tE(t, q)−∂tE(t, q̂)| ≤ CR‖q−q̂‖Q.Proof. We denote by w(u, z, θ)
def
= 1

2
(e(u)−z):∂θC(θ):(e(u)−z). First, we point outthat

∂tE(t, q) =

∫

Ω

∂θW (e(u), z, θappl)θ̇appl dx − 〈l̇(t), u〉, (5.5)where ∂θW (e(u), z, θ) = w(u, z, θ) + ∂θh(z, θ). Then, we dedue from (5.5) and(4.1b) that
|∂tE(t, q)−∂tE(t, q̂)| ≤ I‖θ̇appl‖L∞ + ‖l̇(t)‖(W 1,2)′‖u−û‖W 1,2, (5.6)where I

def
=

∫
Ω
|∂θW (e(u), z, θappl)−∂θW (e(û), ẑ, θappl)| dx. This gives

I ≤

∫

Ω

|w(u, z, θappl)−w(û, ẑ, θappl)| dx +

∫

Ω

|∂θh(z, θappl)−∂θh(ẑ, θappl)| dx.The �rst integral is estimated by using (3.3) and Cauhy-Shwarz's inequality. Theseond one by (3.1d) with i = 0 and j = 1 and Hölder's inequality to give
I ≤ CC

θ

(
‖q‖Q + ‖q̂‖Q

)
‖q−q̂‖Q + Ch

zθ‖1+|z|+|ẑ|‖γd−1
Lγd ‖z−ẑ‖Lγd . (5.7)Sine W 1,2(Ω) ⊂ Lγd(Ω) (reall that γd ≤ 2d

d−2
if d ≥ 3), then the last term on theright-hand side of (5.7) is estimated by CCh

zθ

(
1 + ‖z‖W 1,2 + ‖ẑ‖W 1,2

)γd−1
‖z−ẑ‖W 1,2where C > 0. Then, we dedue that

I ≤ max(CC

θ , CCh
zθ)

(
1 + ‖q‖Q + ‖q̂‖Q

)γd−1
‖q−q̂‖Q. (5.8)Introduing (5.8) in (5.6) the assertion (5.5) follows. �Theorem 5.2 (Lipshitz ontinuity). Assume that (3.1a), (3.1) for j=1, (3.3),(4.1), and (5.4) hold. Then any energeti solution q is Lipshitz ontinuous. In fat,let R

def
= ‖q‖L∞([0,T ];Q) and CR > 0 given by Lemma 5.1, then ‖q̇(t)‖Q ≤ CR

κ
for a.e.

t ∈ [0, T ] where κ is de�ned in (5.3).Proof. Considering (5.4) for t
def
= s and q

def
= q(s) we have

∀q̂ ∈ Q : E(s, q̂) ≥ E(s, q(s)) + 〈DqE(s, q(s)), q̂−q(s)〉Q +
κ

2
‖q̂−q(s)‖2

Q. (5.9)For arbitrary s ∈ [0, T ] we know that q(s) ful�lls (S)loc. Choosing v
def
= q̂ − q(s) in(S)loc we dedue from (5.9) that for all q̂ ∈ Q we have

κ

2
‖q̂−q(s)‖2

Q ≤ E(s, q̂) − E(s, q(s)) + R(ẑ−z(s)). (5.10)11



Then, for all t ∈ [0, T ] and s ∈ [0, t], we have
κ

2
‖q(t)−q(s)‖2

Q ≤ E(s, q(t)) − E(s, q(s)) + R(z(t)−z(s))

≤ E(s, q(t)) − E(s, q(s)) +

∫ t

s

R(ż(r)) dr

= −

∫ t

s

∂rE(r, q(t)) dr +

∫ t

s

∂rE(r, q(r)) dr

≤ CR

∫ t

s

‖q(r)−q(t)‖Q dr.The �rst inequality is obtained by hoosing q̂
def
= q(t) in (5.9), the seond one omesfrom the onvexity of R(·), the third identity follows from the energy identity (E),and the last one results from (5.5). Note that this estimate is exatly the assumptionsof the following Lemma 5.3, hene the result follows. �Lemma 5.3 Let q ∈ L∞([0, T ];Q) and C > 0 be given suh that for all t ∈ [0, T ]and s ∈ [0, t] we have

κ

2
‖q(t)−q(s)‖2

Q ≤ C

∫ t

s

‖q(r)−q(t)‖Q dr.Then, q ∈ CLip([0, T ];Q) with ‖q̇(t)‖Q ≤ C
κ
for a.e. t ∈ [0, T ].Proof. The proof is obtained using the same tehniques detailed in the proof ofTheorem 7.5 in [MiT04℄. Sine it is quite a routine to adapt this proof to our ase,we let the veri�ation to the reader. �6 Uniqueness resultUniqueness results in rate-independent hysteresis models are rather exeptional, asusually one needs strong assumptions on the nonlinearities, see [MiT04, MiR07℄.To show uniqueness we onsider two solutions q0 and q1 and prove our result usingthe tehniques developed in [MiT04℄. For this we introdue now some onvenientnotations. For i = 0, 1 and j = 0, 1, 2, let

wi
def
= e(ui) − zi and Dj

qEi
def
= Dj

qE(t, qi(t)).We denote by QR
def
= {q ∈ Q : ‖q‖Q ≤ R}.

12



Proposition 6.1 Assume that (3.1d), (3.1e), (3.2a) and (4.1) hold. Then
DqE(t, q)[q̂] =

∫

Ω

(
ŵ:C(θappl):w + ∂zh(z, θappl):ẑ + σ∇z:∇ẑ

)
dx − 〈l(t), û〉, (6.1a)

∂tDqE(t, q)[q̂] =

∫

Ω

θ̇appl

(
ŵ:∂θC(θappl):w + ∂θ∂zh(z, θappl):ẑ

)
dx − 〈l̇(t), û〉, (6.1b)

D2
qE(t, q)[q̂, q̂] =

∫

Ω

(
ŵ:C(θappl):ŵ + ẑ:∂2

zh(z, θappl):ẑ + σ|∇ẑ|2
)
dx, (6.1)where w

def
= e(u) − z and ŵ

def
= e(û) − ẑ. For R > 0, we have E(t, ·) ∈ C2,Lip(QR; R).Proof. First, using (3.1e) and (3.2a), one an dedue from Lebesgue's theorem that

DqE(t, q), ∂tDqE(t, q) and D2
qE(t, q) exist and (6.1) holds. On the other hand, oneobserves using (3.3) and (3.1d) with i = 2 and j = 0 that

|D2
qE(t, q)[q̂, q̂]| ≤ CC

θ ‖ŵ‖2
L2 + Ch

z ‖1+|z|‖γd−2
Lγd ‖ẑ‖2

Lγd + σ‖∇ẑ‖2
L2 . (6.2)Sine W 1,2(Ω) ⊂ Lγd(Ω) with γd ≤ 2d

d−2
, the seond term on the right side of (6.2) isestimated by C1C

h
z (1 + ‖z‖W 1,2)γd−2‖ẑ‖2

W 1,2 where C1 > 0 and it follows that
|D2

qE(t, q)[q̂, q̂]| ≤ C
(
1+‖q‖Q

)γd−2
‖q̂‖2

Q, (6.3)where C
def
= max(2CC

θ , C1C
h
z , σ). Observe now that (3.1d) with i = 2 and j = 0 andHölder's inequality give

|D2
qE1[q̂, q̂]−D2

qE0[q̂, q̂]| ≤ Ch
zθ‖1+|z0|+|z1|‖

γd−3
Lγd ‖ẑ‖2

Lγd‖z1−z0‖Lγd .Sine W 1,2(Ω) ⊂ Lγd(Ω) with γd ≤ 2d
d−2

then the latter estimate implies that thereexists C2 > 0 suh that
|D2

qE1[q̂, q̂]−D2
qE0[q̂, q̂]| ≤ C2C

h
zθ

(
1+‖q0‖Q+‖q1‖Q

)γd−3
‖q̂‖2

Q‖q1−q0‖Q. (6.4)Hene, E(t, ·) ∈ C2,Lip(QR; R) for every R > 0. �We establish now some estimates in the following lemma that are ruial to obtainthe uniqueness result given in Theorem 6.3.Lemma 6.2 Assume that (3.1d), (3.1e), (3.2a) and (4.1) hold. Then for eah R >

0, there exist C1, C2 > 0 suh that for all q0, q1 ∈ QR, we have
‖∂tDqE1−∂tDqE0‖Q′ ≤ C1‖q1−q0‖Q, (6.5a)
‖DqE1−i−DqEi+D2

qEi[qi−q1−i]‖Q′ ≤ C2‖q1−q0‖
2
Q. (6.5b)Proof. De�ning Wi

def
= W (e(ui), zi, θappl) for i = 0, 1, we observe that

‖∂tDqE1−∂tDqE0‖Q′ = sup
‖bq‖Q≤1

∣∣∣
∫

Ω

θ̇appl(∂θDqW1−∂θDqW0

)
:q̂ dx

∣∣∣,13



where q̂ = (û, ẑ)T ∈ Q. With ŵ = e(û)−ẑ and wj = e(uj)+zj it follows
‖∂tDqE1−∂tDqE0‖Q′ ≤ sup

‖(bu,bz)‖
W1,2≤1

(∫

Ω

|∂θ∂zh(z1, θappl)−∂θ∂zh(z0, θappl)||ẑ|dx

+

∫

Ω

|(w1−w0):∂θC(θappl):ŵ|dx

)
Θ,

(6.6)where Θ
def
= ‖θ̇appl‖L∞ < ∞ due to (4.1a). On the one hand, using (3.1d), with i = 1and j = 1, and Cauhy-Shwarz's inequality one has

∫

Ω

|∂θ∂zh(z1, θappl)−∂θ∂zh(z0, θappl)||ẑ| dx ≤ Ch
zθ‖1+|z0|+|z1|‖

γd−2
Lγd ‖z1−z0‖Lγd‖ẑ‖Lγd .Sine W 1,2(Ω) ⊂ Lγd(Ω) with γd ≤ 2d

d−2
, we dedue from the latter inequality thatthere exists C > 0 suh that

∫

Ω

|∂θ∂zh(z1, θappl)−∂θ∂zh(z0, θappl)||ẑ| dx

≤ CCh
zθ

(
1+‖z0‖W 1,2+‖z1‖W 1,2

)γd−2
‖z1−z0‖W 1,2‖ẑ‖W 1,2.

(6.7)On the other hand, using (3.3) and Cauhy-Shwarz's inequality, we obtain
∫

Ω

|∂θC(θappl)||w1−w0||ŵ| dx ≤ CC

zθ

(
‖u1−u0‖W 1,2+‖z1−z0‖L2

)
‖q̂‖W 1,2. (6.8)Introduing (6.7) and (6.8) in (6.6), we obtain (6.5a).For i = 0, 1, let us evaluate now

‖DqE1−i−DqEi+D2
qEi[qi−q1−i]‖Q′

=
∥∥∥
∫ 1

0

(
DqE(t, qi+ρ(q1−i−qi))+D2

qEi

)
[qi−q1−i] dρ

∥∥∥
Q′

,whih implies by using (6.4) that there exists CR > 0 suh that
‖DqE1−i−DqEi+D2

qEi[qi−q1−i]‖Q′ ≤

∫ 1

0

CRρ‖q1−i−qi‖
2
Q dρ =

CR

2
‖q0−q1‖

2
Q. (6.9)Thus, (6.5b) follows. �Theorem 6.3 Assume that (3.1d), (3.1e), (3.2a) and (4.1) hold. Then for eahstable initial ondition q0, there exists a unique energeti solution q. In partiular,for eah R > 0 there exist onstants C, c > 0 suh that for all stable initial onditions

q0(0), q1(0) ∈ QR, the solutions q0 and q1 satisfy
‖q1(t)−q0(t)‖Q ≤ C exp(ct)‖q1(0)−q0(0)‖Q for all t ∈ [0, T ].14



Proof. The uniqueness result will follow from the estimates obtained in the Lemma6.2 and Gronwall's lemma. Given two solutions q0 and q1, there exists R > 0 suhthat ‖qj‖C0([0,T ],Q) ≤ R for j = 0, 1. De�ne
γ(t)

def
= 〈DqE1−DqE0, q1−q0〉.Then, by κ-uniform onvexity (see (5.4)), we have

‖q1(t)−q0(t)‖
2
Q ≤

γ(t)

κ
. (6.10)On the other hand, the derivative of γ(t) denoted by γ̇(t) is given by

γ̇(t) = 2〈DqE1−DqE0, q̇1 − q̇0〉 + 〈∂tDqE1−∂tDqE0, q1−q0〉

+

1∑

i=0

〈DqE1−i−DqEi+D2
qEi[qi−qi−1], q̇i〉.

(6.11)Taking the test funtions v
def
= q̇1−i in (2.5) for i = 0, 1 and then adding the bothinequalities, we obtain
〈DqE1−DqE0, q̇1−q̇0〉 ≤ 0. (6.12)Using (6.12) in (6.11), we have

γ̇(t) ≤ 〈∂tDqE1−∂tDqE0, q1−q0〉 +
1∑

i=0

〈DqE1−i−DqEi+D2
qEi[qi−qi−1], q̇i〉

≤ ‖∂tDqE1−∂tDqE0‖Q′‖q1−q0‖Q +
1∑

i=0

‖DqE1−i−DqEi+D2
qEi[qi−qi−1]‖Q′‖q̇i‖Q.Then, Theorem 5.2 and Lemma 6.2 enable us to dedue

γ̇(t) ≤ C3‖q1(t)−q0(t)‖
2
Q ≤

C3

κ
γ(t) with C3 = 2(C1+C2CR).Hene, the lassial Gronwall's lemma and (6.10) lead to

‖q1(t)−q0(t)‖
2
Q ≤

1

κ
exp

(
C3

κ
t

)
γ(0). (6.13)Using q0(0), q1(0) ∈ QR and E(0, ·) ∈ C1,Lip(QR; R) we have

γ(0) ≤ C‖q0(0)−q1(0)‖2
Q,with C > 0, and the result follows. �

15



A Appendix: On the Souza-Aurihio modelWe prove now that the assumptions on h introdued in Setion 3 are satis�ed for
hSA given in (2.6). More preisely, we establish the following lemma:Lemma A.1 Assume that ci ∈ C2([θmin, θmax]), i = 1, 2, 3, for all θ ∈ [θmin, θmax]and ci(θ) > 0. Then there exist positive onstants Ch, Ch

θj
, ch

θj
, Ch

θ , Ch
zθ, Ch

z suhthat for all t ∈ [0, T ], θ ∈ [θmin, θmax], z, ẑ ∈ R
d×d
dev , we have,

hSA(·, θ) is αhSA-uniformly onvex and belongs to C3(Rd×d
dev ) with (A.1a)

αhSA def
= min{c1(θ) : θ ∈ [θmin, θmax]},

hSA(z, θ) ≥ Ch(|z|2−1), (A.1b)
∀j = 1, 2 : |∂j

θhSA(z, θ)| ≤ Ch
θj

(hSA(z, θ)+ch
θj

), (A.1)
∀i = 0, 1 : |∂θ∂

i
zhSA(z, θ)−∂θ∂

i
zhSA(ẑ, θ)| ≤ Ch

zθ(1+|z|+|ẑ|)|z−ẑ|, (A.1d)
∀i = 0, 1, 2 : |∂i

zhSA(z, θ)−∂i
zhSA(ẑ, θ)| ≤ Ch

zθ(1+|z|+|ẑ|)3−i|z−ẑ|, (A.1e)
∀i = 1, 2, 3 ∀j = 0, 1 : |∂j

θ∂
i
zhSA(z, θ)| ≤ Ch

z (1+|z|)3−i−j . (A.1f)Proof. Note that hSA(·, θ) is a sum of three non-negative onvex and belonging to
C3(Rd×ddev ):

h1(z, θ)
def
= c1(θ)

√
δ2+|z|2, h2(z, θ)

def
= c2(θ)|z|

2, h3(z, θ)
def
=

1

δ
(|z|−c3(θ))

3
+.Moreover, the quadrati term is α-uniformly onvex and oerive. Hene (A.1a)and (A.1b) hold. De�ne for i = 1, 2, 3, c′i(θ)

def
= ∂θci(θ) and c′′i (θ)

def
= ∂2

θ ci(θ). Theestimates (A.1) will result from the appliation of Young's inequality. First, wedi�erentiate hSA(z, θ) with respet to θ and we obtain easily the following inequality
|∂θhSA(z, θ)| ≤ |c′1(θ)|

√
δ2+|z|2 + |c′2(θ)||z|

2 +
3

δ
|c′3(θ)(|z|

2−c3(θ))
2
+|. (A.2)The last term on the right-hand side of (A.2) is estimated by Young's inequalityand then (A.1) for j = 1 follows.We di�erentiate ∂θhSA(z, θ) with respet to θ and obtain the estimate

|∂2
θhSA(z, θ)| ≤ |c′′1(θ)|

√
δ2+|z|2 + |c′′2(θ)||z|

2 +
3

δ
|2c′3(θ)|(|z|

2−c3(θ))+

+
3

δ
|c′′3(θ)|(|z|

2−c3(θ))
2
+.

(A.3)One again, we use Young's inequality to estimate the last two terms on the right-hand side of (A.3) and obtain (A.1) for j = 2.We note that (A.1d) will be obtained by a simple alulus explained below andsine it is quite a routine, we let the details to the reader. First, we de�ne µi
def
=16



supθ∈[θmin,θmax]|ci(θ)| and ηi
def
= supθ∈[θmin,θmax]|c′i(θ)|, i = 1, 2, 3. On the one hand,using the previous notation, we obtain

|∂θhSA(z, θ)−∂θhSA(ẑ, θ)| ≤ η1

∣∣√δ2+|z|2−
√

δ2+|ẑ|2
∣∣ + η2

∣∣|z|2−|ẑ|2
∣∣

+
3η3

δ

∣∣(|z|−c3(θ))
2
+−(|ẑ|−c3(θ))

2
+

∣∣,whih implies that
|∂θhSA(z, θ)−∂θhSA(ẑ, θ)| ≤ |z−ẑ|

[(η1

δ2
+ η2

)
(|z|+|ẑ|) + (2η3+|z|+|ẑ|)

]
. (A.4)Then, the desired inequality (A.1d) for i = 0 follows from (A.4). On the other hand,one an observe that

|∂θ∂zhSA(z, θ)−∂θ∂zhSA(ẑ, θ)| ≤ η1

∣∣∣∣∣
z√

δ2+|z|2
−

ẑ√
δ2+|ẑ|2

∣∣∣∣∣ + 2η2|z−ẑ|

+
12η3

δ

∣∣z(|z|−c3(θ))+−ẑ(|ẑ|−c3(θ))+

∣∣,whih leads to
|∂θ∂zhSA(z, θ)−∂θ∂zhSA(ẑ, θ)|

≤ |z−ẑ|
[η1

δ

(
1+

1

δ

)
(1+|z|+|ẑ|) + 2η2 +

12η3

δ
(1+|z|+|ẑ|)

]
.Then, one easily dedues (A.1d) for i = 1 by using the latter inequality.One an show easily that

|hSA(z, θ)−hSA(ẑ, θ)| ≤
(
µ1+

µ2

2δ

)
(|z|+|ẑ|)|z−ẑ| + (|z|+|ẑ|)2|z−ẑ|,whih gives (A.1e) for i = 0. We may also observe that

|∂zhSA(z, θ)−∂zhSA(ẑ, θ)| ≤ cδµ1(1+|z|+|ẑ|)|z−ẑ| + µ2|z−ẑ| +
6

δ
(1+|z|+|ẑ|)|z−ẑ|,where cδ

def
= max

(
1
δ
, 1

δ2

). Then (A.1e) for i = 1 follows from the latter estimate. Letus remark now that there exists C > 0 suh that
|∂2

zhSA(z, θ)−∂2
zhSA(ẑ, θ)| ≤ Ccδ

(
µ1(|z|+|ẑ|)|z−ẑ| + (1+|z|+|ẑ|)|z−ẑ|

)
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