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AbstratThe omplete damage of a linearly-responding material that an thus om-pletely disintegrate is addressed at small strains under time-varying Dirihletboundary onditions as a rate-independent evolution problem in multidimen-sional situations. The stored energy involves the gradient of the damage vari-able. This variable as well as the stress and energies are shown to be wellde�ned even under omplete damage, in ontrast to displaement and strain.Existene of an energeti solution is proved, in partiular, by detailed in-vestigating the Γ-limit of the stored energy and its dependene on boundaryonditions. Eventually, the theory is illustrated on a one-dimensional example.1 IntrodutionDamage, as a speial sort of inelasti response of solid materials, results from mi-rostrutural hanges under mehanial load. important relevane in appliationsand routine omputational simulations using various models are performed, althoughmostly without being supported by rigorous mathematial and numerial analysis.This onviningly indiates the mathematial non-triviality of the damage problem.We will onsider damage as a rate-independent proess by negleting all rate de-pendent proesses like visosity and inertia, This is often, although not always,an appropriate onept and has appliations in a variety of industrially importantmaterials, espeially to onrete [13, 16, 33℄, �lled polymers [10℄, or �lled rubbers[18, 24, 25℄. Being rate-independent, it is neessarily an ativated proess, i.e. totrigger a damage the mehanial stress must ahieve a ertain ativation thresh-old. The mathematial di�ulty is re�eted that only loal-in-time existene for asimpli�ed salar model or for a rate-dependent 0- or 1-dimensional model has beenreently performed in [2, 9, 14, 15℄. The 3-dimensional situation was investigated in[27, 28, 11℄ with the fous to inomplete damage. The main fous of this paper is onomplete damage, i.e. the material an ompletely disintegrate and its displaementompletely loses any sense on suh regions. The related mathematial troubles areimmediately expeted and spei� mathematial tehniques urgently needed.We onsider a nonhomogeneous anisotropi material but on�ne ourselves to a ma-terials with linear elasti response and an isotropi damage using only one salardamage parameter under small strains (as in [1, 2, 13, 17℄) and the gradient-of-damage theory [8, 13, 16, 17, 22, 23, 34℄ expressing a ertain nonloality in the sensethat damage of a partiular spot is to some extent in�uened by its surrounding,1



leading to possible hardening or softening-like e�ets, and introduing a ertain in-ternal length sale eventually preventing damage mirostruture development. Fromthe mathematial viewpoint, the damage gradient has a ompatifying harater andopens possibilities for the suessful analysis of the model. Anyhow, some investiga-tions are still possible without gradient of damage, as shown in [11℄ for inompletedamage, leading to a possible mirostruture in the damage pro�le.To present a relevant formulation of the rate-independent evolution of the damage,in Setion 2 we �rst srutinize the stati problem with a presribed damage pro�leunder a presribed boundary ondition. Then, in Setion 3, the energeti solutionto the evolution problem is formulated in terms of the damage pro�le and stress (or,equivalently, of the shape of ompletely damaged part and the strain in the rest)and its existene is proved with help of results from [26, 27, 28℄. Eventually, anillustrative one-dimensional example is presented in some detail in Setion 4.2 Stati problem and its perturbation analysisWe onsider a bounded Lipshitz domain Ω ⊂ R
d, an open nonempty part Γ ⊂

∂Ω of its boundary ∂Ω on whih we presribe the Dirihlet boundary ondition
w ∈ W 1/2,2(Γ; Rd). We use the standard notation W k,p for Sobolev or Sobolev-Slobodetski�� spaes whose p-power of the k-order derivatives is integrable, allowingfor k > 0 non-integer. Further, we will onsider ζ ∈ W 1,r(Ω) valued in [0, 1] as asalar damage parameter assumed presribed in this setion but later, in Setions 3and 4, it will evolve in time. The meaning of ζ is the portion of the undamagedmaterial, i.e. ζ(x) = 1 means that the material is ompletely undamaged at theurrent point x ∈ Ω while ζ(x) = 0 means just the opposite, i.e. omplete damageat x. Let us abbreviate the set of admissible damage pro�les

Z :=
{
ζ∈W 1,r(Ω); ζ(·) ∈ [0, 1] a.e. on Ω

} (2.1)and denote the set of the omplete damage by
Nζ :=

{
x∈Ω; ζ(x) = 0

}
, (2.2)then u : Ω\Nζ → Rd will denote a displaement. Naturally, we do not onsider ude�ned on the damaged part Nζ where the material is ompletely disintegrated.Our aim is to investigate a minimization problem that an be formally written asminimize V0(u, ζ) :=

∫

Ω

ζ(x)ϕ
(
x, [e(u)](x)

)
+

κ(x)

r
|∇ζ(x)|r dxsubjet to u is a displaement suh that u|Γ = w.



 (2.3)where κ : Ω → R is a so-alled fator of in�uene of damage and ϕ : Ω × Rd×d

sym → Ris a Carathéodory funtion suh that ϕ(x, ·) : R
d×d
sym → R is a quadrati oerive2



form on the set of the symmetri (d× d)-matries R
d×d
sym desribing the elasti storedenergy, say

ϕ(e) =
1

2

d∑

i,j,k,l=1

Cijkl(x)eijekl, (2.4)and where, as usual in linear elastiity (where small deformations are assumed), e(u)denotes the linearized strain tensor, alled the small-strain tensor:
e(u) =

1

2
(∇u)⊤ +

1

2
∇u. (2.5)The 4-th order tensor C(x) of elasti moduli satis�es the usual symmetries, uniformpositive-de�niteness and boundedness:

∀(a.a.) x∈Ω : Cijkl(x) = Cjikl(x) = Cklij(x), (2.6a)
∃η > 0 ∀(a.a.)x∈Ω ∀e ∈ R

d×d
sym :

d∑

i,j,k,l=1

Cijkl(x)eijekl ≥ η|e|2, (2.6b)
Cijkl ∈ L∞(Ω). (2.6)The term 1

r
κ(x)|∇ζ(x)|r models a ertain nonloality as mentioned in Set. 1 andis quite often used in literature [8, 13, 16, 17, 22, 23℄. The salar oe�ient κdetermines a ertain length-sale of the possible �ne struture that might develop ina damage pro�le and, in aord with the adopted nonhomogeneous-material onept,is assumed possibly x-dependent and to satisfy

κ ∈ L∞(Ω), ess inf
x∈Ω

κ(x) > 0. (2.7)In partiular, for the usage in Set. 3, we are interested in a ertain stability of thisproblem with respet to perturbations of the damage pro�le ζ with respet to theweak W 1,r(Ω)-topology. Here, in aord with [27℄, we onsider r > d. Then Nζfrom (2.2) is losed in Ω sine ζ ∈ W 1,r(Ω) ⊂ C(Ω̄) with r > d. Let us remark thatthe theory of inomplete damage was alternatively developed also for ζ ∈ W α,2(Ω)with α > 0 in [28℄ but it is not obvious how it would be transferred to ompletedamage beause, in the following onsideration, we will heavily rely on the ompatembedding ζ ∈ W 1,r(Ω) ⊂ C(Ω̄).Let us agree that oasionally we will omit the expliit x-dependene of ϕ for brevity.2.1 Regularized problemThe mentioned essential trouble with (2.3) is that the displaement u has no obviousmeaning on the ompletely damaged part Nζ , whih is why (2.3) must be onsideredonly formally, as said above. For the purpose of further analysis based on the resultsfrom [27, Set.4℄ and, perhaps even more importantly, for a oneptual numerial3



strategies (see Remark 3.10 below), it is relevant to investigate limit behavior (for
ε → 0+) of a regularized problemminimize Vε(u, ζ) :=

∫

Ω

(
ζ(x)+ε

)
ϕ
(
x, [e(u)](x)

)
+

κ(x)

r
|∇ζ(x)|r dxsubjet to u ∈ W 1,2(Ω; Rd), u|Γ = w.




 (2.8)Obviously, V0 from (2.3) is just Vε for ε = 0. For ε ≥ 0, let us de�ne
Gε(u, ζ) :=

{
Vε(u, ζ) if u|Γ = w and ζ ∈ Z,
+∞ elsewhere, (2.9)where Z is from (2.1). The theory for omplete damage developed in [27, Set.4℄relies on a substantial stored energy de�ned, for a given damage pro�le ζ and ahard-devie loading w, as the Γ-limit of the sequene {gε}ε>0 (onsidering only aountable number of ε onverging to 0) where

gε(ζ) := min
u∈W 1,2(Ω;Rd)

Gε(u, ζ). (2.10)Let us note that the minimum in (2.10) is attained by the standard oerivityarguments.Thanks to the regularization term ∫
Ω

κ
r
|∇ζ |r dx, the relevant topology used for thedamage variable ζ will be the weak topology of W 1,r(Ω). It is important for thesubsequent analysis that we assumed r > d so that the weak onvergene of asequene {ζε} (denoted as usual by ζε ⇀ ζ) implies the uniform onvergene asontinuous funtions on Ω.Reall now that the sequene {gε}ε>0 is said to be sequentially Γ-onvergent to gfor the weak topology of W 1,r(Ω) if the following properties hold:(i) lower bound: for every sequene {ζε}ε>0 onverging weakly to ζ ∈ Z, we have:

lim inf
ε→0

gε(ζε) ≥ g(ζ). (2.11)(ii) reovering sequene: for every ζ ∈ Z there exists a sequene {ζε}ε>0 ⊂ Zonverging to ζ suh that
lim sup

ε→0
gε(ζε) ≤ g(ζ). (2.12)When properties (i) and (ii) are satis�ed, we write g = Γ- limε→0 gε. In our ase thesequene {gε}ε>0 is monotone and the existene of a Γ-limit is guaranteed by thefollowing lemma:Lemma 2.1 (See [6℄.) Assume that gε is noninreasing with respet to ε and let

g0(ζ) := infε>0 gε(ζ). Then {gε}ε>0 does Γ-onverge to the lower semiontinuousenvelope of g0 with respet to the weak topology on W 1,r(Ω).4



In our ase, the omputation of g0 is quite easy: by using (2.10) and by swithingthe in�mum in ε with the in�mum in u, one has
g0(ζ) = inf

ε>0
inf

u∈W 1,2(Ω)
Gε(u, ζ) = inf

u∈W 1,2(Ω)
inf
ε>0

Gε(u, ζ) = inf
u∈W 1,2(Ω)

G0(u, ζ) . (2.13)As a onsequene of Lemma 2.1, g0 will be the Γ-limit we are looking for provided
g0 given above enjoys the lower semiontinuity property. Unfortunately, as shownin Setion 2.2, this property fails and the determination of g is a more involvedproblem whih we are going to solve later, see Proposition 2.10.Also note that g is always bounded from below beause we do not onsider anyexternal dead loading like gravity fore; obviously, we always have g ≥ 0. In fat,due to the regularization term ∫

Ω
κ
r
|∇ζ |r dx and (2.7), we have even the oerivity

g(ζ) ≥ (ess inf κ
r
)‖∇ζ‖r

Lr(Ω;Rd) and therefore the sequential Γ-limit g is weakly lowersemiontinuous.Remark 2.2 (Moso onvergene.) In fat, later in the proof of (3.21) we will showeven strong onvergene of reovery sequenes. This allows for replaing the weaktopology in (ii) by the strong one, whih means that the onvergene of gε to g inthe sense of U. Moso [32℄.2.2 A 1-dimensional ounterexampleLet us show a 1-dimensional example of a failure of weak lower-semiontinuity of g0.Being inspired by [3, Example 3℄, let us onsider d = 1, the interval Ω := (−1, 1),the Dirihlet ondition w presribed on Γ := {−1, 1} as w(x) := x, ϕ(e) = 1
2
|e|2,and the damage pro�le

ζ(x) :=
∣∣x

∣∣α with 1 − 1

r
< α < 1. (2.14)Diret alulations easily shows that ζ ∈ W 1,r(Ω). Then we onsider the sequene

{ζn}n∈N of
ζn(x) :=

(
max

(
0, |x| − 1

n

))α

. (2.15)Obviously ζn → ζ for n → ∞ even in the norm topology of W 1,r(Ω). Moreover,
g0(ζn) = 0 beause obviously g0(ζn) = G0(un, ζn) = 0 for the pieewise a�ne dis-plaement pro�le

un(x) :=






−1 for −1 ≤ x ≤ − 1
n
,

nx for − 1
n

< x < 1
n
,

1 for 1
n
≤ x ≤ 1.

(2.16)5



Therefore g(ζ) = 0 beause
0 ≤ g(ζ) ≤ lim inf

n→∞
G0(un, ζn) = lim

n→∞
0 = 0. (2.17)On the other hand, we will show that infu∈W 1,2(Ω;Rd) G0(u, ζ) > 0. Sine α < 1,

‖ | · |−α‖L1(Ω) = 2/(1 − α) and, in partiular, 1/ζ : x 7→ |x|−α ∈ L1(Ω). We realizethat in our 1-dimensional ase we have d
dx

u = e(u) and, by Young's inequality, theestimate
∥∥∥

du

dx

∥∥∥
L1(Ω)

= sup
‖v‖L∞(Ω)≤1

∫

Ω

du

dx
v dx

≤ sup
‖v‖L∞(Ω)≤1

∫

Ω

ζ

2

∣∣∣
du

dx

∣∣∣
2

+
|v|2
2ζ

dx ≤
∫

Ω

ζϕ(e(u)) dx +
1

2

∥∥∥
1

ζ

∥∥∥
L1(Ω)

. (2.18)This shows that eah set of u's that has a bounded energy is inevitably boundedin W 1,1(Ω). Note that both subintervals (−1, 0) and (0, 1) whih a.e. over Ω =
(−1, 1), are onneted with Γ where the boundary onditions are �xed so that theboundedness of u's in L∞(Ω) is also granted. In partiular, it holds for a minimizingsequene {un}n∈N for G0(·, ζ). Hene it ontains a subsequene onverging weakly*in BV(Ω), the spae of bounded-variation funtions, to some limit u. In partiular,
d
dx

un
∗⇀ Du in the spae of measures on [−1, 1]. Let us onsider a weighted Lebesguespae L2

µ(Ω) := {v;
∫
Ω

µ|v|2 dx < +∞} with µ ∈ L1(Ω) �xed; this is a Hilbertspae whih we identify standardly with its dual. Replaing both L1(Ω) and L∞(Ω)in (2.18) by L2
µ(Ω) shows that { d

dx
un}n∈N is bounded also in L2

µ(Ω) if the weight
µ is taken 1/ζ . Note that suh µ is absolutely ontinuous with respet to theLebesgue measure. Hene the subsequene { d

dx
un}n∈N onverges also in L2

µ(Ω),hene Du ∈ L2
µ(Ω). In partiular, Du is absolutely ontinuous with respet to µ,and thus also with respet to the Lebesgue measure. This, however, shows that

g0(ζ) := inf
u∈W 1,2(Ω;Rd)

G0(u, ζ) = lim
n→∞

G0(un, ζ), = G0(u, ζ) > 0 (2.19)beause G0(u, ζ) = 0 would be possible only for u onstant on (−1, 0) (being equalto −1) and on (0, 1) (being equal to 1). Yet, suh u has its gradient 2δ0, with δ0denoting the Dira measure at 0, whih is not absolutely ontinuous.Corollary 2.3 For the salar situation and Ω, ϕ, and ζ from the above example, itholds g(ζ) < infu∈W 1,2(Ω;Rd) G0(u, ζ).Proof. Just use (2.17) and (2.19). 2In fat, the above Corollary 2.3 just gives the ounterexample for the (thus wrong)onjeture in [27, Remark 4.1℄.
6



2.3 Realizable strain, stress and energyThe important question is the behavior of the stress
σε = (ζε + ε)ϕ′

e(e(uε)) = (ζε + ε)Ce(uε), (2.20)where uε is the minimizer of Gε(·, ζε) as well as the orresponding strain e(uε) andthe energy Gε(·, ζε) itself, when ζε approahes ζ weakly in W 1,r(Ω) and ε → 0+. Wewill denote suh sort of limit objets by the adjetive �realizable�. For this, let us�rst de�ne (possibly nonuniquely) a realizable strain e. Let us de�ne standardly
L2

loc(Ω\Nζ ; R
d) :=

{
u : Ω\Nζ → R

d; ∀A ⊂ Ω\Nζ open,
cl(A) ∩ Nζ = ∅ : u|A ∈ L2(A; Rd)

}
. (2.21)Lemma 2.4 (Realizable strains.) The sequene {e(uε)}ε>0 is bounded in

L2
loc(Ω\Nζ; R

d×d
sym) and there is e ∈ L2

loc(Ω\Nζ ; R
d×d
sym) and a subsequene suh that

e(uε) ⇀ e weakly in L2
loc(Ω\Nζ ; R

d×d
sym), i.e. e(uε)|A ⇀ e|A weakly in L2(A; Rd×d

sym) forany A ⊂ Ω\Nζ as in (2.21).Proof. Let Nζ 6= Ω, otherwise the statement is trivial. Without loss of generality, wean assume A's in (2.21) to be organized into an inreasing sequene whose union isjust Ω\Nζ . As ζε → ζ in C(Ω̄), for any Aj from this sequene there is δAj
> 0 and

ε0 > 0 suh that ζε + ε ≥ δAj
provided ε ≤ ε0. Then, for ε ≤ ε0,

∫

Aj

ϕ(e(uε)) dx ≤ 1

δAj

∫

Aj

(ζε + ε)ϕ(e(uε)) dx

≤ 1

δAj

∫

Ω

(ζε + ε)ϕ(e(uε)) dx =
Gε(uε, ζε)

δAj

, (2.22)whih is bounded uniformly with respet to ε > 0. By the assumed oerivity of ϕ,we have e(uε) bounded in L2(Aj; R
d×d
sym). Then we an selet a subsequene of ε's suhthat {e(uε)|Aj

} onverges weakly in L2(Aj ; R
d×d
sym) if ε → 0 to some limit, let us denoteit by eAj

. Then we an take Aj+1 and selet further subsequene from this alreadyseleted one. This will keep the onvergene of {e(uε)|Aj
} and gives some eAj+1

as aweak limit of the sub-subsequene {e(uε)|Aj+1
}. Of ourse, eAj+1

|Aj
= eAj

. In�ating
Aj's by passing j → ∞ gives by the diagonalization proedure a subsequene of
{e(uε)}ε>0 and e de�ned a.e. on Ω\Nζ by e|Aj

:= eAj
with the laimed properties. 2The following assertion introdues and haraterizes a realizable stress s provided eis onstruted by Lemma 2.4.Proposition 2.5 (Realizable stress.) The sequene {σε}ε>0 is bounded in

L2(Ω; Rd×d
sym), and eah subsequene seleted in Lemma 2.4 onverges weakly to arealizable stress s that satis�es

s =

{
ζϕ′

e(e) on Ω\Nζ ,
0 on Nζ .

(2.23)Moreover, this onvergene is even strong on Nζ.7



Proof. It has already been observed in [27, Formula (4.11)℄ that {σε}ε>0 is boundedin L2(Ω; Rd×d
sym). Indeed, using the property of the quadrati form ϕ

∃Cϕ < +∞ ∀e ∈ R
d×d
sym : |ϕ′

e(e)|2 = ϕ′
e(e) : ϕ′

e(e) ≤ Cϕϕ(e), (2.24)we obtain
lim sup

ε→0

∥∥σε

∥∥2

L2(Ω;Rd×d
sym )

= lim sup
ε→0

∫

Ω

(ζε + ε)2|ϕ′
e(e(uε))|2 dx

≤ lim sup
ε→0

(
‖ζε‖L∞(Ω) + ε

)∫

Ω

(ζε + ε)|ϕ′
e(e(uε))|2 dx

≤ lim sup
ε→0

(
‖ζε‖L∞(Ω) + ε

)
Cϕ

∫

Ω

(ζε + ε)ϕ(e(uε)) dx

= ‖ζ‖L∞(Ω)Cϕ lim sup
ε→0

∫

Ω

(ζε + ε)ϕ(e(uε)) dx < +∞. (2.25)Hene we an onsider a subsequene and a limit realizable stress s suh that σε ⇀ sin L2(Ω; Rd×d
sym).Having ζε → ζ weakly in W 1,r(Ω), hene strongly in L∞(Ω), and e(uε)|A ⇀ e|A(a subsequene) in L2(A; Rd×d

sym) for eah A as in (2.21), we an just pass to thelimit in (2.20) to get the equality s = ζϕ′
e(e) on A. For this, we used that ϕ′

e in(2.20) is linear. In�ating A yields this equality on the whole Ω\Nζ in the sense of
L2

loc(Ω\Nζ; R
d×d
sym) and thus also L2(Ω\Nζ ; R

d×d
sym) beause s ∈ L2(Ω; Rd×d

sym). On theother hand, s = 0 on Nζ beause ζε → 0 in L∞(Nζ) and, similarly as in (2.25), wean estimate
∥∥σε

∥∥2

L2(Nζ ;Rd×d
sym )

≤
(

sup
Nζ

ζε + ε
)

︸ ︷︷ ︸onverges to 0 Cϕ

∫

Nζ

(ζε + ε)ϕ(e(uε)) dx

︸ ︷︷ ︸remains bounded for ε → 0

−→ 0. (2.26)Hene we have the omplete formula (2.23) for the realizable stress. As we identi�edthe limit by means of e onstruted by a subsequene seleted for Lemma 2.4, wedo not need to selet a further subsequene here. 2In view of (2.4), we obtained
sij =

{
ζ

∑d
k,l=1 Cijklekl on Ω\Nζ ,

0 on Nζ.
(2.27)The further important quantity is the realizable energy density E desribing the limitbehavior of the spei� stored energy Eε := (ζε + ε)ϕ(e(uε)) related to the uniqueminimizer uε of the regularized problem Gε(·, ζε). Let us also note that uε is theminimizer of Gε(·, ζε) satis�es the Euler-Lagrange equation, i.e. in the weak form,

∀v ∈ W 1,2(Ω; Rd), v|Γ = 0 :

∫

Ω

(ζε + ε)ϕ′
e(e(uε)) : e(v) dx = 0. (2.28)8



Considering u
D
is a ontinuation of the Dirihlet boundary data w onto Ω, using

v = uε − u
D
in (2.28) and realizing also (2.4) and (2.20) then yield the formula forthe total energy

∫

Ω

Eε(x) dx =

∫

Ω

(ζε + ε)ϕ(e(uε)) dx

=
1

2

∫

Ω

(ζε + ε)ϕ′
e(e(uε)) : e(uε) dx

=
1

2

∫

Ω

(ζε + ε)ϕ′
e(e(uε)) :e(u

D
) dx =

1

2

∫

Ω

σε :e(u
D
) dx. (2.29)Proposition 2.6 (Realizable energy.) The sequene {Eε}ε>0 is bounded in

L1(Ω), and thus, as a subsequene, onverges weakly* to a realizable energy density,let us denote it by E. This density is a measure on Ω̄ suh that limε→0 Gε(uε, ζε) =
limε→0

∫
Ω

Eε(x) dx =
∫
Ω̄

E(dx). In partiular, it holds for the subsequene seletedalready in Lemma 2.4 and then, for e from Lemma 2.4 and s from (2.27), it holds
∫

Ω̄

E(dx) =
1

2

∫

Ω

s :e(u
D
) dx =

∫

Ω\Nζ

ζ
d∑

k,l=1

Cijklekl :e(uD
) dx, (2.30)where u

D
∈ W 1,2(Ω; Rd) is an (arbitrary) ontinuation of w onto Ω.Proof. It just su�es to apply Proposition 2.5 to (2.29) and apply (2.27). 2Example 2.7 (Nonuniqueness of e, s, and E.) Referring to Setion 2.2, we onsider

ζε := ζn from (2.15) with n = n(ε) suh that n → ∞ but εn(ε)1/α → 0 for ε →
0. Then, for ε small, ζε + ε and the orresponding uε essentially approah thepro�les ζn(ε) and un(ε) from (2.15) and (2.16), respetively. This is beause theoverall sti�ness of the slot of the length 2n(ε)−1/α �lled of �material� with the elastimodulus ε is 1

2
εn(ε)1/α and asymptotially goes to zero so that asymptotially weapproah the situation in Setion 2.2. For this un(ε), we have got e(un(ε)) = 0 on

Ω\ [− 1
n(ε)

, 1
n(ε)

]. For ζε+ε, this holds only asymptotially but, nevertheless, the limitis the same, namely e = 0 on Ω \ {0}. Also the orresponding stress and the energyis (asymptotially) zero, and thus in the limit both s and E are zero. On the otherhand, for ζε := ζ from (2.14), the displaement pro�le uε ∈ W 1,2(Ω) orrespondingto ζε + ε essentially imitates (2.19), i.e. G0(uε, ζε + ε) onverges to G0(u, ζ) > 0onstruted in Setion 2.2. In partiular, e = e(u) 6= 0, s = ζe(u) 6= 0, and also∫
[−1,1]

E( dx) > 0. Of ourse, in both ases ζε + ε onverges to the same limit pro�le
ζ .In view of the above Example 2.7, it makes sense to onsider the set of all realizablestresses s for a given damage pro�le:

S(ζ) :=
{
s∈L2(Ω; Rd×d

sym); ∃ζε ⇀ ζ weakly in W 1,r(Ω) :

σε ⇀ s weakly in L2(Ω; Rd×d
sym) with σε from (2.20)}. (2.31)9



Proposition 2.8 The set S(ζ) is weakly ompat in L2(Ω; Rd×d
sym).Proof. By arguments like in the proof of Proposition 2.5, we an see that the set

S(ζ) is bounded in L2(Ω; Rd×d
sym); in fat, all its elements must share the bound in(2.25). Due to metrizability of the weak topology on bounded sets of L2(Ω; Rd×d

sym),we an equally fous on sequential ompatness. Take a sequene {sj}j∈N ⊂ S(ζ).As it is bounded in L2(Ω; Rd×d
sym), it ontains a subsequene (for simpliity denotedby the same indexes) onverging weakly in L2(Ω; Rd×d

sym); let s denote its limit. As
sj ∈ S(ζ) for eah j, there are sequenes {ζεjk

}k∈N suh that limk→∞ εjk = 0,w-limk→∞ ζεjk
= ζj (meant weakly in W 1,r(Ω)) and w-limk→∞ σεjk

= sj with
σεjk

= (ζεjk
+εjk)ϕ

′
e(e(uεjk

)). By the diagonalization proedure we obtain a sequene
{σεjnkn

}n∈N onverging to s, whih shows that s ∈ S(ζ). 2Proposition 2.9 It holds
g(ζ) = min

s∈S(ζ)

1

2

∫

Ω

s : e(u
D
) dx (2.32)where u

D
∈ W 1,2(Ω; Rd) is as in Proposition 2.6.Proof. As u

D
∈ W 1,2(Ω; Rd), also e(u

D
) ∈ L2(Ω; Rd×d

sym), and s 7→ 1
2

∫
Ω

s : e(u
D
) dxis a weakly ontinuous funtional whih obviously attains its minimum on the set

S(ζ) whih is, due to Proposition 2.8, weakly ompat.By the de�nition (2.10) of g, the sequene (ε, ζ̃) → (0, ζ) in�mizing the expressionin (2.10) gives a luster point s of the orresponding sequene {σε,ζ̃} with σε,ζ̃ =

(ζ̃ + ε)ϕ′
e(e(uε,ζ̃)) where σε,ζ̃ minimizes Gε(·, ζ̃), f. (2.20). This yields s ∈ S(ζ) and,using also (2.29),
g(ζ) = lim

(ε,ζ̃)→(0,ζ)

∫

Ω

(ζ̃ + ε)ϕ(e(uε,ζ̃)) dx = lim
(ε,ζ̃)→(0,ζ)

1

2

∫

Ω

σε,ζ̃ : e(u
D
) dx

=
1

2

∫

Ω

s : e(u
D
) dx ≥ min

es∈S(ζ)

1

2

∫

Ω

s̃ : e(u
D
) dx. (2.33)Conversely, taking s ∈ S(ζ) at whih the minimum in (2.32) is attained and, by(2.31), the sequene {ζε}ε>0 suh that the orresponding {σε}ε>0 attains s, usingagain also (2.29), we obtain

g(ζ) ≤ lim inf
ε→0

∫

Ω

(ζε + ε)ϕ(e(uε)) dx = lim
ε→0

1

2

∫

Ω

σε : e(u
D
) dx

=
1

2

∫

Ω

s : e(u
D
) dx = min

es∈S(ζ)

1

2

∫

Ω

s̃ : e(u
D
) dx. 2Let us note that the formula (2.32) determines (still nonuniquely) a stress s thatrealizes the minimum in (2.32). Let us all it a minimizing realizable stress. Nat-urally, we an think also about the orresponding minimizing realizable strain10



e ∈ L2
loc(Ω\Nζ ; R

d×d
sym) related with s by

e(x) =
[
ϕ′

e

]−1
( s(x)

ζ(x)

) for a.a. x ∈ Ω\Nζ . (2.34)Let us agree to all the realizable stress s ∈ S(ζ) whih realizes the minimum in(2.32) an e�etive stress and e orresponding to it via (2.34) the e�etive strain.2.4 E�etive stress and strain, and sensitivity to the bound-ary dataNow, we onstrut a partiular e�etive stress, i.e. a minimizer for (2.32), thatprovides a haraterization of the Γ-limit (2.11)�(2.12) as a pointwise limit and itleads to a seletion of a partiular e�etive stress and that this e�etive stress anbe reovered by using a partiular approximating sequene ζε. Thus we will be ableto prove a spei� di�erentiable behavior (sometimes, in optimization theory, alleda sensitivity) of this Γ-limit with respet to varying boundary onditions.For this, we apply the standard shift of the Dirihlet ondition. Let us abbreviatethe linear spae W 1,2
Γ (Ω; Rd) := {v ∈ W 1,2(Ω; Rd); v|Γ = 0}. Considering e

D
∈

L2(Ω; Rd×d
sym), we de�ne

Fε(eD
, v, ζ) :=

∫

Ω

(ζ+ε)ϕ
(
x, e

D
+ e(v)

)
dx. (2.35)Note that, onsidering again the ontinuation u

D
of the Dirihlet ondition w as inProposition 2.6 and Gε from (2.9), we have

Gε(u, ζ) = Fε(eD
, v, ζ) with e

D
:= e(u

D
) and v := u − u

D
, (2.36)for any v ∈ W 1,2

Γ (Ω; Rd) or, equally, for any u ∈ W 1,2(Ω; Rd) suh that u|Γ = w. For
e

D
∈ L2(Ω; Rd×d

sym) let
fε(eD

, ζ) := min
v∈W 1,2

Γ (Ω;Rd)
Fε(eD

, v, ζ). (2.37)For ε > 0, the stritly onvex quadrati funtional Fε(eD
, ·, ζ) on W 1,2

Γ (Ω; Rd) has aunique minimizer, say v, and the mapping Lζ+ε de�ned as
e

D
7→ Lζ+εv : L2(Ω; Rd×d

sym) → W 1,2
Γ (Ω; Rd), v minimizes Fε(eD

, ·, ζ), (2.38)is linear and bounded. Hene, we onlude that, for eah ζ , the funtional
e

D
7→ fε(eD

, ζ) = Fε(eD
, Lζ+εeD

, ζ) (2.39)is a quadrati form on L2(Ω; Rd×d
sym) whih, moreover, is bounded uniformly, namely

0 ≤ fε(eD
, ζ) ≤ C‖e

D
‖2

L2(Ω;Rd×d
sym )

with C := (‖ζ‖C(Ω̄) + ε)‖C‖L∞(Ω;Rd×d×d×d).11



Now, like in (2.10), we onsider the Γ-limit of the olletion {fε(·, ζ)}ε>0,ζ∈Z as
f(e

D
, ζ) := lim inf

ε→0+

ζ̃⇀ζ, ζ̃∈Z

fε(eD
, ζ̃) (2.40)with Z de�ned in (2.1). The following assertion is based on an expliit onstrutionto a universal reovery sequene for the Γ-limit (2.40).Proposition 2.10 (A formula for the Γ-limit f.) For all ζ ∈ Z the funtional

f(·, ζ) : L2(Ω; Rd×d
sym) → R is onvex and quadrati, and an be obtained as follows:

f(e
D
, ζ) = lim

δ→0+

(
lim

ε→0+
F(ε, δ, e

D
, ζ)

)
, (2.41)where

F(ε, δ, e
D
, ζ) = fε

(
e

D
, (ζ−δ)+

) with (ζ−δ)+ := max{ζ−δ, 0}. (2.42)Proof.Note that eah F(ε, δ, ·, ζ) is a bounded onvex quadrati form on L2(Ω; Rd×d
sym).If the limit exists, then it will be a onvex quadrati form again.For the existene of the limits, we use the following monotoniities of F :

0 < ε1 < ε2 =⇒ F(ε1, δ, eD
, ζ) < F(ε2, δ, eD

, ζ); (2.43a)
0 < δ1 < δ2 =⇒ F(ε, δ1, eD

, ζ) ≥ F(ε, δ2, eD
, ζ). (2.43b)This follows easily from the monotoniity Fε1(eD

, v, ζ1) ≤ Fε2(eD
, v, ζ2), and henealso fε1(eD

, ζ1) ≤ fε2(eD
, ζ2), whenever 0 < ε1+ζ1 ≤ ε2+ζ2.Thus, the existene of the inner limit ε → 0+ follows beause the funtion is non-inreasing in ε, let us denote it as F0(δ, eD

, ζ) := limε→0+ F(ε, δ, e
D
, ζ), Hene,

F0(δ, ·, ζ) exists and is a bounded quadrati form on L2(Ω; Rd×d
sym). Moreover,

F0(·, uD
, ζ) is still non-dereasing on [0, 1]. Hene, F00(eD

, ζ) := limδ→0+ F0(δ, uD
, ζ)exists and for eah ζ ∈ Z, the funtional F00(·, ζ) : L2(Ω; Rd×d

sym) → R is a boundedquadrati form.As F00(uD
, ζ) is just the right-hand side of (2.41), it remains to show that f = F00.To show f ≥ F00, we take a reovery sequene ζε for (2.40), i.e. suh that ζε ⇀ ζ ,

ζε ≥ 0, and fε(eD
, ζε) → f(e

D
, ζ). For eah δ > 0 there exists εδ > 0 suh that

ζε ≥ (ζ−δ)+ for ε ∈ (0, εδ); note that here r > d was essential. Hene, we �nd
fε(eD

, ζε) ≥ F(ε, δ, e
D
, ζ). Keeping δ > 0 �xed and letting ε → 0+ we �nd g(e

D
, ζ) ≥

F0(δ, eD
, ζ). Now taking the limit δ → 0+ we obtain f(e

D
, ζ) ≥ F00(eD

, ζ).To show f ≤ F00, we use a diagonalization argument to �nd a sequene 0 < δε → 0for ε → 0+ suh that F(ε, δε, eD
, ζ) → F00(eD

, ζ). Now onsider the funtions
ζε = (ζ−δε)

+, so that F(ε, δε, eD
, ζ) = fε(eD

, ζε). Beause of δε → 0 we easily �ndthat ζε ⇀ ζ in W 1,r(Ω) beause obviously ζε → ζ in C(Ω̄) and beause always12



|∇ζε| ≤ |∇ζ | a.e. on Ω. Also, ζε ∈ Z beause ζ ∈ Z and δε ≥ 0. Hene we onludeby the de�nition of the Γ-limit that
f(e

D
, ζ) ≤ lim inf

ε→0+
fε(eD

, ζε) = lim
ε→0+

F(ε, δε, eD
, ζ) = F00(eD

, ζ). (2.44)
2Let us now fous on sensitivity with respet to the boundary ondition w or, moreonveniently, to its extension u

D
. In the �language� of this subsetion, it means rathersensitivity with respet to e

D
. As f(·, ζ) was proved to be a bounded quadrati form,its derivative is a bounded linear operator, let us denote it by Tζ : L2(Ω; Rd×d

sym) →
L2(Ω; Rd×d

sym). Thus we de�ne a stress
τ = τ(e

D
, ζ) := TζeD

:= f′e
D
(e

D
, ζ). (2.45)Let us now relate this to the original quantities as de�ned before. The followinglemma uses an argument developed in [26, Proposition 5.6℄, whih in turn is anabstrat version of a result in [7℄.Lemma 2.11 Let {ζε}ε>0 be a reovery sequene for f(e

D
, ζ) as de�ned by (2.40),let e

D
= e(u

D
), and let σε be the stress orresponding to ζε and u

D
due to the formula(2.20). Then, referring to (2.45), it holds σε ⇀ τ in L2(Ω; Rd×d

sym).Proof. In view of (2.40), having assumed {ζε} a reovery sequene, we just assume
fε(eD

, ζε) → f(e
D
, ζ), ε → 0+, and ζε ⇀ ζ . For any other e ∈ L2(Ω; Rd×d

sym), we haveonly
lim inf

ε→0
fε(e, ζε) ≥ f(e, ζ) (2.46)just by the de�nition of the Γ-limit (2.40). Let us put τε := [fε]

′
e
D
(e

D
, ζε). We wantto show that τε ⇀ τ with τ from (2.45). As {τε}ε>0 is bounded in L2(Ω; Rd×d

sym), thereis at least a subsequene onverging to some τ̃ weakly. By the de�nition of τε andby the onvexity of fε(·, ζε), for any h > 0 and any e ∈ L2(Ω; Rd×d
sym), we have

∫

Ω

τε : ẽ dx ≤ fε(eD
, ζε) − fε(eD

− hẽ, ζε)

h
. (2.47)Passing ε → 0+ in (2.47) and using (2.46) for e := e

D
− hẽ, we obtain

∫

Ω

τ̃ : ẽ dx = lim
ε→0+

∫

Ω

τε : ẽ dx ≤ lim sup
ε→0+

fε(eD
, ζε) − fε(eD

−hẽ, ζε)

h

=
1

h
lim
ε→0+

fε(eD
, ζε) −

1

h
lim inf
ε→0+

fε(eD
−hẽ, ζε) ≤

f(e
D
, ζ) − f(e

D
−hẽ, ζ)

h
. (2.48)Passing h → 0+ in (2.48), by (2.45) we obtain ∫

Ω
τ̃ : ẽ dx ≤

∫
Ω

f′e
D
(e

D
, ζ) : ẽ dx =∫

Ω
τ : ẽ dx. Making the same proedure with −ẽ instead of ẽ, we get also the13



opposite inequality. Taking ẽ arbitrary, we an see that that τ̃ = τ . In partiular,the whole sequene {τε}ε>0 onverges to τ .Now it remains to show that σε = τε. Referring to Lζ+ε from (2.38) and the de�nitionof uε from (2.20) as a minimizer of Gε(·, ζε), by using the shift vε = uε−u
D
(f. 2.36))and vε := Lζε+εe(uD

), we have uε = u
D

+Lζε+εe(uD
). By (2.39) with (2.35), we have

fε(eD
, ζε) = Fε(eD

, Lζε+εe(uD
), ζε) =

∫

Ω

(ζε+ε)ϕ(x, e
D

+ e(Lζε+εe(uD
)) dx

=

∫

Ω

(ζε+ε)ϕ(x, e
D

+ e(uε−u
D
)) dx . (2.49)Di�erentiating both sides of (2.49) with respet to e

D
, we obtain

τε := [fε]
′
e
D
(e

D
, ζε) = (ζε+ε)ϕ′

e(x, e
D

+ e(uε−u
D
)). (2.50)In partiular, for e

D
= e(u

D
), we an still ontinue as

(ζε+ε)ϕ′
e(x, e

D
+ e(uε−u

D
)) = (ζε+ε)ϕ′

e(x, e(uε)) =: σε. (2.51)
2Corollary 2.12 Setting

s ≡ s(ζ) := τ(e
D
, ζ) for e

D
= e(u

D
) with u

D
|Γ = w, (2.52)we obtain an e�etive stress and, moreover, it holds

g(ζ) =
1

2

∫

Ω

s(ζ) : e
D

dx. (2.53)Proof. As f(·, ζ) is quadrati, in view of (2.45), we have the formula
f(e

D
, ζ) =

1

2

∫

Ω

τ(e
D
, ζ) : e

D
dx. (2.54)As a onsequene of (2.36) with (2.10) and (2.37), we have gε(ζ) = fε(uD

, ζ), and thisequality is inherited be the respetive Γ-limits de�ned in (2.10) and (2.40), i.e. wehave
g(ζ) = f(e

D
, ζ) for e

D
= e(u

D
) with u

D
|Γ = w. (2.55)Substituting s de�ned by (2.52) into (2.54) and using (2.55), we obtain (2.53).For the spei� reovery sequene {ζε} from the proof of Proposition 2.10, byLemma 2.11, the orresponding stresses σε onverge and we have σε ⇀ s(ζ) sothat, by the de�nition (2.31), we have s(ζ) ∈ S(ζ). In view of (2.32), we an seethat we have onstruted a partiular realizable stress s(ζ) that attains the minimumin (2.32), i.e. an e�etive stress. 2For further use it is important that (2.53) yields an expliit information aboutsensitivity of g(ζ) with respet to u

D
. 14



3 Rate-independent damage evolutionNow, we will let the �hard-devie� loading vary in time t ranging [0, T ] with T > 0a �xed time horizon, i.e. w = w(t, x). Then the damage parameter will depend onboth x and t, i.e. ζ = ζ(t, x). Instead of Gε(u, ζ) from (2.9) with (2.8), we willonsider
Gε(t, u, ζ) :=

{
Vε(u, ζ) if u|Γ = w(t, ·) and ζ ∈ Z,
+∞ elsewhere, (3.1)where Z is again from (2.1). A further important onept onsists in spei� dissi-pation of energy during the damage proess, whih is given by a phenomenologialativation threshold, denoted by a(x) > 0 (of a physial dimension J/md) at a givenspot x ∈ Ω. Roughly speaking, the damage starts evolving when the elasti energy

ϕ(e(u)) reahes the ativation threshold a, f. (3.4b) and Set. 3.1 for more details.At the same, a(x) says how muh energy (per d-dimensional �volume�) is dissipatedby aomplishing the damage proess, i.e. by dereasing ζ(x) from 1 to 0.The rate of energy dissipated in the whole body is then
R(ζ̇) :=

∫

Ω

̺
(
x, ζ̇(x)

)
dx, where ̺(x, ż) =

{
−a(x)ż if ż ≤ 0,
+∞ elsewhere. (3.2)The value +∞ re�ets that we onsider damage as a unidiretional proess, i.e. dam-age an only develop, but the material an never heal. We qualify the ativation-threshold pro�le as:

a ∈ L∞(Ω), ess infx∈Ωa(x) > 0. (3.3)3.1 Classial formulation of the regularized evolution prob-lemLet us �rst onsider the regularized ase with ε > 0 where the displaement uε =
uε(t, x) is well de�ned a.e. on the whole Q := (0, T ) × Ω. The evolving damagepro�le will now also depend on ε hene we denote it by ζε. Taking into aount ourGibbs energy (3.1) and the dissipation potential (3.2), the lassial onsiderations inrational thermodynamis leads to the generalized fore f ∈ −∂(u,ζ)Gε(t, uε(t), ζε(t))to belong to (0, ∂R( dζε

dt
)), where the notation ∂ stands for subdi�erential of theinvolved onvex funtionals. This, at least formally, leads to the lassial formulation(f. [12℄) onsisting in the balane of the stress and the evolution of the damageparameter:

div
(
σε

)
= 0 with σε = (ζε+ε)ϕ′

e

(
e(uε)

)
, (3.4a)

∂ζε

∂t
≤ 0,

ϕ(e(uε)) − rζε − a − div
(
κ|∇ζε|r−2∇ζε

)
≤ 0,

∂ζε

∂t

(
a − ϕ(e(uε)) + div

(
κ|∇ζε|r−2∇ζε

)
+ rζε

)
= 0





(3.4b)15



on Q, where rζε ∈ ∂χ[0,1](ζε). The notation χ[0,1] stands for the indiator funtion ofthe interval [0, 1] where the damage parameter ranges; in fat, [0, +∞) an be usedequally. The omplementarity problem (3.4b) represents the evolution inlusion
∂ζ̺̇

(
x,

∂ζε

∂t

)
− κ div

(
|∇ζε|r−2∇ζε

)
+ ϕ(x, e(uε)) + ∂χ[0,1](ζε) ∋ 0 . (3.5)The seond inequality in (3.4b) an bear the interpretation that the driving forefor the damage proess an be identi�ed as the spei� energy ϕ(x, e(uε)) and thedamage evolves if it reahes the ativation threshold a(x) modi�ed by the term

div(κ(x)|∇ζε(x)|r−2∇ζε(x)) whih re�et in some way hardening-like e�ets (if thespot x is surrounded by a less damaged material) or softening (in an opposite ase);we refer to [1℄.We must omplete the system by some boundary onditions not only for uε but nowalso for the damage ζε. In aord with previous setions, we assume the mentionedDirihlet onditions for uε ombined with zero normal stress impliitly imposedalready in (2.3) while for ζε we assumed, for simpliity, zero Neumann ondition asany ondition for it is a bit arti�ial anyhow. Hene,
uε = w on Γ, (3.6a)
σεν = 0 on ∂Ω \ Γ, (3.6b)
∂ζε

∂ν
= 0 on ∂Ω. (3.6)An initial ondition should be presribed for the damage parameter, onsideringsome presribed initial pro�le ζ0 and, rather formally, also the initial displaement

u0 (quali�ed later):
ζε(0, ·) = ζ0, uε(0, ·) = u0 on Ω. (3.7)3.2 Energeti solution of the regularized problemThe relevant and mathematially amenable onept of a �weak solution� to thedoubly-nonlinear problem (3.5) with degree-1 homogeneous ̺(x, ·) is a so-alled en-ergeti solution, formulated in [30, 31℄, see also [26℄ for a survey. Reently, thisonept was also exposed in the ontext of Γ-limits in [29℄.Let us �rst derive it formally from (3.4). For this, let us onsider u

D
(t, ·) as a suitable(quali�ed later) extension of w(t, ·). The weak formulation of the Euler-Lagrangeequation (3.4a) tested by ∂

∂t
(uε − u

D
), whih has zero traes and is thus a legal testfuntion, yields ∫

Ω
σε : e( ∂

∂t
uε) dx =

∫
Ω

σε : e( ∂
∂t

u
D
) dx. Then, as there is no expliitdependene of Gε on t in (3.1), ∂

∂t
Gε = 0 and we an formally apply the hain rulein the form

d

dt
Gε

(
t, uε(t), ζε(t)

)
=

∫

Ω

σε:e
(∂uε

∂t

)
+ ϕ

(
e(uε)

)∂ζε

∂t
+ κ|∇ζε|r−2∇ζε·∇

∂ζε

∂t
dx

=

∫

Ω

σε:e
(∂u

D

∂t

)
+ ϕ

(
e(uε)

)∂ζε

∂t
+ κ|∇ζε|r−2∇ζε·∇

∂ζε

∂t
dx. (3.8)16



Using (3.5) in the weak formulation tested formally by ∂
∂t

ζε together with (3.6),one gets
∫

Ω

ϕ
(
x, e(uε)

)∂ζε

∂t
+ κ|∇ζε|r−2∇ζε·∇

∂ζε

∂t
dx = −

∫

Ω

∂ζ̺̇
(
x,

∂ζε

∂t

)∂ζε

∂t
dx

= −
∫

Ω

̺
(
x,

∂ζε

∂t

)
dx = −R

(∂ζε

∂t

) (3.9)due to the degree-1 homogeneity of ̺(x, ·), see de�nition (3.2). Putting (3.9) into(3.8), integrating it over a time interval [t1, t2], and expressing the dissipated en-ergy ∫ t2
t1

R( ∂
∂t

ζ(t)) dt as the total variation without referring expliitly to the timederivative ∂
∂t

ζ , i.e.
VarR(ζ ; t1, t2) := sup

j∑

i=1

R
(
ζ(si) − ζ(si−1)

) (3.10)with the supremum taken over all j ∈ N and over all partitions of [t1, t2] in the form
t1 = s0 < s1 < ... < sj−1 < sj = t2, we eventually obtain

Gε

(
t2, uε(t2), ζε(t2)

)
+ VarR(ζε; t1, t2)

= Gε

(
t1, uε(t1), ζε(t1)

)
+

∫ t2

t1

∫

Ω

σε :e
(∂u

D

∂t

)
dx dt (3.11)In our speial situation with R de�ned via (3.2), we have simply

VarR(ζ ; t1, t2) = R
(
ζ(t1)−ζ(t2)

)

=






∫

Ω

a(x)
(
ζ(t1, x)−ζ(t2, x)

)
dx if ζ(·, x) is nondereasingon [t1, t2] for a.a. x ∈ Ω,

+∞ otherwise. (3.12)The partiular terms in (3.11) represent respetively:
◦ the stored energy at the �nal time t2,
◦ the energy dissipated by damage during the time interval [t1, t2],
◦ the stored energy at the initial time t1, and
◦ the work done by external loadings during the time interval [t1, t2].The global-minimization hypothesis related to (3.4a) is related with a stability prop-erty, i.e.
∀(ũ, ζ̃) ∈ W 1,2(Ω; Rd)×Z, ũ|Γ = w(t) :

Gε

(
t, uε(t), ζε(t)

)
≤ Gε(t, ũ, ζ̃) + R

(
ζ̃−ζε(t)

)
. (3.13)The philosophy of (3.13) is that the gain of Gibbs' energy Gε(t, uε(t), ζε(t)) −

Gε(t, ũ, ζ̃) at any other state (ũ, ζ̃) is not larger than the dissipation R(ζ̃ − ζε(t));f. [31℄ for disussion. 17



Now, following [30℄, see also [26, 31℄, we introdue a de�nition of an energeti so-lution to the onsidered problem. By B([0, T ]; X) or BV([0, T ]; X) we denote theBanah spae of bounded Bohner-measurable or bounded-variation X-valued map-pings de�ned everywhere on [0, T ], respetively.De�nition 3.1 (Energeti solution to the regularized problem.) A proess
(uε, ζε) : [0, T ] → W 1,2(Ω; Rd) × Z is alled an energeti solution to the problem(3.4) and (3.6)�(3.7), i.e. given by the data ϕ, κ, ̺, r, w, u0, ζ0, and ε > 0, if, beside(3.7), also(i) (uε, ζε) ∈ B([0, T ]; W 1,2(Ω; Rd)) ×

(
BV([0, T ]; L1(Ω)) ∩ B([0, T ]; W 1,r(Ω))

),(ii) it is stable in the sense that (3.13) holds for all t ∈ [0, T ], and(iii) the energy balane (3.11) holds for any 0 ≤ t1 < t2 ≤ T and, in partiular, thefuntion t 7→
∫
Ω

σε :e( ∂
∂t

u
D
) dx belongs to L1(0, T ).Remark 3.2 In fat, De�nition 3.1 is based on a global-minimization hypothesisompeting with the maximum-dissipation priniple (or rather Levitas' realizabilitypriniple [21℄).Remark 3.3 (Normal stress: reation to the Dirihlet loading.) Due to (2.20) andDe�nition 3.1(i), σε ∈ B([0, T ]; L2(Ω; Rd×d

sym)) and, in order to ensure that t 7→
∫
Ω

σε :

e( ∂
∂t

u
D
) dx belongs to L1(0, T ), one needs just u

D
∈ W 1,1([0, T ]; W 1,2(Ω; Rd)). Infat, one needs only to qualify w ∈ W 1,1([0, T ]; W 1/2,2(Γ; Rd)) beause then suhextension u

D
of it will always exists. Even more, (3.11) and thus the whole De�-nition 3.1 depends only on w and not on any partiular hoie of its extension u

D
.Atually, we ould de�ne the normal stress ~σε as the linear bounded funtional on

W 1/2,2(Γ; Rd) by the formula
〈
~σε, v|Γ

〉
=

∫

Ω

σε : e(v(x)) dx. (3.14)It is a onsequene of the stability (3.13) with ζ̃ := ζε(t) that uε(t) minimizes
Gε(t, ·, ζε(t)) so that the orresponding Euler-Lagrange equation, f. (2.28) for thestati ase, says in partiular that

div(σε) = 0 in the sense of distributions on Q. (3.15)Then the right-hand side of (3.14) is independent of the partiular extension v of
v|Γ into Ω and thus the normal stress ~σε is well de�ned by (3.14). This an easily beseen by an extension of Green's formula using Neumann boundary onditions (3.6b)and by the symmetry of the stress tensor
0 =

∫

Ω

div(σε)·v dx =

∫

∂Ω

(σεν)·v dS−
∫

Ω

σε : ∇v dx =

∫

Γ

(σεν)·v dS−
∫

Ω

σε : e(v) dx,In a regular ase thus ~σε = σεν. The last term in (3.11) an equivalently be expressedas ∫ t2
t1
〈~σε,

∂w
∂t

〉
dt, whih is just the more expliit form of the work of the external18



�hard-devie� load ∫ t2
t1

∫
Γ
~σε · ∂w

∂t
dS dt. In what follows, we will on�ne ourselves to

w ∈ C1(I; W 1/2,2(Γ; Rd)), (3.16)whih has nearly the same generality in the ontext of rate-independent proessesand makes the proofs easier, f. in partiular [29, Assumption (2.8)℄ pointed also outlater in Remark 3.9. Then (3.16) allows for onsidering u
D
∈ C1([0, T ]; W 1,2(Ω; Rd)).Proposition 3.4 (Existene of energeti solutions to ε-problems.) (See[27℄.) Let (2.6), (3.3), (3.16), (u0, ζ0) ∈ W 1,2(Ω; Rd)×Z be stable in the sense

∀ (ũ, ζ̃)∈W 1,2(Ω; Rd)×Z, ũ|Γ = w(0, ·) :

Gε(0, u0, ζ0) ≤ Gε(0, ũ, ζ̃) + R(ζ0 − ζ̃), (3.17)and let ε > 0. Then a solution (uε, ζε) in the sense of De�nition 3.1 does exist.Comments to the proof. The above assertion has been proved, exept the Bohnermeasurability of uε, in [27℄ for the ase ϕ and ̺ independent of x but our x-dependentgeneralization is trivial. Also, a speial loading and initial stable initial ondition washosen in [27℄, namely w(0, ·) = 0, u0 = 0, ζ0 = 1, i.e. unloaded undamaged body atthe original time. Our, only slightly more general initial ondition makes just a triv-ial and standard modi�ation, f. [12, 26, 28, 29℄. Also, w ∈ W 1,1(I; W 1,∞(Γ; Rd))has been used in [27℄ but the generalization to w ∈ W 1,1(I; W 1/2,2(Γ; Rd)) is routinesine, unlike [27℄, we do not treat any ontat problem at large strains and then(3.16) works, too.Due to our formula uε(t) = u
D
(t)+Lζε(t)+εe(uD

(t)), the laimed Bohner measurabil-ity of uε in time, not proved in [27℄, is here a simple onsequene of the measurabilityof ζε : [0, T ] → W 1,r(Ω) and of the ontinuity of the mapping (e
D
, ζ) 7→ v := Lζ+εeDas a mapping L2(Ω; Rd×d

sym) × W 1,r(Ω) → W 1,2
Γ (Ω; Rd). The mentioned measurabil-ity of ζε follows from measurability of the BV-funtion ζε : [0, T ] → L1(Ω) andfrom the a-priori estimate of {ζε(t)}t∈[0,T ] in the separable spae W 1,r(Ω) by Pet-tis' theorem. The mentioned (even loally Lipshitz (L2×L∞, W 1,2)-) ontinuityof (e

D
, ζ) 7→ v := Lζ+εeD

an be proved quite standardly: We take the Euler-Lagrange equation for v := Lζ+εeD
de�ned in (2.38), i.e. in the weak formulation∫

Ω
ζC(e

D
+ e(v)) : e(z) dx = 0 for all z ∈ W 1,2

Γ (Ω; Rd). Considering other ẽ
D
, ζ̃, and

ṽ := Lζ̃+εẽD
, we have ∫

Ω
ζ̃C(ẽ

D
+ e(ṽ)) : e(z) dx = 0. Subtrating these equationsand testing the di�erene by z := v − ṽ gives, after some algebra and Hölder's andYoung's inequalities,

εη
∥∥e(v − ṽ)

∥∥2

L2(Ω;Rd×d
sym )

≤
∫

Ω

(ζ + ε)C(e(v − ṽ)) : e(v − ṽ) dx

=

∫

Ω

(ζ − ζ̃)C(e
D

+ e(ṽ)) : e(v − ṽ) + (ζ̃ + ε)C(e
D
− ẽ

D
) : e(v − ṽ) dx

≤ C‖ζ − ζ̃‖2
L∞(Ω) + C‖e

D
− ẽ

D
‖2

L2(Ω;Rd×d
sym )

+
εη

2

∥∥e(v − ṽ)
∥∥2

L2(Ω;Rd×d
sym )19



with η > 0 from (2.6b) and with C = max(‖e
D

+e(ṽ)‖L2(Ω;Rd×d
sym ), ‖ζ̃‖L∞(Ω) +ε)2/(εη).Absorbing the last term in the left-hand side and involving still Korn's inequality

‖v − ṽ‖W 1,2(Ω;Rd) ≤ KΩ,Γ‖e(v − ṽ)‖L2(Ω;Rd×d
sym ), we learly get the laim ontinuity. 23.3 Energeti solution of the omplete-damage problemLet us observe that, due to the de�nition (3.1) with (2.29),

Gε

(
t, uε(t), ζε(t)

)
=

∫

Ω

1

2
σε(t, x) :e(u

D
(t, x)) +

κ(x)

r

∣∣∇ζε(t, x)
∣∣r dx, (3.18)hene both (3.11) and (3.13) an be expressed in terms of σε and ζε. Moreover, asexplained above, (3.15) implies that σε itself is essentially determined by ζε(t, ·) and

w(t, ·).Like (2.10), let us now de�ne
ggg(t, ζ) := lim inf

ε→0+, ζ̃∈Z,

ζ̃ ⇀ ζ in W 1,r(Ω)

min
u∈W 1,2(Ω;Rd)

Gε(t, u, ζ̃) (3.19)with Gε de�ned in (3.1). Sine minu∈W 1,2(Ω;Rd) Gε(t, u, ζ̃) = fε(e(uD
(t)), ζ̃) +∫

Ω
κ
r
|∇ζ̃|r dx with fε from (2.37), we have equivalently

ggg(t, ζ) = lim inf
ε→0+, ζ̃∈Z,

ζ̃ ⇀ ζ in W 1,r(Ω)

fε(e(uD
(t)), ζ̃) +

∫

Ω

κ

r

∣∣∇ζ̃
∣∣r dx. (3.20)Lemma 3.5 Any reovery sequene {ζε}ε>0 ⊂ Z for (3.20), i.e. ζε ⇀ ζ and

fε(e(uD
(t)), ζε) +

∫
Ω

κ
r
|∇ζε|r dx → ggg(t, ζ), in fat onverges strongly. Moreover,referring to f(u

D
, ζ) de�ned by (2.40), we have now

ggg(t, ζ) = f(e(u
D
(t), ζ) +

∫

Ω

κ

r

∣∣∇ζ
∣∣r dx. (3.21)Proof. First, we prove (3.21). The inequality �≥� is by the weak lower semiontinuityof ζ 7→

∫
Ω

κ|∇ζ |r dx and by the de�nition of the Γ-limits ggg and f in (3.19) and (2.40),respetively. It su�es to take any reovery sequene {ζε}ε>0 for ggg and make a limitpassage in
ggg(t, ζ) = lim

ε→0+
min

u∈W 1,2(Ω)
Gε(t, u, ζε) = lim

ε→0+

(
fε(e(uD

(t)), ζε) +

∫

Ω

κ

r

∣∣∇ζε

∣∣r dx
)

≥ lim inf
ε→0+

fε(e(uD
(t)), ζε) + lim inf

ε→0+

∫

Ω

κ

r

∣∣∇ζε

∣∣r dx

≥ f(e(u
D
(t)), ζ) +

∫

Ω

κ

r

∣∣∇ζ
∣∣r dx. (3.22)20



The opposite inequality �≤� is by the same limit passage but now using the speialreovery sequene ζε = (ζ−δε)
+ for f from the proof of Proposition 2.10. It onvergesto ζ not only weakly but also strongly. Indeed, ∇ζε(x) → ∇ζ(x) for a.a. x ∈ Ωbeause ∇ζ = 0 = ∇ζε a.e. on Nζ and beause, for a.a. x ∈ Ω\Nζ , there is εx > 0suh that 0 < ζε(x) = ζ(x)−δε and thus∇ζε(x) = ∇ζ(x) for all 0 < ε < εx, and then,by Lebesgue dominated-onvergene theorem, ∫

Ω
|∇ζε(x)|r dx →

∫
Ω
|∇ζ(x)|r dx and,having onvergene of the norms as well as weak onvergene, we an onlude strongonvergene by uniform onvexity of W 1,r(Ω) and a Fan-Gliksberg type theorem.Let us now onsider an arbitrary reovery sequene {ζε}ε>0 ⊂ Z for (3.19). Denote

α̂ =
∫
Ω

κ
r
|∇ζ |r dx. For a subsequene and some α and β, ∫

Ω
κ
r
|∇ζε|r dx → α and

fε(e(uD
(t)), ζε) → β. Simultaneously, fε(e(uD

(t)), ζε) +
∫
Ω

κ
r
|∇ζε|r dx → ggg(t, ζ) =

α + β. By the weak lower semiontinuity, always α̂ ≤ α. Assume α̂ < α. Using(3.21), we would have
β = lim

ε→0+
fε(e(uD

(t)), ζε) = lim
ε→0+

(
ggg(t, ζ) −

∫

Ω

κ

r

∣∣∇ζε

∣∣r dx
)

= ggg(t, ζ) − α < ggg(t, ζ) − α̂ = f
(
e(u

D
(t)), ζ

)
, (3.23)a ontradition with (2.40). Hene α̂ = α and we have ∫

Ω
κ
r
|∇ζε|r dx → α = α̂ =∫

Ω
κ
r

∣∣∇ζ
∣∣r dx. Due to the strit onvexity of the integrand κ(x)| · |r and due to theweak onvergene ζε ⇀ ζ , we an onlude strong onvergene, f. e.g. [35℄. 2Considering an e�etive stress, as in (2.53), we an write

ggg(t, ζ) =

∫

Ω

1

2
s(t, ζ) : e(u

D
(t)) +

κ

r

∣∣∇ζ
∣∣r dx. (3.24)Motivated by this and by the investigations for ε → 0 in the stati ase in Set. 2, weintrodue the following �energeti� de�nition without referring to the problem (3.4)for ε = 0 beause the displaement need not have a well de�ned sense any longer.For simpliity and without muh restrition for possible appliations, we onsiderthe initial damage pro�le from Z away from zero

min
x∈Ω

ζ0(x) > 0. (3.25)Then, presribing the initial displaement u0 makes sense and we thus automatiallypresribe also the initial stress σ(0) = ζ0ϕ
′
e(e(u0)). As for the stability (3.17) of theinitial onditions, for example, w(0) = 0, u0 = 0 and 0 < ζ0 ≤ 1 onstant will satisfy(3.17) even for any ε > 0, whih is what we will assume later in Theorem 3.7. Thisan be however satis�ed for some non-onstant damage pro�les ζ0 too, dependingon a(·) and κ(·).De�nition 3.6 (Energeti solution to the omplete-damage problem.) Theproess (s, ζ) : [0, T ] → L2(Ω; Rd×d

sym) × Z is alled an energeti solutionto the problem given by the data ϕ, ̺, w, and ζ0, if, beside (3.7), also21



(i) (s, ζ) ∈ B([0, T ]; L2(Ω; Rd×d)) ×
(
BV([0, T ]; L1(Ω)) ∩ B([0, T ]; W 1,r(Ω)),(ii) it is stable in the sense that

ggg(t, ζ(t)) ≤ ggg(t, ζ̃) +

∫

Ω

̺(x, ζ̃ − ζ(t)) dx for any ζ̃∈Z, and (3.26)(iii) and, for any 0 ≤ t1 < t2 ≤ T , the energy equality holds:
ggg(t2, ζ(t2)) + VarR(ζ ; t1, t2) = ggg(t1, ζ(t1)) +

∫ t2

t1

∫

Ω

s :e
(∂u

D

∂t

)
dx dt,(3.27)in partiular, the funtion t 7→

∫
Ω

s(t, x) : e(
∂u

D

∂t
(t, x)) dx belongs to L1(0, T ),(iv) div(s) = 0 in the sense of distributions and s(t) is an e�etive stress withrespet to ζ(t) and w(t) for any t ∈ [0, T ]; in partiular (3.24) holds.Theorem 3.7 (Existene of energeti solutions, onvergene of (uε, ζε).)Let (2.6), (3.3), w ∈ C1([0, T ]; W 1/2,2(Γ; Rd)), (u0, ζ0) ∈ W 1,2(Ω; Rd)×Z satisfy(3.17) for all ε > 0 and (3.25). Then, there exists a subsequene {εn}n∈N onvergingto 0 and a proess (s, ζ) : [0, T ] → L2(Ω; Rd×d

sym) × Z being an energeti solutionaording to De�nition 3.6, in partiular u
D
∈ C1([0, T ]; W 1,2(Ω; Rd)) is onsideredfor (3.27) in aord with Remark 3.3, suh that the following holds for all t ∈ [0, T ]:(i) Eεn(t, uεn(t), ζεn(t)) → ggg(t, ζ(t)),(ii) VarR(ζεn; 0, t) → VarR(ζ ; 0, t),(iii) ζεn(t) → ζ(t) strongly in W 1,r(Ω),(iv) σεn(t) = (ζεn(t) + ε)ϕ′

e(e(uεn(t))) ⇀ s(t) weakly in L2(Ω; Rd×d
sym).Proof. Most of the assertions have been proved in [27, Set.4℄ but the most essentialproperties remained open in the ontext of non-quadrati quasionvex ϕ onsideredthere. Namely, only an energy inequality in (3.27) has been proved in [27℄, onlythe weak onvergene of ζεn(t) ⇀ ζ(t) instead of (iii), and, instead of the propertieslaimed in De�nition 3.6(iv), s(t) was shown only a realizable stress only. Moreover,instead of (iv), only σεn ⇀ s weakly* in L∞(0, T ; L2(Ω; Rd×d

sym)) was proved in [27℄.Let us remark that, in fat, instead of (ζ + ε)ϕ(e), the regularization ζϕ(e) + ε|e|2has been used in [27℄, homogeneous material (i.e. ϕ, ̺, a, and κ independent of x),and only speial initial onditions u0 = 0, ζ0 = 1, w(0) = 0 were onsidered, butthese modi�ations are easy under our data quali�ation. Let us now prove theremaining properties.The property div(s) = 0 laimed in De�nition 3.6(iv) is inherited by a trivial limitpassage from (3.15).Due to (i), {ζεn}n∈N is a reovery sequene for (3.20), by Lemma 3.5 we have strongonvergene in (iii). Moreover, by Lemma 2.11, we have σεn(t) ⇀ τ(e(u
D
(t)), ζ(t)).Hene, modifying s obtained in [27℄, if neessary, on a zero-measure set on [0, T ],we have s(t) = τ(e(u

D
(t)), ζ(t)) and s(t) being thus proved an essential stress.22



Energy equality in (3.27) is then a onsequene of [26, Proposition 5.7℄ provided oneshows the power of external loading to be in L∞(0, T ) and the last term in (3.27) tobe equal to ∫ t2
t1

∂ggg
∂t

(t, ζ(t)) dt. Here, by using suessively (3.21), (2.54), and (2.45),for any ζ ∈ Z �xed, we have
ggg(t, ζ) = f(e(u

D
(t), ζ) +

∫

Ω

κ

r

∣∣∇ζ
∣∣r dx

=

∫

Ω

1

2
τ(e(u

D
(t)), ζ) : e(u

D
(t)) +

κ

r

∣∣∇ζ
∣∣r dx

=

∫

Ω

1

2
Tζe(uD

(t)) : e(u
D
(t)) +

κ

r

∣∣∇ζ
∣∣r dx. (3.28)In partiular, u

D
∈ C1([0, T ]; W1,2(Ω; Rd)) implies g(·, ζ) ∈ C1([0, T ]) for eah ζ ∈ Z.Also, by using (3.28) and (2.52), we have the desired formula for the power of externalloading:

∂ggg

∂t
(t, ζ) =

∫

Ω

Tζe(uD
(t)) : e

(∂u
D

∂t

)
dx

=

∫

Ω

τ(e(u
D
(t)), ζ) : e

(∂u
D

∂t

)
dx =

∫

Ω

s(t) : e
(∂u

D

∂t

)
dx. (3.29)The Bohner measurability of s follows from the measurability of uε : [0, T ] →

W 1,2(Ω; Rd) proved in Proposition 3.4 implying measurability of σε : [0, T ] →
L2(Ω; Rd×d

sym) and from the point (iv) together with Pettis' theorem. 2Remark 3.8 (Alternative formulation in terms of strains.) Based on formula(2.34), we ould de�ne the energeti solution to the omplete-damage problem notas a ouple (s, ζ) but as a ouple (e, ζ) with e(t) de�ned on Ω\Nζ(t) and belonging tothe time-dependent loally-onvex spae L2
loc(Ω\Nζ(t); R

d×d
sym). Taking into aount(2.23), the energy equality (3.27) would then take the form

ggg(t2, ζ(t2)) + VarR(ζ ; t1, t2) = ggg(t1, ζ(t1)) +

∫ t2

t1

∫

Ω\Nζ(t)

ζϕ′
e(e) :e

(∂u
D

∂t

)
dx dt, (3.30)Remark 3.9 (Diret Γ-limit onvergene.) In terms of ζ only, we ould obtainexistene of the energeti solutions and onvergene of solutions of our ε-regularizedproblem by using abstrat results about Γ-limits, see [29, Theorem 3.1℄. In fat, [29,Assumptions (2.9)�(2.10)℄ had been proved here in Setion 2, [29, Assumption (2.8)℄an be easily veri�ed if w ∈ C1(I; W 1/2,2(Γ)), and [29, Assumptions (2.11)℄ hadbeen proved in [27℄, while the other assumptions in [29℄ are satis�ed quite obviously.However, by this way, we would lose tak on the mehanial interpretation involvingstress; in partiular, the key information in (3.29) would be ompletely out.Remark 3.10 (Numerial strategies.) The regularized problem introdued in Se-tion 3.1 suggests a diret numerial treatment: applying impliit disretization in23



time with a time step τ > 0 and, onsidering a polyhedral domain Ω triangulatedby simpliial �nite elements with a mesh-parameter h > 0, applying P1-�nite el-ements for spatial disretization of both u and ζ (let us denote the orrespondingdisrete spaes Uh and Zh, respetively), we get a reursive oerive mathematial-programming problem with a nonlinear objetive and box-onstraints for (uk
τhε, ζ

k
τhε):Minimize ∫

Ω

ζk
τhε+ε

2
Ce(∇uk

τhε) : e(∇uk
τhε) − aζk

τhε +
κ

r

∣∣∇ζk
τhε

∣∣r dxsubjet to 0 ≤ ζ ≤ ζk−1
τhε , uk

τhε|Γ = w(kτ),

uk
τhε ∈ Uh , ζk

τhε ∈ Zh





(3.31)for k = 1, ..., K := T/τ with (u0
τhε, ζ

0
τhε) := (u0, ζ0). This is an implementable on-eptual algorithm. Unfortunately, it does not have a quadrati ost funtional, whihmakes it not entirely simple for numerial treatment; for a similar problem with tri-linear objetives we refer to numerial simulations in [20℄. On the other hand,the approximate solution (uτhε, ζτhε) onsidered as a piee-wise onstant interpolant

(uτhε(t), ζτhε(t)) := (uk
τhε, ζ

k
τhε) for t ∈ ((k−1)τ, kτ ] has a guaranteed onvergene (interms of suitable subsequenes), based on the abstrat results from [29, Theorem3.3℄, f. also [28, Set.5.5℄.Remark 3.11 (Bourdin's approah to raks.) A funtional that is of a similar typeas (3.31), namely ∫

Ω
(ζ+εα)ϕ(∇u)+ε|∇ζ |2+ε−β(1−ζ) dx, was used in the ontext ofapproximation of Franfort-Marigo's rak model [4, 5℄. At least for �xed ε > 0 themathematial properties of that funtional are exatly as those of ours. However,suitable salings in ε yields in the limit ε → 0 the mentioned rak problem.4 A one-dimensional exampleLet us illustrate the above introdued objets on a one-dimensional situation, havingan interpretation of a bar undergoing a tension/ompression experiment by a �hard-devie� loading, where all mathematial objets an be desribed expliitly. Weonsider a bar of the length L �xed at the end-points with a (possibly spatiallyvarying) elasti modulus C (that may re�et a possibly varying thikness of the bar).Let us thus put d := 1, Ω := (0, L), Γ := ∂Ω = {0, 1}, w(0) := w0, w(L) := wL, andnow C : (0, L) → R+. In aord with (2.6b), C(x) ≥ η > 0 for a.a. x ∈ (0, L).4.1 Stati aseMinimization of
Vε(u, ζ) =

∫ L

0

(ζ(x) + ε)
C(x)

2

( du

dx

)2

dx (4.1)24



on {u ∈ W 1,2(0, L); u(0) = w0, u(L) = wL} gives the Euler-Lagrange equation
d

dx

(
(ζ(x) + ε)C(x)

du

dx

)
= 0 on (0, L). (4.2)The stress σε = (ζ + ε)C d

dx
u is thus neessarily onstant along the whole bar, andits value an be alulated by using ζ + ε ≥ ε > 0 and

wL − w0 = u(L) − u(0) =

∫ L

0

du

dx
dx =

∫ L

0

σε

(ζ(x)+ε)C(x)
dx. (4.3)Thus we �nd the formulas for the (onstant) stress and for the strain:

σε = H
(
(ζ+ε)C

)wL − w0

L
and du

dx
=

wL − w0

L

H
(
(ζ+ε)C

)

(ζ(x)+ε)C(x)
, (4.4)where H denotes the harmoni mean of an indiated pro�le over the interval [0, L],i.e.

H(z) :=
1

1
L

∫ L

0
dx

z(x)

. (4.5)In partiular, we �nd the expliit formula for gε from (2.10):
gε(ζ) = H

(
(ζ+ε)C

)(wL − w0)
2

2L
. (4.6)Similarly, the funtional fε from (2.37) as a quadrati funtion of e

D
∈ L2(0, L) anexpliitly be written down as:

fε(eD
, ζ) =

H
(
(ζ+ε)C

)

2L

(∫ L

0

e
D
(x) dx

)2

. (4.7)The ounterexample from Setion 2.2 (where L = 2 and C = 1 were onsidered) iseasily obtained by letting ζ(x) := |x − L/2|α. Clearly,
lim
ε→0+

gε(ζ) = g0(ζ) = H
(
ζC

)(wL − w0)
2

2L
. (4.8)However the Γ-limit f(e

D
, ζ) vanishes for this partiular damage pro�le ζ . Indeed,for all δ > 0, we have (ζ − δ)+ = 0 on the interval [L/2 − δ1/α, L/2 + δ1/α] andtherefore by (4.8) and (2.42):

F(ε, δ, e
D
, ζ) =

(wL − w0)
2

2
∫ L

0
dx

((ζ(x)−δ)++ε)C(x)

≤ (wL − w0)
2

2
∫ L/2+δ1/α

L/2−δ1/α
dx

εC(x)

≤ (wL−w0)
2

4

∥∥C
∥∥

L∞(0,L)

ε

δ1/αso that the limit in ε already vanishes. By using the same reasoning for a general
ζ ∈ Z, one heks easily that f(e

D
, ζ) is given as follows:

f(e
D
, ζ) =

(wL − w0)
2

2

{
1/

∫ L

0
dx

ζ(x)C(x)
if min[0,L] ζ(·) > 0,

0 if min[0,L] ζ(·) = 0.
(4.9)25



Note that f(e
D
, ·) : Z → R

+ is not ontinuous in the strong topology of W 1,r(0, L),
r > 1.This example an also be used to show that the set S(t, ζ) of realizable stressesmay ontain more than one stress distribution. For this, take any ζ ∈ Z suhthat ∫ L

0
dx

ζ(x)C(x)
is �nite. Now, hoosing ζε ≡ ζ , we �nd the stress σε from (4.4)and the limit reads σ0 = (wL−w0)/

∫ L

0
dx

ζ(x)C(x)
. On the other hand, for a suitablesequene δε → 0+, the sequene ζ̂ε = (ζ − δε)

+ satis�es ∫ L

0
dx

(ζε(x)+ε)C(x)
→ 0 andthe orresponding stresses σ̂ε onverge to zero. Thus S(t, ζ) ontains at least twoonstant stress pro�les. In fat, it is not di�ult to see that all intermediate onstantstresses are realizable, that is

S(t, ζ) =

{ {
σ onstant; 0 ≤ σ(·) ≤ σ0

} under tension, i.e. if wL ≤ w0,{
σ onstant; 0 ≥ σ(·) ≥ σ0

} under ompression, i.e. wL ≥ w0.The e�etive stress is obviously zero. This is well intuitive for tension experimentbut a bit paradoxial for a pressure experiment, but this is a usual onsequene of(in�nitesimally) small strain onept.This is a general observation that, as the stress distributions are onstant in this1-dimensional ase, the set of S(t, ζ) realizable stresses is omposed from onstantsand is therefore linearly ordered and thus always a minimizer in (2.32), i.e. thee�etive stress, is unique.4.2 StabilityFurther, we investigate the global stability of the undamaged state ζ = 1. Forsimpliity, we onsider r = 2 and homogeneous material, i.e. onstant oe�ients
C, a, and κ. Let us abbreviate

ζmin := min
0≤x≤L

ζ(x) and ζmax := max
0≤x≤L

ζ(x). (4.10)Lemma 4.1 Let E(ζ) :=
∫ L

0
κ
2
| d

dx
ζ |2 + a(1−ζ) dx and z ∈ [0, 1), then we have

min
{

E(ζ); ζ∈Z, ζmin = z
}

= aL λ
(
z,

√
aL√
2κ

) (4.11)with
λ(z, ̺) =

{
1 − z − ̺2/3 for 0 < ̺ ≤

√
1−z,

2(1−z)3/2/(3̺) for ̺ ≥
√

1−z.
(4.12)Proof. Sine E is oerive on Z ⊂ W 1,2((0, L)), and onvex, there is a minimizer ζ∗on the weakly losed (but non-onvex!) set {ζ∈Z; ζmin = z}.26



As the integrand of E is dereasing in ζ beause a > 0, it is easy to see that the graphof ζ∗ on any interval [x1, x2] has to lie above the segment onneting (x1, ζ∗(x1)) and
(x2, ζ∗(x2)) if ζ∗(·) > z on [x1, x2], i.e. the value ζ∗(·) = z is attained somewhereoutside [x1, x2]. Hene, ζ∗ has at most one point x∗ ∈ [0, L] suh that ζ∗(x∗) = z if
z < 1, and it is stritly onave on both [0, x∗] and [x∗, L].After some rather lengthy algebra, the formula (4.12) is obtained by assuming x∗ = 0(or, equally, x∗ = L). For small L, we obtain a solution satisfying d

dt
ζ∗(L) = 0 and

ζ∗(L) < 1. For larger L, we have ζ∗(x) = 1 for x ≥
√

2κ/a.The ondition ζ∗(x∗) = z with x∗ ∈ (0, L) then leads to aL λ(z,
√

aL/
√

2κ) +
a(L−x∗)λ(z,

√
a(L−x∗)/

√
2κ) as the minimal value of E(ζ) under the (onvex) on-dition ζ(x∗) = z, ζ ∈ Z. The onavity of ξ 7→ ξλ(z, ξ/

√
2aκ) now implies that only

x∗ = 0 or x∗ = L an be optimal. 2To study the stability of the undamaged state ζ = 1 at a spei� (and now onsidered�xed) time t, we de�ne
m(γ) := min

ζ∈Z
Jγ(ζ) with

Jγ(ζ) := γH0(ζ) + E(ζ) and H0(ζ) :=

{ H(ζ) if ζmin > 0,

0 if ζmin = 0,
(4.13)where E from Lemma 4.1, H from (4.5) and

γ = γ(t) := C
ℓ(t)2

2L
≥ 0 with ℓ(t) := w(t, L) − w(t, 0) (4.14)is the energy stored in the body if no damage would our, i.e. if ζ ≡ 1; of ourse,we then have Jγ(1) = γ. Note that E, γ, Jγ, and m have a physial dimension asenergy (i.e. J=kgm2s−1), while λ, ζ , z, and ̺ =

√
aL/

√
2κ have a dimension 1. Also,

γ = g0(1) with g0 from (2.10) with ε = 0 or in the evolution ontext, equivalently,
γ = minu∈W 1,2([0,L]) G0(t, ·, 1) with G0 from (3.1).Also, we an see that stability of ζ = 1 at time t is equivalent to m(γ) = γ whereas
m(γ) < γ means that the (global!) stability of ζ is lost.Proposition 4.2 (Some onditions for stability of the undamaged state.)Let us de�ne funtions Λ1, Λ2 : R+ → [0, 1] (of physial dimension 1) by

Λ1(̺) :=
2

4 + 3̺
and Λ2(̺) :=

{
1 − ̺2/3 if 0 < ̺ ≤ 1,

2/(3̺) if ̺ ≥ 1.
(4.15)Then we have Λ1(̺) < Λ2(̺) and(i) γ > aLΛ2(

√
aL/

√
2κ) implies m(γ) < γ, i.e. ζ = 1 is not globally stable,(ii) γ ≤ aLΛ1(

√
aL/

√
2κ) implies m(γ) = γ, i.e. ζ = 1 is globally stable.Proof. Part (i) follows easily by using the minimizers of Lemma 1 for z ∈ (0, L) andthen taking the limit z → 0. 27



For Part (ii), the argument is more involved. First, note that a global minimizer ζγof Jγ in Z must exist. As we only onsider 0 < γ ≤ aLΛ1(
√

aL/
√

2κ) and Λ1 ≤ Λ2,we use the arguments of Part (i) to onlude that [ζγ ]min > 0, and hene ζγ solvesthe Neumann boundary-value problem for the following di�erential inlusion:
−κ

d2ζ

dx2
− a +

γH(ζ)2

L

1

ζ2
+ ∂χ(−∞,1](ζ) ∋ 0,

dζ

dx
(0) = 0 =

dζ

dx
(L). (4.16)By [19, Chap.3, Theorem 2.3℄, eah solution lies in W 2,p((0, L)), p < +∞ arbitrary;possibly it has a �at part with ζ(·) = 1.Testing (4.16) by d

dx
ζ gives

κ

2

∣∣∣
dζ

dx

∣∣∣
2

+ aζ +
γH(ζ)2

L

1

ζ2
= ac (4.17)for a suitable onstant c. Note that this also holds if the �reation fore� from

∂χ(−∞,1](ζ) does not vanish. It holds either ζ = 1 (and then (4.17) is trivial) or
0 < ζmin < 1. In the latter ase, d

dx
ζ(x) = 0 whenever ζ(x) = 1 and (4.17) againholds on [0, L].Now, assume 0 < ζmin ≤ ζmax ≤ 1. Then inserting these values into (4.17) (usingthat d

dx
ζ(·) = 0 when these values are attained) gives

aζmax +
γH(ζ)2

L

1

ζmax

= ac = aζmin +
γH(ζ)2

L

1

ζmin

. (4.18)First, onsider ζmin = ζmax, then ζ ≡ ζmin and Jγ(ζmin) = γ + (aL−γ)(1−ζmin).Beause of γ < aL, we have Jγ(ζmin) > Jγ(1) for ζmin < 1. Hene we have aontradition. Seond, assuming that we have a minimizer with ζmin < ζmax ≤ 1, weonlude from (4.18) that
c = ζmin + ζmax and H(ζ)2 =

aL

γ
ζminζmax. (4.19)Using H(ζ) ≤ ζmax and ζmax ≤ 1, we �nd ζmin ≤ γ/(aL). Now, using Jγ(ζ) ≥

E(ζ), we may employ Lemma 4.1 and �nd Jγ(ζγ) ≥ aL λ(γ/(aL),
√

aL/
√

2κ).Some elementary alulations show that γ ≤ aLΛ1(
√

aL/
√

2κ) implies
aL λ(γ/(aL),

√
aL/

√
2κ) > γ. In fat, sine γ 7→ λ(γ/(aL), ̺) stritly dereaseson [0, aL] and attains the value 0 at γ = aL, there is a unique solution γ∗ of

γ = λ(γ/(aL), ̺) and Jγ(ζγ) ≥ γ holds for any γ ∈ [0, γ∗]. An expliit alula-tion gives γ∗ = aLΛ(
√

aL/
√

2κ), where Λ(̺) is the unique solution of z = λ(z, ̺).We �nd Λ(̺) = 1/2 + ̺2/6 for ̺2 ≤ 3/7 and the estimate Λ(̺) ≥ 2/(3(1+̺)) for
̺2 ≥ 3/7. Hene we obtain a ontradition to the assumption that a nontrivial(i.e. not identially 1) global minimizer exists, and Part (ii) is proved. 24.3 Evolution onjeturedWe onjeture that the bound Λ2 in Proposition 4.2 is sharp, i.e. the upper bound
Λ1 an be replaed by Λ2. In suh ase, we ould give an exat solution for the28



1-dimensional damage evolution problem as follows. We now onsider γ = γ(t)evolving in time, f. (4.14).Consider g(t, ζ) = γ(t)H0(ζ) +
∫ L

0
κ
2
| d

dt
ζ |2 dx and R as before, f. (4.13)�(4.14)and (3.2). The presribed elongation/shrinkage ℓ(t) is ontinuous, f. (3.16) whereeven C1-smoothness was assumed. Let ℓ be stritly monotone, say dereasing, intime, starting from ℓ(0) = 0, and the body is initially undamaged and undeformed,i.e. ζ0 ≡ 1 and u0 ≡ 0, whih is ompatible with (3.17). Then

ζ(t, x) =

{
1 for 0 ≤ t < t∗, x ∈ [0, L],

ζdam(x) for t ≥ t∗, x ∈ [0, L],
(4.20)where t∗ is the unique value suh that

ℓ(t∗)
2 =

2a

C
L2Λ2

(√aL√
2κ

) (4.21)and where ζdam is one of the two minimizers of E under the onstraint ζmin = 0,f. (4.11) with z = 0. We have immediate total damage at one point sine theinstability riterion in Proposition 4.2(i) is obtained by omplete damage. From(4.21), we an identify a ritial strain ecrit := |ℓ(t∗)|/L above whih the (even total)damage starts evolving, namely
ecrit :=

|ℓ(t∗)|
L

=

√
2a

C
Λ2

(√aL√
2κ

) (4.22)For very short bars, i.e. small L, we have asymptotially ̺ =
√

aL/
√

2κ → 0 andthen Λ2(̺) → 1, f. (4.15), so that, from (4.22), we an see that
ecrit ≈

√
2a/C. (4.23)In partiular, we an see that the resistivity to damage is determined by the ratio(physially of dimension 1) of the ativation stress and the elasti modulus, while

κ > 0 plays (asymptotially) no role as well as the length L itself.Conversely, for long bars, in partiular for L ≥
√

2κ/a, we have ̺ =
√

aL/
√

2κ ≥ 1and thus Λ2(̺) = 2/(3̺), f. (4.15), so that, substituting it into (4.22), we an seethat
ecrit = 2

4
√

2aκ√
3LC

. (4.24)In partiular, we an see that ecrit deays with inreasing length L as O(1/
√

L). Aparadoxial e�et an thus be expeted (at least asymptotially if L → ∞) that thebar tends to break already even when a very small strain is ahieved by the loading(although the boundary displaement, i.e. the loading ℓ(t∗) = ecritL ≈
√

L itself,must be su�iently large). This e�et is aused be the adopted onept of globalstability (3.13) whih is ultimately favorite for damage at small spots if there is29
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