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1 IntrodutionLet B be a separable Banah spae and T a positive number; let us onsider twoproper funtionals Ψ : B → (−∞,∞] and E : [0, T ] × B → (−∞,∞], suh that
Ψ is onvex and l.s.., Ψ(v) ≥ Ψ(0) = 0 ∀v ∈ B,

E(t, ·) : B → (−∞,∞] is l.s.. for a.e. t ∈ (0, T ).Hereafter, we shall denote by ‖ · ‖ the norm on B and by ‖ · ‖∗ the norm on the dualspae B′. We onsider the abstrat doubly nonlinear evolution equation
∂Ψ(u′(t)) + ∂E(t, u(t)) ∋ 0 in B′ a.e. in (0, T ), (DNE)where ∂Ψ denotes the subdi�erential in the sense of onvex analysis of Ψ, while weprovisionally denote by ∂E is a suitable version of the subdi�erential of E w.r.t. theseond variable (in fat, we take ∂E to be the onvex subdi�erential of E w.r.t. thevariable u if the funtional u 7→ E(t, u) is onvex). Clearly, in the quadrati ase

Ψ(u) := 1
2
‖u‖2

B for all u ∈ B, (DNE) redues to a gradient �ow equation.This di�erential inlusion in fat arises in several appliative ontexts, ranging,among others, from thermomehanis (where it may be understood as a generalizedbalane relation, see e.g. [25, 42℄), to the modeling of rate-independent evolutions.Without going into details, we point out that, within the realm of these applia-tions, the funtional Ψ may be interpreted as a dissipation potential, while E is anenergy funtional. Indeed, there is nowadays a quite wide literature on the analysisof (DNE), whih we brie�y review distinguishing the ase in whih the funtional
Ψ has a superlinear growth at in�nity from the linear-growth ase.The most general well-posedness results (earlier ones were obtained in [13, 6, 45℄),for the Cauhy problem assoiated with (DNE) in the superlinear ase for Ψ datebak to the papers [15, 16℄, along with appliations to a broad lass of PDE modelsfor phase transition phenomena whih an be reast in the general form (DNE). Inthe setting of a Hilbert spae in [15℄, and of a re�exive Banah spae in [16℄, theexistene of solutions to (DNE) is proved via approximation by time disretization,and passage to the limit by ompatness and monotoniity tehniques. In [15, 16℄,the funtional E takes the form E(t, u) := Φ(u) − 〈ℓ(t), u〉 for all (t, u) ∈ (0, T ) ×
B, Φ being a onvex funtional, so that the onvex subdi�erential in (DNE) isgiven by ∂E = ∂Φ − ℓ. In fat, this ruial onvexity assumption allows to exploitmaximal monotone operator tehniques. We reall that, in the same setting, long-time behavior results for (DNE) have reently been obtained in [47, 46℄.In the linear-growth ase, equation (DNE) arises in onnetion with rate-inde-pendent problems. Indeed, in suh ases the dissipation funtional Ψ is positivelyhomogeneous of degree 1, whene ∂Ψ(λv) = ∂Ψ(v) for all λ ≥ 0 and v ∈ B.Therefore, a solution to (DNE) remains a solution if the time variable is resaled,thus modeling phenomena insensitive to hanges in the time sale. Rate-independentmodels indeed our, for instane, in elastoplastiity [29, 30, 31, 32, 19, 20, 24℄,in damage [38℄, in the quasistati evolution of fratures [21, 28℄, in shape memoryalloys [39, 40, 37℄, and in several other ontexts, see the survey [33℄ and the referenes2



therein. Existene, approximation, uniqueness, and regularity of solutions to theCauhy problem for (DNE) in the rate-independent ase have been proved in [41,35℄, again the setting of a re�exive Banah spae and of a smooth, onvex energyfuntional E . However, the aforementioned appliations to ontinuum mehanisproblems lead to possibly non smooth and (highly) non onvex energy funtionals,as well as to ambient spaes whih are neither re�exive, nor dual of separable spaes(for example, L1 spaes for shape memory alloys), or even lak a linear struture(like in the appliations to fratures). In fat, the non onvexity of E may be aounterpart of the latter feature, as shown in Setion 3.3 later on by the example ofa non onvex funtional de�ned on a Banah manifold. These onsiderations haveindeed motivated the development of an abstrat, energeti formulation of rate-independent problems in [41℄, whih an be in fat given in a purely topologialframework, see [28℄. We may mention that, in the same spirit, global variationalpriniples for doubly nonlinear evolution equations (both in the superlinear and inthe rate-independent ase), have been reently proposed in [50, 34, 48℄.However, the analysis of the doubly nonlinear equation (DNE) in the ase of anon onvex, non smooth energy funtional and of a more general ambient spae stillremains open. In the fully general ase, one may indeed fae the problem of givingmeaning to the pointwise formulation (DNE) itself. For example, if the spae B doesnot enjoy the Radon-Nikodým property (like in the ase of L1 spaes), absolutelyontinuous urves with values in B need not be a.e. di�erentiable w.r.t. the variable
t, so that the pointwise time derivative appearing in (DNE) may not be de�ned.Furthermore, in the absene of a linear struture on the ambient spae, the notionof (Gâteaux)-derivative/subdi�erential of a funtional does not make sense anymore.These drawbaks an be overome by resorting to suitable surrogates of derivativenotions, whih have been introdued in the realm of Analysis in Metri Spaes. Inpartiular, we refer to the notions proposed within the theory of Curves of MaximalSlope for gradient �ows in metri spaes, whih was initiated in a seminal paper [18℄by E. De Giorgi and has been subsequently developed in [27, 3, 4℄ and in thereent monograph [5℄.The goal of this paper is to analyze (DNE) in the framework of a general metrispae. Indeed, we shall provide a suitable purely metri formulation of (DNE), infat adapting to the doubly nonlinear ase the notion of Curve of Maximal Slope.Then, we shall prove an existene and approximation result for the related Cauhyproblem in the ase of a superlinear dissipation funtional.In the forthoming paper [36℄, we shall instead develop the analysis of rate-independent problems in a metri framework. More preisely, we shall study rate-independent metri evolutions as the vanishing visosity limit of doubly nonlinearmetri evolutions driven by a superlinear dissipation. Let us point out that thisasymptoti analysis has been reently addressed in the paper [22℄, for general rate-independent problems in a �nite-dimensional framework, as well as in [20℄, in themore spei� ase of quasistati evolutions in plastiity with softening.The metri formulation. For simpliity, we introdue the metri formulation ofequation (DNE) when the funtional E is independent of the t variable, postponing3



the general disussion to Setion 2.4. In order to give some insight into the metriapproah, we �rst develop some heuristi alulations in a smooth ase and with anambient Banah spae.Hene, we suppose that Ψ ∈ C1(B), that its Fenhel-Moreau onjugate Ψ∗ is in
C1(B′) too, and that E ∈ C1(B) (nevertheless, we do not require E to be onvex).Under these smoothness assumptions,
∂Ψ(u) = {DΨ(u)}, ∂E(u) = {DE(u)} for u ∈ B, ∂Ψ∗(v) = {DΨ∗(v)} for v ∈ B′.Thus, the doubly nonlinear equation (DNE) turns out to be

DΨ(u′(t)) + DE(u(t)) = 0 for a.e. t ∈ (0, T ) . (1.1)By a onvex analysis argument, (1.1) is equivalent to
Ψ(u′(t)) + Ψ∗(−DE(u(t))) ≤ 〈−DE(u(t)), u′(t)〉 for a.e. t ∈ (0, T ) , (1.2)(where 〈·, ·〉 denotes the duality pairing between B′ and B). Let us point outthat (1.2) in fat holds as an equality, as the onverse inequality is true thanksto the de�nition of Ψ∗; however, in view of the metri formulation we are going tointrodue later on, we prefer to state (1.2) in this form. Now, taking into aountthe hain rule formula

〈DE(u(t)), u′(t)〉 =
d

dt
E(u(t)) for a.e. t ∈ (0, T ) , (1.3)we an equivalently rephrase (1.1) as

d

dt
E(u(t)) ≤ −Ψ(u′(t)) − Ψ∗(−DE(u(t))) for a.e. t ∈ (0, T ) , (1.4)whih again in fat holds as an equality. To �x ideas, let us hoose

Ψ(u) :=
1

p
‖u‖p ∀u ∈ B, so that Ψ∗(v) :=

1

q
‖v‖q∗ ∀ v ∈ B′, 1 < p <∞,

1

p
+

1

q
= 1.Then, (1.4) beomes

d

dt
E(u(t)) ≤ −

1

p
‖u′(t)‖p −

1

q
‖ − DE(u(t))‖q∗ for a.e. t ∈ (0, T ) .Let us point out that the above formulation highlights the role of the norms ofthe derivatives u′(t) and −DE(t, u(t)), rather than of the derivatives themselves.That is why, (1.4) appears to be a suitable formulation for going over to a purelymetri framework, where one may (only) dispose of notions surrogating the normof the pointwise derivative of a urves, and the norm of the Gâteaux derivative of afuntional.We now brie�y reall suh notions (referring to [3, 4℄, [5, Chap. 1℄, and to thenext setions for further details), in the ontext of a (separable) metri spae (X, d).In this framework, it is possible to de�ne the notion of absolute ontinuity of a urve4



with values in X, and to prove that, if u : (0, T ) → X is absolutely ontinuous, thelimit
|u′|(t) := lim

h→0

d(u(t), u(t+ h))

h
exists for a.e. t ∈ (0, T ), (1.5)de�ning the metri derivative of the urve u. It an be readily heked that, if Xis a Banah spae B and if the absolutely ontinuous urve u : (0, T ) → B is a.e.di�erentiable on (0, T ), then

|u′|(t) = ‖u′(t)‖ for a.e. t ∈ (0, T ). (1.6)Nevertheless, as we are going to see in Setion 7, the notion of metri derivative issigni�ant even in spaes like L1, in whih the link (1.6) between the metri and thepointwise derivatives is no longer available for general absolutely ontinuous urves.In the same way, given a funtional E : X → (−∞,+∞] and a point u ∈ dom(E),following [18℄ we de�ne the (loal) slope of E at u as
|∂E| (u) := lim sup

v→u

(E(u) − E(v))+

d(u, v)
. (1.7)Again, it an be shown that, in the Banah spae ase,if E : B → (−∞,+∞] is (Fréhet) di�erentiable at u ∈ dom(E),then |∂E| (u) = ‖DE(u)‖∗. (1.8)More in general, if E is onvex, then |∂E| is related to the (onvex) subdi�erential

∂E of E by
|∂E| (u) = min {‖ξ‖∗ : ξ ∈ ∂E(u)} ∀u ∈ dom(∂E) . (1.9)The hain rule formula (1.3) now translates in the metri setting as
d

dt
E(u(t)) ≥ −|u′|(t) · |∂E| (u(t)) for a.e. t ∈ (0, T )for any absolutely ontinuous urve u : (0, T ) → X. (1.10)We remark that, in the ase of a smooth funtional E : B → (−∞,+∞], the abovehain rule inequality results from (1.3), (1.8), and the Cauhy-Shwarz inequality;we have the same interpretation in the ase of a onvex funtional as well, dueto (1.9) and the well-known hain rule for the subdi�erential in the sense of onvexanalysis. We refer to Setion 2.4 for a detailed disussion of the hain rule (1.10) inthe ase of a time-dependent funtional.We are now in the position of stating the metri analog of (1.4), of ourse repla-ing the derivatives of the urve and of the funtional with the metri derivative (1.5)and the loal slope (1.7). Sine we are now dealing with salar notions, the role ofthe dissipation Ψ shall be played by a funtion

ψ : [0,∞) → [0,∞), onvex and l.s.., ψ(0) = 0 and lim
x→+∞

ψ(x)

x
= ∞. (1.11)5



Hene, supposing that the funtional E : X → (−∞,∞] omplies with the hainrule (1.10), we say that an absolutely ontinuous urve
u : (0, T ) → X satis�es the metri formulation of (DNE) ifthe map t ∈ (0, T ) 7→ E(u(t)) is absolutely ontinuous and
d

dt
E(u(t)) ≤ −ψ

(
|u′|(t)

)
− ψ∗

(
|∂E| (u(t))

) for a.e. t ∈ (0, T ).

(1.12)It an be easily heked that, when ψ(x) = 1
2
x2 for all x ∈ [0,∞), the aboveformulation oinides with the metri formulation of gradient �ows, see [18, 4, 5℄.The main result of this paper (Theorem 3.5 later on) states the existene abso-lutely ontinuous urves omplying with the above metri formulation, supplementedby an initial ondition. The proof is performed by passing to the limit in an ap-proximation sheme based on time disretization (see Setion 3.1). The variationalsheme yielding the approximate solutions is indeed the metri analog of the im-pliit Euler sheme used for doubly nonlinear evolution equations in Banah spaes(see [15, 16, 41℄). As a matter of fat, suh a sheme has been proposed in [17, 4℄as a possible way to approximate gradient �ows in metri spaes, in the frameworkof the theory of Minimizing Movements. Exploiting some tehnial tools of thistheory, we have been able to show that the approximate solutions onverge a urvesolving the Cauhy problem for (1.12). Without going into many details, let uspoint out that the whole proedure works out under some lower semiontinuity andoerivity assumptions on E (whih substantially enable to arry on the approxi-mation sheme and to obtain ompatness of the approximate solutions), joint withthe lower semiontinuity of the map u 7→ |∂E| (u) and the hain rule (1.10).Appliations: the re�exive ase. The main appliations of our metri ap-proah are to (a lass of) doubly nonlinear evolution equations of the form

∂Ψ(u(t), u′(t)) + ∂E(t, u(t)) ∋ 0 in B′ for a.e. t ∈ (0, T ) , (1.13)in the setting of a separable re�exive Banah spae B,the funtional Ψ having a superlinear growth w.r.t. the seond variable. Existeneresults for a lass of equations of the type (1.13) (whih are often alled quasivaria-tional due to the dependene of the dissipation funtional on the state variable u),have been reently obtained in the papers [7, 8℄ for a superlinear dissipation, whilethe quasivariational rate-independent ase has been analyzed in [35℄. In fat, in thispaper we are able to deal with dissipation funtionals in (1.13) of the form
Ψ(u, v) := ψ(‖v‖u) ∀u, v ∈ B ,where ψ is as in (1.11) and

{‖ · ‖u}u∈B is a family of norms on B, induing the Finsler distane
d(v, w) := inf

{∫ 1

0

‖u′(t)‖u(t) dt : u : [0, 1] → B, u(0) = v, u(1) = w

}
∀v, w ∈ B.(1.14)6



In the setting of the metri spae (B, d), it is possible to prove that relation (1.6)between the metri and the pointwise derivative of an absolutely ontinuous urvestill holds in a suitable form (see Setion 6). Likewise, relations (1.8)�(1.9) betweenthe slope and the (sub-)di�erential of E arry over to this Finsler setting if E is,for instane, a λ-onvex or a C1 perturbation of a onvex funtional. As a result,every absolutely ontinuous urve ful�lling the metri formulation (1.12) is in fat asolution of the pointwise di�erential inlusion (1.13). Thus, our main metri result,Theorem 3.5, yields the existene of absolutely ontinuous urves solving the Cauhyproblem related to (1.13), f. Theorem 8.3 later on. A typial paraboli evolutionequation whih an be rephrased in the abstrat form (1.13), with B = Lp(Ω), isthe following generalized Allen-Cahn equation
α(u, ut) |ut|

p−2ut − ∆u+ u3 − u = h a.e. inΩ × (0, T ), (1.15)
ut denoting the partial time derivative of u. Here, p ≥ 1, Ω is a bounded domain in
R
d, d ≥ 1, α : R

2 → (0,∞) a ontinuous funtion, bounded from below and fromabove, ∆ is the Laplae operator, and h : Ω × (0, T ) → R some soure term. Infat, (1.15) is the prototype of the paraboli doubly nonlinear equations we shalladdress in Setion 8.2. More preisely, we shall dedue from Theorem 8.3 the exis-tene of solutions to a suitable initial-boundary value problem for (a generalizationof) (1.15).Appliations: the L1 ase. We shall also apply our metri approah to theanalysis of (doubly nonlinear) metri evolutions in the metri spae L1(Ω), with thedistane indued by the L1(Ω)-norm. As already mentioned, absolutely ontinuousurves on a time interval (0, T ) with values in L1(Ω) are not, in general, a.e. di�er-entiable on (0, T ), so that the metri formulation (1.12) does not lead to a pointwiseformulation any more. Hene, in Setion 7 we shall fous on purely metri evolutionsonly, in the ase the dissipation funtional
ψ(x) :=

1

2
x2 ∀x ≥ 0. (1.16)In fat, in Setion 7.2 we shall analyze the evolution driven in L1(Ω) (), by ψ (1.16)and an energy funtional of Ginzburg-Landau type, and prove an existene result(Theorem 7.3). However, in Setion 7.1 we shall preliminarily ompare the metriand the pointwise formulations on some simpler examples. For instane, we shallonsider, in the ase Ω = (0, 1), the quadrati energy funtional E : L1(0, 1) → [0,∞]

E(u) :=

{
1
2

∫ 1

0
u2(x) dx if u ∈ L2(0, 1)

∞ otherwise ∀u ∈ L1(0, 1) . (1.17)It an be heked that the loal slope of E in the metri spae L1(0, 1) is
|∂E| (u) =

{
‖u‖L∞(0,1) if u ∈ L∞(0, 1) ,
+∞ otherwise ∀u ∈ L2(0, 1) .7



Hene, an absolutely ontinuous urve u : (0, T ) → L1(0, 1) ful�lls the metri for-mulation (1.12) in L1(0, 1), with the hoies (1.16)�(1.17), ifthe map t ∈ (0, T ) 7→
1

2

∫ 1

0

u2(x, t) dx is absolutely ontinuous and
d

dt

(∫ 1

0

u2(x, t) dx

)
≤ −|u′|(t)2 − ‖u(t)‖2

L∞(0,1) for a.e. t ∈ (0, T ).

(1.18)On the other hand, the evolution equation orresponding to (1.18) is (DNE) drivenby the dissipation potential
Ψ(u) :=

1

2
‖u‖2

1 ∀u ∈ L1(Ω) (1.19)and by the energy funtional E (1.17), namely
‖ut(t)‖1Sign(ut(x, t)) + u(x, t) ∋ 0 for a.e. (x, t) ∈ (0, 1) × (0, T ) , (1.20)where we denote by Sign is the multivalued operatorSign(r) :=





1 if r > 0,
[−1, 1] if r = 0,
−1 if r < 0.In fat, in Setion 7.1, we shall alulate an expliit solution of (the Cauhy problemfor) (1.20) and show that it also ful�lls the metri formulation (1.18).Plan of the paper. In Setion 2 we �x the metri setup in whih we are go-ing to develop our theory, and aordingly give the preliminary de�nitions of metriderivative, slope, hain rule ondition. In fat, we extend these notions to the frame-work of a non-symmetri distane ∆ on the spae X, and we also allow ∆ to takevalue ∞. Further, besides the topology indued by ∆, we are also going to dealwith another topology σ on X, possibly weaker, whih mimis the role of the weaktopology in the Banah spae ase. Setion 3 is devoted to the onstrution of theapproximation sheme for (the Cauhy problem related to) (1.12), and to the state-ment of our existene and approximation Theorem 3.5. Subsequently, we illustratesuh result on the simple example of a time-independent funtional de�ned on anin�nite dimensional Banah manifold. The proof of Theorem 3.5 is arried out inseveral steps in Setion 4. Starting from Setion 5, we develop the main appliationsof our results to the Banah spae setting. Indeed, Setions 5 and 6 are devotedto preliminaries, the former in the setting of a separable Banah spae, and thelatter for a separable re�exive Banah spae, endowed with a Finsler (asymmetri)distane indued by a family of sublinear funtionals (in fat, a generalization of thesetup (1.14)). Throughout these setions, we investigate the link between slopes andsubdi�erentials, and prove (a version of) formula (1.9) for a broad lass of funtion-als, enompassing λ-onvex funtionals and C1-perturbations of onvex funtionals.8



We show that these funtionals also omply with the hain rule (1.10) in the gen-eral Banah ase. Moreover, we provide all the tehnial results enabling to swithfrom the metri formulation (1.12) bak to the pointwise formulation (1.13) in theFinsler, re�exive ase. Building on the material developed in Setion 5, in Setion 7we investigate metri evolutions in L1 spaes and also provide some examples withexpliit omputations of the metri solution. Finally, on the basis of Setion 6, inSetion 8 we develop the aforementioned appliations �rst in the setting of a generalre�exive Banah spae, with a Finsler asymmetri distane, seondly in the spae
Lp(Ω), 1 < p <∞.Part I: the metri theory2 The metri setup2.1 Asymmetri distanes and metri derivativesGeneral assumptions. In theHausdor� topologial spae (X, σ), (2.1)we are given a referene point xo ∈ X anda possibly non symmetri (asymmetri) distane ∆ : X ×X → [0,∞] ful�lling

∆(u, v) = 0 ⇔ u = v ∀u, v ∈ X,

∆(u, v) ≤ ∆(u, w) + ∆(w, v) ∀u, v, w ∈ X, (2.2)We set
δ(u, v) := min

[
∆(u, v),∆(v, u)

]
, Xu :=

{
v ∈ X : ∆(u, v) <∞

}
, X0 := Xxo

. (2.3)Observe that we ould always assume that ∆ is �nite, by restriting our disussionto the spae X0; nevertheless, sometimes it ould be useful to allow a more �exiblehoie of the referene point xo.Remark 2.1 A typial non-symmetri distane ∆ allowed to take the value ∞ isde�ned on the spae X = L1(Ω), Ω being a measurable subset of Rd, by
∆(u, v) =

{
‖u− v‖L1 if u ≥ v a.e. in Ω,
∞ else ∀u, v ∈ L1(Ω).Indeed, this example is relevant within appliations to damage problems, see [38℄.Metri ∆-derivatives. It is easy to extend the notion of metri derivative (see[3℄) of an absolutely ontinuous urve in X to a possibly nonsymmetri setting.9



First, for 1 ≤ p ≤ ∞ we de�ne
ACp(a, b;X) :=

{
v : (a, b) → X : ∃m ∈ Lp(a, b) s.t. ∆(v(s), v(t)) ≤

∫ t

s

m(r)dr

}
,(2.4)denoting by AC(a, b;X) the spae AC1(a, b;X). Note that, if disposes of a distane

d on the ambient spae X ful�lling
∃κ1, κ2 > 0 : κ1 d(u, v) ≤ δ(u, v) ≤ κ2d(u, v) ∀u, v ,∈ X.then ACp(a, b;X) is inluded in the usual spae of absolutely ontinuous urves inthe metri spae (X, d) (see [3℄). The following result is the natural extension of [5,Thm. 1.1.2℄.Proposition 2.2 For any v ∈ ACp(a, b;X), 1 ≤ p ≤ ∞, the limits

|v′|(t) := lim
h↓0

∆(v(t), v(t+ h))

h
= lim

h↓0

∆(v(t− h), v(t))

h
(2.5)exist and are equal for a.e. t ∈ (a, b); the funtion |v′| is in Lp(a, b) and ful�lls

∆(v(s), v(t)) ≤

∫ t

s

|v′|(r)dr ∀a < s ≤ t < b. (2.6)Furthermore,
|v′|(t) ≤ m(t) for a.e. t ∈ (a, b) (2.7)for any funtion m ∈ Lp(a, b) ful�lling

∆(v(s), v(t)) ≤

∫ t

s

m(r)dr ∀a < s ≤ t < b. (2.8)Proof. Let us �x v ∈ ACp(a, b;X) and let m ∈ Lp(a, b) ful�ll (2.8). Let us introduefor any s ∈ (a, b) the funtion ls : (a, b) → [0,∞) by
ls(t) := ∆(v(s), v(t)) ∀t ∈ (a, b).By the de�nition (2.4) of ACp(a, b;X), we get the following inequality

(
ls(t2) − ls(t1)

)+
≤ ∆(v(t1), v(t2)) ≤

∫ t2

t1

m(r) dr ∀ a < t1 ≤ t2 < b, (2.9)whene we dedue that the map t 7→ gs(t) := ls(t)−
∫ t
a
m(r) dr is non inreasing on

(a, b), in partiular a.e. di�erentiable. Moreover, from (2.9) we get
(
l′s(t)

)+
≤ ℓ(t) := lim inf

h↓0

∆(v(t), v(t+ h))

h
for a.e. t ∈ (a, b). (2.10)Note that ℓ is a measurable positive funtion on (a, b), ful�lling

0 ≤ ℓ(t) ≤ lim inf
h↓0

1

h

∫ t+h

t

m(r) dr = m(t) for a.e. t ∈ (a, b). (2.11)10



Thus, ℓ ∈ Lp(a, b); moreover, sine ls(t) =
∫ t
a
m(r) dr+gs(t) and g is non inreasing,the singular part of the distributional derivative of ls is a non positive measure andtherefore (2.10) yields

∆(v(s), v(t)) = ls(t) ≤

∫ t

s

(l′s(r))
+ dr ≤

∫ t

s

ℓ(r) dr ∀a < s ≤ t < b. (2.12)Further, let us onsider the measurable funtion ℓ̃ : (a, b) → [0,∞) de�ned by
ℓ̃(t) := lim sup

h↓0

∆(v(t), v(t+ h))

h
, t ∈ (a, b).Arguing as in (2.10), we dedue from (2.8) that

ℓ̃(t) ≤ m̃(t) for a.e. t ∈ (a, b) (2.13)for any m̃ ∈ Lp(a, b) for whih the inequality (2.8) holds. Thus, due to (2.12) we�nd
ℓ̃(t) ≤ ℓ(t), hene ∃|v′|(t) := lim

h↓0

∆(v(t), v(t+ h))

h
for a.e. t ∈ (a, b),and |v′|(t) ∈ Lp(a, b) by (2.11). Moreover, (2.12) yields (2.6). We have thus provedthe �rst part of the statement. The seond one follows from (2.13).Finally, the existene of the seond limit of (2.5) follows by the same argument,applied to the reversed urve v̂(t) := v(a + b − t) and to the reversed distane

∆̂(u, v) := ∆(v, u). In partiular
∆(v(s), v(t)) = ∆̂(v̂(a+b−t), v̂(a+b−s)) ≤

∫ a+b−s

a+b−t

|v̂′|(r) dr =

∫ t

s

|v̂′|(a+b−r) dr.(2.14)By the minimality property (2.7) (applied to v and v̂) we get
|v′|(t) = |v̂′|(a+ b− t) for a.e. t ∈ (a, b), (2.15)whih yields the identity between the two limits in (2.5).2.2 ∆-slopesIn the setup spei�ed by (2.1)-(2.2), let E : X → (−∞,∞] shall be a funtional withproper domain E = dom(E) =

{
u ∈ X : E(u) < ∞

}
. Hereafter, we shall supposethat

E is σ-sequentially lower semiontinuous. (2.16)We now introdue the notion of loal and relaxed slope in the framework of theasymmetri distane ∆: the following de�nition mimis in an obvious way the usualde�nitions of slope given in the setting of a symmetri distane, for whih we referto [3, 5℄. 11



De�nition 2.3 The ∆−loal slope of the funtional E at a point u ∈ dom(E) is
|∂E|(u) := lim sup

∆(u,v)→0

(E(u) − E(v))+

∆(u, v)
. (2.17)The ∆-relaxed slope |∂−E| of E at a point u ∈ dom(E) ∩X0 is de�ned by

|∂−E|(u) := inf
{

lim inf
n↑∞

|∂E|(un) : un
σ
⇀ u, sup{∆(xo, un), E(un)} <∞

}
. (2.18)Note that if D∩Xu = {u} then |∂E|(u) = 0; |∂−E| is (a version of) the (sequential)lower semiontinuous envelope of |∂E| w.r.t. to the topology σ, along sequenes in

X0 of bounded energy and bounded distane w.r.t. xo.2.3 Time dependent families of energy funtionalsIn this paper we deal with families of time-dependent funtionals Et : X → (−∞,∞],
t ∈ [0, T ]. In order to avoid further tehnial di�ulties, we will only onsider a quite�regular� dependene w.r.t. time: we thus assume that the proper domain of Et is�xed, i.e.

D := dom(Et) ∀ t ∈ [0, T ], and we set D0 := D ∩X0 . (2.19a)We also suppose that the funtionals are uniformly bounded from below, letting
−C0 := inf

t∈[0,T ],v∈D
Et(v) > −∞ , (2.19b)and that

∀ v ∈ D the funtion t 7→ Et(v) is di�. on [0, T ] with derivative ∂tEt(v) (2.19)whih satis�es
|∂tEt(v)| ≤ C1(Et(v) + ∆(xo, v) + 2C0) ∀ t ∈ [0, T ], v ∈ D0 (2.19d)for a suitable onstant C1 ≥ 0.Remark 2.4 Let us point out that (2.19d) (whih has been proposed in [33, �3℄),and the Gronwall Lemma yield the following estimate

Et(v) ≤ (Es(v)+2C0C1|t−s|+C1∆(xo, v)|t−s|)e
C1|t−s| ∀t, s ∈ [0, T ], v ∈ D0. (2.20)We will often impose some lower semiontinuity-ompatness onditions on sequenesof equibounded energy Et; thanks to the previous remark, the partiular hoie ofthe time t is not relevant, so that we an state our assumptions for an arbitrary�xed time. We thus introdue the auxiliary quantity

F(v) := 2C0 + ∆(xo, v) + E0(v) (2.21)and note that we have for a suitable onstant C > 0

1

C
sup
t∈[0,T ]

(
2C0+∆(xo, v)+Et(v)

)
≤ F(v) ≤ C inf

t∈[0,T ]

(
2C0+∆(xo, v)+Et(v)

)
∀ v ∈ D0.(2.22)Therefore, the t-energy Et(un) of a ∆-bounded sequene {un} ⊂ D0 remains boundedif and only if supnF(un) <∞: in this ase supn∈N,s∈[0,T ] Es(un) <∞.12



2.4 The purely metri formulation of the Cauhy Problem(DNE).Chain rule and urves of maximal slope. It is not di�ult to hek that if
v : [0, T ] → D is a urve and t̄ ∈ (0, T ) is a point suh that there exists the metri
∆-derivative |v′|(t̄), the map t 7→ Et(v(t)) is ontinuously di�erentiable at t̄, and
|∂Et̄|(v(t̄)) <∞, then

d

dt
Et(v(t))

∣∣∣
t=t̄

≥ ∂tEt̄(v(t̄)) − |v′|(t̄) · |∂Et̄|(v(t̄)). (2.23)In this paper we are interested to �nd urves of maximal slope, i.e. attaining theequality in (2.23):
d

dt
Et(v(t))

∣∣∣
t=t̄

= ∂tEt̄(v(t̄)) − |v′|(t̄) · |∂Et̄|(v(t̄)). (2.24)In a linear Eulidean framework, this would be equivalent to imposing that theveloity vetor and the gradient of the funtional Et have opposite diretions at eahtime. Of ourse, we should omplement this ondition with a relation between theirmoduli of the type
|∂Et̄|(v(t̄)) = h

(
|v′|(t̄)

)
, (2.25)

h : [0,∞) → [0,∞) being a ontinuous, surjetive, and inreasing map. By intro-duing its onvex primitive funtion and its Legendre-Fenhel-Moreau transform
ψ(x) :=

∫ x

0

h(r) dr, ψ∗(y) = sup
x≥0

xy − ψ(x), (2.26)and realling that for arbitrary ouples of nonnegative real numbers x, y ≥ 0

xy ≤ ψ(x) + ψ∗(y), y = h(x) = ψ′(x) ⇔ xy = ψ(x) + ψ∗(y), (2.27)we thus end up with the di�erential haraterization
d

dt
Et(v(t)) = ∂tEt(v(t)) − ψ

(
|v′|(t)

)
− ψ∗

(
|∂Et|(v(t))

)
t ∈ (0, T ). (2.28)We may further onsider a relaxed version of (2.28): �rst of all, we would like toreplae the slope |∂Et| with its lower semiontinuous envelope |∂−Et| (2.18), whihenjoys better onvergene properties. This is meaningful only if |∂−Et| is strongenough to ontrol the time derivative of the energies Et along absolutely ontinuousurves. We �x this property in the following de�nition:De�nition 2.5 (Chain rule for the relaxed slope) Let Et, t ∈ [0, T ], be a fam-ily of funtionals ful�lling (2.19a,b,,d). We say that |∂−Et| satis�es the hain ruleondition if for any urve v ∈ AC(0, T ;X0) with

∫ T

0

|v′|(t) · |∂−Et|(v(t))dt <∞, sup
t∈(0,T )

Et(v(t)) <∞, (2.29)the map t 7→ Et(v(t)) is absolutely ontinuous, and
d

dt
Et(v(t)) ≥ ∂tE(t, v(t)) − |v′|(t) · |∂−Et|(v(t)) for a.e. t ∈ (0, T ). (2.30)13



We may also drop the ontinuity assumption on h, by onsidering monotone surje-tive graphs instead of maps: in this ase we simply replae the relation h = ψ′ withthe subdi�erential ondition h = ∂ψ and (2.25) by
|∂Et|(v(t)) ∈ h

(
|v′|(t)

)
. (2.31)We an therefore onsider an arbitrary real funtion

ψ : [0,∞) → [0,∞], onvex and l.s..,with ψ(0) = 0, superlinear growth lim
x↑+∞

ψ(x)

x
= ∞and non empty int

(dom(ψ)
)

= (0, a) a ∈ (0,∞].

(2.32)Finally, one the hain rule holds, one heks by an elementary onvex analysisargument that imposing an inequality ≤ instead of the identity in (2.28) gives riseto an equivalent ondition.Colleting all the above remarks, we an now state our metri formulation of(the Cauhy Problem related to) (DNE).Problem 2.6 (Metri formulation of (DNE)) Suppose that the hain rule on-dition stated in De�nition 2.5 holds. Given u0 ∈ D0, �nd a urve u ∈ AC(0, T ;X0)suh that
u(0) = u0, the map t 7→ Et(u(t)) is absolutely ontinuous on (0, T ), and (2.33)
d

dt
Et(u(t)) ≤ ∂tEt(u(t)) − ψ

(
|u′|(t)

)
− ψ∗

(
|∂−Et|(u(t))

) for a.e. t ∈ (0, T ). (2.34)For instane, the hoie ψ(x) := xp/p, x ∈ [0,∞), p ≥ 1, with onjugate ψ∗(x) =
xp

′

/p′, 1/p+ 1/p′ = 1, of ourse �ts in this framework. In this ase, (2.34) reduesto
d

dt
Et(u(t)) ≤ ∂tEt(u(t)) −

|u′|p(t)

p
−

|∂−Et|
q(u(t))

q
.In general, let us point out for later onveniene that, by an elementary onvexanalysis argument, if the hain rule of De�nition 2.5 is satis�ed, then any absolutelyontinuous urve ful�lling (2.34) indeed ful�lls for a.e. t ∈ (0, T )

d

dt
Et(u(t)) − ∂tEt(u(t)) = −|u′|(t)|∂−Et|(u(t)) = −ψ

(
|u′|(t)

)
− ψ∗

(
|∂−Et|(u(t))

)
.(2.35)Remark 2.7 (Link with the metri theory of gradient �ows.) Let us pointout that our metri approah to (DNE) is tightly linked to the general theory de-veloped in [5℄ (see also the referenes therein) for gradient �ow equations in metrispaes. More preisely, following the terminology of [5, Chap. 1℄, the hain ruleproperty of De�nition 2.5 is (with slight hanges) equivalent to requiring |∂−E| tobe an upper gradient, whereas the metri analog of our de�nition of solution is thenotion of urve of maximal slope. 14



2.5 Topologial assumptionsLet us ollet here all the topologial assumptions relating the asymmetri distane
∆ and the funtionals ψ and Et, t ∈ [0, T ], to the topology σ of X.Sequential semiontinuity. If {un}, {vn}, u, v ∈ X0 satisfy

sup
n

(F(un) + F(vn)) <∞, and (un, vn)
σ
⇀ (u, v)then

lim inf
n↑∞

∆(un, vn) ≥ ∆(u, v), lim inf
n↑∞

Et(un) ≥ Et(u) ∀ t ∈ [0, T ], (2.36)
lim sup
n↑∞

∂tEt(un) ≤ ∂tEt(u) ∀ t ∈ [0, T ]. (2.37)Strengthened sequential semiontinuity. Further, in the ase in whih ∂ψ isnot single valued (this means that ψ is not di�erentiable in the interior of itsdomain, or that (f. (2.32)) a < ∞, ψ(a) < ∞ and ψ′
−(a) < ∞), we alsoassume that for every sequene tn ∈ [0, T ], un ∈ D0 suh that

sup
n

(F(un) + |∂Etn |(un)) <∞, ∆(u, un) → 0, tn ↓ twe have
lim sup
n↑∞

Etn(un) − Et(un)

tn − t
≤ ∂tEt(u) (2.38)Note that (2.38) surely holds if the following slightly stronger version of (2.37)is satis�ed

sup
n

F(un) <∞, ∆(u, un) → 0 for tn ↓ t ⇒ lim sup
n↑∞

∂tEtn(un) ≤ ∂tEt(u).(2.39)Sequential ompatness. If a sequene {un} ⊂ X0 satis�es sup
n∈N

F(un) <∞, then
∃u ∈ X and a subsequene {unk

} σ-onverging to u. (2.40)A few remarks on the above assumptions are in order.Remark 2.8 (Topology omparison.) Due to (2.36) and (2.40), we have
sup
n

F(un) <∞, δ(un, u) → 0 ⇒ un
σ
⇀ u. (2.41)In fat, any σ-sequential limit point v of un (whose existene follows from the om-patness assumption) satis�es δ(u, v) ≤ lim infn↑∞ δ(u, un) = limn↑∞ δ(u, un) = 0,by (2.36). Thus, v oinides with u.Remark 2.9 (d-ompleteness of the sublevels of E .) It is not di�ult to hekthat the sublevels of E satis�es the following ompleteness property with respet tothe asymmetri distane ∆: any sequene un ∈ X0 satis�es

lim
n→∞

sup
m>0

∆(un, un+m) = 0, sup
n

E(un) <∞ ⇒ ∃ ! u : un
σ
⇀ u, lim

n→∞
∆(un, u) = 0.(2.42)15



3 The main resultWe shall onstrut a solution u ∈ AC(0, T ;X) to Problem 2.6 by passing to thelimit in a suitable approximation sheme by time disretization.In the sequel, we adopt the onvention of denoting by the symbols C and C ′ allthe aessory positive onstants ourring in the estimates.3.1 ApproximationWe �x a time step τ > 0, to whih there orresponds a partition
Pτ := {t0 = 0 < t1 < . . . < tn < . . . < tN−1 < T ≤ tN}, tn := nτ, N ∈ N, (3.1)of the interval (0, T ). We onsider the following reursive minimization shemeProblem 3.1 (Variational approximation sheme) Given U0

τ := u0, �nd
U1
τ , . . . , U

N
τ ∈ X ful�lling
Un
τ ∈ Jτ (tn, U

n−1
τ ) := Argmin

u∈X

{
τψ

(
∆(Un−1

τ , u)

τ

)
+ Etn(u)

}
, (3.2)for n = 1, . . . , N.Lemma 3.2 Under the lower semiontinuity-ompatness assumptions (2.19a)�(2.19b)and (2.36)�(2.40) on E , and the growth-onvexity onditions (2.32) on ψ, for all

τ > 0 and u0 ∈ D Problem 3.1 admits at least one solution {Un
τ }

N
n=1. Further, if

u0 ∈ D0 then Un
τ ∈ D0 for all n = 1, . . . , N .The proof is a standard appliation of the well known diret method in the Calulusof Variations.Approximate solutions. Let Uτ and Uτ be, respetively, the left-ontinuousand right-ontinuous pieewise onstant interpolants of the values {Un

τ }
N
n=1 ful�lling

Uτ (tn) = Uτ (tn) = Un
τ for all n = 1, . . . , N , i.e.,

Uτ (t) = Un
τ ∀t ∈ (tn−1, tn], Uτ (t) = Un−1

τ ∀ t ∈ [tn−1, tn), n = 1, . . . , N. (3.3)Finally, let tτ , tτ : [0, T ] → [0, T ] be de�ned by
tτ (0) = tτ (0) := 0, tτ (t) := tk for t ∈ (tk−1, tk], tτ (t) := tk−1 for t ∈ [tk−1, tk). (3.4)Of ourse, for every t ∈ [0, T ] we have tτ (t) ↓ t and tτ (t) ↑ t as τ ↓ 0.We introdue another family of interpolants, due to E. De Giorgi, between thedisrete values Un

τ .De�nition 3.3 (De Giorgi variational interpolants) We denote by Ũτ any in-terpolant of the disrete values {Un
τ }

N
n=0 obtained by solving the problem






Ũτ (0) = u0, and, for t = tn−1 + r ∈ (tn−1, tn],

Ũτ (t) ∈ Jr(t, U
n−1
τ ) := Argminu∈X

{
rψ
(

∆(Un−1
τ ,u)
r

)
+ Et(u)

}
,

(3.5)suh that the map t 7→ Ũτ (t) is Lebesgue measurable in (0, T ).16



Remark 3.4 (Measurability of Ũτ) Sine the map s 7→ Js(tn−1, U
n−1
τ ) is σ-om-patly valued and upper semiontinuous, the existene of a measurable seletion

Ũτ (tn−1 + r) ∈ Jr(tn−1 + r, Un−1
τ ), r ∈ (tn−1, tn], is ensured by [14, Cor. III.3, Thm.III.6℄.Note that when t = tn, the minimization sheme in (3.5) oinides with the one in(3.2), so that we an always assume that

Ũτ (tn) = Uτ (tn) = Uτ (tn) = Un
τ , for every n = 1, . . . , N. (3.6)3.2 Statement of the main result.Theorem 3.5 (Main existene and approximation result) In the metri frame-work disussed in Setions 2.1 and 2.2, let us suppose that ψ omplies with (2.32) andthat the family of funtionals Et, t ∈ [0, T ], satis�es (2.19a)�(2.19d), the topologialassumptions (2.36)-(2.40) of Setion 2.5, and the hain rule ondition of De�nition2.5.Then, for any u0 ∈ D0 and any sequene τn ↓ 0 as n ↑ ∞, there exists asubsequene (still labeled τn) and a urve u ∈ AC(0, T ;X0) suh that

Uτn(t)
σ
⇀ u(t), Uτn(t)

σ
⇀ u(t), Ũτn(t)

σ
⇀ u(t) ∀t ∈ [0, T ], (3.7)where

u is a solution to Problem 2.6, thus satisfying also (2.35), (3.8)and the energy identity
∫ t

s

ψ(|u′|(r)) dr+

∫ t

s

ψ∗
(
|∂−Er|

(
u(r)

))
dr+ Et

(
u(t)

)
= Es

(
u(s)

)
+

∫ t

s

∂tEr
(
u(r)

)
dr(3.9)for every s, t ∈ [0, T ]. In addition, the following onvergenes hold as n ↑ ∞

∫ t

0

ψ

(
∆(Uτn(r), Uτn(r))

τn

)
dr −→

∫ t

0

ψ(|u′|(r)) dr ∀t ∈ [0, T ], (3.10)
∫ t

0

ψ∗
(
|∂Er|(Ũτn(r))

)
dr −→

∫ t

0

ψ∗
(
|∂−Er|(u(r))

)
dr ∀t ∈ [0, T ], (3.11)

Etτn (t)

(
Uτn(t)

)
→ Et

(
u(t)

)
, Et

(
Ũτn(t)

)
→ Et(u(t)) ∀t ∈ [0, T ] (3.12)and for a.e. t ∈ (0, T )

{
lim infn↑∞ |∂Et|(Ũτn(t)) = |∂−Et|(u(t)) if |u′|(t) 6= 0,
lim infn↑∞ ψ∗

(
|∂Et|(Ũτn(t))

)
= ψ∗ (|∂−Et|(u(t))) = 0 if |u′|(t) = 0. (3.13)Finally, let

I := {t ∈ (0, T ) : |u′|(t) 6= 0} . (3.14)Then, 17



i). if ψ∗ as well has superlinear growth, i.e. limx↑∞
ψ∗(x)
x

= ∞, we have the furtheronvergene
|∂Et|(Ũτn) → |∂−Et|(u) in L1(I ) as n ↑ ∞; (3.15)ii). in the general ase, there exists a non inreasing sequene {On}n of Borel subsetsof (0, T ) suh that ∩nOn = ∅ and, denoting by In the indiator funtion of theset (0, T ) \On, there holds

In · |∂Et|(Ũτn) → |∂−Et|(u) in L1(I ) as n ↑ ∞. (3.16)3.3 An example on an in�nite Banah manifoldWe onsider two Hilbert spaes V and H , suh that V is densely and ompatlyembedded in H (we identify H ≡ H ′ ⊂ V ′), and we denote by (·, ·) and ‖ · ‖ thesalar produt and the norm in H and by ‖·‖V the norm in V . We de�ne the metrispae (X,∆) via
X = {u ∈ H : ‖u‖ = 1} ∆(u1, u2) := ‖u1 − u2‖ ∀u1, u2 ∈ X ,and take as σ the topology indued by the distane ∆. We onsider a funtional

Ê ∈ C1(V ) ful�lling
Ê is onvex and ∃Λ1 Λ2 > 0 s.t. Ê(v) ≥ Λ1‖v‖

2
V − Λ2 ∀ v ∈ V , (3.17)and we de�ne E : X → (−∞,∞] by

E(u) :=

{
Ê(u) for u ∈ V ∩X,
+∞ otherwise, ∀u ∈ X. (3.18)The following results shed light on the loal slope of E and on its hain rule proper-ties.Lemma 3.6 Under the above assumptions, we have for all u ∈ dom(E)

|∂E| (u) < +∞ ⇔ DÊ(u) ∈ H , and in this ase
|∂−E|(u) = |∂E| (u) = ‖DÊ(u) − (DÊ(u), u)u‖ .

(3.19)Proof. We �x u ∈ dom(E) and note that for all w ∈ V \ {0} suh that (w, u) = 0there exists a urve γ : [−ρ, ρ] → X with γ ∈ C1([−ρ, ρ];V ) and γ′(0) = w. Then,
E(u) − E(γ(r))

∆(u, γ(r))
→

DÊ(u)[w]

‖w‖
as r → 0.Being w arbitrary, we infer that

|∂E| (u) ≥ sup
w∈V \{0}, (w,u)=0

DÊ(u)[w]

‖w‖
≥ sup

v∈V \{0}

DÊ(u)[v] − (DÊ(u), u)(v, u)

‖v‖

= ‖DÊ(u) − (DÊ(u), u)u‖ .

(3.20)
18



On the other hand, we note that for u ∈ dom(E) and v ∈ X (E(u) − E(v))+ > 0 ifand only if v ∈ X ∩ V , so that we estimate
(E(u) − E(v))+

‖v − u‖
≤

(
DÊ(u)[v − u]

)+

‖v − u‖

≤

(
DÊ(u)[v − u] − (DÊ(u), u)(u, v− u)

)+

‖v − u‖
+

(
(DÊ(u), u)(u, v− u)

)+

‖v − u‖

≤ ‖DÊ(u) − (DÊ(u), u)u‖+ (DÊ(u), u)+ 1 − (u, v)√
2(1 − (u, v))

,

(3.21)
the �rst inequality due to the onvexity of Ê and the last one to the identity ‖v −
u‖2 = 2(1−(u, v)), sine ‖u‖ = ‖v‖ = 1. We take the lim sup of (3.21) as ‖v−u‖ → 0and onlude the onverse inequality of (3.20). Hene, the formula for |∂E| ensues.Using this it is easy to hek that the map u 7→ |∂E| (u) is lower semiontinuous,whene (3.19).Lemma 3.7 Under the above assumptions, the funtional E de�ned by (3.18) om-plies with the hain rule of De�nition 2.5.Proof. Let us point out that any urve u ∈ AC(0, T ;X) is a.e. di�erentiable withvalues in H , so that

|u′|(t) = ‖u′(t)‖ for a.e. t ∈ (0, T ). (3.22)Now, if u ful�lls (2.29), neessarily u(t) ∈ V (whene E(u(t)) = Ê(u(t))) for all
t ∈ [0, T ]. Besides, |∂E| (u(t)) < +∞ for a.e. t ∈ (0, T ) yields by Lemma 3.6 that
DÊ(u(t)) ∈ H for a.e. t ∈ (0, T ). Sine Ê is smooth on H , it satis�es the hainrule

d

dt
E(u(t)) =

d

dt
Ê(u(t)) = (u′(t),DÊ(u(t))) for a.e. t ∈ (0, T ). (3.23)The onstraint ‖u(t)‖ = 1 for all t ∈ [0, T ] implies that
(u′(t), u(t)) = 0 for a.e. t ∈ (0, T ). (3.24)Hene, realling (3.19) and (3.22), we dedue that

d

dt
Ê(u(t)) = (u′(t),DÊ(u(t)) − (DÊ(u(t)), u(t))u(t)) ≥ −‖u′(t)‖ |∂E| (u(t))for a.e. t ∈ (0, T ), namely the hain rule inequality (2.30).Hene, the metri formulation (2.33)�(2.34) assoiated with the energy funtional

E (3.18) and with the quadrati dissipation ψ(r) := 1
2
r2 for all r ≥ 0 reads�nd u ∈ AC(0, T ;X) s.t. t ∈ (0, T ) 7→ E(u(t)) is absolutely ontinuous, and

d

dt
E(u(t)) ≤ −

1

2
‖u′(t)‖2 −

1

2
‖DÊ(u(t)) − (DÊ(u(t)), u(t))u(t)‖2 for a.e. t ∈ (0, T ).(3.25)19



In view of (3.17), E omplies with the assumptions of our main Theorem 3.5, pro-viding existene and approximation of a solution u ∈ AC(0, T ;X) to the Cauhyproblem for (3.25) for any initial datum u0 ∈ V ∩ X. It follows from the relatedenergy identity (3.9) that u has the further regularity u ∈ H1(0, T ;H)∩L∞(0, T ;V ).In fat, using the hain rule (3.23), (3.24), the energy identity (3.9) and the Cauhy-Shwarz inequality we dedue that u solves the gradient �ow equation
{
u′(t) = −(DÊ(u(t)) − (DÊ(u(t)), u(t))u(t)) for a.e. t ∈ (0, T ) ,

‖u(t)‖ = 1 ∀ t ∈ [0, T ].4 Proof of the main result4.1 Estimates for the (ψ)-Moreau-Yosida approximationIn this setion we ollet some general properties of the time-inremental problem(3.2). Namely, given r > 0, t ∈ (0, T ), and u ∈ X, we study the minimizationproblem
inf
v∈X

{
rψ

(
∆(u, v)

r

)
+ Et+r(v)

}
. (4.1)Note that, in the ase ∆ is a distane on X, ψ(x) := x2/2, and the funtional Edoes not depend on t, (4.1) atually redues to

inf
v∈X

{
d2(v, u)

r
+ E(v)

}
, (4.2)whih is related to the Moreau-Yosida approximation of E . The properties of theminimization problem (4.2) have been thoroughly studied in [5℄ (see also [44℄). Infat Lemmas 4.4 and 4.5 below are an extension to our framework of analogousresults ontained in [5, Chap. 3℄. Besides the time dependene of the energy fun-tionals, one of the main di�ulties here is given by the general hoie of the funtion

ψ: indeed, we neither assume that ψ is stritly onvex, nor that it is everywheredi�erentiable or even everywhere �nite on [0,∞).De�nition 4.1 (ψ-Moreau-Yosida approximation) For r > 0, we onsider
Et,r(u; v) := rψ

(
∆(u, v)

r

)
+ Et+r(v),and de�ne the ψ-Moreau-Yosida approximation Er of the funtionals E by

Et,r(u) := inf
v∈X

Et,r(u; v). (4.3)We also denote by Jr(t, u) the set where the in�mum in (4.3) is attained, i.e.
Jt,r(u) := Argmin

v∈X
Et,r(u; v). (4.4)20



Remark 4.2 (Simplifying assumptions.) By adding a positive onstant to Et,we an always assume that C0 = −1 in (2.19b), i.e.
inf

t∈[0,T ], v∈D
Et(v) ≥ 1; (4.5)we an therefore set

F(v) := ∆(xo, v) + E0(v) (4.6)with
1

A
sup
t∈[0,T ]

(
∆(xo, v) + Et(v)

)
≤ F(v) ≤ A inf

t∈[0,T ]

(
∆(xo, v) + Et(v)

)
∀ v ∈ D, (4.7)

|∂tEt(v)| ≤ AF(v) ∀ v ∈ D, (4.8)
Et(v) ≤ (Es(v) + C1∆(xo, v)|t− s|) exp(C1|t− s|) ∀t, s ∈ [0, T ], v ∈ D. (4.9)for a suitable onstant A > 0 (all inequalities being trivial if v ∈ D \D0).Remark 4.3 (Elementary properties of ψ) Being 0 a minimum point for ψ, itis immediate to hek that ψ is non dereasing on dom(ψ). We denote by ψ′

− and
ψ′

+ respetively the (non dereasing) left and right derivatives of ψ on D(ψ) (we set
ψ′

+(a) = ∞), whih satisfy
ψ′
−(x) ≤ ψ′

+(x), ∂ψ(x) = [ψ′
−(x), ψ′

+(x)] ∀x ∈ dom(ψ). (4.10)Sine ψ has a superlinear growth, the onjugate funtion ψ∗ is �nite at eah y ∈
[0,∞), non dereasing, and satis�es ψ∗(0) = 0.The following result ollets some properties of Er.Lemma 4.4 Under the same assumptions of Theorem 3.5 and Remark 4.2, thereexists a onstant C > 0 suh that for every t ∈ [0, T ], u ∈ D0, there holds

F(ur) ≤ CF(u) ∀ 0 < r ≤ min
(
1, T − t

)
, ur ∈ Jt,r(u), (4.11)and

Et,r2(u) − CF(u)r2 ≤ Et,r1(u) − CF(u)r1 ≤ Et(u) ∀ 0 < r1 < r2 ≤ min
(
1, T−t

)
;(4.12)in partiular, the map r 7→ Et,r(u) is a linear perturbation of a non inreasingfuntion and has bounded variation. Moreover,

lim
r↓0

sup
ur∈Jt,r(u)

∆(u, ur) = 0, lim
r↓0

Et,r(u) = Et(u) (4.13)and
|∂Et+r|(ur) ≤ ψ′

+

(
∆(u, ur)

r

) if ur ∈ Jt,r(u) and 0 ≤
∆(u, ur)

r
< a. (4.14)21



Proof. Step 1: proof of (4.11). First of all, let us point out that the minimalityof ur and (4.7) yield
rψ

(
∆(u, ur)

r

)
≤ Et+r(u) ≤ AF(u) ∀ur ∈ Jt,r(u). (4.15)Let us now �x ρ > 0 so that ψ∗(ρ) < 1/2 and therefore, being r ≤ 1,

rψ

(
∆(u, ur)

r

)
≥ ρ∆(u, ur) − rψ∗(ρ) ≥ ρ∆(u, ur) − 1/2;by the minimality ur we thus get for C := 2A(1 + ρ−1)

F(ur) ≤ C
(
ρ∆(u, ur) − 1/2 + Et+r(ur)

)
≤ C

(
rψ

(
∆(u, ur)

r

)
+ Et+r(ur)

)

≤ CEt+r(u) ≤ CAF(u),the two latter passages following from (4.15).Step 2: proof of (4.12). We �rst observe that, for every 0 < r1 < r2

Et,r2(u; v) − Et,r1(u; v) ≤ r2ψ
(

∆(u,v)
r2

)
− r1ψ

(
∆(u,v)
r1

)
+
∫ r2
r1
∂tEt+θ(v) dθ (4.16)

≤ A(r2 − r1)F(v) ∀ v ∈ D, (4.17)the last passage following from (4.8) and the fat that the map r 7→ rψ(x/r) is noninreasing. Choosing v = ur1 and realling Et,r2(u) ≤ Et,r2(u; ur1) we get by (4.11)
Et,r2(u) − Et,r1(u) ≤ A(r2 − r1)F(ur1) ≤ CA(r2 − r1)F(u).Step 3: proof of (4.13). From (4.15) and the de�nition of ψ∗ we get

M∆(u, ur) ≤ AF(u) + rψ∗(M) ∀M > 0, ∀ r ≤ T − t, ∀ur ∈ Jt,r(u).Taking the supremum with respet to ur and the lim sup as r ↓ 0 we get
M lim sup

r↓0
sup

ur∈Jt,r(u)

∆(u, ur) ≤ AF(u) ∀M > 0,yielding the �rst limit in (4.13).To hek the seond one, we note that, by (4.12), (4.13), (2.20) the lower semi-ontinuity of the funtional u 7→ Et(u),

Et(u) ≥ lim sup
r↓0

Et,r(u) ≥ lim inf
r↓0

Et+r(ur) ≥ Et(u).Step 4: proof of (4.14). We may assume a < ∞, the ase a = ∞ being easier tohandle. Hene, we �x r > 0, ur ∈ Jr(t, u) suh that ∆(u, ur) < a, and for simpliitywe set E(u) := Et+r(u). We also suppose that |∂E|(ur) > 0: otherwise, the inequalitywould be trivial. Note that,
|∂E|(ur) = lim sup

∆(ur ,v)→0

(E(ur) − E(v))+

∆(ur, v)
= lim sup

∆(ur ,v)→0,∆(u,v)>∆(u,ur)

(E(ur) − E(v))+

∆(ur, v)
.22



Indeed, sine |∂E|(ur) > 0, there exists a sequene {vk} with ∆(ur, vk) → 0 as k ↑ ∞and k̄ ∈ N suh that
|∂E|(ur) = lim

k↑∞

(E(ur) − E(vk))
+

∆(ur, vk)
, with E(vk) < E(ur),

∆(u, vk)

r
< a, (4.18)for k ≥ k̄, the latter inequality following from the fat that ∆(u, ur) < a and

∆(ur, vk) → 0. Hene, ∆(u, vk) > ∆(u, ur) for all k ≥ k̄: otherwise, if ∆(u, vk) ≤
∆(u, ur), the minimization (4.1) would yield, by the monotoniity of ψ:

E(ur) + rψ

(
∆(u, ur)

r

)
≤ E(vk) + rψ

(
∆(u, vk)

r

)
≤ E(vk) + rψ

(
∆(u, ur)

r

)
,ontrary to (4.18). Furthermore, for every k ≥ k̄

E(ur) − E(vk)

∆(ur, vk)
≤ r

ψ
(

∆(u,vk)
r

)
− ψ

(
∆(u,ur)

r

)

∆(ur, vk)
≤
ψ
(

∆(u,vk)
r

)
− ψ

(
∆(u,ur)

r

)

∆(u,vk)
r

− ∆(u,ur)
r

,the �rst inequality following from (4.1), and the seond one by the triangle inequality.Therefore, noting that 0 < ∆(u, vk) − ∆(u, ur) ≤ ∆(ur, vk) → 0, we have
|∂E|(ur) = lim sup

∆(ur ,vk)→0

(E(ur) − E(vk))
+

∆(ur, vk)
≤ lim inf

∆(ur ,vk)→0

ψ
(

∆(u,vk)
r

)
− ψ

(
∆(u,ur)

r

)

∆(u,vk)
r

− ∆(u,ur)
r

≤ lim sup
h↓0

ψ
(

∆(u,ur)
r

+ h
)
− ψ

(
∆(u,ur)

r

)

h
= ψ′

+

(
∆(u, ur)

r

)
.Before proving the following lemma, whih will play a ruial role later on, wereall for the reader's onveniene the well-known duality formula relating ψ and ψ∗

ψ∗(y) = yx− ψ(x) ∀y ∈ [ψ′
−(x), ψ′

+(x)]. (4.19)Moreover, in the ase in whih D(ψ) = [0, a], with a < ∞, and ℓ := ψ′
−(a) < ∞,there holds

ψ∗(y) ≤ ψ∗(ℓ) = ℓa−ψ(a) ∀y ≤ ℓ, ψ∗(y) = ya−ψ(a) = ψ∗(ℓ)+(y−ℓ)a ∀y > ℓ.(4.20)Indeed, the �rst inequality follows from the monotoniity of ψ∗; on the other hand,realling that ∂ψ(a) = [ℓ,∞) and that ∂ψ∗ = (∂ψ)−1, we onlude that ∂ψ∗(y) =
{a} for y > ℓ, whene the seond of (4.20).Lemma 4.5 Under the same assumptions of Theorem 3.5, for every t ∈ [0, T ),
u ∈ D0, and for a.e. r > 0the map r 7→ Et,r(u) is di�erentiable, ψ′

−

(
∆(u, ur)/r

)
<∞ at ur ∈ Jt,r(u), (4.21)23



and
d

dr
Er(t, u) ≤ ∂tEt+r(ur) − ψ∗

(
ψ−

′

(
∆(u, ur)

r

))
, (4.22)

d

dr
Er(t, u) ≤ ∂tEt+r(ur) − ψ∗ (|∂Et+r|(ur)) (4.23)where we adopt the onvention of writing ψ′

−(0) = 0. In partiular, we have
r0ψ

(
∆(u, ur0)

r0

)
+

∫ r0

0

ψ∗ (|∂Et+r|(ur)) dr + Et+r0(ur0) ≤ Et(u) +

∫ r0

0

∂tEt+r(ur) dr,(4.24)for every 0 < r0 ≤ T − t and ur0 ∈ Jt,r0(u).Proof. Preliminarily, let us point out that (4.16) yields for any r1, r2 > 0

Et,r2(u)−Et,r1(u) ≤ r2ψ
(

∆(u,ur1
)

r2

)
−r1ψ

(
∆(u,ur1

)

r1

)
+
(
Et+r2(ur1)−Et+r1(ur1)

)
, (4.25)Step 1: proof of (4.22). Sine by (4.12) the map r 7→ Et,r(u) is a linear perturba-tion of a monotone map, it is also almost everywhere di�erentiable on (0,∞); let rbe a point of di�erentiability and let us hoose r1 := r and r2 := r + h, h > 0, (sothat ∆(u, ur)/(r + h) ∈ D(ψ) as well) in (4.25); we also set

G(h) := Et,r+h(u) − Et+r+h(ur) so that d

ds
Et,s(u)

∣∣∣
s=r

=
d

dh
G(h)

∣∣∣
h=0

− ∂tEt+r(ur).When ∆(u, ur) > 0 (4.25) yields, with easy alulations,
G(h) −G(0)

h
≤

1

h

(
(r + h)ψ

(
∆(u, ur)

r + h

)
− rψ

(
∆(u, ur)

r

))

≤ ψ

(
∆(u, ur)

r + h

)
−

∆(u, ur)

r + h



ψ
(

∆(u,ur)
r+h

)
− ψ

(
∆(u,ur)

r

)

∆(u,ur)
r+h

− ∆(u,ur)
r


 . (4.26)Letting h ↓ 0, also taking into aount that ψ is ontinuous on int(dom(ψ)) we have

ψ
(

∆(u,ur)
r+h

)
− ψ

(
∆(u,ur)

r

)

∆(u,ur)
r+h

− ∆(u,ur)
r

↑ ψ′
−

(
∆(u, ur)

r

) as h ↓ 0.Therefore, we infer that
G′(0) ≤ ψ

(
∆(u, ur)

r

)
−

∆(u, ur)

r
ψ′
−

(
∆(u, ur)

r

)
= −ψ∗

(
ψ−

′

(
∆(u, ur)

r

))and the same relation holds even when ∆(u, ur) = 0, by the onvention ψ′
−(0) = 0.Step 2: proof of (4.23). If ∆(u, ur) = 0, then we may note that ψ∗(ψ′

+(∆(u, ur)/r)) =
ψ∗(ψ′

+(0)) = −ψ(0) = 0, so that (4.23) follows from (4.14) and (4.22).24



The same argument shows that (4.23) is an immediate onsequene of (4.14) and(4.22) when ∂ψ is single valued, sine in that ase ψ′
− = ψ′

+.In order to prove (4.23) in the general ase, we an assume without loss ofgenerality that |∂Et+r|(ur) > 0, and that
|∂Et+r|(ur) ≥ ψ′

−

(
∆(u, ur)

r

)
.If not, we would trivially onlude (4.23) in view of (4.22) and the monotoniity of

ψ∗. On the other hand, by (4.14)
|∂Et+r|(ur) ≤ ψ′

+

(
∆(u, ur)

r

)
, thus |∂Et+r|(ur) ∈ ∂ψ

(
∆(u, ur)

r

)
. (4.27)Let us denote by x the number ∆(u,ur)

r
: arguing as in the proof of Lemma 4.4, wean selet a sequene {vk} ful�lling

∆(ur, vk) → 0 as k ↑ ∞, ∆(u, ur) < ∆(u, vk), |∂Et+r|(ur) = lim
k↑∞

Et+r(ur) − Et+r(vk)

∆(ur, vk)
.(4.28)We also set

rk :=
∆(u, vk)

x
>

∆(u, ur)

x
= r,noting that

rk ↓ r as k ↑ ∞ and lim sup
k↑∞

Et+r(ur) − Et+r(vk)

∆(ur, vk)
≤ lim sup

∆(ur,vk)→0

Et+r(ur) − Et+r(vk)

x(rk − r)(4.29)by the triangle inequality. Therefore,
d

ds
Et,s(u)

∣∣∣
s=r

= lim
k↑∞

Et,rk(u) − Et,r(u)

rk − r

≤ lim inf
k↑∞

1

rk − r

(
Et+rk(vk) + rkψ

(∆(u, vk)

rk

)
− Et+r(ur) − rψ

(∆(u, ur)

r

))

= lim inf
k↑∞

1

rk − r

(
ψ(x)(rk − r) +

(
Et+rk(vk) − Et+r(vk)

)
+
(
Et+r(vk) − Et+r(ur)

))

≤ ψ(x) + lim sup
k↑∞

Et+rk(vk) − Et+r(vk)

rk − r
− lim

k↑∞

Et+r(ur) − Et+r(vk)

rk − r

≤ ∂tEt+r(ur) + ψ(x) − x|∂Et+r|(ur) = ∂tEt+r(ur) − ψ∗ (|∂Et+r|(ur)) , (4.30)where the �fth passage follows from (2.38), (4.28), and (4.29), whereas the lastidentity is due to (4.19) and (4.27).We argue analogously in the ase ∆(u, ur)/r = a, i.e. repeating (4.28)-(4.30):the only di�erene being that the �nal identity in (4.30) follows now from (4.20).Step 3: proof of (4.24). We note that for every r0 > 0 and every (measurable)25



seletion ur ∈ Jr(t, u), r ∈ (0, r0],

ψ

(
∆(u, ur0)

r0

)
+ Et+r0(ur0) − Et(u) = Et,r0(u) − lim

r↓0
Et,r(u) ≤

∫ r0

0

d

dr
Et,r(u) dr

≤

∫ r0

0

(
∂tEt+r(ur) − ψ∗ (|∂Et+r|(ur))

)
dr,where we have used (4.13) in the �rst passage, the monotoniity (up to a linearperturbation) of r 7→ Et,r(u) in the seond passage and, �nally, (4.23).4.2 Estimates for the approximate solutionsA priori estimates. Preliminarily, we reall the following well-known DisreteGronwall Lemma:Lemma 4.6 Let B, b, and κ be positive onstants with 1 − b ≥ 1

κ
> 0 and let

{an} ⊂ [0,∞) be a sequene satisfying
an ≤ B + b

n∑

k=1

ak ∀n ∈ N.Then, {an} an be bounded by
an ≤ κBeκ bn ∀n ∈ N. (4.31)Proposition 4.7 (A priori estimates) Under the assumptions of Theorem 3.5,for τ > 0 let {Un

τ }
N
n=1 be a family of solutions to (3.2), and let Uτ , Uτ , and Ũτ bethe interpolants de�ned by (3.3) and (3.5). Then, the disrete energy inequality

∫
tτ

sτ

ψ

(
∆(Uτ (r), Uτ (r))

τ

)
dr +

∫
tτ

sτ

ψ∗
(
|∂Er|(Ũτ(r))

)
dr + Etτ

(Uτ (tτ ))

≤ Esτ
(Uτ (sτ )) +

∫
tτ

sτ

∂tEr(Ũτ (r)) dr

(4.32)holds for every pair of nodes sτ < tτ ∈ Pτ . Moreover, there exists a positive onstant
C suh that the following estimates hold for every τ > 0:

∫ T

0

ψ

(
∆(Uτ (r), Uτ (r))

τ

)
dr ≤ C,

∫ T

0

ψ∗
(
|∂Er|(Ũτ(r))

)
dr ≤ C, (4.33)

F(Uτ (t)) ≤ C, F(Ũτ (t)) ≤ C ∀t ∈ (0, T ), (4.34)
sup
t∈(0,T )

∆(Uτ (t), Ũτ (t)) = o(1), sup
t∈(0,T )

∆(Uτ (t), Uτ (t)) = o(1) as τ ↓ 0. (4.35)Proof. Let tj−1, tj be two onseutive nodes of the partition Pτ (f. (3.1)), and let
t ∈ (tj−1, tj ] : referring to the de�nition (4.3) of the Moreau-Yosida approximation
Er, let us apply inequality (4.24) with the hoies t = tj−1, u = U j−1

τ , r0 = t− tj−1,26



ur0 = Ũτ (t), ur = Ũτ (r) for r ∈ (tj−1, t). Thus, after hanging variable in the twointegrals we obtain
(t− tj−1)ψ

(
∆(U j−1

τ , Ũτ (t))

t− tj−1

)
+

∫ t

tj−1

ψ∗
(
|∂Er|(Ũτ(r))

)
dr + Et(Ũτ (t))

≤ Etj−1
(U j−1

τ ) +

∫ t

tj−1

∂tEr(Ũτ (r)) dr ∀ t ∈ (tj−1, tj].

(4.36)Writing (4.36) for t = tj , we obtain
∫ tj

tj−1

ψ

(
∆(Uτ (r), Uτ (r))

τ

)
dr +

∫ tj

tj−1

ψ∗
(
|∂Er|(Ũτ(r))

)
dr + Etj(U

j
τ )

≤ Etj−1
(U j−1

τ ) +

∫ tj

tj−1

∂tEr(Ũτ (r)) dr.

(4.37)Hene, (4.32) follows by adding up the ontributions (4.37) on the subintervals ofthe partition. It follows from the superlinear growth of ψ that there exists a positiveonstant C suh that
∫ tj

tj−1

ψ

(
∆(Uτ (r), Uτ (r))

τ

)
dr ≥ ∆(U j−1

τ , U j
τ ) − Cτ

≥ ∆(xo, U
j
τ ) − ∆(xo, U

j−1
τ ) − Cτ,

(4.38)the last passage following from the triangle inequality. Combining (4.37) and (4.38),realling that ψ∗ is positive (f. Remark 4.3), summing over the index j, and us-ing (4.7), we obtain
1

A
F(U j

τ ) ≤ ∆(xo, U
j
τ )+Etj (U

j
τ ) ≤ CT+∆(xo, u0)+E0(u0)+

∫ tj
0
∂tEr(Ũτ (r)) dr

≤ CT + ∆(xo, u0) + E0(u0) + A

∫ tj

0

F(Ũτ(r)) dr

≤ CT + ∆(xo, u0) + E0(u0) + AC

∫ tj

0

F(Uτ (r)) dr, (4.39)the third inequality following from (4.8) and the fourth one from (4.11). Therefore,we dedue that
F(U j

τ ) ≤ c0 + C

j∑

k=1

τF(Uk
τ ) ∀j = 1, . . . , N,where the onstant c0 only depends on the initial data and the data of the problem.Then, the disrete Gronwall Lemma 4.6 yields the �rst estimate in (4.34), and theseond one readily follows thanks to (4.11). Realling (4.8), we also infer that

∫ tj

0

∣∣∣∂tEr(Ũτ (r))
∣∣∣ dr ≤ C for all τ > 0. (4.40)27



Therefore, summing up over the index j and arguing by omparison in (4.37) weonlude the estimates of (4.33).Finally, in order to hek the �rst limit in (4.35) (in fat, the seond estimatein (4.35) an be proved in the same way), we start by noting that, from (4.36), thepositivity of ψ∗ and the previous estimates
(t− tj−1)ψ

(
∆(U j−1

τ , Ũτ (t))

t− tj−1

)
≤ C ∀t ∈ (tj−1, tj ], j = 1, . . . N.Combining this with the superlinear growth of ψ we obtain that for any M ≥ 0there exists S ≥ 0 ful�lling

∆(Uτ (t), Ũτ (t)) ≤
C

M
+ (t− tj−1)

S

M
≤

C

M
+ τ

S

M
∀ t ∈ (tj−1, tj ], ∀ j = 1, . . . , N.Thus, we easily dedue that for any ε > 0 there exist τ0 > 0 suh that for 0 < τ < τ0

∆(Uτ (t), Ũτ (t)) ≤ ε ∀t ∈ (0, T ),whene the desired onlusion.4.3 Passage to the limit and proof of existeneThe proof of the ensuing Proposition 4.9 is an adaptation of the argument devel-oped for [5, Cor. 3.3.4℄, and is based on the following version of the Asoli-Arzelàompatness theorem, proved in [5, Prop. 3.3.1℄, whih we reall here (in a slightlysimpli�ed form) for onveniene.Proposition 4.8 Under assumptions (2.1)�(2.2) on the spae X, let K be a σ-sequentially ompat subset of X with the following property: for all {un}, {vn}, u, v ∈
K,

(un, vn)
σ
⇀ (u, v) ⇒ lim inf

n↑∞
∆(un, vn) ≥ ∆(u, v). (4.41)Let {un} be a sequene of urves un : [0, T ] → X ful�lling

un(t) ∈ K ∀n ∈ N, ∀t ∈ [0, T ], (4.42)
lim sup
n↑∞

∆(un(s), un(t)) ≤ ω(s, t) ∀s, t ∈ [0, T ], s < t, (4.43)where ω : [0, T ] × [0, T ] → [0,∞) is a funtion suh that
lim

s↑r, t↑r s<t
ω(s, t) = 0 ∀r ∈ [0, T ].Then, there exist an inreasing subsequene k 7→ nk and a σ-ontinuous urve u :

[0, T ] → X suh that
unk

(t)
σ
⇀ u(t) ∀t ∈ [0, T ],and the limit urve u satis�es

lim
r↑s

∆(u(r), u(s)) = lim
t↓s

∆(u(s), u(t)) = 0 ∀ s ∈ (0, T ). (4.44)28



Proposition 4.9 (Compatness of the approximate solutions) Under the as-sumptions of Theorem 3.5, given any vanishing sequene τn ↓ 0 of time steps, thereexist a subsequene (still labeled τn), a limit urve u ∈ AC(0, T ;X0), and a funtion
L ∈ L1(0, T ) suh that the following onvergenes hold as n ↑ ∞

Uτn(t)
σ
⇀ u(t), Uτn(t)

σ
⇀ u(t), Ũτn(t)

σ
⇀ u(t) ∀t ∈ [0, T ], (4.45)

lim inf
n↑∞

Et(Ũτn(t)) ≥ Et(u(t)), lim inf
n↑∞

Etτn (t)(Uτn(t)) ≥ Et(u(t)) ∀t ∈ [0, T ], (4.46)
∆(Uτn , Uτn)

τn
⇀ L in L1(0, T ), L(t) ≥ |u′|(t) for a.e. t ∈ (0, T ), (4.47)
lim inf
n↑∞

|∂Et|(Ũτn(t)) ≥ |∂−Et|(u(t)) ∀t ∈ [0, T ]. (4.48)Proof. It is easy to see that estimate (4.33) and the superlinear growth of ψ entailthat the sequene
{

∆(Uτ (r), Uτ (r))

τ

} is bounded and uniformly integrable in L1(0, T ).Therefore, the Dunford-Pettis riterion ensures that {∆(Uτ (r),Uτ (r))

τ
} is weakly rela-tively ompat in L1(0, T ), whene the �rst of (4.47).Exploiting (4.34) and assumption (2.40) on the sublevels of F , we an applyProposition 4.8 to the sequene {Uτn}, of ourse with K as a suitable sublevel of

F (note that (4.41) is then a onsequene of (2.36)). Moreover, in order to hek(4.43), let us note that, by the triangle inequality,
∆(Uτn(s), Uτn(t)) ≤

∫
tτn(t)

tτn(s)

∆(Uτn(r), Uτn(r))

τn
dr ∀ 0 ≤ s ≤ t ≤ T.Therefore, passing to the limit as n ↑ ∞ and realling (2.36), (3.4) and (4.47), weinfer

∆(u(s), u(t)) ≤ lim sup
n↑∞

∆(Uτn(s), Uτn(t)) ≤

∫ t

s

L(r) dr ∀ 0 ≤ s ≤ t ≤ T, (4.49)whene (4.43). Thus, thanks to Proposition 4.8 we �nd a limit urve u ∈ C0([0, T ];X)and a subsequene along whih
Uτn(t)

σ
⇀ u(t) ∀t ∈ [0, T ].The onvergenes (4.45) for Uτn and Ũτn then follow from (4.35) and (2.41); further,

u ∈ AC(0, T ;X0) by (4.49). The seond inequality in (4.47) also follows from (4.49)and Proposition 2.2.As far as (4.46) is onerned, the �rst lim inf inequality ensues from (4.45),estimate (4.34) and the lower semiontinuity assumption (2.36); in the same way,from (2.37) we dedue that
lim sup
n↑∞

∂tEt(Ũτn(t)) ≤ ∂tEt(u(t)) ∀ t ∈ [0, T ]. (4.50)29



Finally, in order to prove the seond of (4.46), we ombine the estimate
∣∣Etτn (t)(Uτn(t)) − Et(Uτn(t))

∣∣ ≤
∫

tτn (t)

t

∂tEr(Uτn(t)) dr

≤ A

∫
tτn (t)

t

F(Uτn(t)) dr

≤ C(tτn(t) − t) ∀ t ∈ [0, T ]with the lower semiontinuity inequality (again due to (2.36))
lim sup
n↑∞

Et(Uτn(t)) ≤ Et(u(t)) ∀ t ∈ [0, T ].In the end, (4.48) follows from (4.45) and the de�nition (2.18) of |∂−E|.We may now omplete the proof of Theorem 3.5.Proof of Theorem 3.5. By (4.45), u(0) = u0. Let us �x t ∈ (0, T ] and onsiderthe inequality (4.32) for the nodes tτn(t) and s = 0:
∫

tτn(t)

0
ψ
(

∆(Uτn
(r),Uτn(r))

τn

)
dr +

∫
tτn(t)

0
ψ∗
(
|∂Er|(Ũτn(r))

)
dr + Etτn (t)(Uτn(t))

≤ E0(u0) +

∫
tτn(t)

0

∂tEr(Ũτn(r)) dr.
(4.51)We have

lim inf
n↑∞

(∫
tτn (t)

0
ψ
(

∆(Uτn
(r),Uτn (r))

τn

)
dr
)
≥
∫ t
0
ψ(L(r)) dr ≥

∫ t
0
ψ(|u′|(r)) dr, (4.52)the �rst inequality due to the �rst of (4.47) and the onvexity of ψ, while the seondinequality follows from the seond of (4.47) and the monotoniity of ψ. Now, forlater onveniene let us set A(t) := lim infn↑∞ |∂Et|(Ũτn(t)) for a.e. t ∈ (0, T ). ByFatou's lemma and the monotoniity of ψ∗ we have

lim inf
n↑∞

(∫
tτn(t)

0

ψ∗
(
|∂Er|(Ũτn(r))

)
dr

)
≥

∫
tτn (t)

0

lim inf
n↑∞

ψ∗
(
|∂Er|(Ũτn(r))

)
dr

≥

∫ t

0

ψ∗ (A(r)) dr ≥

∫ t

0

ψ∗
(
|∂−Er|(u(r))

)
dr. (4.53)Furthermore, (4.52), (4.53), and the a priori estimates (4.33) also entail

∫ T

0

|u′|(r)|∂−Er|(u(r)) dr ≤

∫ T

0

ψ(|u′|(r)) dr +

∫ T

0

ψ∗
(
|∂−Er|(u(r))

)
dr ≤ C.(4.54)In the same way, we �nd that

Et(u(t)) +

∫ T

0

|∂tEt(u(t))| dt ≤ C ∀ t ∈ [0, T ]. (4.55)30



Now, ombining (4.45), (4.46), (4.52)-(4.53), and (4.50) with the Fatou Lemma,we manage to pass to the limit in (4.51) and obtain
∫ t

0

ψ(|u′|(r)) dr +

∫ t

0

ψ∗
(
|∂−Er|(u(r))

)
dr + Et(u(t)) ≤ E0(u0) +

∫ t

0

∂tEr(u(r)) dr.(4.56)On the other hand, note that, thanks to (4.54) and (4.55), we may apply the hainrule of De�nition 2.5 to the limit urve u ∈ AC(0, T ;X0). Upon integration, we get
E0(u0) − Et(u(t)) +

∫ t

0

∂tEr(u(r)) dr ≤

∫ t

0

|u′|(r)|∂−Er|(u(r)) dr

≤

∫ t

0

ψ (|u′|(r)) dr +

∫ t

0

ψ∗
(
|∂−Er|(u(r))

)
dr.Thus, (4.56) yields

∫ t

0

(
ψ (|u′|(r)) + ψ∗

(
|∂−Er|(u(r))

)
+

d

dr
Er(u(r)) − ∂tEr(u(r))

)
dr = 0.Sine the integrand is non negative by inequality (2.30) and t ∈ (0, T ) is arbitrary,we dedue

ψ (|u′|(t))+ψ∗
(
|∂−Et|(u(t))

)
+
d

dt
Et(u(t))−∂tEt(u(t)) = 0 for a.e. t ∈ (0, T ), (4.57)i.e., (3.8), whene (2.35) as well. The above relation yields the energy identity (3.9)upon integration.Finally, taking the lim sup as n ↑ ∞ of (4.51) and again using the identity justproved, we dedue

lim sup
n↑∞

(
tτn (t)∫

0

ψ
(

∆(Uτn
(r),Uτn (r))

τn

)
dr +

tτn (t)∫
0

ψ∗
(
|∂Er|(Ũτn(r))

)
dr + Etτn(t)(Uτn(t))

)

≤ E0(u0) +
∫ t
0
∂tEr(u(r)) dr =

∫ t
0
ψ (|u′|(r)) dr +

∫ t
0
ψ∗ (|∂−Er|(u(r))) dr + Et(u(t)).So, taking into aount (4.46), (4.52), and (4.53) and arguing by omparison, wededue the onvergenes (3.10)�(3.11) and the �rst of (3.12). We also onlude theseond of (3.12) by taking the lim sup as n ↑ ∞ of the following inequality

∫
tτn

(t)

0

ψ

(
∆(Uτn(r), Uτn(r))

τn

)
dr +

∫ t

0

ψ∗
(
|∂Er|(Ũτn(r))

)
dr + Et(Ũτn(t))

≤ E0(u0) +

∫
tτn (t)

0

∂tEr(Ũτn(r)) dr(whih is obtained by summing up (4.32) and (4.36)), and arguing as in the abovelines. 31



In order to prove (3.13), we note that, ombining (4.53) with (3.11) leads to
lim
n↑∞

∫ t

0

ψ∗
(
|∂Er|(Ũτn(r))

)
dr =

∫ t

0

lim inf
n↑∞

ψ∗
(
|∂Er|(Ũτn(r))

)
dr

=

∫ t

0

ψ∗ (A(r)) dr =

∫ t

0

ψ∗
(
|∂−Er|(u(r))

)
dr ∀t ∈ [0, T ],

(4.58)whene
lim inf
n↑∞

ψ∗
(
|∂Et|(Ũτn(t))

)
= ψ∗(A(t)) = ψ∗(|∂−Et|(u(t))) for a.e. t ∈ (0, T ).Realling (2.35), we onlude that for a.e. t ∈ (0, T )

|u′|(t) · A(t) ≤ ψ
(
|u′|(t)

)
+ ψ∗

(
A(t)) = |u′|(t) · |∂−Et|(u(t)) ≤ |u′|(t) · A(t) (4.59)so that all the above inequalities hold as equalities and, if |u′|(t) 6= 0, we onlude

A(t) = |∂−Et|(u(t)), while |u′|(t) = 0 leads to the seond of (3.13).Finally, suppose �rst that ψ∗ has superlinear growth at in�nity: it follows fromthe a priori estimate (4.33) that the sequene {|∂Et|(Ũτn)} is uniformly integrable in
L1(0, T ). Hene, the fundamental ompatness theorem of Young measures theory(see [10, Thm. 1℄ and also [12℄) ensures that {|∂Et|(Ũτn)} admits a subsequene(whih we do not relabel) and a limit Young measure ν = {νt}t∈(0,T ) (νt being aprobability measure on R for a.e. t ∈ (0, T )) suh that

νt is onentrated on the set L (t) of the limit pointsof {|∂Et|(Ũτn)(t)} for a.e. t ∈ (0, T ),
(4.60)

|∂Et|(Ũτn) ⇀ Σ(t) :=

∫

R

ξ dνt(ξ) in L1((0, T )), (4.61)
lim inf
n↑∞

∫ T

0

ψ∗(|∂Er|(Ũτn)(r)) dr ≥

∫ T

0

(∫

R

ψ∗(ξ) dνr(ξ)

)
dr. (4.62)Now, the de�nition of |∂−E| gives for a.e. t ∈ (0, T )

|∂−Et|(u(t)) ≤ ξ, whene ψ∗(|∂−Et|(u(t))) ≤ ψ∗(ξ) ∀ ξ ∈ L (t). (4.63)Combining the above inequality, (4.58), (4.60), and (4.62), we dedue that
∫ T

0

(∫

R

ψ∗(ξ) dνr(ξ)

)
dr =

∫ T

0

ψ∗(|∂−Er|(u(r))) dr,whene, again by (4.63),
ψ∗(ξ) = ψ∗(|∂−Et|(u(t))) for a.e. ξ ∈ L (t) for a.e. t ∈ (0, T ). (4.64)Taking into aount the above identity, (2.35) and the �rst of (4.63) we thus onludethe following hain of inequalities

|u′|(t) ξ ≤ ψ(|u′|(t)) + ψ∗(ξ) = ψ(|u′|(t)) + ψ∗(|∂−Et|(u(t)))

= |u′|(t) |∂−Et|(u(t)) ≤ |u′|(t) ξ ∀ ξ ∈ L (t) for a.e. t ∈ (0, T ).
(4.65)32



Then, realling the de�nition (3.14) of the set I , we onlude that
ξ = |∂−Et|(u(t)) ∀ ξ ∈ L (t) for a.e. t ∈ I . (4.66)Therefore, the limit Young measure ν ful�lls νt = δ|∂−Et|(u(t)) for a.e. t ∈ I . Sinethe sequene {|∂Et|(Ũτn)} is uniformly integrable, we onlude (3.15).Without the superlinear growth assumption on ψ∗, using a version of the BitingLemma (see e.g. [49, Thm. 13℄) we dedue that there is a sequene of Borel subsets

On ⊂ (0, T ), dereasing to ∅, suh that, denoting by In the indiator funtion of theset (0, T ) \ On the sequene ωn := In |∂Et|(Ũτn) is uniformly integrable in L1(0, T ).Thus, we apply [10, Thm. 1℄ to the sequene {ωn}, �nd an assoiated limit Youngmeasure µ = {µt}t∈(0,T ), and onlude relations (4.60)�(4.62) for a (not relabeled)subsequene {ωn}. Sine the sequene On ↓ ∅, we may hek that for a.e. t ∈ (0, T )the set of the limit points of {ωn(t)} oinides with the set of the limit points of
{|∂Et|(Ũτn)(t)}, hene relations (4.63) hold as well. On the other hand,
lim inf
n↑∞

∫ T

0

ψ∗(ωn(r)) dr ≤ lim inf
n↑∞

∫ T

0

ψ∗(|∂Er|(Ũτn)(r)) dr =

∫ T

0

ψ∗(|∂−Er|(u(r))) drso that we similarly onlude that (4.64) for the Young measure µ. Arguing exatlyin the same way as above, we infer (3.16).Hene, the proof is done.Part II: appliations in Banah spaes5 Preliminaries in Banah spaesIn this part we fous our attention on the ase in whih the ambient spae X (f.(2.1)) is a separable Banah spae: to stress this assumption, we shall indiate itwith the letter B. We shall denote by ‖ · ‖ the norm of B, by ‖ · ‖∗ the norm on thedual spae B′ and by 〈·, ·〉 the duality pairing between B′ and B.For simpliity, in the sequel we shall work with non symmetri distanes ∆ on
B taking values in [0,∞). Furthermore, to �x ideas we shall suppose that

σ is the strong topology of B.5.1 Sublinear funtionalsLet us reall that a sublinear funtional is a onvex and positively homogeneous map
η : B → [0,∞), thus satisfying the following onditions:

η(λv) = λη(v) ∀λ ≥ 0 ∀ v ∈ B (5.1a)
η(v + w) ≤ η(v) + η(w) ∀ v, w ∈ B. (5.1b)33



It is easy to hek that η(0) = 0 and it is well-known that, among all the positivelyhomogenous maps satisfying (5.1a), ondition (5.1b) is equivalent to the onvexityof η. We also assume that there exists a positive onstant K suh that
K−1‖v‖ ≤ η(v) ≤ K‖v‖ ∀v ∈ B. (5.1)The hoie
∆(u, v) := η(v − u) ∀u, v ∈ B (5.2)indues an asymmetri distane on B whih satis�es the properties of Setion 2.1and is metrially equivalent to the distane indued by the norm of B. Therefore,given a proper funtional E : B → (−∞,∞] and a point u ∈ dom(E), we shall usethe notation

|∂E| (u) = lim sup
v→u

(E(u) − E(v))+

∆(u, v)
. (5.3)Duality. For any u ∈ B we also introdue the dual funtional η∗ := B′ → [0,∞)de�ned by

η∗(σ) := sup
v∈B\{0}

〈σ, v〉

η(v)
= sup

{
〈σ, v〉 : η(v) = 1

}
∀σ ∈ B′ ∀u ∈ B. (5.4)Note that if η is a norm, then the related funtional η∗ oinides with the orre-sponding dual norm of B′. Further, (5.1) implies, respetively,

K−1‖y‖∗ ≤ η∗(y) ≤ K‖y‖∗ ∀ y ∈ B′. (5.5)Let ψ : [0,∞) → [0,∞) be a positive, onvex, and lower semiontinuous funtion.We de�ne the funtional Ψ : B → [0,∞) by
Ψ(v) := ψ(η(v)) ∀ v ∈ B, (5.6)and denote by ∂Ψ its subdi�erential and by Ψ∗ its Fenhel-Moreau onjugate
Ψ∗(σ) := sup

v∈B
〈σ, v〉 − Ψ(v).In the sequel, we shall need the following duality result.Lemma 5.1 The onjugate of Ψ is given by

Ψ∗(σ) := ψ∗(η∗(σ)) ∀σ ∈ B′. (5.7)Moreover, we have the following haraterization of the subdi�erential ∂Ψ: for all
v ∈ B

σ ∈ ∂Ψ(v) ⇐⇒
(
η∗(σ) ∈ ∂ψ(η(v)) and η∗(σ) · η(v) = 〈σ, v〉

)
. (5.8)
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Proof. It follows from the de�nition of η∗ that 〈σ, v〉 ≤ η(v) η∗(σ) for all v ∈ B and
σ ∈ B′. Hene, by the de�nition of Ψ∗ we have

Ψ∗(σ) ≤ sup
v∈B

(
η(v) · η∗(σ) − ψ(η(v))

)
= sup

r≥0

(
r η∗(σ) − ψ(r)

)
= ψ∗(η∗(σ)).On the other hand, for any σ ∈ B′ we an �nd a sequene {vn} ful�lling η(vn) =

1, η∗(σ) = limn↑∞〈σ, vn〉. Then, for any r ≥ 0

rη∗(σ) − ψ(r) = lim
n↑∞

(〈σ, rvn〉 − ψ (r η(vn))) = lim
n↑∞

(〈σ, rvn〉 − ψ (η (rvn)))

≤ sup
v∈B

(
〈σ, v〉 − ψ(η(v))

)
= Ψ∗(σ),and (5.7) ensues.Thanks to (5.7), it is straightforward to hek that

(
Ψ(v) + Ψ∗(σ) = 〈σ, v〉

)
⇔

(
ψ(η(v)) + ψ∗(η∗(σ)) = η(v) · η∗(σ) = 〈σ, v〉

)
.On the other hand, the standard onvex analysis haraterization of the subdi�er-ential in terms of the Legendre-Fenhel-Moreau transform yields

σ ∈ ∂vΨ(v) ⇔ Ψ(v) + Ψ∗(σ) = 〈σ, v〉,

η∗(σ) ∈ ∂ψ(η(v)) ⇔ ψ(η(v)) + ψ∗(η∗(σ)) = η(v) · η∗(σ).Combining the above relations, we readily dedue (5.8).5.2 Subdi�erential and slopes for admissible funtionalsDe�nition 5.2 (Fréhet subdi�erential) Let E : B → (−∞,∞] be a properfuntional; the Fréhet subdi�erential ∂E(u) ⊂ B′ of E at a point u ∈ dom(E) isde�ned by
ξ ∈ ∂E(u) ⇔ lim inf

w→u

E(w) − E(u) − 〈ξ, w− u〉

‖w − u‖
≥ 0. (5.9)It is well-known that the subdi�erential is single-valued and oinides with the usualdi�erential DE when it exists, e.g. if E is a funtional of lass C1. If E is onvex,then ∂E an be equivalently haraterized by

ξ ∈ ∂E(u) ⇔ E(w) − E(u) ≥ 〈ξ, w − u〉 ∀w ∈ B,i.e. the Fréhet subdi�erential oinides with the subdi�erential in the sense ofonvex analysis. In fat, in the sequel we shall onsider a more general onvexityproperty.
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λ-onvexity. We reall that a proper funtional E : B → (−∞,∞] is λ-onvex forsome λ ∈ R if
E(uθ) ≤ (1 − θ)E(u0) + θE(u1) −

1

2
λθ(1 − θ)‖u0 − u1‖

2 ∀ θ ∈ [0, 1] ∀u0, u1 ∈ B ,(5.10)where we have set uθ = (1−θ)u0 + θu1. The following result extends [5, Prop. 1.4.4,Thm. 2.4.9℄ to the asymmetri setting and to λ-onvex funtionals.Lemma 5.3 Let E : B → (−∞,∞] be proper, lower semiontinuous, and λ-onvexfor some λ ∈ R. Then,1. for all u ∈ dom(E) the Fréhet subdi�erential ∂E(u) is a onvex weakly∗-losedset, it an be haraterized by
ξ ∈ ∂E(u) ⇔ E(w)−E(u) ≥ 〈ξ, w−u〉+

λ

2
‖w−u‖2 ∀w ∈ B , (5.11)and the graph of the operator ∂E is strongly-weakly∗ losed, namely

un → u, ξn⇀
∗ξ, ξn ∈ ∂E(un) ⇒ ξ ∈ ∂E(u). (5.12)2. Let η be a positively homogenous funtional ful�lling (5.1a,b,) and induingthe asymmetri distane ∆ (5.2); let |∂E| be the ∆-loal slope of E . Then,

|∂E| (u) = sup
v 6=u

(
E(u) − E(v)

η(v − u)
−

1

2
|λ|K2η(v − u)

)+

∀u ∈ dom(E) , (5.13)
|∂E| (u) = min

ξ∈∂E(u)
η∗(−ξ) ∀u ∈ dom(E) , (5.14)the map u 7→ |∂E| (u) is lower semiontinuous. (5.15)Proof. Easy omputations lead to (5.11), whih in turn yields (5.12). Further, wenote that (5.1) and (5.10) yield that

E(uθ) ≤ (1−θ)E(u0)+θE(u1)+
|λ|

2
K2θ(1−θ)η2(u1−u0) ∀ θ ∈ [0, 1] ∀u0, u1 ∈ B .Moving from the above inequality and repeating the very same omputations as inthe proof of [5, Thm. 2.4.9℄, one heks (5.13). Finally, (5.11) and (5.1) again yieldthat for all u ∈ dom(E)

E(u) − E(u+ w) −
1

2
|λ|K2η2(w) ≤ 〈−ξ, w〉 ∀w ∈ B ∀ ξ ∈ ∂E(u).Taking into aount (5.13), we dedue that
|∂E| (u) ≤ min

ξ∈∂E(u)
η∗(−ξ) .To prove the onverse inequality, we introdue the quantity

δE(u;w) := lim sup
ε↓0

E(u+ εw) − E(u)

ε
for u ∈ dom(E), w ∈ B.36



Using the λ-onvexity inequality (5.10) and the de�nition of |∂−E| it is not di�ultto hek thatthe map w 7→ δE(u;w) is onvex for all u ∈ dom(E) ,
{
E(u+ w) − E(u) ≥ δE(u;w) + λ

2
‖w‖2

δE(u;w) ≥ −|∂E| (u) η(w)
∀u ∈ dom(E), w ∈ B .

(5.16)Now, mimiking the proof of [5, Prop. 1.4.4℄, we onsider the epigraph
K+ = {(w, r) ∈ B × R : r ≥ δE(u;w)}of the funtion w 7→ δE(u;w) and the open hypograph

K− = {(w, r) ∈ B × R : r < −|∂E| (u) η(w)}of w 7→ −|∂E| (u) η(w). Sine K+ and K− are disjoint by (5.16), a version of theHahn-Banah theorem yields that there exists ξ ∈ B′ and α ∈ R suh that
−|∂E| (u) η(w) ≤ 〈ξ, w〉+ α ≤ δE(u;w) ∀w ∈ B. (5.17)A standard argument shows that α = 0. Hene, from the �rst inequality in (5.17)and the arbitrariness of w we dedue that η∗(−ξ) ≤ |∂E| (u). The seond of (5.17),ombined with (5.16), gives that ξ ful�lls (5.11). Thus, ξ ∈ ∂E(u), and (5.14)ensues. Finally, in order to hek (5.15) we �x a sequene un → u with Λ :=

lim infn↑∞ |∂E| (un) < ∞. For any ε > 0 there exists a subsequene {un′} andaordingly a sequene {ξn′} ⊂ B′, with ξn′ ∈ ∂E(un′) for all n′, ful�lling
lim
n′↑∞

η∗(−ξn′) = lim
n′↑∞

min
ξ∈∂E(un′ )

η∗(−ξ) = lim
n′↑∞

|∂E| (un′) ≤ Λ + ε.Due to (5.1), {ξn′} is bounded in B′, hene, up to a subsequene, we dedue that
ξn′⇀∗ξ, with ξ ∈ ∂E(u) by (5.12). Thus, thanks to (5.14) and the weak∗-lowersemiontinuity of η∗ we dedue

|∂E| (u) ≤ η∗(−ξ) ≤ lim
n′↑∞

|∂E| (un′) ≤ lim inf
n↑∞

|∂E| (un) + ε.Being ε arbitrary, (5.15) follows.Admissible funtionals. We are now in the position of introduing the broadestlass of (energy) funtionals whih we are going to takle in the framework of ourmetri approah to doubly nonlinear evolution equations.De�nition 5.4 (Admissible funtionals) We say that a proper and lower semiontinuous funtional E : B → (−∞,∞] is admissible if it an be deomposed into
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the sum E = E1 + E2, the funtionals E1 and E2 satisfying the following onditions
E1 is proper, λ-onvex for some λ ∈ R, l.s.., and bounded from below,
E2 is proper, and
∀{un} ⊂ B, (un → u, sup

n
E1(un) <∞) ⇒ lim inf

n↑∞
E2(un) ≥ E2(u) ;

(5.18)
∀M > 0 ∃ 0 < K1 < 1, K2 > 0 s.t.E2(u) ≥ −K1E1(u) −K2 ∀u ∈ B with ‖u‖ ≤ M,(5.19)
∀u ∈ dom(E) ∃! ξ =: D̃E2(u) ∈ B′ s.t. ∀{un} ⊂ B, with un → u, sup

n
E1(un) <∞

lim
n↑∞

E2(un) − E2(u) − 〈ξ, un − u〉

‖un − u‖
= 0, (5.20)

∀M > 0 ∃K3 > 0 s.t. ‖D̃E2(u)‖∗ ≤ K3 ∀u ∈ B with max (‖u‖, E1(u)) ≤M.(5.21)
∀ {un} ⊂ B, un → u, sup

n
E1(un) <∞ ⇒ D̃E2(un)⇀

∗D̃E2(u). (5.22)Remark 5.5 Let us point out that with (5.18) and (5.20) we require E2 to be lowersemiontinuous and (Fréhet) di�erentiable along sequenes with bounded E1-energyand ; further, (5.21) states that D̃E2 is estimated by the funtional E1 and (5.22)that D̃E2 is ontinuous again along sequenes with bounded E1-energy. In otherwords, the funtional E2 is a dominated perturbation of the (λ)-onvex funtional E1.In [44℄ a similar lass of dominated onave perturbations of onvex funtionals wasonsidered.The following result ollets some properties of the Fréhet subdi�erential and ofthe slopes of admissible funtionals, extending Lemma 5.3.Proposition 5.6 Let E : B → (−∞,∞] be an admissible funtional ( with E =
E1+E2 in the sense of De�nition 5.4), and let η be a positively homogenous funtionalful�lling (5.1a,b,) and induing the asymmetri distane ∆ (5.2). Then,1. for all u ∈ dom(E) the Fréhet subdi�erential ∂E(u) is a onvex and weakly∗losed set,

∂E(u) = ∂E1(u) + D̃E2(u) ∀u ∈ dom(∂E), (5.23)and ∂E satis�es the strong-weak∗ losedness property along sequenes withbounded energy
un → u, ξn⇀

∗ξ, ξn ∈ ∂E(un) sup
n

|E(un)| <∞ ⇒ ξ ∈ ∂E(u) ;(5.24)2. for all u ∈ dom(E)

∂E(u) 6= ∅ ⇔ |∂E| (u) <∞ and |∂E| (u) = min
ξ∈∂E(u)

η∗(−ξ) ,

|∂−E|(u) = |∂E| (u) ∀u ∈ dom(∂E).
(5.25)38



Proof. First of all, we show that
∂E(u) − D̃E2(u) ⊂ ∂E1(u) ∀u ∈ dom(∂E).Indeed, let us �x any ζ ∈ ∂E(u): sine E1 is onvex, in order to show that ζ−D̃E2(u) ∈

∂E1(u) it is su�ient to hek that for all sequene {wn} with wn → u we have
lim inf
n↑∞

E1(wn) − E1(u) − 〈ξ − D̃E2(u), wn − u〉

‖wn − u‖

= lim inf
n↑∞

(
E(wn) − E(u) − 〈ξ, wn − u〉

‖wn − u‖
−

E2(wn) − E2(u) − 〈D̃E2(u), wn − u〉

‖wn − u‖

)
≥ 0.(5.26)Now, we may suppose that supn E1(wn) <∞, hene (5.26) trivially ensues from thefat that ζ ∈ ∂E(u) and from the de�nition of D̃E2(u). The proof of the onverseinlusion ∂E1(u) + D̃E2(u) ⊂ ∂E(u) for all u ∈ dom(∂E) follows the same lines.Thanks to (5.23) and to Lemma 5.3, we immediately have that ∂E(u) is a onvexand weakly∗ losed subset of B′. Further, (5.24) is a onsequene of (5.12) and of(5.22).In order to show the �rst of (5.25) at a point u ∈ dom(E), we may supposewithout loss of generality that D̃E2(u) = 0 and that |∂E| (u) > 0. Then, using (5.19)one easily heks that there exists some onstant C > 0 suh that

|∂E| (u) = lim sup
v→u, E1(v)≤C

(E1(u) − E1(v) + E2(u) − E2(v))
+

η(v − u)
.Using that

lim
v→u, E1(v)≤C

(E2(u) − E2(v))
+

η(v − u)
= 0,we onlude

|∂E| (u) = lim sup
v→u, E1(v)≤C

(E1(u) − E1(v))
+

η(v − u)
= min

ξ∈∂E1(u)
η∗(−ξ) = min

ξ∈∂E(u)
η∗(−ξ),the seond identity due to (5.14) for the λ-onvex funtional E1 and the third oneto (5.23). As for the seond of (5.25), one learly has |∂−E|(u) ≤ |∂E| (u); in orderto prove the onverse inequality, we argue in the same way as for proving (5.15).Remark 5.7 Combining (5.23) with the representation (5.25) of the slope of thefuntionals E and E1, one dedues that

|∂E1| (u) = min
ξ∈∂E(u)−eDE2(u)

η∗(−ξ) ≤ min
ξ∈∂E(u)

η∗(−ξ) + η∗(D̃E2(u))

≤ |∂E| (u) +K‖D̃E2(u)‖∗ ∀u ∈ B,

(5.27)where the �rst inequality follows from the sublinearity of η∗ and the seond one from(5.5). 39



For later onveniene, we also state a version of the mean-value theorem for thefuntional E2 whih an be proved exatly in the same way as [2, Chap. 1, Thm. 1.8℄,to whih we refer the reader.Lemma 5.8 Let E : B → (−∞,+∞] be an admissible funtional. Then, for all
u, v ∈ dom(E) suh that the segment [u, v] ⊂ dom(E) one has

|E2(u) − E2(v)| ≤ sup
z∈[u,v]

‖D̃E2(z)‖∗ ‖u− v‖. (5.28)We onlude the setion with a tehnial result, whih will turn out to be useful inthe sequel.Lemma 5.9 (Seletion of optimal diretions) Let us suppose that
B is re�exive, (5.29)let E be an admissible funtional and let ξ ∈ ∂E(u) with 0 < η∗(−ξ) = |∂E| (u) <∞.Then, there exist a sequene of diretions {vn}, v ∈ B and a positive vanishingsequene hn ∈ (0,∞) suh that

η(vn) = η(v) = 1, 〈−ξ, v〉 = η∗(−ξ), vn ⇀ v, (5.30)and the sequene un := u+ hnvn satis�es
lim
n↑∞

E(u) − E(un)

η(un − u)
= lim

n↑∞

E(u) − E(u+ hnvn)

hn
= |∂E| (u) = η∗(−ξ). (5.31)Proof. By the de�nition of slope and by (5.25), we an �nd a sequene un 6= ustrongly onverging to u suh that

lim
n↑∞

E(u) − E(un)

η(un − u)
= |∂E| (u) = η∗(−ξ) > 0.We thus set

hn := η(un − u), vn :=
un − u

hn
,and, owing to the re�exivity of B, we an extrat a subsequene (still labeled vn)weakly onverging to v ∈ B with η(v) ≤ 1. By the subdi�erentiability assumption,we have

E(un) − E(u) ≥ 〈ξ, un − u〉 + o(hn) as n ↑ ∞;dividing by hn and inverting the diretion of the inequality, we an pass to the limitas n ↑ ∞ obtaining
η∗(−ξ) ≤ 〈−ξ, v〉 ≤ η∗(−ξ) · η(v),thus proving η(v) = 1 and the seond identity of (5.30).
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5.3 Chain rule for admissible families of time-dependent fun-tionalsIn this setion we shall establish a general hain-rule formula for a family of time-dependent funtionals Et(·), t ∈ [0, T ]. The natural assumptions ombine the ad-missibility onditions given in De�nition 5.4, the onditions on the time-dependenedisussed in Setion 2.3, and some of the topologial assumptions of Setion 2.5. Wereall them in a unique de�nition.De�nition 5.10 (Admissible family of time-dependent funtionals) We saythat a family of (proper, l.s..) funtionals Et : B → (−∞,∞], t ∈ [0, T ], is ad-missible if eah funtional Et is admissible aording to De�nition 5.4, with thedeomposition Et = E1
t + E2

t for all t ∈ [0, T ], and1. dom(Et) ≡ D does not depend on time,2. the funtionals E1
t are uniformly bounded from below w.r.t. t and λ-uniformlyonvex, namely

∃λ ∈ R ∀ t ∈ [0, T ] ∀u0, u1 ∈ B ∀ θ ∈ [0, 1] :

E1
t ((1 − θ)u0 + θu0) ≤ (1 − θ)E1

t (u0) + θE1
t (u1) −

1

2
λθ(1 − θ)‖u0 − u1‖

2
(5.32)3. onditions (5.19) and (5.21) hold with onstants K1, K2, and K3 independentof t,4. for every sequenes vn, v ∈ D, tn, t ∈ [0, T ]

vn → v, tn → t, sup
n

Etn(v) <∞ ⇒ ∃ lim
n→∞

Etn(vn) − Et(vn)

tn − t
=: ∂tEt(v), (5.33)whih satis�es

|∂tEt(v)| ≤ K4(Et(v) + ‖v‖ + 2K0) ∀ t ∈ [0, T ], v ∈ D (5.34)for a suitable onstant K4 ≥ 0.Note that these onditions yield that the funtionals Et are uniformly bounded frombelow (w.r.t. t); we set
−K0 := inf

t∈[0,T ],v∈D
Et(v) > −∞. (5.35)In the following formula we hoose a positively homogeneous and onvex funtional

η satisfying (5.1a,b,) and, given an absolutely ontinuous urve v, we denote by
|v′|(t) the metri derivative with respet to the asymmetri distane ∆ (5.2) induedby η.
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Proposition 5.11 (Chain rule) Let E : [0, T ] × B → (−∞,∞] be an admissiblefamily of funtionals aording to De�nition 5.10, let η be a positively homogeneousfuntional ful�lling (5.1a,b,) induing the asymmetri distane ∆ (5.2), and let
v ∈ AC(0, T ;B) be an absolutely ontinuous urve satisfying

sup
t∈[0,T ]

Et(v(t)) <∞,

∫ T

0

|v′|(t) · |∂Et| (v(t)) dt <∞. (5.36)Then, the map t 7→ Et(v(t)) is absolutely ontinuous and
d

dt
Et(v(t)) ≥ ∂tEt(v(t)) − |∂Et|(v(t)) · |v

′|(t) for a.e. t ∈ (0, T ). (5.37)Moreover, if v is (weakly) di�erentiable a.e., we have
d

dt
Et(v(t)) = ∂tEt(v(t)) + 〈ξ, v′(t)〉 ∀ξ ∈ ∂Et(v(t)), for a.e. t ∈ (0, T ). (5.38)Proof. Up to a suitable reparametrization (see [5, Lemma 1.1.4℄), it is possible toassume that the urve is 1-Lipshitz (with respet to the norm of B) and

|v′|(t) ≤ K for a.e. t ∈ (0, T ) . (5.39)Sine v is uniformly bounded and the energies Et(v(t)) are uniformly bounded, using(5.19) we get
sup
t∈[0,T ]

E1
t (v(t)) < +∞, (5.40)as well as

F(v(s)) + |∂tFt(v(s))| ≤ S <∞ ∀ s, t ∈ [0, T ], (5.41)where F is de�ned as in (2.21). In order to show the absolute ontinuity of theenergy map t 7→ Et(v(t)), we need to estimate
Et(v(t)) − Es(v(s)) = (Et(v(t)) − Et(v(s))) + (Et(v(s)) − Es(v(s))) (5.42)for 0 ≤ s < t ≤ T . Thanks to (5.41), we have

Et(v(s)) − Es(v(s)) ≤ S|t− s|. (5.43)In order to estimate the �rst summand on the right-hand side of (5.42), we notiethat, thanks to (5.40), the onvexity of E1
t , and (5.21),

sup
z∈[v(s),v(t)]

E1
t (z) <∞, whene sup

z∈[v(s),v(t)]

‖D̃E2
t (z)‖∗ ≤ S1 <∞, (5.44)for a positive onstant S1. Hene, Lemma 5.8 and Lipshitz ontinuity of v yield

E2
t (v(t)) − E2

t (v(s)) ≤ sup
z∈[v(s),v(t)]

‖D̃E2
t (z)‖∗‖v(t) − v(s)‖ ≤ S1|t− s| (5.45)
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for 0 ≤ s < t ≤ T . On the other hand, thanks to (5.13)
E1
t (v(t)) − E1

t (v(s)) ≤ |∂E1
t |(v(t))η(v(s)− v(t)) +

1

2
λ−K2η2(v(s) − v(t))

≤

(
K|∂Et|(v(t)) +K2S1 +

1

2
λ−K4

)
|t− s|

(5.46)the latter inequality due to (5.27), (5.39) and again (5.44). Combining (5.42), (5.43),(5.45), and (5.46), and inverting the role of s and t we easily get the followingestimate
|Et(v(t)) − Es(v(s))| ≤

(
K|∂Et|(v(t)) +K|∂Es|(v(s)) + C

)
|t− s| (5.47)for some suitable onstant C. Arguing as in Theorem [5, Thm. 1.2.5℄, we get theabsolute ontinuity of the energy.Let us now �x a point s ∈ (0, T ) suh that |v′|(s) and d

dt
Es(v(s)) exist, and

|∂Es|(v(s)) <∞. Equality (5.42) and the de�nition of slope yield when t→ s

Et(v(t)) − Es(v(s)) ≥ −|∂Es|(v(s))η(v(t) − v(s)) + ∂tEs(vs) + o(|t− s|)so that, dividing the inequality by t− s > 0, we get (5.37). When v is also weaklydi�erentiable at s, we an use the de�nition of Fréhet subdi�erential to obtain
Et(v(t)) − Es(v(s)) ≥ 〈ξ, v(t) − v(s)〉 + ∂tEs(vs) + o(|t− s|) ∀ ξ ∈ ∂Es(v(s)).Dividing by t−s and passing to the limit �rst as t ↓ s and then as t ↑ s we onlude.6 Finsler metrisIn this setion we want to extend some of the previous results to the ase in whih ∆is an nondegenerate asymmetri Finsler distane indued by a family of onvex andpositively homogeneous (sublinear) funtionals ηu depending on u ∈ B (and againwe take as σ the norm topology of B).We onsider the ase in whih

B is a separable and re�exive Banah spae, (6.1)endowed with a family of funtionals
ηu : B → [0,∞), u ∈ B, satisfying onditions (5.1a,b,) with K independent of u.(6.2)We are assuming the dependene of η with respet to u is ontinuous in the senseof Moso (see, e.g., [9, � 3.3, p. 295℄), i.e. whenever a sequene un is stronglyonvergent to u in B as n ↑ ∞, the orresponding sequene of funtionals ηunMoso-onverges to ηu. This means two onditions:

un → u, vn ⇀ v in B ⇒ lim inf
n→∞

ηun
(vn) ≥ ηu(v), (6.3)43



and
un → u, v ∈ B ⇒ ∃ vn → v : lim

n→∞
ηun

(vn) = ηu(v). (6.4)Let us reall a well-known onsequene of this assumption:Theorem 6.1 (Duality for Moso-onvergene) If un → u in B and ξn⇀∗ξ in
B′, then

lim inf
n→∞

ηun∗(ξn) ≥ ηu∗(ξ). (6.5)Proof. We �x v ∈ B with ηu(v) = 1 and we take a sequene vn satisfying (6.4). Wehave
lim inf
n↑∞

ηun∗(ξn) ≥ lim inf
n↑∞

〈ξn, vn〉

ηun
(vn)

= 〈ξ, v〉.Sine v an be arbitrarily hosen with ηu(v) = 1, taking the supremum of the lastduality with respet to v we onlude.The indued asymmetri Finsler distane. For u, v ∈ B we introdue ∆through the formula
∆(v, w) := inf

{∫ 1

0

ηu(t)(u
′(t)) dt : u ∈ AC(0, 1;B), u(0) = v, u(1) = w

}
. (6.6)Note that (6.6) makes sense (the map t 7→ ηu(t)(u

′(t)) is integrable for all u ∈
AC(0, 1;B)) and de�nes a (possibly non-symmetri) distane (in the sense of (2.2))on B assoiated with the family {ηu}u∈B. Sine (5.1) holds uniformly w.r.t. u ∈ B,we have

K−1‖v − w‖ ≤ ∆(v, w) ≤ K‖v − w‖ ∀v, w ∈ B. (6.7)and therefore the lass of absolutely ontinuous urves with respet to ∆ oinideswith the usual one (i.e. with respet to the norm of B). Again, we shall use thenotation (5.3) for slopes w.r.t. ∆.The main problem is to haraterize the metri veloity assoiated with ∆; hereis the main result:Theorem 6.2 (Metri veloity) Assume (6.1)�(6.4), and let ∆ be as in (6.6);let u ∈ AC(a, b;B) and let |u′| be its (a.e. de�ned) metri veloity indued by theasymmetri distane ∆ (6.6). We have
|u′|(t) = ηu(t)(u

′(t)) for a.e. t ∈ (a, b). (6.8)More preisely, the identity of (6.8) holds at eah point t̄ ful�lling the following threeonditions:i) u is di�erentiable at t̄.ii) t̄ is a Lebesgue point for the map t 7→ ηu(t)(u
′(t))iii) ∃ lim

h↓0

∆(u(t̄), u(t̄+ h))

h
=: |u′|(t̄). 44



We split the proof in various steps.Lemma 6.3 Under the same assumption of Theorem 6.2, let t̄ be satisfying ondi-tions i)· · · iii). We have
|u′|(t̄) ≤ ηu(t̄)(u

′(t̄)). (6.9)Proof. For h > 0 let us onsider the urve r ∈ [0, 1] 7→ γ(r) := u(t̄+ rh) onneting
u(t̄) and u(t̄+ h). By de�nition of ∆ and a trivial hange of variables, we obtain

∆(u(t̄), u(t̄+ h)) ≤

∫ t̄+h

t̄

ηu(r)(u
′(r)) dr.Dividing by h > 0 we obtain (6.9), being t̄ a Lebesgue point of the map r 7→

ηu(r)(u
′(r)).The next lemma provides the ruial tehnial result, whih will also be useful lateron.Lemma 6.4 Let u, un ∈ B and hn > 0 suh that as n ↑ ∞

un → u,
un − u

hn
⇀ v 6= 0,

ηu(un − u)

hn
→ ηu(v). (6.10)Then,

lim inf
n↑∞

∆(u, un)

hn
≥ ηu(v), lim inf

n↑∞

∆(u, un)

ηu(un − u)
≥ 1. (6.11)Proof. By the de�nition (6.5) of ∆ and a standard reparametrization argument, we�nd Lipshitz ontinuous urves γn : [0, 1] → B onneting u to un and a vanishingpositive sequene εn ∈ (0, 1/2) suh that

∆(u, un) ≥ (1 − εn)

∫ 1

0

ηγn(t)(γ
′
n(t)) dt, ‖γ′n(t)‖ ≤ 4K∆(u, un) for a.e. t ∈ (0, T ).(6.12)Dividing by hn, we an assume that h−1

n ∆(u, un) ≤ A < ∞; by introduing theurve
γ̂n(t) := u+

γn(t) − u

hn
, with γ̂′n(t) = h−1

n γ′n(t),we get
∆(u, un)

hn
≥ (1 − εn)

∫ 1

0

ηγn(t)(γ̂
′
n(t)) dt, ‖γ̂′n(t)‖ ≤ 4K

∆(u, un)

hn
≤ 4KAfor a.e. t ∈ (0, T ), so that

lim inf
n↑∞

∆(u, un)

hn
≥ lim inf

n↑∞

∫ 1

0

ηγn(t)(γ̂
′
n(t)) dt. (6.13)After the extration of a suitable subsequene (not relabeled), we an assume thatthe last lim inf is in fat a limit and, sine γ̂′n is uniformly bounded, that γ̂′n ⇀ z45



weakly in L2(0, 1;B), whih is still a re�exive and separable Banah spae. Sine
γn(t) → u uniformly as n → ∞, general lower semiontinuity results for normalintegrands applied to the strongly-weakly lower semiontinuous funtional (u, v) 7→
ηu(v) (see [11, Thm. 3.2℄, as well as [44, Thm. 3.2℄ and [35, Thm. B.1℄) yield

lim inf
n↑∞

∫ 1

0

ηγn(t)(γ̂
′
n(t)) dt ≥

∫ 1

0

ηu(z(t)) dt ≥ ηu(Z), Z :=

∫ 1

0

z(t) dt, (6.14)where the last inequality follows by the onvexity of ηu and Jensen inequality.On the other hand, we have
∫ 1

0

γ̂′n(t) dt = γ̂n(1) − γ̂n(0) =
un − u

hn
(6.15)and therefore for every y ∈ B′

〈y, Z〉 =

∫ 1

0

〈y, z(t)〉 dt = lim
n→∞

∫ 1

0

〈y, γ̂′n(t)〉 dt = lim
n→∞

〈y, h−1
n (un − u)〉 = 〈y, v〉(6.16)whih yields Z = v and by (6.13)

lim inf
n↑∞

∆(u, un)

hn
≥ ηu(v). (6.17)We onlude that

lim inf
n↑∞

∆(u, un)

ηu(un − u)
= lim inf

n↑∞

∆(u, un)

hn
·

hn
ηu(un − u)

≥ ηu(v)
1

ηu(v)
= 1.Proof of Theorem 6.2. We an onlude now the proof of Theorem 6.2, byproving the opposite inequality

|u′|(t̄) ≥ ηu(t̄)(u
′(t̄)) (6.18)at eah point t̄ satisfying onditions i)· · · iii).It is obviously not restritive to assume u′(t̄) 6= 0: we an thus apply the previouslemma, hoosing a positive vanishing sequene hn ↓ 0 and u := u(t̄), un := u(t̄+hn),

v = u′(t̄).We apply now Lemma 6.4 to prove a useful property of the ∆-slope of an admis-sible funtional.Theorem 6.5 Let E be an admissible funtional in the sense of De�nition 5.4, let
|∂E| be the slope assoiated with the asymmetri distane (6.6), and let ∂E be itsFréhet subdi�erential. Then for every u ∈ dom(E)

|∂E| (u) <∞ ⇔ ∂E(u) 6= ∅,

|∂E| (u) ≤ K‖ξ‖ ∀ ξ ∈ ∂E(u),
(6.19)and in this ase

|∂E| (u) ≥ min
ξ∈∂E(u)

ηu∗(−ξ). (6.20)46



Proof. Sine the asymmetri distane ∆ satis�es the uniform bound (6.7), it isimmediate to hek that the ∆-slope of a funtional E is �nite if and only if the slopeof E w.r.t. the norm of B is �nite: (5.25) thus yields (6.19), the seond estimatefollowing from (6.2).In order to hek (6.20) we �x u ∈ dom(∂E), we hoose an element ξ0 ∈ ∂E(u)whih attains the minimum in (6.20) (it is not restritive to assume ξ0 6= 0) and weapply Lemma 5.9: we then �nd a sequene un ∈ dom(E) suh that
hn := ηu(un−u) → 0,

un − u

hn
⇀ v, ηu(v) = 1, lim

n↑∞

E(u) − E(un)

hn
= ηu∗(−ξ0) > 0.On the other hand Lemma 6.4 yields

|∂E| (u) ≥ lim sup
n→∞

E(u) − E(un)

∆(u, un)
= lim

n↑∞

E(u) − E(un)

hn
· lim sup

n↑∞

hn
∆(u, un)

≥ ηu∗(−ξ0) · ηu(v) = ηu∗(−ξ0).Taking into aount Theorem 6.1 and the strong-weak losedness of ∂E (f. (5.24)),we easily getCorollary 6.6 Let E be an admissible funtional and let |∂−E| be the relaxed slopeassoiated with the asymmetri distane (6.6), i.e.
|∂−E|(u) := inf

{
lim inf
n↑∞

|∂E| (un) : un → u, sup
n

E(un) <∞
}
. (6.21)Then for every u ∈ dom(E)

|∂−E|(u) <∞ ⇔ ∂E(u) 6= ∅, (6.22)and in this ase
|∂−E|(u) ≥ min

ξ∈∂E(u)
ηu∗(−ξ). (6.23)Theorem 6.7 (Relaxed slope and hain rule for admissible funtionals) Let

Et : B → (−∞,∞], t ∈ [0, T ], be an admissible family of funtionals aording toDe�nition 5.10, and let ∆ be the asymmetri Finsler distane indued by (6.6) underthe assumption of Setion 6. Then, the relaxed slope |∂−Et| satis�es the hain ruleondition of De�nition 2.5: for any urve v ∈ AC(0, T ;B) with
∫ T

0

|v′|(t) · |∂−Et|(v(t)) dt <∞, sup
t∈(0,T )

Et(v(t)) <∞, (6.24)the map t 7→ Et(v(t)) is absolutely ontinuous, and
d

dt
Et(v(t)) ≥ ∂tE(t, v(t)) − |v′|(t) · |∂−Et|(v(t)) for a.e. t ∈ (0, T ). (6.25)47



Proof. Sine the asymmetri distane ∆ is metrially equivalent to the distaneindued by the norm, (6.24) yields (5.36) and we may apply Proposition 5.11. Being
B re�exive, v is di�erentiable a.e., and therefore (5.38) yields for a.e. t ∈ (0, T ) andevery ξ ∈ ∂Et(v(t))

d

dt
Et(v(t)) = ∂tEt(v(t)) + 〈ξ, v′(t)〉

≥ ∂tEt(v(t)) − ηv(t)(v
′(t)) · min

ξ∈∂Et(v(t))
ηv(t)∗(−ξ) (6.26)

≥ ∂tEt(v(t)) − |v′|(t) · |∂−Et|(v(t)),the last inequality being a onsequene of (6.8) and (6.23).7 Metri evolutions in L1(Ω)Notation. In this setion and in the next one, we shall denote by Ω a boundeddomain of R
d, d ≥ 1, by ‖ · ‖r the norm of the spae Lr(Ω), 1 ≤ r ≤ ∞, and by 〈·, ·〉the duality pairing between H−1(Ω) and H1

0(Ω).Setup. Throughout this setion we shall drop the re�exivity assumption 6.1 andwe shall fous on the prototypial ase in whihthe ambient Banah spae B is L1(Ω), and η is the norm funtional ‖ · ‖1. (7.1)As we already mentioned in the Introdution, L1(Ω) does not enjoy the Radon�Nikodým property. A simple example of an absolutely ontinuous urve u : [0, T ] →
L1(Ω) whih is not a.e. di�erentiable an be onstruted, in the ase Ω = (0, 1), inthe following way: we take an absolutely ontinuous map s : [0, T ] → [0, 1] and afuntion a ∈ L1(0, 1), and we let

u(x, t) :=

{
0 if x ∈ [0, s(t)]

a(x) if x ∈ (s(t), 1]
∀ (x, t) ∈ [0, 1] × [0, T ] .However, we may ompute the metri derivative

|u′|1(t) := lim
h→0

‖u(t+ h) − u(t)‖1

h
for a.e. t ∈ (0, T ), (7.2)of the above urve, obtaining |u′|1(t) = |a(s(t))s′(t)| for a.e. t ∈ (0, T ).Throughout this setion, we shall analyze the metri Problem 2.6 for a givenlower semiontinuous funtional E : [0, T ] × L1(Ω) → (−∞,∞] in the gradient �owase, namely with the quadrati dissipation funtional (1.16).We shall start with some simple examples of (time-independent) energy fun-tionals E in whih it is possible to alulate expliitly a solution of the (Cauhyproblem for the) assoiated di�erential inlusion (DNE) (driven by the energy Eand the dissipation Ψ (1.19)). Indeed, we shall show that the onstruted solutionalso omplies with the metri formulation 2.6.48



Next, in Setion 7.2 we shall fous on the sole metri evolution of a more generallass of energy funtionals (f. (7.19)). Exploiting the preliminary results obtainedin Setions 5.2�5.3, we shall dedue from Theorem 3.5 the existene of a solution ofthe assoiated metri formulation, see Theorem 7.3 later on.7.1 ExamplesExample 1 We onsider Ω = (0, 1) and the quadrati energy funtional E (1.17).We reall that the assoiated di�erential inlusion is (1.20), whih we supplementwith the initial datum
u0(x) := 1 − x ∀x ∈ [0, 1] . (7.3)We look for a solution of the Cauhy problem (1.20, 7.3) of the form

u(x, t) :=

{
u0(ζ(t)) if x ∈ [0, ζ(t)],
u0(x) if x ∈ (ζ(t), 1], ∀ (x, t) ∈ [0, 1] × [0, T ] , (7.4)where we require of the �free boundary� ζ : [0, T ] → [0, 1] that

ζ ∈ C1(0, T ) and is stritly inreasing, with ζ(0) = 0. (7.5)In fat, we have u ∈W 1,1(0, T ;L1(0, 1)), with
ut(x, t) :=

{
−ζ ′(t) if x ∈ (0, ζ(t)),
0 if x ∈ (ζ(t), 1), for a.e. (x, t) ∈ (0, 1) × (0, T ) ,so that ‖ut(·, t)‖1 = ζ(t)ζ ′(t) for a.e. t ∈ (0, T ). Now, (1.20) is trivially ful�lled for

x ∈ (ζ(t), 1), t ∈ (0, T ), hene it redues to
−ζ(t)ζ ′(t) + 1 − ζ(t) = 0 t ∈ (0, T ).Namely, the funtion u (7.4) solves the Cauhy problem (1.20, 7.3) if and only if ζful�lls

ζ ′(t) =
1

ζ(t)
− 1 t ∈ (0, T ), ζ(0) = 0. (7.6)On the other hand, we may interpret the funtion u as a urve u : (0, T ) →

L1(0, 1): in this setting, its metri derivative is omputed via (7.2). Taking intoaount that
|u(x, t+ h) − u(x, t)| =





ζ(t+ h) − ζ(t) for x ∈ [0, ζ(t)] ,
ζ(t+ h) − x for x ∈ (ζ(t), ζ(t+ h)] ,
0 for x ∈ (ζ(t+ h), 1],for all (x, t) ∈ [0, 1] × [0, T ], (7.2) yields

|u′|1(t) = ζ(t)ζ ′(t) for a.e. t ∈ (0, T ). (7.7)49



(indeed, in this ase |u′|1(t) oinides with the L1-norm of the funtion ut(·, t) for a.e. t ∈ (0, T )). Now, we alulate the energy E (1.17) along the urve u and �nd
E(u(t)) =

(1 − ζ(t))2

6
(2ζ(t) − 1) ∀ t ∈ [0, T ], (7.8)while, also thanks to the representation formula (5.13) in Lemma 5.3,

|∂−E|(u(t)) = |∂E| (u(t)) =
1

2
sup

w∈L1(0,1) ,w 6=0

(∫
Ω
(u2(x, t) − (u(x, t) + w(x))2 dx

)+

‖w‖1

= ‖u(·, t)‖∞ = 1 − ζ(t) ∀ t ∈ [0, T ] . (7.9)In view of (7.7)�(7.9), with elementary alulations it is possible to see that, if (7.6)holds, the urve u ful�lls the metri formulation (2.33)�(2.34), the latter in fat withan equality sign.Example 2 We let Ω = (−1, 1) and hoose as energy funtional E : L1(−1, 1) →
[0,∞] the Dirihlet integral

E(u) :=

{
1
2

∫ 1

0
|u′(x)|2 dx if u ∈ H1

0 (−1, 1)

∞ otherwise ∀u ∈ L1(−1, 1) . (7.10)In fat, the above funtional is a partiular ase of funtional (7.19) below. Theorresponding evolution equation is
‖ut(t)‖1Sign(ut(x, t)) − uxx(x, t) ∋ 0 for a.e. (x, t) ∈ (−1, 1) × (0, T ) , (7.11)(where we denote by ux, uxx the partial derivatives of u w.r.t. the variable x), whihwe supplement with the initial datum

u0(x) := 1 − |x| ∀x ∈ [−1, 1]. (7.12)We now look for a solution of the Cauhy problem (7.11)�(7.12) of the form
u(x, t) :=

{
α(t) + c(t)x

2

2
if |x| ≤ ζ(t),

u0(x) if ζ(t) < |x| ≤ 1, ∀ (x, t) ∈ [−1, 1]×[0, T ] , (7.13)under the requirements that ζ : [0, T ] → [0, 1] omplies with (7.5), the funtions
α, c ∈ C1(0, T ), c takes stritly negative values and is stritly inreasing, and for all
t ∈ (0, T )the maps x 7→ u(x, t) , x 7→ ut(x, t) , x 7→ ux(x, t) are ontinuous on [−1, 1].(7.14)Sine for a.e. (x, t) ∈ (−1, 1) × (0, T ) we have
ut(x, t) =

{
α′(t) + c′(t)x

2

2
if |x| < ζ(t),

0 if ζ(t) < |x| < 1, ux(x, t) =

{
c(t)x if |x| < ζ(t),
−Sign(x) else,50



(7.14) leads to the onditions
α(t) + c(t)

ζ2(t)

2
= 1 − ζ(t), c(t) = −

1

ζ(t)
∀ t ∈ (0, T ). (7.15)Hene, we ompute

‖ut(·, t)‖1 =
c′(t)

2

∫ ζ(t)

−ζ(t)

(ζ2(t) − x2) dx =
2c′(t)

3
ζ3(t) for a.e. t ∈ (0, T ). (7.16)Being

uxx(x, t) :=

{
c(t) if |x| < ζ(t),
0 if ζ(t) < |x| < 1, for a.e. (x, t) ∈ (−1, 1) × (0, T ) ,and taking into aount the seond of (7.15), we onlude that u solves (7.11) if andonly if c solves the Cauhy problem

c(t) =
3

2
c4(t) ∀ t ∈ (0, T ), with lim

tց0
c(t) = −∞ , (7.17)so that

c(t) = −
9

2
t−1/3, ζ(t) =

2

9
t1/3, α(t) = 1 −

1

9
t1/3 ∀ t ∈ (0, T ).From the metri viewpoint, the existene of a solution to the (Cauhy problemfor) the metri formulation follows from Theorem 7.3 later on. Nonetheless, we maydiretly hek that the funtion u (7.13) (seen as a urve on (0, T ) with values in

L1(−1, 1)) omplies with (2.33)�(2.34). Indeed, using (7.15) one easily heks thatthe metri derivative of u again oinides with the L1(−1, 1)-norm of ut(·, t) for a.e.
t ∈ (0, T ), and it is thus given by (7.16). On the other hand, thanks to Lemma 7.1below we have that

|∂−E|(u(t)) = |∂E| (u(t)) = ‖uxx(·, t)‖∞ for a.e. t ∈ (0, T ) . (7.18)Then, we alulate the energy (7.10) along the urve u and, using (7.15) and (7.17)as well, we easily onlude that (2.34) holds, again as an equality.7.2 An existene resultWe onsider the following energy funtional E : [0, T ] × L1(Ω) → (−∞,∞] de�nedfor all (t, u) ∈ [0, T ] × L1(Ω) by
Et(u) :=

{∫
Ω

1
2
|∇u(x)|2 +W (u(x))dx− 〈ℓ(t), u〉 if u ∈ H1

0 (Ω), W (u) ∈ L1(Ω),
∞ else, (7.19)Here, we suppose that

ℓ ∈ C1([0, T ];H−1(Ω)). (7.20)51



and that the funtion W ful�lls
W ∈ C2(R) and ∃CW > 0 s.t. ∀ r ∈ R W ′′(r) ≥ −CW ; (7.21)for instane, one may think of the double-well potential

W (u) :=
1

4
(u2 − 1)2 ∀u ∈ R. (7.22)Note that funtional E (7.19) is in fat a partiular ase of the lass of funtion-als (8.22) whih shall be takled in Setion 8.2 later on. The following result isruial for understanding to whih equation the metri formulation of Problem 2.6(with the quadrati dissipation (1.16) and the energy (7.19)) leads.Lemma 7.1 1. The funtional E is λ-uniformly onvex on L1(Ω) for some λ < 0.2. For every (t, u) ∈ dom(E)

|∂Et|(u), |∂
−Et|(u) <∞ if and only if − ∆u+W ′(u) − ℓ(t) ∈ L∞(Ω).In this ase, |∂Et|(u) = |∂−Et|(u) = ‖ − ∆u+W ′(u) − ℓ(t)‖∞. (7.23)Proof. Proof of Claim 1. In order to hek the onvexity inequality (5.32), we�x u0, u1 ∈ dom(E), θ ∈ [0, 1], and alulate

Et(uθ) =

∫

Ω

(
1

2
|∇uθ|

2 +W (uθ)

)
− 〈ℓ(t), uθ〉

≤
1 − θ

2

∫

Ω

|∇u0|
2 +

θ

2

∫

Ω

|∇u1|
2 −

θ(1 − θ)

2

∫

Ω

|∇(u0 − u1)|
2 + (1 − θ)

∫

Ω

W (u0)

+θ

∫

Ω

W (u0) +
CWθ(1 − θ)

2

∫

Ω

|u0 − u1|
2 − (1 − θ)〈ℓ(t), u0〉 − θ〈ℓ(t), u1〉

= (1 − θ)Et(u0) + θEt(u1) +
θ(1 − θ)

2

∫

Ω

(
−|∇(u0 − u1)|

2 + CW |u0 − u1|
2
)
, (7.24)the �rst inequality following from the fat thatW itself is (−CW )-onvex (f. (7.21)).In order to estimate the remainder term on the right-hand side of (7.24), we applythe Gagliardo-Nirenberg inequality (see [43℄)

‖v‖2 ≤ CGN‖v‖
2/(d+2)
1 ‖∇v‖d/(d+2)

2 ∀ v ∈ H1
0 (Ω), (7.25)where CGN is a positive onstant only depending on Ω. Hene,

CW‖u0 − u1‖
2
2 − ‖∇(u0 − u1)‖

2
2

≤ CWC
2
GN‖u0 − u1‖

4/(d+2)
1 ‖∇(u0 − u1)‖

2d/(d+2)
2 − ‖∇(u0 − u1)‖

2
2

≤ Cd
(
CWC

2
GN

)(d+2)/2
‖u0 − u1‖

2
1 ,for a positive onstant Cd only depending on d, the latter passage following fromthe Young inequality. Combining this estimate with (7.24), we dedue that theonvexity inequality (5.32) holds with λ = −Cd (CWC

2
GN)

(d+2)/2
.52



Proof of Claim 2. Thanks to Claim 1. and to (5.14), it is su�ient to provethat for every (t, u) ∈ dom(E)

|∂Et|(u) <∞ ⇔ −∆u +W ′(u) − ℓ(t) ∈ L∞(Ω), and
|∂Et|(u) = ‖ − ∆u+W ′(u) − ℓ(t)‖∞

(7.26)Indeed, we set
D(u, w) :=

(Et(u) − Et(u+ w))+

‖w‖1
for u, w ∈ H1

0 (Ω)and note that for all w ∈ H1
0 (Ω)

D(u, rw) → H(u, w) :=

( ∫
Ω

(−∇u · ∇w −W ′(u)w) + 〈ℓ(t), w〉
)+

‖w‖1
as r ց 0.Then, integrating by parts we �nd

|∂Et|(u) ≥ lim sup
rց0

D(u, rw) ≥
〈∆u−W ′(u) + ℓ(t), w〉

‖w‖1

,so that, being w arbitrary,
|∂Et|(u) ≥ sup

w∈H1

0
(Ω)

〈∆u−W ′(u) + ℓ(t), w〉

‖w‖1

= ‖∆u−W ′(u) + ℓ(t)‖∞ , (7.27)the latter identity by the density of H1
0 (Ω) in L1(Ω). On the other hand, we set

G(x, y) := W (x+ y) −W (x) −W ′(x)y for x, y ∈ Rand note that, by (7.21),
−G(x, y) ≤

CW
2
y2 ∀x, y ∈ R. (7.28)Now, trivial omputations yield that

|∂Et|(u) = lim sup
‖w‖1→0

D(u, w) ≤ lim sup
‖w‖1→0

H(u, w)+lim sup
‖w‖1→0

(
−1

2

∫
Ω
|∇w|2 −

∫
Ω
G(u, w)

)+

‖w‖1
.(7.29)We have

lim sup
‖w‖1→0

(
−1

2

∫
Ω
|∇w|2 −

∫
Ω
G(u, w)

)+

‖w‖1
≤

1

2
lim sup
‖w‖1→0

(−‖∇w‖2
2 + CW‖w‖2

2)
+

‖w‖1

≤
1

2
lim sup
‖w‖1→0

(
−‖∇w‖2

2 + CWCGN‖w‖
4/(d+2)
1 ‖∇w‖2d/(d+2)

2

)+

‖w‖1
≤ C̃ lim sup

‖w‖1→0

‖w‖2
1

‖w‖1
= 0 ,the �rst passage following from (7.28), the seond one from the Gagliardo-Nirenberginequality (7.25) and the last one by trivial alulations. Combining (7.29) and theabove inequality, and again integrating by parts, we readily dedue the reverseinequality of (7.27), so that (7.26) follows.53



Remark 7.2 In fat, the same argument as in the proof of Lemma 7.1 allows toprove that the Fréhet subdi�erential of E has the following struture
u ∈ dom(∂Et) ⇔ −∆u+W ′(u) − ℓ(t) ∈ L∞(Ω)and in this ase ∂Et(u) = {−∆u +W ′(u) − ℓ(t)}.

(7.30)We are now in the position of proving the following existene result.Theorem 7.3 Assume (7.21), (7.20), and that
W is bounded from below on R. (7.31)Then, for every u0 ∈ H1
0 (Ω) with W (u0) ∈ L1(Ω) there exists a solution u ∈

AC(0, T ;L1(Ω)) of Problem 2.6 ful�lling u(0) = u0, whene we have the energyidentity
1

2

∫ t

s

|u′|21(r) dr +
1

2

∫ t

s

‖ − ∆u(r) +W ′(u(r)) − ℓ(r)‖2
∞ dr + Et(u(t))

= Es(u(s)) +

∫ t

s

〈ℓ′(r), u(r)〉 dr ∀ 0 ≤ s ≤ t ≤ T.

(7.32)Proof. It follows from Lemma 7.1 that the funtional E (7.19) is admissible in thesense of De�nition 5.10. Hene, thanks to Proposition 5.11 E omplies with thehain rule (5.37). Using (7.31) and arguing as in the proof of Lemma 8.10 later on,it is possible to hek that the other assumptions on E (2.19a)�(2.19b), and (2.36)-(2.40) of Theorem 3.5 are satis�ed. Then, the statement is a diret onsequene ofTheorem 3.5.Remark 7.4 In fat, ondition (7.31) on W ould be weakened, but here we preferto keep the presentation as simple as possible, leaving to Setion 8.2 the disussionof a more general example. In the partiular ase of the double well potential (7.22),we an infer some further regularity of the urve u from (7.32). For instane, if ℓ ∈
L2(0, T ;Lp(Ω)) for some 1 ≤ p <∞, we dedue that −∆u+u3−u ∈ L2(0, T ;Lp(Ω)),hene by ellipti regularity u ∈ L2(0, T ;W 2,p

0 (Ω)).8 Quasivariational doubly nonlinear evolutionequations in re�exive Banah spaesIn this setion, we dedue from our main Theorem 3.5 an existene result (Theo-rem 8.3 below) for a family of abstrat quasivariational doubly nonlinear equationsin the Banah spae setup of Setion 6. In partiular, hereafter we shall assume that
B is a re�exive and separable Banah spae. (8.1)As an appliation, in Setion 8.2 we prove the existene of solutions to initial-boundary value problems for a lass of doubly nonlinear paraboli evolution equa-tions. 54



8.1 A general existene resultThroughout this setion, besides (8.1) we assume that
ηu : B → [0,∞) is a family of onvex, positively homogenous funtionals,omplying with (6.2), (6.3), (6.4),and induing the Finsler asymmetri distane ∆ (6.6) (N)

Et : B → (−∞,∞] is an admissible family of funtionalsaording to De�nition 5.10 with sublevels loally ompat w.r.t.the strong topology of B (f. (2.40))and the time derivative ∂tEt ful�ls (2.39) w.r.t. ∆; (E)
ψ : [0,∞) → [0,∞] is onvex, lower semiontinuous, ful�lls (2.32),and indues the family of funtionals Ψu(v) := ψ

(
ηu(v)

)
∈ [0,∞].

(Ψ)Statement of the problem. We fous on the Cauhy problem
∂Ψu(t)(u

′(t)) + ∂Et(u(t)) ∋ 0 for a.e. t ∈ (0, T ), u(0) = u0, (8.2)where u0 ∈ D is some initial datum and u ∈ AC(0, T ;B).This problem admits the following metri formulation, where |u′| and |∂−Et|(u)respetively denote the metri veloity and the (relaxed) metri slope indued bythe asymmetri distane ∆:Problem 8.1 Find a urve u ∈ AC(0, T ;B) suh that
u(0) = u0, the map t 7→ Et(u(t)) is absolutely ontinuous on (0, T ), and

d

dt
Et(u(t)) − ∂tEt(u(t)) ≤ −ψ(|u′|(t)) − ψ∗(|∂−Et|(u(t))) for a.e. t ∈ (0, T ).

(8.3)In the sequel, we shall �rst of all investigate to whih extent a solution u to Problem8.1 turns out to be a solution of the Cauhy problem (8.2). Seondly, we shall deduefrom the �metriëxistene Theorem 3.5 an existene result for (8.2).Links between the metri and the Banah spae formulation. We havethe following result, whih extends [5, Prop. 1.4.1℄ to the doubly nonlinear setting.Proposition 8.2 Let u0 ∈ D and u ∈ AC(0, T ;B) ful�ll (8.3). Then, u solves theCauhy problem (8.2). In partiular, we have
∂Ψu(t)(u

′(t)) ⊃ Argmin
{
ηu(t)∗(−ξ) : ξ ∈ ∂Et(u(t))

} for a.e. t ∈ (0, T ). (8.4)Conversely, if u solves (8.2) and if the map t 7→ Et(u(t)) is absolutely ontinuous on
(0, T ), then u also ful�lls (8.3).
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Proof. Suppose that u ∈ AC(0, T ;B) ful�lls (8.3): then, there exists a negligi-ble set N ⊂ (0, T ) suh that for all t ∈ (0, T ) \ N the derivatives d
dt
Et(u(t)) and

|u′|(t) = ηu(t)(u
′(t)) (see Theorem 6.2) exist, |∂−Et|(u(t)) ≥ minξ∈∂Et(u(t)) ηu(t)∗(−ξ)by Corollary 6.6. Hene, (8.3) yields

d

dt
Et(u(t)) − ∂tEt(u(t)) ≤ −ψ(ηu(t)(u

′(t))) − ψ∗(ηu(t)∗(−ξ))

∀ ξ ∈ Argmin
{
ηu(t)∗(−ξ) : ξ ∈ ∂Et(u(t))

}
∀ t ∈ (0, T ) \ N .Combining this inequality with (6.26), we dedue that for a.e. t ∈ (0, T )

ηu(t)(u
′(t)) · ηu(t)∗(−ξ) = ψ(ηu(t)(u

′(t)) + ψ∗(ηu(t)∗(−ξ)), whene
ηu(t)∗(−ξ) ∈ ∂ψ(ηu(t)(u

′(t))) ∀ξ ∈ Argmin
{
ηu(t)∗(−ξ) : ξ ∈ ∂Et(u(t))

}
.Thanks to Lemma 5.1, we onlude (8.4).The seond part of the statement follows by the same argument.An existene result. The following Theorem 8.3 extends [5, Thm. 2.3.7℄, of whihwe losely follow the proof.Theorem 8.3 Under assumptions (8.1), (N), (E), and (Ψ), for every u0 ∈ D thereexists a urve u ∈ AC(0, T ;B), with u(0) = u0, satisfying the di�erential inlusion(8.4). Moreover, u ful�ls the energy identity

∫ t

s

Ψu(r)(u
′(r)) dr +

∫ t

s

ψ∗
(
|∂−Er|(u(r))

)
dr + Et(u(t))

= Es(u(s)) +

∫ t

s

∂tEr(u(r)) dr ∀ 0 ≤ s ≤ t ≤ T.

(8.5)Proof. It is straightforward to hek that the funtionals E and ψ omply with allthe assumptions of Theorem 3.5 (in partiular, the hain rule of De�nition 2.5 holdsthanks to Theorem 6.7). Then, there exists a solution u ∈ AC(0, T ;B) to (8.3),ful�lling the energy identity (3.9). By Proposition 8.2, u solves (8.4), while, in viewof (6.8), (3.9) yields (8.5).8.2 Appliations to doubly nonlinear paraboli evolutionsSetup of the problem. In the sequel, we shall examine the following evolutionequation (f. with (1.15))
ρsign(ut)(u) |ut|

p−2ut − div(β(∇u)) +W ′(u) = h in Ω × (0, T ), (8.6)Here, 1 < p < ∞, Ω ⊂ R
d, d ≥ 1, is a bounded domain with su�iently smoothboundary and exterior unit normal n. Further, we are given two funtions ρ+, ρ− :

R → (0,∞), and we adopt the following notation
ρsign(v)(u) =

{
ρ+(u) if v ≥ 0,
ρ−(u) if v < 0, ∀u, v ∈ R. (8.7)56



Moreover, β : R
d → R

d is the gradient of some smooth funtion j on R
d, W : R → Ra di�erentiable funtion and h : Ω × (0, T ) → R some soure term. In partiular,when β(ζ) = |ζ |q−2ζ for some q > 1, the ellipti operator in (8.6) is indeed the

q-Laplaian and we reover (1.15). We onsider the following initial-boundary valueproblem for (8.6).Problem 8.4 Given u0 ∈ Lp(Ω), �nd a funtion u ∈ W 1,p(0, T ;Lp(Ω)) satisfying(8.6) a.e. on Ω × (0, T ), the homogeneous Dirihlet boundary ondition
u = 0 a.e. in ∂Ω × (0, T ), (8.8)and the initial ondition

u(x, 0) = u0(x) for a.e.x ∈ Ω. (8.9)Further notation. Before stating our existene result for Problem 8.4, let us �xsome notation. For a �xed q ∈ (1,∞) we set
q⋆ :=

{
dq
d−q

if q ∈ (1, d),
∞ if q ≥ d.Heneforth, we shall onsider on the spae W 1,q

0 (Ω) the norm ‖u‖1,q := ‖∇u‖q for all
u ∈W 1,q

0 (Ω) (equivalent to the usual Sobolev norm by the Poinaré inequality); weshall denote by ‖·‖−1,q′ the norm of the dual spaeW−1,q′(Ω) (q′ being the onjugateexponent of q), and by 〈·, ·〉 the duality pairing between W−1,q′(Ω) and W 1,q
0 (Ω). Itis well-known (see, e.g., [1℄) that

W 1,q
0 (Ω) ⊂ Lq

⋆

(Ω) and 




W 1,q
0 (Ω) ⊂⊂ Lq

⋆−ε(Ω) ∀ ε > 0 if d > q,
W 1,q

0 (Ω) ⊂⊂ Lr(Ω) ∀ 1 ≤ r <∞ if d = q,
W 1,q

0 (Ω) ⊂⊂ L∞(Ω) if d < q.(8.10)Finally, we shall denote by C0w([0, T ];W 1,q
0 (Ω)) the spae of weakly ontinuous fun-tions with values in W 1,q

0 (Ω).An existene result. Let us enlist our main assumptions on the data of Prob-lem 8.4: the funtions ρ+, ρ− : R → (0,∞) are ontinuous, and
∃R0, R1 > 0 : R0 ≤ ρ−(x), ρ+(x) ≤ R1 ∀x ∈ R;

(8.11)there exists a funtion j ∈ C1(Rd) suh that β = ∇j : R
d → R

d and
∃ q > 1 with p < q⋆ ∃M1,M2,M3 > 0 ∀ ζ ∈ R

d:

{
j(ζ) ≥M1|ζ |q −M2,

|β(ζ)| ≤M3(1+|ζ |q−1).
(8.12)Further, we have

W = Wc + g, where
Wc is a onvex and di�erentiable funtion, and
g ∈ C1(R) satis�es the growth onditions:

∃α > 0 with αp′ < q⋆, ∃M4 > 0 : |g′(u)| ≤M4(|u|
α + 1) ∀u ∈ R.

(8.13)
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Finally, we require that
h ∈ C1([0, T ];W−1,q′(Ω)), u0 ∈W 1,q

0 (Ω), and Wc(u0) ∈ L1(Ω). (8.14)Theorem 8.5 Assume (8.11)�(8.13). Then, Problem 8.4 admits a solution
u ∈ W 1,p(0, T ;Lp(Ω)) ∩ L∞(0, T ;W 1,q

0 (Ω)) ⊂ C0w([0, T ];W 1,q
0 (Ω)),with g′(u) ∈ L∞(0, T ;Lp

′

(Ω)).
(8.15)Furthermore, if h ∈ Lp

′

(0, T ;Lp
′

(Ω)) as well, then u has the further regularity
− div(β(∇u)) +W ′

c(u) ∈ Lp
′

(0, T ;Lp
′

(Ω)). (8.16)Remark 8.6 Let us point out that, if q ≥ d, ondition (8.13) allows the non onvexpart of the potential g to have any polynomial growth at in�nity. Furthermore, notethat, in the ase d = 3 and p = q = 2, the double well potentialW (u) := (u2−1)2/4�ts in this framework. In fat, in that ase the non onvex funtion g is allowed tohave a polynomial growth of order 4 − ε for all ε > 0.Remark 8.7 Slight modi�ations in the assumptions, whih we are not going todetail, would also allow us to prove an existene result for Problem 8.4 with homo-geneous Neumann boundary onditions on u.We shall prove Theorem 8.5 by going over to the formulation of Problem (8.4) asa doubly nonlinear evolution inlusion of the type (8.2) in the (re�exive) Banahspae
B = Lp(Ω), 1 < p <∞,endowed with a suitable Finsler metri.The Banah spae formulation. In order to introdue the formulation of Prob-lem 8.4 as a doubly nonlinear equation in Lp(Ω), we onsider the funtion R : R

2 →
[0,∞) given by

R(w, z) :=

{
ρ+(w) zp if z ≥ 0

ρ−(w) |z|p if z < 0
= ρsign(z)(w) |z|p ∀(w, z) ∈ R

2. (8.17)We assoiate with R the following family of positive funtionals on Lp(Ω):
ηu(v) :=

(∫

Ω

R(u(x), v(x)) dx

)1/p

∀u, v ∈ Lp(Ω). (8.18)Further, let us onsider the funtion ψ(x) := xp

p
, x ≥ 0, induing (see (Ψ)) thefuntionals

Ψu(v) :=
1

p
(ηu(v))

p =
1

p

∫

Ω

R(u(x), v(x)) dx ∀u, v ∈ Lp(Ω). (8.19)58



Finally, let us de�ne E1 : [0, T ] × Lp(Ω) → (−∞,∞] by
E1
t (u) :=

{∫
Ω

(j(∇u(x)) +Wc(u(x))) dx− 〈h(t), u〉 if u ∈W 1,q
0 (Ω), Wc(u) ∈ L1(Ω),

∞ else, (8.20)for all (t, u) ∈ [0, T ] × Lp(Ω), and E2 : [0, T ] × Lp(Ω) → (−∞,∞] by
E2
t (u) :=

{∫
Ω
g(u(x)) dx if g(u) ∈ L1(Ω),

∞ otherwise, ∀ (t, u) ∈ [0, T ] × Lp(Ω), (8.21)and let us set
Et(u) := E1

t (u) + E2
t (u) ∀ (t, u) ∈ [0, T ] × Lp(Ω). (8.22)We have the followingProposition 8.8 Assume (8.11)�(8.14). Then, every solution u ∈ AC(0, T ;Lp(Ω))of the Cauhy problem (8.2) assoiated with the funtionals {Ψu}u∈Lp(Ω) and Et :

Lp(Ω) → (−∞,+∞], t ∈ [0, T ], respetively given by (8.19) and (8.22) is a solutionof Problem 8.4.The proof of Proposition 8.8 ensues from the following results, whih shed light onthe properties of the funtionals {ηu}u∈Lp(Ω) (8.18) and Et (8.22).Lemma 8.9 Under assumption (8.11), {ηu}u∈Lp(Ω) is a family of sublinear fun-tionals omplying with (6.2), (6.3), (6.4), and for all u ∈ Lp(Ω) we have
ηu∗(ξ) =

(∫

Ω

R∗(u(x), ξ(x)) dx

)1/p′

∀ ξ ∈ Lp
′

(Ω) (8.23)where R∗ : R
2 → (0,∞) is de�ned by

R∗(w, z) :=

{
ρ+(w)−p

′/p zp
′ if z ≥ 0

ρ−(w)−p
′/p |z|p

′ if z < 0
= ρ

−p′/psign(z)(w) |z|p
′

∀(w, z) ∈ R
2.Further, for all u ∈ Lp(Ω) and v ∈ dom (∂Ψu) we have

ξ ∈ ∂Ψu(v) (⊂ Lp
′

(Ω)) ⇔ ξ(x) = ρsign(v(x))(u(x))v(x)
p−1 for a.e.x ∈ Ω. (8.24)Note that, thanks to (8.11),

R
−p′/p
1 |z|p

′

≤ R∗(w, z) ≤ R
−p′/p
0 |z|p

′

∀ (w, z) ∈ R
2. (8.25)Proof of Lemma 8.9. Conditions (5.1a) and (5.1) (with K independent of u) aretrivial to hek. Conerning (5.1b), let us �rst note that

R(s, t1 + t2) ≤ (R(s, t1 + t2))
(p−1)/p ·

(
R(s, t1)

1/p + R(s, t2)
1/p
)

∀ s, t1, t2 ∈ R.(8.26)59



Indeed, to �x ideas let us suppose that t1 + t2 ≥ 0 (the other ase an be treatedexatly in the same way). Then,
R(s, t1 + t2) = ρ+(s) (t1 + t2)

p

= ρ+(s)1/p t1 ·
(
ρ+(s)(p−1)/p · (t1 + t2)

p−1
)

+ ρ+(s)1/p t2
(
ρ+(s)(p−1)/p · (t1 + t2)

p−1
)
.If t1, t2 ≥ 0, (8.26) follows. If, e.g., t1 ≥ 0 and t2 ≤ 0, using that ρ+(s)1/p t2 ≤ 0 ≤

ρ−(s)1/p|t2| we again dedue (8.26). Therefore, by the Hölder inequality we have forall u, v1, v2 ∈ Lp(Ω):
ηu(v1 + v2)

p =

∫

Ω

R(u(x), v1(x) + v2(x)) dx

≤

∫

Ω

R(u(x), v1(x))
1/p · (R(u(x), v1(x) + v2(x)))

(p−1)/p dx

+

∫

Ω

R(u(x), v2(x))
1/p · (R(u(x), v1(x) + v2(x)))

(p−1)/p dx

≤ ηu(v1) · ηu(v1 + v2)
(p−1)/p + ηu(v2) · ηu(v1 + v2)

(p−1)/p,whene (5.1b).We shall now prove that for all {un}, {vn} ⊂ Lp(Ω)

(
un → u, vn → v in Lp(Ω)

)
⇒ ηun

(vn) → ηu(v) as n ↑ ∞, (8.27)whih learly implies (6.4). Indeed, there exist two subsequenes {unk
} and {vnk

}suh that unk
→ u and vnk

→ v a.e. on Ω. Then it an be easily heked that
R(unk

(x), vnk
(x)) → R(u(x), v(x)) for a.e. x ∈ Ω.From (8.11) we infer that

R(unk
(x), vnk

(x)) ≤ Rp
1|vnk

(x)|p ≤ 2p−1Rp
1 (|vnk

(x) − v(x)|p + |v(x)|p) for a.e. x ∈ Ω.Using a generalized version of the Lebesgue theorem (see e.g. [23, referenza?℄), wededue that ηunk
(vnk

) → ηu(v) as k ↑ ∞. As the limit does not depend on theextrated subsequene, (8.27) follows.Further, let {un} and {vn} ful�ll un → u and vn ⇀ v in Lp(Ω). Again applyingthe aforementioned lower semiontinuity results [11, Thm. 3.2℄ or [35, Thm. B.1℄ tothe funtional (u, v) 7→ R(u, v), we dedue that
lim inf
n↑∞

∫

Ω

R(un(x), vn(x)) dx ≥

∫

Ω

R(u(x), v(x)) dx,whene the lower-semiontinuity property (6.3).Finally, (8.23) follows from trivial omputations and in order to hek (8.24)we �x u ∈ Lp(Ω) and v ∈ dom(∂Ψu), supposing without loss of generality that
60



ηu(v) 6= 0 (if ηu(v) = 0, neessarily v = 0 and the hek of (8.24) simpli�es). ByLemma 5.1 and the de�nition (8.19) of Ψu, we have
ξ ∈ ∂Ψu(v) ⇔ ηu∗(ξ) = ηu(v)

p−1 and ηu∗(ξ) =

∫
Ω
ξ(x)v(x) dx

ηu(v)

⇔

(∫

Ω

R(u(x), v(x)) dx

)(p−1)p

= ηu∗(ξ) =

∫
Ω
ξ(x)v(x) dx

(∫
Ω
R(u(x), v(x)) dx

)1/p

⇔ ξ(x) = ρsign(v(x))(u(x))|v(x)|
p−2v(x) for a.e. x ∈ ΩLemma 8.10 Assume (8.12)�(8.14). Then, the funtional E : [0, T ]×Lp(Ω) de�nedby (8.22) yields an admissible family of funtionals (aording to De�nition 5.10),ful�lling ondition (E) of Setion 8.1. Furthermore, for all t ∈ [0, T ] the Fréhetsubdi�erential ∂Et(u) 6= ∅ if and only if − div(β(∇(u)))+W ′(u)−h(t) ∈ Lp

′

(Ω) andin that ase
∂Et(u) := {− div(β(∇(u))) +W ′(u) − h(t)} . (8.28)Proof. Hereafter, we fous on the ase in whih q < d, as the proof in the otherase is analogous and slightly simpler. Note thatdom(Et) = D =

{
u ∈ W 1,q

0 (Ω) : Wc(u) ∈ L1(Ω)
}

∀ t ∈ [0, T ].It follows from [26, Thm. 2.5, p. 22℄ that for all t ∈ [0, T ] the funtional E1
t is onvexand lower semiontinuous. Moreover, realling that

∃l1, l2 > 0 : Wc(u) ≥ −l1u− l2 ∀u ∈ R,we �nd that
E1
t (u) ≥M1‖∇u‖

q
q − l1‖u‖1 − ‖h(t)‖−1,q′‖u‖1,q − C

≥
M1

2
‖u‖q1,q − C‖h‖q

′

L∞(0,T ;W−1,q′(Ω))
− C ′

(8.29)for all (t, u) ∈ [0, T ] ×W 1,q
0 (Ω) due to (8.12) and a trivial appliation of the Younginequality. Hene, the funtionals E1

t are uniformly bounded from below w.r.t. t.Arguing as in [46℄, it an be readily heked that for all (t, u) ∈ [0, T ] ×W 1,q
0 (Ω)

∂E1
t (u) =

{
{− div(∇β(u)) +W ′

c(u) − h(t)} if div(∇β(u))−W ′
c(u)+h(t) ∈ Lp

′

(Ω),
∅ otherwise. (8.30)On the other way, one trivially sees that the funtional E2 is lower semiontinuous;further, using the growth ondition (8.13), the Sobolev embedding (8.10), as well asthe Hölder and the Young inequalities, one has for all ν > 0

|E2
t (u)| ≤M4

∫

Ω

|u(x)|α+1 dx+ C ≤M4‖|u|
α‖p′‖u‖p + C

≤ C ′‖u‖q⋆‖u‖p + C ≤ ν‖u‖qq⋆ + Cν‖u‖
q′

p + C,61



so that (5.19) follows by ombining the above estimate with (8.29) and hoosing νin suh a way that 2ν/M1 < 1. Moreover, (8.29) yields that the sublevels of Et(·)are bounded in W 1,q
0 (Ω) (whih is ompatly embedded in Lp(Ω)) uniformly withrespet to t ∈ [0, T ], hene (2.40) is ful�lled.Let us now hek that E2

t ful�lls the �di�erentiabilityproperty (5.20) with
D̃E2

t (u) = g′(u) ∀u ∈W 1,q
0 (Ω) ∀ t ∈ [0, T ]. (8.31)Indeed, arguing as above we see that by (8.13) and (8.29) there exists a positiveonstant M5 suh that for all u ∈W 1,q

0 (Ω)

g′(u) ∈ Lp
′

(Ω) and ‖g′(u)‖p′ ≤ C
(
‖u‖q

⋆

q⋆ + 1
)1/p′

≤ M5

(
E1
t (u)

q⋆/qp′ + 1
)
. (8.32)In order to hek (5.20), let us �x a sequene {un} ⊂ W 1,q

0 (Ω) ful�lling supn Et(un)and onverging to u in Lp(Ω): it follows from (8.29) and from (8.10) that
un → u in Lq⋆−ε(Ω) for all ε > 0. (8.33)By the mean value theorem, for a.e. x ∈ Ω

g(un(x)) − g(u(x)) =

(∫ 1

0

g′((1 − t)un(x) + tu(x)) dt

)
(un(x) − u(x)). (8.34)Therefore,

lim
n↑∞

∣∣∫
Ω
g(un(x)) − g(u(x)) − g′(u(x))(un(x) − u(x)) dx

∣∣
‖un − u‖p

≤ lim
n↑∞

∫
Ω

∣∣∣
∫ 1

0
(g′((1 − t)un(x) + tu(x)) − g′(u(x))) dt

∣∣∣ |un(x) − u(x)| dx

‖un − u‖p

≤ lim
n↑∞

∫ 1

0

‖g′((1 − t)un + tu) − g′(u)‖p′ dt.the �rst inequality following from (8.34) and the seond one from the Hölder in-equality. Using the growth ondition (8.13), (8.33) and a version of the DominatedConvergene theorem (see [23℄), we infer that
∫ 1

0

‖g′((1 − t)un + tu) − g′(u)‖p′ dt→ 0 as n ↑ ∞,hene (8.31) follows. Then, (5.21) follows from (8.32). Noting that ∂tEt(u) =
−〈h′(t), u〉 for every u ∈ W 1,q

0 (Ω), we readily onlude from the previous omputa-tions that (5.34) holds. Hene, (2.39) follows from the fat that the sublevels of Etare weakly ompat in W 1,q
0 (Ω) and that h′ ∈ C0([0, T ];W−1,q′(Ω)). Finally, (8.28)follows from the representation formula (5.23) of the Fréhet subdi�erential of ad-missible funtionals, from (8.30) and (8.31).62



Proof of Theorem 8.5. It follows from Lemma 8.9 and Lemma 8.10 that forany u0 ∈ W 1,q
0 (Ω) every solution u ∈ AC(0, T ;Lp(Ω)) of the Cauhy problem (8.2)assoiated with the funtionals (8.19) and (8.22) is indeed a solution to Problem 8.4.Sine onditions (N)�(Ψ) of Setion 8.1 are ful�lled, Theorem 8.3 thus yields theexistene of a solution u to the latter initial-boundary value problem. As a onse-quene of the energy identity (8.5), of (8.19), (8.23), (6.23), and (8.28), u ful�ls theenergy inequality

1

p′

∫ t

s

∫

Ω

R∗(u(x, r), div(β(∇u(x, r))) −W ′(u(x, r)) + h(x, r)) dx dr

+
1

p

∫ t

s

∫

Ω

R(u(x, r), ut(x, r))dx dr + Et(u(t))

= Es(u(s)) +

∫ t

s

〈h′(r), u(r)〉 dr ∀ 0 ≤ s ≤ t ≤ T.

(8.35)
In partiular, thanks to (8.11) we onlude that u ∈ W 1,p(0, T ;Lp(Ω)), while es-timates (8.29), (8.32) and supt∈[0,T ] Et(u(t)) < +∞ yield (8.15). Finally, realling(8.25) we also dedue an estimate for − div(β(∇u))+W ′

c(u)−h in Lp′(0, T ;Lp
′
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