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AbstratWe onsider a ubi nonlinear Shrödinger equation with periodi poten-tial. In a semilassial saling the nonlinear interation of modulated pulsesonentrated in one or several Bloh bands is studied. The notion of losedmode systems is introdued whih allows for the rigorous derivation of a �nitesystem of amplitude equations desribing the marosopi dynamis of thesepulses.1 Introdution and main resultIn this work we study the asymptoti behavior for 0 < ε ≪ 1 of the followingnonlinear Shrödinger equation (NLS)
iε∂tu

ε = −ε2

2
∆uε + VΓ

(x

ε

)
uε + εκ |uε|2uε, x ∈ R

d, t ∈ R, (1.1)governing the dynamis of a wave �eld uε(t, ·) ∈ L2(Rd). Here, κ ∈ R and thepotential VΓ = VΓ(y) ∈ R is assumed to be smooth and periodi with respet tosome regular lattie Γ ≃ Zd, generated by a given basis {ζ1, . . . , ζd}, ζl ∈ Rd, i.e.
VΓ(y + γ) = VΓ(y), ∀ y ∈ R

d, γ ∈ Γ ≡
{
γ =

∑d
l=1 γlζl ∈ Rd : γl ∈ Z

}
. (1.2)It is well known that if κ < 0 the solution of (1.1) in general does not exist for alltimes, i.e. �nite-time blow-ups may our, f. [25℄.The equation (1.1) an be seen as a simpli�ed model of the one onsidered in [7℄.There the main motivation was to study, from a semilassial point of view, thedynamis of a Bose-Einstein ondensate in an optial lattie, desribed by VΓ, f. [8,9, 19℄ for more details. To this end a resaling of the appearing physial parametersyields an equation similarly to (1.1), but with an additional non-periodi on�ningpotential, whih we shall neglet in the following. The parameter ε ≪ 1 thendesribes the mirosopi/marosopi sale ratio. The main assumption for theanalysis presented in [7℄ has been that the initial data uε(0, ·) is supposed to be ofWKB type and in partiular it has to be onentrated in a single (isolated) Blohband Eℓ(k) ∈ R. These energy bands desribe the spetral subspaes orrespondingto the periodi Hamiltonian operator

Hε
per := −ε2

2
∆ + VΓ

(x

ε

)
, (1.3)f. Setion 2.1 below for more details. In the linear ase similar WKB approxima-tions have been established earlier in [3, 14℄, yielding an approximate marosopidesription (i.e. on time� and length�sales of order one) of the highly osillatorysolution to (1.1). However, the question onerning a generalization of the resultsin [7℄, in partiular to the ase of multiple bands, has been open so far. Here we willanswer this question for initial data whih orrespond to a sum of modulated planewaves. 1



In order to derive an approximate marosopi desription we shall proeed by a twosale expansion method similar to that in [7℄. To this end a detailed understandingof the in�uene of the nonlinearity is ruial. Indeed we will show that the solutionto (1.1) an be approximated (in a suitably saled Sobolev spae) via
uε(t, x) ∼

M∑

m=1

am(t, x)χℓm

(x

ε
; km

)
ei(km·x−tEℓm(km))/ε) + O(ε), (1.4)for M ∈ N, where the set {(km, ℓm) : m = 1, ..., M} is assumed to form a losed modesystem, see De�nition 2.2,´ of su�ient high order Λ. As we shall see Λ will dependon the spatial dimension d. The amplitudes am are the (loal-in-time) solutions tothe nonlinear system of amplitude equations

i∂tam + iϑm · ∇xam =

M∑

p,q,r=1:
Σ(µp,µq,µr)=Σ(µm)

κ(p,q,r,m) ap aq ar, m = 1, . . . , M. (1.5)The above system desribes a so-alled four-wave interation, also known (mostprominently in laser physis and nonlinear optis) as four-wave mixing, f. [1, 6, 15℄.By (1.4) we allow for nonlinear interations within the same band but also onsiderinterations of di�erent bands. In partiular, energy or mass transfer between dif-ferent bands is expeted due to the presene of the nonlinearity on the right handside of (1.5). To our knowledge this phenomenon has never been studied rigorouslyin the ontext of Shrödinger type equations.One should note that the onept of wave mixing is strongly linked to plane wavesas onsidered above. Indeed, if one allows for more general phases (whih is possiblein the ase of a single pulse [7℄), a rigorous understanding, even in muh simplerases, is laking and in partiular one an not expet the nonlinear interation tobe maintained on marosopi time-sales in general. On the other hand we ould,without any problems, allow for (smooth) higher order nonlinearities as onsideredin [7℄. This however would result into a muh more involved resonane-struture forthe nonlinear interations and in order to keep our presentation simple we restritourselves to the ubi ase.Before going into more details, let us brie�y mention the following mathematiallyrigorous works whih, besides [7℄, are most losely related to ours: In [24℄ the sameequation as (1.1) is onsidered but in a slightly di�erent saling. Similarly, a nonlin-ear Shrödinger type model is derived in [5℄ from a semilinear wave equation withperiodi oe�ients and in [13℄ from an underlying osillator hain model. Con-erning nonlinear wave interations, there exist several results (mostly three-wavemixing) in the ontext of stritly hyperboli systems, see, e.g., [17, 18, 20, 22℄, andin the ase of mirosopially disrete dynamial systems, f. [10℄, [11℄ and thereferenes given therein.The paper is organized as follows: In Setion 2 we introdue the basi notions neededin the following, i.e. Bloh bands, mode systems and the losure ondition. We alsodisuss several illustrative examples of wave mixing. Then in Setion 3 the formal2



derivation of the approximate solution is given in detail. In Setion 4 the obtainedformal asymptoti desription is rigorously established and our main theorem isstated for a losed mode system of order Λ = 2N + 1, with N > d/2. In Setion5 it is shown that this ondition an be relaxed though by introduing the oneptof weak losure. Finally, in Appendix A, we disuss in more detail the underlyingHamiltonian struture of the amplitude equations (1.5).2 Mode systems and resonanesFor our work it is essential to study the spetral properties of
Hper = −1

2
∆y + VΓ(y),sine they will basially determine the fast degrees of freedom in our model.2.1 Bloh's spetral problemIn what follows we denote by Y the entered fundamental domain of the lattie Γ,i.e.

Y :=

{
γ ∈ R

d : γ =
d∑

l=1

γlζl, γl ∈
[
− 1

2
,

1

2

]}
. (2.1)By Y we denote the d-dimensional torus Rd

/Γ, whih is obtained also from Y byidentifying opposite faes. Note that writing Hs(Y) then automatially inludesperiodiity onditions. Moreover, Y ∗ denotes the orresponding basi ell of thedual lattie Γ∗. Equipped with periodi boundary onditions Y∗ is usually alledthe Brillouin zone and hene we shall denote it by B ≡ Y∗.Next, onsider the so-alled Bloh eigenvalue problem [4℄, i.e. the following spetralproblem on Y :
HΓ(k)χℓ(y; k) = Eℓ(k)χℓ(y; k), k ∈ B, ℓ ∈ N, (2.2)where Eℓ(k) ∈ R and χℓ(y) ≡ χℓ(y; k) denote the ℓ-th eigenvalue and eigenvetor ofthe shifted Hamiltonian operator

HΓ(k) := e−ik·yHper eik·y =
1

2
(−i∇y + k)2 + VΓ (y) .Let us reall some well known fats for this eigenvalue problem, f. [2, 3, 23, 26℄.Sine VΓ is smooth and periodi, we get that, for every �xed k ∈ B, HΓ(k) is self-adjoint on L2(Y) with domain H2(Y) and ompat resolvent. Hene the spetrumof HΓ(k) is given by spe(HΓ(k)) = {Eℓ(k) ; ℓ ∈ N} ⊂ R.3



One an order the eigenvalues Eℓ(k) aording to their magnitude and multipliitysuh that
E1(k) ≤ . . . ≤ Eℓ(k) ≤ Eℓ+1(k) ≤ . . .Moreover every Eℓ(k) is periodi w.r.t. Γ∗ and it holds that Eℓ(k) = Eℓ(−k). Theset {Eℓ(k); k ∈ B} is alled the ℓth energy band. The assoiated eigenfuntions,the Bloh funtions, χℓ(y; k) form (for every �xed k ∈ B) an orthonormal basis in

L2(Y). We hoose the usual normalization suh that
〈χℓ1(k), χℓ2(k)〉L2(Y) ≡

∫

Y

χℓ1(y; k) χℓ2(y; k) dy = δℓ1,ℓ2, ℓ1, ℓ2 ∈ N.Conerning the dependene on k ∈ B, it has been shown, f. [23℄, that for any
ℓ ∈ N there exists a losed subset U ⊂ B suh that Eℓ(k) is analyti in O := B\U .Similarly, the eigenfuntions χℓ are found to be analyti and periodi in k, for all
k ∈ O. Moreover it holds that

Eℓ−1(k) < Eℓ(k) < Eℓ+1(k), ∀ k ∈ O.If this ondition is satis�ed for all k ∈ B then Eℓ(k) is said to be an isolated Blohband. Finally we remark that
measU = meas {k ∈ B | Eℓ1(k) = Eℓ2(k), ℓ1 6= ℓ2} = 0.In this set of measure zero one enounters so-alled band rossings. The elementsof this set are haraterized by the fat that Eℓ(k) is only Lipshitz ontinuous andhene the group veloity ϑ := ∇kEℓ(k) does not exist.2.2 Resonanes and losed mode systemsOur goal is to derive an approximate desription of our model for ε ≪ 1. To thisend we shall �rst introdue several de�nitions needed to do so.De�nition 2.1. For k ∈ B and ℓ ∈ N we all µ = (k, ℓ) a mode and M := B × Nthe set of all modes.(i) The graph of all modes is given by

G =
{
(k, Eℓ(k)) : (k, ℓ) ∈ M

}
⊂ B × R.(ii) Given a �nite set S = {µ1, . . . , µM : M ∈ N} ⊂ M of modes, we all SΛ the(ordered) mode system of size Λ ∈ N generated by S.(iii) We further introdue Σ : SΛ → B × R by

Σ(µm1 , . . . , µmΛ
) :=

(
Λ∑∗

λ=1

(−1)λ+1kmλ
,

Λ∑

λ=1

(−1)λ+1Eℓmλ
(kmλ

)

)
,where ∑∗ denotes summation modulo Γ∗, and we write G(Λ)

S := Σ(SΛ) for theorresponding graphs. 4



In the following the mapping Σ will desribe the possible nonlinear interation ofmodes (in every order of ε). Note that G(1)
S ⊂ G and moreover, for any Λ ∈ N, itholds G(Λ)

S ⊂ G(Λ+2)
S . Sine we are dealing with a ubi nonlinearity, we shall seethat indeed Λ ∈ N takes only odd values.De�nition 2.2. Given a �nite set of modes S and a subset T of M.(i) An element (µm1 , . . . , µmΛ

) ∈ SΛ is alled resonant of order Λ to T , if
Σ(µm1 , . . . , µmΛ

) ∈ G(1)
T .(ii) We say that S is losed of order Λ, if the group veloity ∇kEℓ(k) exists for all

µ = (k, ℓ) ∈ S and
G(Λ)
S ∩

(
G \ G(1)

S

)
= ∅. (2.3)We infer from the above de�nition that a single mode µ is always resonant of order

Λ = 1 to itself. Note that for any Λ ≥ 2 however, we obtain
Σ : (µm1, . . . , µmΛ

) 7→ σ := (k, E) ∈ B × R,whih does not neessarily imply σ ∈ G(1)
S . As for the ondition (2.3), it is equivalentto saying that for all (µm1 , . . . , µmΛ

) ∈ SΛ it holds: Either Σ(µm1 , . . . , µmΛ
) ∈ (B ×

R) \ G, or else there exists a µ ∈ S suh that Σ(µm1 , . . . , µmΛ
) = Σ(µ) ∈ G(1)

S . Thelatter obviously means that (µm1 , . . . , µmΛ
) is resonant of order Λ to S. We illustratethese onepts in the examples in Setion 2.4.The ondition that ∇kEℓ(k) has to exist implies that we an not deal with modesystems inluding band rossings, i.e. whih inlude a µ = (k, ℓ) suh that k ∈ U . Itis known that the higher the dimension d and the higher the band index ℓ, the morelikely one enounters suh rossings. Thus, in terms of pratial use one an expetour analysis to be restrited to ases where only a few bands with low energies aretaken into aount.Remark 2.3. Also note that ondition (2.3) is not equivalent to G(Λ)

S ∩ G ⊂ G(1)
S ,sine due to multiple eigenvalues Eℓ(k), we may have modes µ ∈ S and µ̃ 6∈ S with

Σ(µ) = Σ(µ̃).2.3 The system of amplitude equationsIn Setion 3 we shall derive a system of amplitude equations desribing the maro-sopi dynamis of our nonlinear wave interations. Before going into the details ofthe derivation let us �rst disuss the general struture of the obtained system (seealso Appendix A). In order to keep our presentation simple, we shall from now ononsider only the ase of non-degenerated eigenvalues Eℓ(k).Let S be a given �nite set of modes {µ1, . . . , µM} whih is losed of su�ient highorder Λ. Then the equations obtained for the modulating amplitudes am(t, x) ∈ C,
5



for m ∈ {1, . . . , M}, are as in (1.5), i.e.
i∂tam + iϑm · ∇xam =

M∑

p,q,r=1:
Σ(µp,µq,µr)=Σ(µm)

κ(p,q,r,m) ap aq ar.Here ϑm ∈ Rd is the group veloity orresponding to a given mode µm = (km, ℓm) ∈
S, i.e. ϑm := ∇kEℓm

(km), and we further denote by
κ(p,q,r,m) := κ

∫

Y

χℓp
(y)χℓq

(y)χℓr
(y)χℓm

(y) dythe e�etive oupling onstant κ(p,q,r,m), whih in general is omplex valued.As in (1.1), the nonlinearity in the amplitude equations is again ubi. It takes intoaount the sum over all p, q, r = 1, . . . , M , for whih the resonane ondition oforder Λ = 3 holds. Expliitly, this is equivalent to the following two onditions
kp − kq + kr = km, Eℓp

(kp) − Eℓq
(kq) + Eℓr

(kr) = Eℓm
(km), (2.4)where the �rst equation has to be understood as a summation modulo Γ∗. Theequations (2.4) desribe a so-alled four-wave interation, i.e. three modes µp, µq, µrbeing in resonane with a fourth one µm ∈ S. Clearly, the nonlinear struture onthe right-hand side of (1.5) is suh that energy transfer between di�erent modes anour. In other words, even if initially some of the amplitudes am(0, ·) are zero, theywill not remain so in general for times |t| 6= 0 (see also Subsetion 2.4.1 below).Conerning existene and uniqueness of solutions to the above given amplitude equa-tions, we only need a loal-in-time result.Lemma 2.4. For any initial data (a1(0, ·), . . . , aM(0, ·)) ∈ HS(Rd)M , with S > d/2,the system (1.5) admits a unique solution

(a1, . . . , aM) ∈ C0([0, T ); HS(Rd))M ∩ C1((0, T ); HS−1(Rd))M ,up to some (�nite) time T > 0.Proof. Sine the left hand side of (1.5) only generates translations by a onstantveloity ϑm ∈ R
d and thus onserves the L2(Rd) norm of eah am(t, x), the assertionof the lemma follows by a standard �xed point argument.Remark 2.5. Disarding for a moment the nonlinear term in (1.5) we want topoint out that the remaining linear transport part is muh simpler than in the aseof the full WKB type approximation, as disussed in [7℄ (for a single mode only). Inpartiular we do not run into any problems due to austis, sine the phase funtions

ϕm(t, x) = km · x − tEℓm
(km)are globally de�ned. Also note that in the present work the so-alled Berry termvanishes, sine we do not take into aount additional non-periodi potentials, f.[7, 21℄. 6



2.4 ExamplesIn order to illustrate the abstrat onepts de�ned in the former subsetions we shallin the following onsider several partiular examples of nonlinear wave interationsappearing in our model.2.4.1 Four-wave interation for three pulsesIn this example we shall restrit ourselves to a set of modes {µm = (km, ℓm) : m =
1, 2, 3} whih is losed of order Λ = 3, at least, and whih satis�es the followingresonane onditions

k1 − k2 + k1 = k3, Eℓ1(k1) − Eℓ2(k2) + Eℓ1(k1) = Eℓ3(k3). (2.5)(Again the �rst summation has to be understood modulo Γ∗.) This yields thefollowing set of amplitude equations




i∂ta1 + iϑ1 · ∇xa1 =W1(a)a1 + 2κ(1,2,1,3) a1 a2 a3,

i∂ta2 + iϑ2 · ∇xa2 =W2(a)a2 + κ(1,2,1,3) a2
1 a3,

i∂ta3 + iϑ3 · ∇xa3 =W3(a)a3 + κ(1,2,1,3) a2
1 a2,

(2.6)where we shortly denote
Wm(a) := κ(m,m,m,m)|am|2 + 2

∑

j=1,2,3:
j 6=m

κ(m,j,j,m)|aj |2 ∈ R.We onsequently expet the solution of (1.1) to be asymptotially desribed by
uε(t, x) ∼

3∑

m=1

am(t, x)χℓm

(x

ε
; km

)
ei(km·x−Eℓm(km)t)/ε + O(ε), ℓm ∈ N.It is easily seen that the nonlinearities Wm(a)am an not transfer energy from oneband to the other as they are homogeneous in the respetive am(t, x) and that all ofthe appearing κ(m,j,j,m), m, j = 1, 2, 3 are indeed real valued. What is more importantthough is the fat that the above given amplitude system (2.6) inludes an invariantsub-system. Namely, if initially a1(0, ·) = 0, it remains so for all t ∈ R and thus theabove given system simpli�es to

{
i∂ta2 + iϑ2 · ∇xa2 =

(
κ(2,2,2,2)|a2|2 + 2κ(2,3,3,2)|a3|2

)
a2,

i∂ta3 + iϑ3 · ∇xa3 =
(
κ(3,3,3,3)|a3|2 + 2κ(2,3,3,2)|a2|2

)
a3.However, suh a deoupling does not exist if initially a2(0, ·) = 0, sine this amplitudewill be generated during the ourse of time by the remaining two others. Analogously

a3 is generated by interation of a1 and a2.More formally we an also infer this fat from the losure ondition, sine anypossible ombination of k2 and k3 via the mapping Σ (with Λ = 3) yields either
k2, k3, or any other value (like 2k2 − k3) whih is not in G(1)

S by assumption (reallthat the system of modes µ1, µ2, µ3 is assumed to be losed of order Λ = 3). However,if one aims to follow the same argument for, e.g., k1 and k2, the �rst equation in(2.5) shows that this sub-system is not losed.7



2.4.2 The ase of several pulses within one Bloh bandThis is a partiular situation where we keep the band index ℓ ∈ N �xed and thusonly onsider the interation of several pulses within a single Bloh band. Henethe solution to (1.1) takes the asymptoti form
uε(t, x) ∼

M∑

m=1

am(t, x)χℓ

(x

ε
; km

)
ei(km·x−Eℓ(km)t)/ε + O(ε), ℓ ∈ N.In partiular we an expet this desription to be orret in ases where the Blohband Eℓ(k) admits only a moderate variation ∆ℓ := vark∈B Eℓ(k) and is well sepa-rated from the rest of the spetrum of HΓ(k) by a su�iently large gap, i.e.

min{|Eℓ(k) − En(k)| : n ∈ N, n 6= ℓ} ≫ ∆ℓ > 0.It is easy to show then that a four-wave interation an always be realized withinsuh a band. Choose kmax and kmin suh that Eℓ(kmin) ≤ Eℓ(k) ≤ Eℓ(kmax) for all
k ∈ B. We are looking for a triple (k1, k2, k3) satisfying (2.5) with ℓj = ℓ, j = 1, 2, 3.To this end we note that k3 = 2k1 − k2, modulo Γ∗, and de�ne

e(k1, k2) ≡ 2Eℓ(k1) − Eℓ(k2) − Eℓ(2k1−k2).Then we have e(kmax, kmin) > 0 > e(kmin, kmax) and by a simple appliation of theintermediate-value theorem, we easily �nd k1, k2 with k1 6= k2 and e(k1, k2) = 0.2.4.3 The ase of a single pulse deomposed into several bandsThis is a seond partiular ase, where we expet an asymptoti desription forsolutions to (1.1) given by
uε(t, x) ∼

L∑

ℓ=1

aℓ(t, x)χℓ

(x

ε
; k0

)
ei(k0·x−Eℓ(k0)t)/ε + O(ε), k0 ∈ R,where k0 is some given wave vetor. One should have the following intuition: Givenan initial plane wave of the form

uε
in(x) = f(x)eik0·x/ε,one deomposes the slowly varying marosopi amplitude f(x) into a sum of terms,eah of whih is onentrated on a single Bloh band. This is possible due to Bloh'stheorem, whih ensures that L2(Rd) =

⊕∞
ℓ=1 Hℓ, where Hℓ are the so-alled bandspaes. Stritly speaking though, one would require ountably many terms in thedeomposition, whih we an take into aount here. However for any pratialpurposes (and if f(x) is su�iently smooth and rapidly deaying) only the �rstfew Bloh bands need to be taken into aount as all higher bands give negligibleontributions, f. [16℄. We shall not go into more details here on the preise de�nition8



of Hℓ et. but refer to [2, 3, 23, 26℄ for more details on these lassial results (seealso [16℄ for a numerial approah).Conerning the possible generation of resonant modes, it is lear that in this asethe �rst ondition in (2.4) is trivially ful�lled, sine we are only dealing with a singlewave vetor k0. Thus, it is merely a question on the preise struture of the bands
Eℓ(k0) whether one an indeed expet resonanes.3 Formal derivation of the approximate solutionIn the following we onsider a �nite set S of modes whih is losed of order Λ =
2N + 1, for some N ∈ N, to be determined later.For solutions of (1.1) we seek an asymptoti two-sale expansion of the followingform

uε
N(t, x) :=

N∑

n=0

εn vn

(
t, x,

t

ε
,
x

ε

)
, (3.1)where

vn(t, x, τ, y) :=
∑

σ∈G
(2n+1)
S

An,σ(t, x, y)Eσ (τ, y) , (3.2)with Eσ(τ, y) := eiσ·(y,−τ), for σ ∈ G(2n+1)
S ≡ Σ(S2n+1). Note that in the mostsimple ase, where n = 0, we get that σ = (k, Eℓ(k)), with (k, ℓ) ∈ S, whihyields Eσ(τ, y) = ei(k·y−Eℓ(k)τ), a simple plane wave. Moreover, if σj ∈ G(2nj+1)

S , for
j = 1, 2, 3, this yields

Eσ1Eσ2Eσ3 = Eσ1−σ2+σ3, (3.3)with σ1 − σ2 + σ3 ∈ G(2(n1+n2+n3)+3)
S . Of ourse we also impose that

An,σ(·, ·, y + γ) = An,σ(·, ·, y), ∀ y ∈ R
d, γ ∈ Γ.3.1 The general strategyAs already said before, we shall only onsider the ase of simple eigenvalues Eℓ(k),for simpliity. Plugging the ansatz (3.1), (3.2) into (1.1) and expanding in powersof ε, we formally obtain

iε∂tu
ε
N − Hε

peru
ε
N − εκ|uε

N |2uε
N =

N∑

n=0

εnXn + res(uε
N),with the residual

res(uε
N) =

3N+1∑

n=N+1

εnXn. (3.4)Introduing, for any (general) σ ≡ (k, E) ∈ B × R, the operators
Lσ

0 := E − HΓ(k), Lσ
1 := i∂t + ik · ∇x + divx ∇y, L2 :=

1

2
∆x (3.5)9



this yields
X0 :=

∑

σ∈G
(1)
S

(Lσ
0A0,σ)Eσ, (3.6)and also

X1 :=
∑

σ∈G
(3)
S

(Lσ
0A1,σ)Eσ +

∑

σ∈G
(1)
S

(Lσ
1A0,σ)Eσ

− κ
∑

σj∈G
(1)
S

:

j=1,2,3

A0,σ1A0,σ2A0,σ3Eσ1−σ2+σ3

(3.7)where we have used the relation (3.3). In general we get for n = 2, . . . , 3N + 1,
Xn :=

∑

σ∈G
(2n+1)
S

(Lσ
0An,σ)Eσ +

∑

σ∈G
(2n−1)
S

(Lσ
1An−1,σ)Eσ +

∑

σ∈G
(2n−3)
S

L2An−2,σEσ

− κ
∑

n1+n2+n3=n−1

∑

σj∈G
(2nj+1)

S
:

j=1,2,3

An1,σ1An2,σ2An3,σ3Eσ1−σ2+σ3 .
(3.8)Here one should note that An,σ(t, x, y) ≡ 0, for all n ≥ N + 1, by assumption.Now we shall subsequently onstrut An,σ suh that Xn ≡ 0 for n = 0, . . . , N . Tothis end we have to ompare equal oe�ients of Eσ. We onsequently obtain, from(3.6)�(3.8), equations of the form

Lσ
0An,σ = Fn,σ, σ ∈ G(2n+1)

S , (3.9)where the r.h.s. Fn,σ an be determined from the oe�ients (Am,σ)
σ∈G

(2m+1)
S

for
m = 0, 1, . . . , n − 1. More preisely

Fn,σ := − Lσ
1An−1,σ − L2An−2,σ

+ κ
∑

n1+n2+n3=n−1

∑

σj∈G
(2nj+1)

S
:

σ1−σ2+σ3=σ

An1,σ1An2,σ2An3,σ3. (3.10)Note that here the summation index has hanged in omparison to (3.8). To proeedfurther we need to distinguish two possible ases:Case I. On the one hand, for σ ∈ G(2n+1)
S \ G(1)

S the losure ondition up to order
2n + 1 implies invertibility of Lσ

0 , i.e. (Lσ
0 )−1 ∈ Lin(L2(Y), H2(Y)) and we obtain

An,σ(t, x, y) = (Lσ
0 )−1Fn,σ(t, x, y). (3.11)The orresponding modes are alled non-resonant.Case II. On the other hand, if σ ∈ G(1)

S , then Lσ
0 has a nontrivial kernel. In orderto distinguish this ase more prominently from the one above, we shall from now10



on use the notation ς ≡ σ ∈ G(1)
S , whih also haraterizes the basi resonant modes

µ ∈ S via ς = Σ(µ).Using the orthogonal projetions Pς onto this kernel the neessary and su�ientsolvability ondition for (3.9) in this ase is then given by
PςFn,ς(t, x, y) = 0, (3.12)whih yields (reall that dim(ranPς) = 1, by assumption)

〈χς , Fn,ς〉L2(Y) = 0, for 0 6= χς ∈ ranPς . (3.13)Under this ondition, we onsequently obtain
An,ς(t, x, y) = an,ς(t, x)χς(y) + A⊥

n,ς(t, x, y) (3.14)with
A⊥

n,ς := (Lς
0)

−1(1 − Pς)Fn,ς . (3.15)Note that here an,ς is still undetermined. However the ondition (3.13) provides apartial di�erential equation for an−1,ς , the so far undetermined part of the previousstep.Remark 3.1. In the ase of non-simple eigenvalues Eℓ(k), i.e. dim(ranPς) = R > 1,we an simply use a smooth orthonormal basis {χς,r}R
r=1 of ran Pς and generalize theabove given formulas (3.12), (3.14) aordingly.3.2 Expliit alulationsIn the following we shall determine the approximate solution in more detail, byfollowing the above desribed strategy.

n = 0: We need to solve X0 ≡ 0 and immediately note that in this ase, Case Iabove is obsolete. Then, in Case II, equation (3.6) implies
Lς

0A0,ς = 0, ς ∈ G(1)
Sand thus (3.14) simpli�es to

A0,ς = a0,ς(t, x)χς(y), (3.16)with a0,ς still to be determined.
n = 1: In the next step we have to solve X1 ≡ 0. In Case I, i.e. for σ ∈ G(3)

S \ G(1)
S ,the equations (3.7) and (3.11) imply

A1,σ = κ (Lσ
0 )−1

( ∑

ς1,ς2,ς3∈G
(1)
S

σ=ς1−ς2+ς3

A0,ς1A0,ς2A0,ς3

)

= κ
∑

ς1,ς2,ς3∈G
(1)
S

:

σ=ς1−ς2+ς3

a0,ς1a0,ς2a0,ς3 (Lσ
0 )−1

(
χς1χς2χς3

)
,

(3.17)
11



where for the seond equality we simply insert (3.16). We proeed with Case II: Tothis end the solvability ondition (3.12) for ς ∈ G(1)
S allows us to determine the sofar still unknown a0,ς , obtained before. By (3.13), this yields

∫

Y

χς(y) F1,ς(t, x, y) dy = 0, (3.18)where
F1,ς = Lς

1A0,ς − κ
∑

ς1,ς2,ς3∈G
(1)
S

:

ς=ς1−ς2+ς3

A0,ς1A0,ς2A0,ς3 . (3.19)From the de�nition of Lς
1 in (3.5) and using the following basi identity
〈χℓ, (−i∇y + k)χℓ〉L2(Y) = ∇kEℓ(k),a straightforward alulation shows, f. the appendix of [7℄, that (3.18) an bewritten as

∂ta0,ς + ϑς · ∇xa0,ς +
∑

ς1,ς2,ς3∈G
(1)
S

:

ς=ς1−ς2+ς3

iκ(ς1,ς2,ς3,ς)a0,ς1a0,ς2a0,ς3 = 0, (3.20)where we denote
κ(ς1,ς2,ς3,ς) := κ

∫

Y

χς1(y)χς2(y)χς3(y)χς(y) dy.Sine any ς ∈ G(1)
S orresponds to a unique m = 1, . . . , M , via ς = Σ(µm) =

(km, Eℓm
(km)), with µm = (km, ℓm) ∈ S, we an shortly write

a0,ς(t, x) ≡ am(t, x), χς(y) ≡ χℓm
(y; km), ϑς ≡ ϑm.Hene the amplitude equations (3.20) an be equivalently written in the form (1.5)used before.In summary we have now fully determined the expressions (3.16) and (3.17), andfrom (3.14) we �nally get that

A1,ς(t, x, y) = a1,ς(t, x)χς(y) + (Lς
0)

−1(1 − Pς)F1,ς(t, x, y),where again the oe�ients a1,ς are still arbitrary and have to be determined by thesolvability ondition for n = 2. Sine this yields an initial value problem for a1,ς(see below) we are free to hoose its value at time t = 0. For simpliity we shall put
a1,ς(0, ·) = 0.
n ≥ 2: From here we proeed indutively, as desribed above, by solving Xn ≡ 0.The only di�erene that ours is that in Case II the oe�ients an,ς do not solvea nonlinear initial value problem, but rather a system of linear, inhomogeneous

12



transport equations. Indeed, lengthy alulations show that
∂tan,ς + ϑς · ∇xan,ς +

∑

ς̃,ς1,ς2∈G
(1)
S

:

ς̃−ς1+ς2=ς

2iκ(ς̃ ,ς1,ς2,ς)an,ς̃a0,ς1a0,ς2

+
∑

ς1,ς̃,ς2∈G
(1)
S

:

ς1−ς̃+ς2=ς

iκ(ς1,ς̃,ς2,ς)a0,ς1an,ς̃a0,ς2 + iΘn = 0,
(3.21)

with soure term
Θn := − Pς

(
Lς

1A
⊥
n,ς + L2An−1,ς

)

+ κ Pς

( ∑

ς̃,ς1,ς2∈G
(1)
S

:

ς̃−ς1+ς2=ς

2A⊥
n,ς̃A0,ς1A0,ς2 +

∑

ς1,ς̃,ς2∈G
(1)
S

:

ς1−ς̃+ς2=ς

A0,ς1A
⊥

n,ς̃A0,ς2

)

+ κ Pς

( ∑

ς1,ς2∈G
(1)
S

6∋σ:

σ−ς1+ς2=ς

2An,σA0,ς1A0,ς2 +
∑

ς1,ς2∈G
(1)
S

6∋σ:

ς1−σ+ς2=ς

A0,ς1An,σA0,ς2

)

+ κ Pς

( ∑

n1+n2+n3=n:
nj≤n−1

∑

σj∈G
(2nj+1)

S
:

σ1−σ2+σ3=ς

An1,σ1An2,σ2An3,σ3

)
.Again we shall put an,ς(0, ·) = 0 for simpliity, sine we are free to hoose the initialvalues for (3.21). Finally, we note that, in order to satisfy XN ≡ 0 (i.e. in the laststep), we do not need to determine the orresponding aN,ς and thus we an impose

aN,ς(t, ·) ≡ 0.4 Justi�ation of the amplitude equationsIn order to obtain our main result, Theorem 4.5, we have to justify the above givenformal alulations rigorously. In partiular we need a nonlinear stability result onour approximation.
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4.1 Estimates on the approximate solution and on the resid-ualIn the above setion we derived an approximate solution uε
N whih admits an asymp-toti expansion of the following form

uε
N(t, x) =

∑

ς∈G
(1)
S

a0,ς(t, x)χς

(x

ε

)
Eς

(
t

ε
,
x

ε

)

+

N∑

n=1

εn
∑

ς∈G
(1)
S

(
an,ς(t, x)χς

(x

ε

)
+ A⊥

n,ς

(
t, x,

x

ε

))
Eς

(
t

ε
,
x

ε

)

+

N∑

n=1

εn
∑

σ∈G
(2n+1)
S \G

(1)
S

An,σ

(
t, x,

x

ε

)
Eσ

(
t

ε
,
x

ε

)

(4.1)
where the �rst two lines on the r.h.s. inlude only resonant modes while the last onetakes into aount the generated non-resonant terms. To this end we required theappearing �nite set of modes to be losed of order Λ = 2N+1.To proeed further let us, for s ∈ [0,∞), introdue the saled Sobolev spaes

Hs
ε :=

{
f ε ∈ L2(Rd) ; ‖f ε‖Hs

ε
< ∞

}
,with

‖f ε‖2
Hs

ε
:=

∫

Rd

(1 + |εp |2)s |f̂(p)|2 dp.Here f̂ denotes the usual Fourier transform of f in L2(Rd). Note that in Hs
ε thefollowing Gagliardo�Nirenberg inequality holds

∀ s >
d

2
∃C∞ > 0 : ‖ f ‖L∞ ≤ C∞‖ f ‖Hs ≤ C∞ε−d/2‖ f ‖Hs

ε
, (4.2)where the fator ε−d/2 is easily obtained by saling. In the following lemma weollet the a-priori estimates on uε

N needed in order to prove our main result.Lemma 4.1. For d, N ∈ N and s ∈ [0,∞) let K = max{0, s + d
2
− 2} and S >

N +s+ d
2
, or, if d = 1, S ≥ N +s+1. Moreover, assume that ∂αVΓ ∈ L∞(Y), for all

|α| ≤ K, and let (a1, . . . , aM) ∈ C0([0, T ), HS(Rd))M be a solution of the amplitudeequations (1.5).Then, the approximate solution uε
N , given in (4.1), satis�es the following estimates.For eah T∗ ∈ (0, T ) there exist positive onstants Ca, Cb, Cr > 0, suh that, for

ε ∈ (0, 1), |α| ≤ s, and t ∈ [0, T∗], it holds
‖ (ε∂x)

αuε
N(t, ·) ‖L∞ ≤ Ca, ‖ uε

N(t, ·) ‖Hs
ε
≤ Cb, ‖ res(uε

N)(t, ·) ‖Hs
ε
≤ Crε

N+1.Proof. Sine uε
N is given by (4.1), in order to prove the estimates of the lemmawe need to establish the regularity of An,σ for n = 0, . . . , N , σ ∈ G(2n+1)

S , whih14



have been alulated formally in Setion 3. Under the assumptions (a1, . . . , aM) ∈
C0([0, T ), HS(Rd))M and ∂αVΓ ∈ L∞(Y), for |α| ≤ K, we shall �rst prove that itholds

An,σ ∈ C0([0, T ), HS−n(Rd, HK+2(Y))). (4.3)Indeed, by (3.16), A0,ς(t, x, y) = a0,ς(t, x)χς(y), where a0,ς solves (3.20) and χς isgiven by (2.2), and we get immediately (4.3) for n = 0 (f. Lemma 2.4 and Lemma4.3 below).From here it follows, on the one hand, that for σ ∈ G(3)
S \ G(1)

S , by (3.9) and(3.17), F1,σ = Lσ
0A1,σ ∈ C0([0, T ), HS(Rd, H s̃(Y))) with s̃ = K + 2 and hene,by (3.10), A1,σ ∈ C0([0, T ), HS−1(Rd, H s̃(Y))). On the other hand, for ς ∈ G(1)

Swe obtain by (3.19) F1,ς ∈ C0([0, T ), HS−1(Rd, H s̃(Y))), and thus, by (3.15), A⊥
1,ς ∈

C0([0, T ), HS−1(Rd, H s̃(Y))). Moreover, a1,ςχς ∈ C0([0, T ), HS−1(Rd, H s̃(Y))), sine
a1,ς solves the linear inhomogeneous transport equation (3.21) (for n = 1) withinitial ondition a1,ς(0, ·) = 0, oe�ients in C0([0, T ), HS(Rd)), and soure term
Θ1 ∈ C0([0, T ), HS−2(Rd)). Hene, by (3.14), we obtain (4.3) for n = 1. Proeedingindutively, we obtain (4.3) for all n = 0, . . . , N via the above given steps.Having established (4.3), we aim to show the �rst estimate of the lemma. To thisend we have to guarantee that for eah n = 0, . . . , N , σ ∈ G(2n+1)

S , there exists a
C > 0, suh that ∥∥ (ε∂x)

αAn,σ

(
t, ·, ·

ε

) ∥∥
L∞

≤ Cholds true for all ε ∈ (0, 1), |α| ≤ s, and t ∈ [0, T∗]. Using the Gagliardo�Nirenberginequality (4.2), we therefore require
(ε∂x)

αAn,σ

(
t, ·, ·

ε

)
∈ Hm(Rd) with m >

d

2
, (4.4)for all |α| ≤ s, i.e.

An,σ

(
t, ·, ·

ε

)
∈ Hm∗

ε (Rd) with m∗ > s +
d

2
.Thus, by (4.3), we need m∗ = S − n + s̃ > s + d

2
, that is, either S − n > |β|+ d

2
and

s̃ ≥ s−|β|, or S−n ≥ |β| and s̃ > s−|β|+ d
2
, for all |β| ≤ s and all n = 0, . . . , N . Itturns out that in order to satisfy either of these onditions, the optimal onditionswe have to impose onerning the regularity of An,σ, given in (4.3), are S−n > s+ d

2and s̃ = K + 2 > s + d
2
, for n = 0, . . . , N , whih diretly yields the assumptions on

S and K stated in the lemma.The seond estimate of the lemma then follows immediately by (4.4). In orderto obtain the third estimate, having in mind the de�nitions (3.4) and (3.8) with
An,σ ≡ 0 for n ≥ N + 1 and aN,ς ≡ 0 (f. the note after (3.21)), it is neessary andsu�ient to assure additionally that ∆aN−1,ς ∈ Hs(Rd), i.e., a0,ς ∈ HN+s+1(Rd).This yields the additional ondition S ≥ N + s + 1, and onludes the proof.Remark 4.2. Note that in order to derive the above given a-priori estimates for
uN , the required regularity imposed on χς is indeed independent of N .15



We shall also need the following result on the linear time-evolution.Lemma 4.3. For ε ∈ (0, 1) denote the unitary propagator orresponding to thelinear Hamiltonian Hε
per, de�ned in (1.3), by

Uε(t) := e−iHε
pert/ε.For s ∈ [0,∞) assume ∂αVΓ ∈ L∞(Y) for all |α| ≤ max{0, s−2}. Then there existsa Cl > 0, suh that

‖Uε(t)f ε ‖Hs
ε
≤ Cl ‖f ε‖Hs

ε
for all t ∈ R. (4.5)Proof. Realling the de�nition of Hε

per, given in (1.3), we learly have the basi L2estimate,
‖f ε(t)‖L2 ≡ ‖Uε(t)f ε‖L2 = ‖f ε‖L2 , for all t ∈ R,sine Hε

per is self-adjoint. Moreover, sine Uε(t) obviously ommutes with (its gen-erator) Hε
per, so does any power of the latter and we therefore obtain

‖(Hε
per)

s/2f ε(t)‖
L2 = ‖(Hε

per)
s/2f ε‖

L2 , for all s, t ∈ R.Without loss of generality we assume here that Hε
per ≥ 1, otherwise we may add aonstant independent of ε ∈ (0, 1).For s = 1 this is nothing but energy onservation. Using the onservation of the L2norm and the ondition VΓ ∈ L∞(Y) we immediately obtain the desired result (4.5)for s = 1 with Cl = (1+4‖VΓ‖∞)1/2.For general s ∈ N\{1}, we use integration by parts and the assumed regularity of

VΓ to �nd ε-independent onstants C1, C2 > 0 suh that
C1‖(Hε

per)
s/2f ε(t)‖

L2 ≤ ‖f ε(t)‖Hs
ε
≤ C2‖(Hε

per)
s/2f ε(t)‖

L2 ,i.e. we have equivalene of the norms uniformly in ε. For general s ≥ 0 the sameholds true by interpolation. In summary we obtain boundedness of the unitarygroup Uε(t) in all Hs
ε and the assertion of the lemma is proved.4.2 Stability of the approximationFirst let us reall the following Moser-type lemma, f. [22, Lemma 8.1℄, whih weshall use in the proof of Theorem 4.5 below.Lemma 4.4. Let R > 0, s ∈ [0,∞), and N (z) = κ|z|2z with κ ∈ R. Then thereexists a Cs = Cs(R, s, d, κ) > 0 suh that if

‖(ε∂)αf ‖L∞ ≤ R, ∀ |α| ≤ s and ‖ g ‖L∞ ≤ R,then
‖N (f + g) −N (f) ‖Hs

ε
≤ Cs‖ g ‖Hs

ε
.16



Proof. The proof an be found in [22℄ for s ∈ N and follows by interpolation forgeneral s ∈ [0,∞).With the above results at hand, we are now able to establish our main result,whih justi�es rigorously the validity of the amplitude equations (1.5), desribingthe marosopi dynamis of M modulated pulses for a losed mode system of order
Λ = 2N + 1 (with N depending on d).Theorem 4.5. For d ∈ N hoose s, S ∈ [0,∞) and N ∈ N suh that N, s > d

2
and

S > N + s + d
2
, or, if d = 1, S ≥ N + s + 1. Let K = max{0, s + d

2
− 2} andassume ∂αVΓ ∈ L∞(Y) for all |α| ≤ K. Moreover, let the �nite system of modes

S = {µ1, . . . , µM : M ∈ N} be losed of order Λ = 2N + 1.Then for any solution (a1, . . . , aM) ∈ C0([0, T ), HS(Rd))M of the amplitude equa-tions (1.5), and any t∗ ∈ (0, T ), β ∈ (d
2
, N ], c > 0, there exist an ε0 ∈ (0, 1) and a

C > 0, suh that for all ε ∈ (0, ε0), the approximate solution uε
N , onstruted above,and any exat solution uε of (1.1) with

‖ uε(0, ·) − uε
N−1(0, ·) ‖Hs

ε
≤ cεβ,satisfy

‖ uε(t, ·) − uε
N−1(t, ·) ‖Hs

ε
≤ Cεβ for all t ∈ [0, t∗].Remark 4.6. Note, that the approximate solution uε

N ontains terms up to order
O(εN), whereas the above given error estimates inlude only uε

N−1. The reason forthis is that for our proof we need to work with uε
N but still the obtained error isonly of the order O(εβ) with β ≤ N . We an therefore eventually neglet the lastterm in uε

N , or, loosely speaking, we an move it to the right hand side of the abovegiven estimate.Proof. We write the exat solution of (1.1) in the form
uε(t, x) = uε

N(t, x) + εβwε(t, x)and denote ̺ε(t) := ‖wε(t) ‖Hs
ε
. Then, learly, ̺ε(0) ≤ c, and we will show thatthere exist C > 0, ε0 ∈ (0, 1), suh that, for all ε ∈ (0, ε0], it holds ̺ε(t) ≤ C for

t ∈ [0, t∗]. Inserting this ansatz into (1.1), written as
i∂tu

ε = −ε

2
∆uε +

1

ε
VΓ

(x

ε

)
uε + N (uε), where N (z) = κ |z|2z,and applying Duhamel's formula we get

wε(t) = Uε(t)wε(0) + ε−β

∫ t

0

Uε(t − τ)
(
N (uε

N(τ) + εβwε(τ)) −N (uε
N(τ))

)
dτ

− ε−(β+1)

∫ t

0

Uε(t − τ) res(uε
N(τ)) dτ,

17



where res(uε
N) is de�ned in equation (3.4). Hene, using Lemma 4.1 and Lemma 4.3to estimate the residual and the linear semi-group, respetively, we obtain

̺ε(t) ≤ Clc + ClCrε
N−βt + ε−β

∫ t

0

Cl

∥∥N (uε
N(τ) + εβwε(τ)) −N (uε

N(τ))
∥∥

Hs
ε
dτ,sine ̺ε(0) ≤ c, by assumption. Using N ≥ β and ε ∈ (0, 1), we onsequently obtain

̺ε(t) ≤ Cl(c + Crt∗) + ε−β

∫ t

0

Cl

∥∥N (uε
N(τ) + εβwε(τ)) −N (uε

N(τ))
∥∥

Hs
ε
dτ,for t ≤ t∗.Now, we set C := Cl(c + Crt∗)e

ClCst∗ and hoose a D > max{c, C}. Then, sine
D > c ≥ ̺ε(0) and ̺ε(t) is ontinuous, there exists, for every ε ∈ (0, 1), a positivetime tεD > 0, suh that ̺ε(t) ≤ D for t ≤ tεD.The Gagliardo�Nirenberg inequality (4.2) yields, for s > d/2, that

‖ εβwε(t) ‖L∞ ≤ εβ−d/2C∞D for t ≤ tεD.Hene, using β − d/2 > 0 there exists an ε0 ∈ (0, 1), suh that
‖ εβwε(t) ‖L∞ ≤ Ca, for ε ∈ (0, ε0] and t ≤ tεD.Moreover, by Lemma 4.1 we have ‖(ε∂)αuε

N(t) ‖L∞ ≤ Ca for |α| ≤ s, ε ∈ (0, 1), and
t < T . Thus, we an apply Lemma 4.4 (with R = Ca) in order to estimate thenonlinear term and obtain

̺ε(t) ≤ Cl(c + Crt∗) + ClCs

∫ t

0

̺ε(τ) dτ, for ε ∈ (0, ε0] and t ≤ tεD.Gronwall's lemma then yields
̺ε(t) ≤ Cl(c + Crt∗)e

ClCst ≤ C, for ε ∈ (0, ε0] and t ≤ t∗.Sine C < D, we onlude that the assumptions needed in order to apply Lemma4.4 are ful�lled for all ε ∈ (0, ε0] and all t ≤ t∗, that is tεD ≥ t∗. Thus the abovegiven estimate proves that
‖ uε(t, ·) − uε

N(t, ·) ‖Hs
ε

= O(εβ), for t ∈ [0, t∗].However, sine N ≥ β and
‖ uε

N(t, ·) − uε
N−1(t, ·) ‖Hs

ε
= O(εN), for t ∈ [0, t∗],we an �nally replae uε

N(t, ·) by uε
N−1(t, ·) in our stability result, whih onsequentlyproves the assertion of the theorem.
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We want to stress that our stability result is an advanement when ompared tothe result of [7℄, in the sense that our asymptoti estimates no longer su�er from aloss of auray in powers of ε (as has been the ase in the ited work). We infer inpartiular, that our nonlinear setting allows for the same kind of stability result asone would expet in the linear ase.Theorem 4.5 also shows that no blow-up an our in the exat solution uε withinthe interval t ∈ [0, T ), determined by the existene time of (1.5). Hene, if thesystem (1.5) indeed admits global-in-time solutions we dedue that the solutions uε,starting lose to suh modulated pulses, exist for arbitrary long times (but blow-upmay our after the modulational struture is lost on longer time sales.)Finally note that for d = 1 the assumption N > d/2 and the required losure oforder Λ = 2N + 1 imply that, at least, N = 1 and thus Λ = 3, whereas for d = 3spatial dimensions we need at least N = 2 and hene Λ = 5. This inrease of therequired Λ for higher spatial dimensions d an be relaxed though, as we shall showin the following setion.5 The ase of higher-order resonanesIn Setion 3, we derived the approximate solution uε
N under the assumption that Ssatis�es a losure ondition of su�ient high order Λ, i.e. we required Λ = 2N + 1and N > d/2. We shall show now that this losure ondition an be signi�antlyrelaxed if we generalize the ansatz (3.1), (3.2) slightly by allowing for a larger set ofmodes G2N+1. To this end we onsider the new ansatz

uε
N(t, x) =

N∑

n=0

∑

σ∈G2n+1

εn An,σ(t, x, y)Eσ (τ, y) , (5.1)where the set of modes G2N+1 is then de�ned indutively as follows: Again we startfrom S = {(k1, ℓ1), ..., (kM , ℓM)}, whih is now assumed to be only losed of order
Λ = 3 and we set G1 = G(1)

S . However, for n ≥ 2 we will allow the sets G2n+1 to belarger than G(2n+1)
S . The reason for this enlargement is motivated by the fat, that

G̃(2n+1)
S = G(2n+1)

S ∩
(
G \ G(1)

S

)may be nonempty for some n ≥ 2. Then, the orresponding equation (3.9) mightnot be solvable. To irumvent this problem, we set
G2n−1 = G(2n−1)

S ∪ G̃(2n+1)
S .At stage n−1 the orresponding An−1,σ with σ ∈ G̃(2n+1)

S take the usual produtform an−1,σ(t, x)χσ(y) with χσ ∈ kerLσ
0 ⊂ H2(Y) and free oe�ients an−1,σ. Then,in step n the orresponding equations for σ ∈ G̃(2n+1)

S an be solved as in Case IIof Subsetion 3.1, i.e. we obtain a linear transport equation for the free oe�ientsfrom the solvability ondition for the previous step.19



To make this more preise, we assoiate with the sequene G1,G3, . . . ,G2N+1 anothersequene Ǧ3, Ǧ5, . . . , Ǧ2N+1 as follows
Ǧ2n+1 =

⋃

n1,n2,n3=0,...,n−1
n1+n2+n3=n−1

(
G2n1+1 − G2n2+1 + G2n3+1

)
. (5.2)Hene, Ǧ2n+1 ontains all modes of order O(εn) that an be generated by the ubinonlinearity |u|2u from the already given terms of lower order.De�nition 5.1. A mode set S = {(k1, ℓ1), ..., (kM , ℓM)} is alled weakly losed oforder 2N+1, if there exists a sequene G1 ⊂ G3 ⊂ · · · ⊂ G2N+1 ⊂ B × R suh thatthe following onditions hold:(i) G2n+1 is �nite for n = 0, 1, ..., N ;(ii) G1 = G(1)

S = Σ(S);(iii) Ǧ2n+1 ⊂ G2n+1 for n = 1, ..., N ;(iv) if σ ∈ G2n+1 ∩ G with n ∈ N, then either σ ∈ G2n−1 or σ 6∈ Ǧ2n+1;(v) for eah σ ∈ G2N+1 ∩ G the group veloity ϑσ = ∇kEℓ(k) exists,where Ǧ3 ⊂ · · · ⊂ Ǧ2N+1 is the sequene assoiated with G1, ...,G2N+1 aording to(5.2).Condition (iv) means that any ourring resonant mode must either our alreadyin an earlier step and hene has a orresponding free oe�ient or it appears for the�rst time but it is not yet generated by the nonlinear interation. This will beomelearer in the following examples.Example 5.2. We �rst show that a system whih is losed of order 2N+1 is alsoweakly losed of order 2N+1. For this we simply set G2n+1 = G(2n+1)
S . By onstru-tion, the assoiated sequene is Ǧ2n+1 = G2n+1 and the onditions (i) to (iii) holdimmediately. Moreover, (iv) follows sine G2n+1 ∩ G = G1 = G(1)

S .Example 5.3. We now show that a weak losure of order Λ is in general a weakerondition than losure of order Λ is. For this onsider the ase S = {(k1, ℓ1), (k2, ℓ2)}suh that G1 = G(1)
S = {σ1, σ2} ⊂ G with σj = (kj, Eℓj

(kj)). An easy indutionargument gives
G(2n+1)
S = { (n+1−j)σ1 + (j−n)σ2 ; j = 0, 1, . . . , 2n + 1 }Now assume that G ∩ G(2N∗+1)

S ⊂ {σ1, σ2, 3σ1−2σ2} for some N∗ ≥ 2, i.e. we have alosure of order 3 but not of order 5.We laim that a weak losure of order 2N+1 still holds for any N suh that 3N ≤
2N∗. For n = 0, . . . , N we let

G2n+1 = { jσ1 + (1−j)σ2 ; j = −βn, . . . , αn },20



with αn = [3(n+1)/2] and βn = [3n/2], where [ · ] denotes the integer part. Byonstrution of the sequenes (αn, βn)n we thus have G3 = Ǧ3 ∪ {3σ1−2σ2} and
G2n+1 = Ǧ2n+1 for n = 2, . . . , N . Hene onditions (i) to (iii) of De�nition 5.1 areful�lled. Condition (iv) also holds sine G2n+1 ∩ G ⊂ G1 ∪ {3σ1−2σ2}.Repeating the onstrution of Setion 3.2 analogously we obtain the following result.Lemma 5.4. Let S = {(k1, ℓ1), . . . , (kM , ℓM)} be a set of modes that is losed oforder Λ = 3 and weakly losed of order Λ = 2N+1 for some N ∈ N. Then anapproximation

uε
N(t, x) =

N∑

n=0

εn
∑

σ∈G2n+1

An,σ(t, x, y)Eσ (5.3)an be onstruted as in Setions 3.1 and 3.2, where G1 ⊂ · · · G2N+1 is the sequeneguaranteed by De�nition 5.1.Hene, via the same steps as in Setion 4 one an easily obtain a justi�ation of theamplitude equations (1.5) under these relaxed resonane onditions.Corollary 5.5. Let d, N ∈ N and S be a mode system that is losed of order Λ = 3and weakly losed of order Λ = 2N +1. Then, under the same assumptions as beforethe statement of Theorem 4.5 holds analogously with the approximate solution givenby (5.3).A Hamiltonian struture and onservation laws ofthe amplitude equationsRealling the amplitude equations in the general form (1.5), i.e.
i∂tam = −iϑm · ∇xam +

M∑

p,q,r=1:
Σ(µp,µq,µr)=Σ(µm)

κ(p,q,r,m)apaqar, (A.1)for m = 1, . . . , M , we want to highlight the Hamiltonian struture of this equationas well as to dedue the onserved quantities whih follow from the spei� strutureof the resonanes. For a general method on how to derive the redued Hamiltonianstruture and the �rst integrals for (A.1) we refer to [11, 12℄. Here we just olletthe results that are obtained with the general theory developed there.We �rst note that (A.1) is a Hamiltonian system generated by
Hred(a) =

∫

Rd

M∑

m=1

Im (am ϑm · ∇am) +

M∑

p,q,r=1:
Σ(µp,µq,µr)=Σ(µm)

κ(p,q,r,m)

2
apaqaram dx,and the sympleti two-form i =

√
−1. Hene, (A.1) takes the form

i∂tam = δam
Hred(a).21



Note that the redued Hamiltonian Hred(a) is not obtained as the lowest orderexpansion of the original Hamiltonian Hε(uε) of the full system, whih reads
Hε(uε) =

∫

Rd

ε2

2
|∇u|2 + VΓ

(x

ε

)
|uε|2 +

εκ

2
|u|4 dx.Indeed, inserting the ansatz uε = uε

N , as given in (4.1), into Hε(uε) we �nd, as
ε → 0, that

Hε(uε
N) = I(a) + O(ε), with I(a) =

∫

Rd

M∑

m=1

Eℓm
(km)|am|2 dx.Even though not a Hamiltonian, I(a) learly is a onserved quantity for the ampli-tude system (A.1).However, the energy levels Eℓm

(km) ≡ ωm do not our expliitly in the amplitudesystem (A.1). Hene, any hoie of ω̃m ∈ R that is ompatible with the reso-nane onditions (2.4) leads to additional onserved quantities. More preisely, if
ω̃1, . . . , ω̃M are hosen suh that for any p, q, r, m ∈ {1, . . . , M} the resonane on-ditions (2.4) imply the identity

ω̃p − ω̃q + ω̃r = ω̃m,then
Ĩ(a) =

∫

Rd

M∑

m=1

ω̃m|am|2 dxde�nes a �rst integral.A partiular hoie is ω̃1 = · · · = ω̃M = 1, whih leads to the trivial fat that the
L2 norm is preserved. The latter an of ourse also be dedued from the fat thatthe L2 norm was preserved in the original problem for uε or from the fat that themode system is invariant under the phase shifts (a1, . . . , aM) 7→ (eiαa1, . . . , e

iαaM),with α ∈ R. Similarly, Ĩ(a) an be understood as a �rst integral with respet tosuitably hosen phase shifts that are ompatible with the resonane struture, i.e.
T̃α : (a1, . . . , aM) 7→ (eieω1αa1, . . . , e

ieωMαaM ), .Finally, it should be mentioned that the mode system (A.1) is translation invari-ant. This provides �rst integrals assoiated with the translation operators in theoordinate diretions
Itrans

θ (a) =

∫

Rd

M∑

m=1

Im (am θ · ∇am) dx, θ ∈ R
d.So far, we are not able to show that these onserved quantities are enough to providea global existene result. Note in partiular, that for the original problem the ase

κ > 0 leads to an energy that is de�nite and allows us to onlude global existenefor the nonlinear Shrödinger equation (1.1). For the mode system (A.1) the signof κ is no longer helpful, sine the term involving derivatives is inde�nite. Note alsothat global existene for the mode system annot be inferred from global existeneof (1.1), sine we an not expet the solutions uε to remain in the form of modulatedpulses for all times. 22
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