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AbstratWe onsider Hamiltonian problems depending on a small parameter like in waveequations with rapidly osillating oe�ients or the embedding of an in�nite atomihain into a ontinuum by letting the atomi distane tend to 0. For general semi-linear Hamiltonian systems we provide abstrat onvergene results in terms of theexistene of a family of joint reovery operators whih guarantee that the e�etiveequation is obtained by taking the Γ-limit of the Hamiltonian. The onvergene isin the weak sense with respet to the energy norm. Exploiting the well-developedtheory of Γ-onvergene, we are able to generalize the admissible oe�ients for ho-mogenization in the wave equations. Moreover, we treat the passage from a disreteosillator hain to a wave equation with general L
∞ oe�ients.1 IntrodutionMany evolutionary problems are of geometri nature and are desribed by funtionals andgeometri strutures. Dissipative systems on a state spae Q are typially given by anenergy potential Φ : Q → R∞ := R ∪ {∞} and a dissipation funtional R : TQ givingrise to an equation of the type of a gradient �ow:

0 = ∂u̇R(u(t), u̇(t)) + ∂uΦ(u(t)). (1.1)Here, we will deal with Lagrangian and Hamiltonian systems that are de�ned on a tangentor otangent bundle of the on�guration spae Q. In a mehanial system we have inaddition to the energy potential Φ a kineti energy K(u, u̇) = 1
2
〈M(u)u̇, u̇〉 on TQ andthe Lagrangian equations read

d

dt

(
∂u̇K(u, u̇)

)
=

d

dt

(
M(u)u̇)

)
= −∂uΦ(u).Introduing the onjugate momentum p = M(u)u̇ we obtain the anonial Hamiltonianform

u̇ = ∂pH(u, p) = M(u)−1p, ṗ = −∂uH(u, p) = −∂uΦ(u),where H : T∗Q → R∞ : (u, p) 7→ 1
2
〈M(u)−1p, p〉 + Φ(u). More generally Hamiltoniansystems are de�ned on a general manifold P and desribed by a Hamiltonian H : P → Rand a sympleti form Ω (a nondegenerate two-form).In all these ontexts there arises the natural question about the limiting behavior if thefuntionals and strutures depend on a small parameter ε. Assume that we have given1



Φε and Rε in the dissipative ase, Φε and Kε in the Lagrangian ase, or Hε and Ωε in theHamiltonian ase, where the range of ε is given as [0, ε1], i.e., the desired limit ase ε = 0 isinluded. For eah ε we also have solution uε : [t1, t2] → Q. The general aim in this ontextis to analyze the types of onvergene we need to impose suh that we an guarantee thatthe limit q0(t) = limε→0 qε(t) satis�es the limit problem with Φ0 = limε→0 Φε and similarlyfor Rε, et. Of ourse, if the dependene in ε is ontinuous in suitably strong topologies,then the standard theory of ontinuous dependene provides the desired result.We are here interested in relatively weak types of onvergenes for the funtionals, namelythose that allow us to treat multisale problems. For instane, for the wave equation
ρ(1

ε
x)üε = div(A(1

ε
x)∇uε) +B(1

ε
x)uε (1.2)with highly osillatory, periodi oe�ients the solutions will not onverge for ε → 0 instrong norms. The best we an hope for will be the weak onvergene in the energy norm.Under reasonable assumptions, for this ase the limiting problem an be onstruted andwe obtain an e�etive, marosopi equation, namely

ρ∗ü0 = div(A∗∇u0) +B∗u0,where ρ∗ and B∗ are simple averages while A∗ is a more ompliated e�etive sti�nesstensor related to the harmoni mean.De�ning the assoiated potential and kineti energies
Φε(u) = 1

2

∫
Ω
A(1

ε
x)∇u:∇u+B(1

ε
x)u·udx, Φ0(u) = 1

2

∫
Ω
A∗∇u:∇u+B∗u·udx,

Kε(v) = 1
2

∫
Ω
ρ(1

ε
x)v · vdx, K0(v) = 1

2

∫
Ω
ρ∗v · vdxit is the question in what sense we have that Φε and Kε onverge to Φ0 and K0 re-spetively. It turns out that the most relevant onverge is the so-alled Γ-onvergenefor funtionals, see [Dal93, Bra02℄. However, sine we have two funtionals it is notlear that we an do the two limit alulations independently. The determination ofe�etive Hamiltonian in multisale problems is one of the fundamental issue in many ar-eas suh as quantum mehanis, moleular dynamis, �ber optis, or water wave theory[CDMZ91, BS97, SW00b, All03, LT05, GM06, Mie06, CS07, GHM06b℄In Setion 2 we will address these question in an abstrat setting. For this we introduefamilies of joint reovery operators (Gε)ε>0 that work for both funtionals simultaneously.We also provide ounterexamples showing that nonexistene of suh a family may lead tofailure in the limiting proedure, i.e., limits of solutions fail to solve the problem assoiatedwith the limiting funtionals. In Setion 3 we apply the theory to one-dimensional systemsof wave equations generalizing (1.2). and in Setion 4 we treat the passage from a disretelattie system to a ontinuum system.Before going into details we point to related work that also bases on the idea of identifyingthe limit problem by passing to the limit in the determining funtionals rather than in theequation itself. For gradient �ows the dissipation potential Rε relates to a Riemannian2



metri, i.e., Rε(u, u̇) = 1
2
〈gε(u)u̇, u̇〉, where gε(u) : TuQ → T∗uQ is symmetri and positivesemide�nite. The question of taking the limit for the gradient �ows gε(u)u̇ = −∂uΦε(u)was addressed in [SS04℄ to derive the limiting behavior for the vorties in a Ginzburg�Landau model, in [Ort05℄ to analyze onvergene of numerial approximations, and in[KMM06℄ for the limit behavior of domain walls in thin magneti �lms. A simple linearounterexample with Q = R2 is given in [Mie06b℄.Another interesting dissipative situation is the ase of rate-independent systems where

R(q, ·) is homogeneous of degree 1. Then, ∂vR(q, v) ⊂ TqQ denotes the set-valued sub-differential of the onvex funtionR(q, ·) and (1.1) is a di�erential inlusion, whih may bereformulated as an evolutionary variational inequality, f. [Mie05℄. For rate-independentsystems, Γ-onvergene is studied via the energeti formulation in [MO07, MRS06℄ usingthe global distane Dε : Q×Q → [0,∞] assoiated with the in�nitesimal metri Rε. Inaddition to the Γ-onvergene of Φε and Dε to Φ0 and D0, respetively, one has to imposethe existene of joint reovery sequenes:
∀uε with uε → u ∀ û ∈ Q ∃ ûε with ûε → û:

lim sup
ε→∞

(
Φε(t, ûε)+Dε(uε, ûε)−Φε(t, uε)

)
≤ Φ0(t, û)+D0(u, û)−Φ0(t, u),Several appliations are treated in [MRS06℄, and [MT06℄ addresses the two-sale homog-enization for linearized elastoplastiity.We return to our theory onerning Hamiltonian systems. Our theory in Setion 2 isbased on a Gelfand triple V ⊂ X ⊂ V ∗ of Hilbert spaes and losed subspaes Vε ⊂ V .We onsider general, oerive, lower semi-ontinuous quadrati forms of the type

Φε(u) =

{
1
2
〈Aεu, u〉 for u ∈ Vε,

∞ otherwise,and show that Φε
Γ→ Φ0 (de�ned in (2.2) and also written Φ0 = Γ-limε→0 Φε) if and onlyif there exists a family (Gε)ε of reovery operators with Gε ∈ L(V0;Vε) suh that(i) ∀ v0 ∈ V0: Fεv0 ⇀ v0 in V,(ii) vε ∈ Vε, vε ⇀ v0 ∈ V0 =⇒ F ∗ε Aεvε ⇀ A0v0 in V ∗0 ,(iii) vε ⇀ v0 6∈ V0 =⇒ Φε(vε) → ∞.

(1.3)Combining (i) and (ii) it follows immediately that Φε(Fεv0) → Φ0(v0). In ase that
Vε = V0 and that Aε has a bounded inverse one an hoose Fε = A−1

ε A0 and the strongerstatement AεFεv0 → A0v0 in V ∗0 . But appliations (f. Setion 4 and [Mie06℄) need themore general ontext that Vε is a true subspae that may not be dense.In Setions 2.3 and 2.4 we onsider linear and semilinear mehanial systems of the form
Mεüε + DuΦε(uε) = 0, uε ∈ Vε, (1.4)where the kineti energies Kε(v) = 1

2
〈Mεv, v〉 and the potentials Φε are uniformly oeriveon X and V respetively. Moreover, we assume Φε ∈ C1(Vε; R) for some losed subspae3



Vε ⊂ V . Using the oerivity any family of solutions uε : R → Vε with bounded energyhas a subsequene and a limit funtion u0 ∈ C∞w (R, V ) ∩ CLip(R, X) satisfying
∀ t ∈ R : uε(t) ⇀ u0(t) in V and u̇ε

∗
⇀ u̇0 in L∞(R, X).In Theorem 2.10 we show that u0 satis�es the limit problem if there exists a family (Gε)ε>0of joint reovery operators Gε ∈ L(V0;Vε) suh that the following holds: If uε ∈ Vε with

uε ⇀ u0 and sup Φε(uε) <∞, then we have(a) u0 ∈ V0, (b) G∗εMεuε ⇀M0u0 in V ∗0 , () G∗εDΦε(uε) ⇀ DΦ0(u0) in V ∗0 . (1.5)We also disuss the question whether onvergene of the initial onditions (uε(t1), u̇ε(t))implies onvergene at other times. Example 2.8 shows that this is wrong in general, andTheorem 2.7() provides su�ient onditions. In general, the onvergene
(G∗εMuε(t1), G

∗
εMu̇ε(t1)) → (M0u0(t1),M0u̇0(t1)) in V ∗0 → V ∗0for some t1 implies the same onvergene for all t ∈ R.Setion 2.5 provides the orresponding results for Hamiltonian systems of the form

Ωεżε = DHε(zε), zε ∈ Zε.The joint reovery ondition reads exatly as (1.5) if u, V,Φ, and M are replaed by
z, Z,H , and Ω, respetively, see (2.29). Similar statements for the initial values hold.Finally, Setion 2.6 provides some results onerning strong onvergene for the ase theenergy H0(z0(t)) of the limit funtions is the limit limε→0Hε(zε(tε)) of the energies. Inthis ase it is possible to show that Gεz0 − zε onverges strongly to 0 in V a.e. in R.For semigroups generated from equations of the type u̇ = Aεu or ü + Aεu = 0 similaronvergene results are known. There onvergene an be expressed in terms of theonvergene of the resolvent operators Rε(λ,A) = (Aε−λI)−1 for ε → 0. Our setting
Mεü+Aεu = 0 involves two physially relevant strutures depending on ε and onvergeneis asked in the physially relevant quantities. The transformation uε = M

1/2
ε ũε would nottransfer onvergene properties of uε to those of vε.Setion 3 is devoted to the homogenization of systems of hyperboli equations as in (1.2).For simpliity we restrit ourselves to the one-dimensional setting but allow for vetor-valued u(t, x) ∈ Rm. The main advantage of the present theory is that it uses veryweak onvergene notions. Thus, we are able to homogenize equations with general L∞oe�ients. For general periodiity strutures in Rd we let Y = [0, 1)d ∼ (R/Z)d and

[ · ] : Rd → Zd for the omponentwise Gauÿ braket. For a general funtion a ∈ L∞(Rd ×
Y ; Rm×m) the usual ansatz for the osillation oe�ients would be ãε(x) = a(x, 1

ε
x), butthis is not well-de�ned, as { (x, 1

ε
x) ∈ Rd × Y | x ∈ Rd } is a null set in Rd × Y . Thus, theusual work assumes additional smoothness for a, f. [CDMZ91, All03℄ and the referenestherein. We avoid this problem by using

aε(x) :=
∫

Y
a
(
ε([1

ε
x] + y), 1

ε
x
)
dy,4



whih is well de�ned due to the averaging in the �rst variable.Using this onept, we show that the solutions uε of the osillatory wave equation
ρε(x)üε(t, x) =

(
aε(x)u

′(t, x)
)′ − ∂uFε(x, u), u(t, ·) ∈ H1

0((0, l); R
m).have weak limits that solve the e�etive wave equation

ρ∗(x)üε(t, x) =
(
a∗(x)u′(t, x)

)′ − ∂uF∗(x, u), u(t, ·) ∈ H1
0((0, l); R

m),where the subsript ∗ denotes the harmoni mean a∗(x) =
( ∫

Y
a(x, y)−1 dy

)−1 while thesupersript ∗ is the arithmeti mean, e.g., F ∗(x, u) =
∫

Y
F (x, y, u) dy. Note that thee�etive tensors and nonlinearity may have arbitrary jumps for many x ∈ (0, l). Thisleads to re�etion e�ets in the wave equation homogenized wave equation and it is notat all lear that these e�ets are present in the original osillatory system. The presenttheory shows that the homogenization works in this ase if we use weak onvergene inthe energy topology.Note also that the assoiated potential energy Φε onverges to the orret limit energy

Φ0 in the weak H1 topology. The same holds true for the kineti energies Kε(v) =
1
2

∫ l

0
ρεv·vdy, when we again use the weak H1 norm or the strong L2 norm. However, usingweak L2 onvergene, whih would be suggested from energeti onsiderations, would givea Γ-limit de�ned via the harmoni mean ρ∗, see Proposition 3.1(b).This shows that the idea of using the Γ-limits annot be applied naïvely. On the one hand,the joint-reovery ondition (1.5) justi�es that in the Lagrangian setting the topologies forthe energy reovery and for the momentum reovery have to be the same. On the otherhand the Hamiltonian approah (see Setion 3.3 ) de�nes the kineti energy in terms ofthe momentum p giving K̂ε(p) = 1

2

∫ l

0
ρ−1

ε p·pdx. In this setting the sympleti strutureenfores that the weak L2 onvergene has to be used for the alulation of the Γ-limit.The orret e�etive density matrix is obtained as the inverse of the harmoni mean ofthe inverse, whih is of ourse the arithmeti mean.In Setion 4 we provide another example arising from the disrete system. For suhatomi systems there is some literature onerning the passage to the ontinuum limit,but only in the exatly periodi ase: For the general linear setting the derivation ofthe elastodynamial wave equation was done in [Mie06℄, using methods from Fouriertransforms and series, whih may be generalized to the slowly varying ase, but not toases with jumps in the oe�ients, whih our for instane at the phase boundaries inrystals. For some work in the nonlinear setting we refer to [SW00a, DHM06, GM06,GHM06a, GHM06b℄ and the referenes therein.The methods developed here will be useful in muh more general ontexts. For simpliitywe have restrited ourselves to the following model of an atomi hain for (uγ(t))γ∈Z ∈
ℓ2(Z; Rm):

mε(εγ)üγ = aε(εγ)(uγ+1−uγ) + aε(εγ+ε)(uγ−1−uγ) − ε2Duψε(x, uγ), γ ∈ Z, (1.6)5



Our main result states that, if we embed the disrete solutions into H1(R; Rm) via ûε =

Eε((uγ)γ) suh that ûε is pieewise linear with ûε(εγ) = uγ, then any aumulation point
u0 of families of solutions solves the marosopi e�etive wave equation

m∗(x) ∂2

∂τ2u0(τ) = ∂
∂τ

(
a∗(x)

∂
∂τ
u
)
− Duψ

∗(x, u), u(τ, ·) ∈ H1(R; Rm).2 Abstrat onvergene resultsHere we provide a general, abstrat framework that allow us to pass to multisale limitsin several appliations. The idea is to use the fat that Hamiltonian systems are drivenby a funtion, namely Hamiltonian Hε, and a sympleti struture Ωε. We study thequestion in what sense Hε and Ωε have to onverge to their limits H0 and Ω0. Here, weare interested in rather weak onvergene notions like Γ-onvergene.2.1 Quadrati formsThe basi objets for the linear theory are quadrati forms Q : X → R∞. We alwaysassume that these forms are homogeneous of degree 2 and uniformly onvex. This impliesthe oerivity
∃ c > 0 ∀u ∈ X : Q(u) ≥ c‖u‖2.We allow for the value +∞ suh that the domain domQ = { u ∈ X |Q(u) <∞} may bea proper subspae of X. Moreover, we do not impose density, i.e.,

XQ = domQ
Xmay be a nontrivial losed subspae of X.Finally, we de�ne a self-adjoint operator LQ : D(LQ) ⊂ XQ ⊂ XQ in the usual way.Using the bilinear form B : domQ× domQ→ R, (u, v) 7→ 1

4
Q(u+v) − 1

4
Q(u−v) we let

D(LQ) = { u ∈ domQ | ∃C > 0 ∀ v ∈ domQ : |B(u, v)| ≤ C‖v‖ }and de�ne the linear operator LQ via
LQu = w if B(u, v) = 〈w, v〉 for all v ∈ domQ.The lassial theory of quadrati forms and of selfadjoint operators says that LQ is self-adjoint if and only if the subspae domQ equipped with the energy norm ‖ · ‖Q : v 7→

Q(v)1/2 is omplete. Obviously, the latter ondition is equivalent to the property that
Q : X → R∞ is weakly lower semiontinuous. Under these onditions Q takes the form

Q : X → R; u 7→
{

〈LQu, u〉 for u ∈ domQ,

∞ otherwise. (2.1)6



Now, domQ = D(L
1/2
Q ) and LQ ∈ L(D(L

1/2
Q ); D(L

−1/2
Q )) and we denote by

S(X) = {L : D(L) ⊂ XL → XL |XL ⊂ X losed, L selfadjoint }the set of all suh operators. The assoiated quadrati form for L ∈ S(x) is then denotedby QL and de�ned as in (2.1).2.2 Γ-onvergene and reovery operatorsWe onsider a Banah spae X and denote by → and⇀ the strong and weak onvergenerespetively. The notion of Γ-onvergene is adjusted to the onvergene of funtionals
Φε : X → R∞ related to the diret method of the alulus of variations, see [Dal93, Bra02℄.We say that Φε Γ-onverges to Φ0 for ε→ 0 with respet to the weak topology on X, andshortly write Φ0 = Γ-limε→0 Φε or Φε

Γ→ Φ0, if the following two onditions hold:(G1) Liminf estimate:
uε ⇀ u in X =⇒ Φ0(u) ≤ lim infε→0 Φε(uε).(G2) Reovery sequene:
∀ û ∈ X ∃ (ûε)ε>0 : ûε ⇀ û in X and Φε(ûε) → Φ0(û).

(2.2)We �rst deal with families of quadrati forms Φε = QAε
as de�ned in (2.1), namely

Φε(u) =

{
1
2
〈Aεu, u〉 for u ∈ Vε,

∞ for u ∈ X\Vε.
(2.3)Here, V is a Hilbert spae with dual V ∗, Vε are losed subspaes, and Aε ∈ L(Vε, V

∗
ε ) with

A∗ε = Aε satisfy the uniform oerivity assumption
∃ c0 > 0 ∀ε ∈ [0, 1] ∀ v ∈ V : Φε(v) ≥

c0
2
‖v‖2

V . (2.4)We also introdue the V -orthogonal projetors Pε ∈ L(V, V ) with PεV = Vε and theiradjoints P ∗ε ∈ L(V ∗, V ∗) with P ∗ε V ∗ = V ∗ε .For quadrati forms we reformulate Γ-onvergene using families of reovery operators.De�nition 2.1 Assume that V is a Hilbert spae with dual V ∗. Moreover, let (Vε)ε∈[0,1]be a family of losed subspaes of V and assume Kε ∈ L(Vε, V
∗
ε ). Then, (Gε)ε∈(0,1] with

Gε ∈ L(V0, V ) is alled a family of reovery operators for (Kε)ε∈[0,1] if(R1) GεV0 ⊂ Vε,(R2) ∀ v0 ∈ V0 : Gεv0 ⇀ v0 in V,(R3) vε ∈ Vε for ε ∈ [0, 1] and vε ⇀ v0 in V =⇒ G∗εKεvε ⇀ K0v0 in V ∗0 .7



The following onditions are either equivalent or su�ient for the reovery property. Theywill be used in the sequel sine they wherever they are easier to handle. However, we referto Example 2.3 to see that (R3)∗ is stritly stronger and not appropriate in situationswhere Vε is not strongly dense.Lemma 2.2 : Let V, Vε, Kε and Gε be as in De�nition 2.1 exept for (R2) and (R3).Then we have (R2)⇐⇒ (R2)∗ and (R3)∗ =⇒ (R3), where (R2)∗ and (R3)∗ are given by(R2)∗ ∀ ζ ∈ V ∗ : G∗εζ
∗
⇀ P ∗0 ζ in V ∗0 ,(R3)∗ ∀ v0 ∈ V0 : K∗εGεv0 → K∗0v0 in V ∗.If additionally Vε = V for all ε ∈ [0, 1], then (R3)∗ ⇐⇒ (R3),Proof: The equivalene between (R2) and (R2)∗ follows easily sine (R2) means that

〈Gεv0, ζ〉 onverges to 〈v0, ζ〉 for all v0 ∈ V0 and all ζ ∈ V ∗. Using 〈Gεv0, ζ〉 = 〈v0, G
∗
εζ〉the desired equivalene follows with 〈v0, ζ〉 = 〈v0, P

∗
0 ζ〉.Next we show that (R3)∗ implies (R3). For this take any family (vε)ε∈[0,1] with vε ∈ Vεand vε ⇀ v0 in V . Then, for arbitrary w0 ∈ V0 ondition (R3)∗ gives

〈w0, G
∗
εKεvε〉 = 〈K∗εGεw0, vε〉 → 〈K∗0w0, v0〉 = 〈w0, K0v0〉,sine the �rst term in the duality pairing onverges strongly whereas the seond termonverges weakly. Thus, (R3) is established.For the opposite impliation (R3)⇒ (R3)∗ we assume Vε = V and use a standard result:A family (ηε)ε∈[0,1] satis�es ηε → η0 in V ∗ if and only if for all (vε)ε∈[0,1] in V with vε ⇀ v0we have 〈ηε, vε〉 → 〈η0, v0〉, see Lemma A.1 for a proof.Example 2.3 We onsider V = V ∗ = V0 = L2((0, 1)) and for all ε ∈ (0, 1] and �xed

α ∈ (0, 1) we de�ne X(ε) = (0, 1) ∩ ∪∞k=0(εk, ε(k+α)) and Vε = { u ∈ V | sppt v ⊂ X(ε) }.Finally, we let Φε(u) =
∫ 1

0
u(x)2 dx for u ∈ Vε and ∞ otherwise.The Γ-limit reads Φ0(u) = 1
α

∫ 1

0
u(x)2 dx and as reovery operators we may hoose Gεu =

1
α
χεu with χε = χX(ε), sine 1

α
χε onverges weak∗ to 1. Note that (R3)∗ annot hold forany family of reovery operators, sine AεGεv0 ∈ V ∗ε and no element in V ∗0 \{0} is a stronglimit of points σε ∈ V ∗ε .For a family (Aε)ε∈[0,1] of symmetri operators as above having a family of reovery op-erators (ε)ε∈(0,1] we may de�ne the symmetri operators Aε

0 : V0 → V ∗0 ; v0 7→ G∗εAεGεv0and the assoiated quadrati forms Φ0
ε : V → R∞. Then, for v0 ∈ V0 we have

Φε(Gεv0) =
1

2
〈AεGεv0, Gεv0〉 = Φ0

ε(v0) =
1

2
〈Aε

0v0, v0〉 →
1

2
〈A0v0, v0〉. (2.5)This leads to the �rst result onerning the su�ieny of reovery operators for the proofof Γ-onvergene. 8



Proposition 2.4 For ε ∈ [0, 1] let Vε, Aε and Φε be given as above and satisfying (2.4).Moreover let (Gε)ε>0 be a family of reovery operators as in De�nition 2.1. If additionally
vε ⇀ v and v 6∈ V0 =⇒ Φε(vε) → ∞, (2.6)then we have Φ0 = Γ-limε→0 Φε.Proof: Beause of Φ0(v) = ∞ for v 6∈ V0, ondition (2.6) shows that (G1) and (G2) in(2.2) hold for all v 6∈ V0.It remains to onsider v0 ∈ V0. Using vε = Gεv0 we have a reovery sequene, as

Φε(Gεv0) → Φ0(v0), see (2.5). Thus, (G2) is established. For (G1) onsider an arbi-trary family with vε → v0 and use the identity
Φε(vε) = Φε(Gεv0−vε) + 〈G∗εAεvε, v0〉 − Φε(Gεv0).We have just seen that the last term onverges to Φ0(v0). The seond last term onvergesbeause of (R3), i.e., G∗εAεvε → A0v0, and the limit is 〈A0v0, v0〉 = 2Φ0(v0). Sine the�rst term after the equality sign is nonnegative we an take the liminf and obtain (G1).We also want to show that under the assumption that Φε

Γ→ Φ0 we always have at leastone suh reovery operator. Our onstrution provides a anonial version but we hastento emphasize that this is not useful for pratial purposes, sine usually the proof of
Γ-onvergene has to be done �rst and therefore reovery sequenes are needed to startwith. Nevertheless the following result lears the strutures and provides further insight.The onstrution of the reovery operators Fε : V0 → Vε involves the funtionals

Jε,v0 : V → R∞; v 7→ Φε(v) − 〈A0v0, v〉.Clearly, Jε,v0 is oerive, lower semi-ontinuous and uniformly onvex. Hene, Jε,v0 has aunique minimizer ṽε(v0) in Vε, and we set
Fε :

{
V0 → Vε,

v0 7→ ṽε(v0) = argminJε,v0 .
(2.7)Using 0 = DJε,v0(ṽε) = Aεvε − P ∗εA0v0 we easily �nd Fε = A−1

ε P ∗εA0 ∈ L(V0, Vε) and
‖Fε‖Vε←V0 ≤ ‖A−1

ε ‖Vε←V ∗

ε
‖P ∗ε ‖V ∗

ε ←V ∗‖A0‖V ∗←V0 ≤
1

c0
‖A0‖V ∗←V0. (2.8)Proposition 2.5 Let Φε, Vε, Pε and Aε be de�ned as above suh that (2.4) holds. If

Φ0 = Γ-limε→0 Φε, then (Fε)ε>0 de�nes a family of reovery operators.Proof: To show vε := Fεv0 ⇀ v0 we use that vε minimizes Jε,v0. By (2.8) we know that
‖vε‖V is bounded, hene for a subsequene we have vεk

⇀ ṽ. By v̂ε we denote a reoverysequene for v0 as postulated by (G2), i.e., v̂ε ⇀ v0 and Φε(v̂ε) → Φ0(v0) <∞. Thus,
Φ0(ṽ) ≤ lim infk→∞Φεk

(vεk
) = limk→∞〈A0v0, vεk

〉 + lim infk→∞ Jε,v0(vεk
)

≤ 〈A0v0, ṽ〉 + lim infk→∞ Jε,v0(v̂εk
) = 〈A0v0, ṽ〉 + Φ0(v0) − 〈A0v0, v0〉.9



Rearranging this inequality gives
0 ≥ Φ0(ṽ) + Φ0(v0) − 〈A0v0, ṽ〉 = 1

2
〈A0(v0−ṽ), v0−ṽ〉 ≥ c0‖v0−ṽ‖2

V .Hene, ṽ = v0 and thus the only aumulation point of the family Fεv0 is v0 and (R2) isestablished.The onvergene (R3) follows easily sine a small omputation shows F ∗εAε = A0P0.Beause of A0P0 lies in L(V ;V ∗0 ) and is independent of ε, the desired weak onvergenefollows from vε ⇀ v0 due to the weak ontinuity of bounded linear operators.For Vε = V we have the simpli�ation Fε = A−1
ε A0 and we see that Γ-onvergeneredues to the weak onvergene of the resolvent with respet to the energy norm. Thegeneralization presented here allows us to avoid assumptions that involve a joint upperbound like 〈Aεv, v〉 ≤ Cupp‖v‖2

V and, thus, are more �exible in appliations.Remark 2.6 Our onstrution of reovery operators is not restrited to the linear setting.For stritly onvex funtionals Φε for ε > 0 and for di�erentiable Φ0 : V0 → R thefuntional Jε,v0 takes the form Jε,v0(v) = Φε(v) − 〈DΦ0(v0), v〉. It is interesting to notethat suh reovery sequenes do not reover the energy level but rather the derivative,namely the minimizer vε of Jε,v0 satis�es DΦε(vε) = P ∗ε DΦ0(v0). This is quite lose towhat we need for our nonlinear theory, f. (2.19).2.3 Linear mehanial systemsSine the kineti and the potential energies in mehanial systems assoiate with di�erenttopologies we use a Gelfand triple V ⊂ X ∼= X∗ ⊂ V ∗ of Hilbert spaes. We denote by
〈·, ·〉 the salar produt in X as well as the duality produt on V ∗ × V and distinguishthe norms by a subsript. For eah ε ∈ [0, 1] we onsider funtions Kε and Φε denotingthe kineti and the potential energies, respetively. In this setion we assume that bothfuntionals are quadrati:

Kε(u) = 1
2
〈Mεu, u〉 and Φε(u) =

{
1
2
〈Aεu, u〉 for u ∈ Vε,

∞ otherwise,where Vε ⊂ V is a losed subspae, M ε ∈ L(X,X∗) with M ∗

ε = M ε, and Aε ∈ L(Vε, V
∗
ε )with A∗ε = Aε. We will use the following oerivity assumption:

∃ c0 > 0 ∀u ∈ V : Φε(u) ≥ c0
2
‖u‖2

V ,

∃ c1 > 0 ∀ v ∈ X : 1
c1
‖v‖2

V ≥ 〈M εv, v〉 ≥ c1‖v‖2
X .

(2.9)We set Xε = Vε
X and de�ne Qε as the X-orthogonal projetor from X into Xε. Letting

Mε = Q∗εMεQε : Xε → X∗ε
∼= Xε we now onsider solutions of the assoiated Hamiltoniansystem

Mεü+ Aεu = 0, u(t) ∈ Vε, (2.10)10



where we always assume that the energy
Eε(u, u) = 1

2
〈Mεu̇, u̇〉 + Φε(u) (2.11)is �nite and onstant along solutions. Aording to (2.9) we onsider weak solutions

uε : R → V of (2.10) with uε ∈ C0(R, Vε) ∩ C1(R, Xε) ∩ C2(R, V ∗ε ) satisfying
∫ T

S
〈Mεuε(t), ϕ̈ε(t)〉 + 〈Aεuε(t), ϕε(t)〉dt
+
[
〈Mεu̇ε(t), ϕε(t)〉 − 〈Mεuε(t), ϕ̇ε(t)〉

]T
S

= 0.

} for all ϕε ∈ C2(R, Vε)and S < T.
(2.12)This notion looks very weak, but using the selfadjointness of Mε and Aε it is easy to seethat eah solution of (2.12) satis�es uε ∈ BC0(R, V ) ∩BC1(R, X) ∩BC2(R, V ∗) and thatit satis�es energy onservation Eε(uε(t), u̇ε(t)) = const.We now onsider a family (uε)ε>0 of solutions suh that the energy eε = Eε(uε(t), u̇ε(t))is bounded. We are interested in passing to the limit ε → 0 under weak onditions. Theoerivity assumptions (2.9) show that uε is bounded in BC0(R, V )∩BC1(R, X). Sine Vis ontinuously embedded into X, we have boundedness of uε in BC1(R, X) and we mayapply the Arzela�Asoli theorem in C0([−T, T ], Xweak) to obtain a subsequene (uεk

)k∈Nwith εk ց 0 and a limit funtion u0 ∈ BC0(R, X), suh that
∀ t ∈ R : uεk

(t) ⇀ u0(t) in V, and u̇εk

∗
⇀ u̇0 in L∞(R, X). (2.13)Note that the boundedness of uε in BC0(R, V ) implies that the pointwise weak onvergenein X an be improved to weak onvergene in V . The weak* onvergene of u̇εk

followsby the Banah�Alaoglu theorem as L∞(R, X) is the dual of the separable spae L1(R, X).The following result provides a �rst su�ient ondition suh that u0 obtained in (2.13)solves (2.10) for ε = 0.Theorem 2.7 For ε ∈ [0, 1] let Vε,Mε, Aε be given as above. Assume Φ0 = Γ-limε→0 Φεand that (Fε)ε>0 as de�ned in (2.7) is a family of reovery operators satisfying
vε ∈ Vε for ε ∈ [0, 1] and vε ⇀ v0 =⇒ F ∗εMεvε ⇀M0v0 in V ∗0 . (2.14)Now let (uε)ε>0 be a family of solutions of (2.12) with bounded energy and u0 any limitas postulated in (2.13).(a) Then, u0 lies in BC0(R, V0)∩BC1(R, X0)∩BC2(R, V ∗0 ) and satis�es (2.12) for ε = 0.Moreover, F ∗εk

Mεk
u̇εk

(t) ⇀M0u̇0(t) for all t ∈ R.(b) If in addition to (a) we have that (F ∗εMεuε(t), F
∗
εMεu̇ε(t)) ⇀ (M0u0(t),M0u̇0(t)) in

V ∗0 × V ∗0 holds for one t ∈ R, then it holds for all other t ∈ R as well.() Under the additional upper bound
∃Cupp > 0 ∀ ε ∈ [0, 1] : ‖M−1

ε ‖V ∗
ε →V ∗

ε
+ ‖Aε‖Vε→V ∗

ε
≤ Cupp (2.15)the additional onvergene (uε(t), u̇ε(t)) ⇀ (u0(t), u̇0(t)) in V ×X for some t ∈ R impliesthe same onvergene for all other t ∈ R as well.11



Example 2.8 Here we show that the assertion in Part (b) annot be improved withoutfurther ondition as in Part (). Let X = Vε = R2 withMε = I and Aε = diag(1, 1/ε), for
ε > 0. Then, for ε = 0 we obtain V0 = span

{(
1
0

)} and Φ0

((
q1

q2

))
= 1

2
q2
1 if q2 = 0 and +∞else. For ε > 0 we have the solutions uε(t) =

(
a sin(t+αε)
εb sin(t/ε)

), whih have the bounded energy
eε = Eε(uε, u̇ε) = 1

2
(a2 + b2). We have uε(t) → u0(t) =

(
a sin(t+α0)

0

) uniformly in t ∈ R.Moreover, u̇ε(t) =
(

a cos(t+αε)
b cos(t/ε)

) satis�es u̇ε
∗
⇀ u̇0. Note that we have u̇ε(0) →

(
a cos α0

b

) butfor t 6= 0 the seond omponent of u̇ε(t) does not onverge. As Fε : V0 → Vε takes theform Fε

(
α
0

)
=
(

α
0

) we �nd F ∗εMε

(
α
β

)
=
(

α
0

)
∈ V ∗0 . Thus, we are able to on�rm statement(b), as the onvergene of the �rst omponent of uε(t) and u̇ε(t) for some t implies theonvergene for all over t as well.Proof: First, note that the limit funtion u0 from (2.13) must lie in V0, as Φ0(u0(t)) ≤

lim infε→0 Φε(uε(t)) by (G1). However, Φε(uε(t)) ≤ Eε(uε, u̇ε) ≤ E∗.Part (a) follows by inserting ϕε(t) = Fεϕ0(t) into (2.12) for ε > 0. Here, ϕ0 ∈ C2([0, T ], V0)is arbitrary. Pushing Fε to the other side in the duality pairing we an use (R3) to obtain
〈F ∗εAεuε(t), ϕ0(t)〉 → 〈A0u0(t), ϕ0(t)〉 for all t ∈ R. Similarly we have 〈Mεuε(t), Fεϕ̈0(t)〉 =

〈F ∗εMεuε(t), ϕ̈0(t)〉 → 〈M0u0(t), ϕ̈0(t)〉 for all t ∈ R. Thus, we obtain (2.12) for S < T ,and ϕ0 ∈ C2
c((S, T ), V0). From this and from M0,M

−1
0 ∈ L(X0, X0) and A0 ∈ L(V0, V

∗
0 )it follows that u0 satis�es u0 ∈ BC0(R, V0) ∩ BC1(R, X) ∩ BC2(R, V ∗0 ), i.e., (2.10) holdspointwise for u0 as an equation in V ∗0 . Then, it follows again that (2.12) holds inludingboundary terms.To show the pointwise weak onvergene of F ∗εMεu̇ε(t) towards M0u̇0(t) in V ∗0 we hoosea funtion ρ ∈ C2(R) with ρ(0) = 1 and ρ(−1) = 0 = ρ̇(0) = ρ̇(−1). For any q0 ∈ V0 welet ϕε(t) = ρ(t−T )Fεq0 and S = T − 1 in (2.12) to obtain

〈F ∗εMεu̇ε(T ), q0〉 = 〈Mεu̇ε(T ), ϕε(T )〉
=
∫ T

T−1
〈F ∗εMεuε(t), q0〉ρ̈(t−T ) + 〈A0P0uε(t), q0〉ρ(t−T )dt.The uniform weak onvergene of uε allows us to pass to the limit in the right-hand side.Thus, the limit µ(t) = limε→0〈F ∗εMεu̇ε(t), q0〉 exists for all t ∈ R and we have

µ(t) =
∫ T

T−1
〈M0u0(t), q0〉ρ̈(t−T ) + 〈A0u0(t), q0〉ρ(t−T )dt.However, as u0 solves (2.12) for ε = 0 we may test with ϕ0(t) = ρ(t−T )q0 to �nd that

µ(t) = 〈M0u̇0(t), q0〉. Thus, F ∗εMεu̇ε(t) ⇀M0u̇0(t) in V ∗0 is established.To prove Part (b) we simply use the fat that u0 is uniquely spei�ed if (u0(t∗), u̇0(t∗)) ∈
V0 ×X0 is presribed. Thus, if uε(t∗) ⇀ ũ0 in V and F ∗ε Mεu̇ε(t∗) ⇀M0ṽ0 holds, then anylimit u0 of a subsequene in the sense of (2.13) satis�es, by Part (a), the initial ondition
u0(t∗) = ũ0 and u̇0(t∗) = ṽ0. Thus, the whole sequene onverges in the sense of (2.13)and Part (a) yields FεMεu̇ε(t) ⇀M0u̇0(t) for all t ∈ R.In Part () we have a uniform upper bound on all operators Aε and M−1

ε . Hene, from
üε = −M−1

ε Aεuε we obtain a uniform bound for uε in BC2(R, V ∗). Thus, the Arzela�Asoli theorem is also appliable to u̇ε ∈ CLip(R, V ∗). Together with the pointwise bound12



of (u̇ε(t))ε∈[0,1] in X we obtain pointwise weak onvergene in X. Arguing as in Part (b)by using uniqueness of the limit solution, we obtain the desired result.Example 2.9 We onsider the �nite dimensional example with X = V = Vε = R2 with
Mεü+ Aεu = 0 with Mε =

(
1 0
0 ε−α

) and ( 2 −1/ε
−1/ε 1/ε2

)
, (2.16)where α > 0 is a �xed parameter. We have V0 = span{

(
1
0

)
}, Φε

Γ→ Φ0, and Kε
Γ→ K0 with

Φ0 = K0 : R2 → R∞;
(

u(1)

u(2)

)
7→
{

1
2
(u(1))2 for u(2)=0,

∞ otherwise.Thus, the limit problem reads M0ü+A0u = 0 with M0 = A0 = I on V0. The solutions ofthe limit problem are u(t) = a cos(t+α)
(
1
0

) for a, α ∈ R.The exat solutions of (2.16) for ε > 0 an be written in the form
uε(t) = a1 cos(ω1(ε)t+ β1)ϕ1(ε) + a2 cos(ω2(ε)t+ β2)ϕ2(ε),where the eigenfuntions ϕj(ε) ∈ R2 and the eigenfrequenies ωj(ε) > 0 satisfy

(Aε − ω2
j (ε)Mε)ϕj(ε) = 0, 〈Mεϕj(ε), ϕk(ε)〉 = δjk.For α ∈ (0, 2) we �nd ω1(ε) = 1+O(ε2−α), ϕ1(ε) =

(
1
0

)
+O(ε2−α), ω2(ε) = 1/ε2−α +O(1),and |ϕ2(ε)| ≤ 1. Hene, any onvergent subsequene of solutions with bounded energies

Eε(uε, u̇ε) = |a|2

2
ω1(ε)

2 + |a|2

2
ω2(ε)

2 onverges to a solution of the limit problem.For α = 2 we �nd ϕj(ε) →
(

ρj

0

) and ω2
j (ε) = (3 ±

√
5)/2. For α > 2 we �nd ϕ1(ε) =(

1
0

)
+O(εα−2), ω1(ε) =

√
2 +O(εα−2), and ω2(ε) = εα/2−1/

√
2 + h.o.t. Hene, for α ≥ 2 thelimits of subsequenes of energy-bounded solutions uε have the form

u0(t) = (a1 cos(ω∗1t+ β1) + a2 cos(ω∗2t+ β2))
(
1
0

)
,where ω∗1,2 = ((3 ±

√
5)/2)1/2 for α = 2 and (ω∗1, ω

∗
2) = (

√
2, 0) for α > 2. These funtionsertainly do not satisfy the limit problem.We now hek in what regime for α our su�ient onditions hold. Note that the reoveryoperator Fε : V0 → Vε = R2 onstruted in (2.7) for (Aε)ε∈[0,1] depends only on Aε andis, thus, independent of α. We have Fε = A−1

ε P 0
εA0 :

(
δ
0

)
7→ δ

(
1
ε

) and F ∗ε =
(
1 ε
0 0

). Theondition (2.14) reads MεFε

(
δ
0

)
= δ
(

1
ε1−α

)
→
(

δ
0

) and holds only for α ∈ (0, 1). In the nextsetion we will weaken the ondition (f. (2.19)) to
uε ⇀ u and 〈Aεuε, uε〉 ≤ C =⇒ F ∗ε Mεuε →M0u0.This ondition holds for all α ∈ (0, 2), sine F ∗εMε =

(
1 ε1−α

0 0

) and 〈Aεuε, uε〉 ≤ C implies
|〈uε,

(
0
1

)
〉| ≤ C̃ε. 13



2.4 Nonlinear mehanial systemsWe now generalize the above theory to the nonlinear setting. The new onditions areeven more general for the linear ase. We treat abstrat systems of the form
Mεüε + DΦε(uε) = 0, uε ∈ Vε, (2.17)where now Φε : V → R∞ is suh that Φε(u) = +∞ for u 6∈ Vε and Φε|Vε

∈ C1(Vε; R).Moreover, we assume the oerivity
Φε(u) → +∞ for ‖u‖V → ∞ and
∃ c0 > 0 ∀ ε ∈ [0, 1] ∀u ∈ X : 〈Mεu, u〉 ≥ c0‖u‖2

X.
(2.18)The main observation about the theory in Setion 2.1 is that the spei� hoie of Fε forthe reovery operator is not neessary. All what we use for proving Theorem 2.7 an beput into the following ondition:

∀ ε ∈ (0, 1] ∃Gε ∈ L(V0;Vε) :if uε ⇀ u0 in V and supε∈[0,1] Φε(uε) <∞, then(i) G∗εDΦε(uε) ⇀ DΦ0(u0) in V ∗0 ,(ii) G∗εMεuε ⇀M0u0 in V ∗0 . (2.19)Even for linear systems this ondition is weaker than the lassial reovery ondition,sine we only need to onsider sequenes that have bounded energies (f. also Example2.9). Note that we do not impose that Φ0 is the Γ-limit of the family (Φε)ε>0 for ε → 0.Condition (2.19)(i) asks that the derivatives are �reovered� orretly, f. also Remark2.6. However, having a weakly onvergent sequene uε inside the nonlinear term DΦε(·)roughly means that we are restrited to semilinear ases.A funtion uε ∈ L∞((t1, t2);Vε)∩W1,∞((t1, t2);X) is alled a weak solution of (2.17) if forall ϕ ∈ C2
c((t1, tt);V ) we have

∫ t2
t1
〈Mεuε(t), ϕ̈(t)〉 + 〈DΦε(uε(t)), ϕ(t)〉dt = 0. (2.20)We additionally impose in this abstrat setting that for all ε ∈ [0, 1]all weak solutions uε of (2.17) satisfy

uε ∈ C0((t1, t2);Vε) ∩ C1((t1, t2);X), (2.21a)
Eε(uε(t), u̇ε(t)) = 1

2
〈Mεu̇ε(t), u̇ε(t)〉 + Φε(uε(t)) = const. (2.21b)For a family (uε)ε>0 of weak solutions of (2.17) on a ommon interval (t1, t2) that havebounded energies supε>0 eε(t) < ∞ the oerivity assumption (2.18) provides a prioribounds for uε in C0((t1, t2);Vε) ∩ C1((t1, t2);X). Thus, as in the previous setion, weare able to extrat a subsequene (uεk

)k∈N and a limit funtion u ∈ L∞((t1, t2);Vε) ∩
W1,∞((t1, t2);X) suh that(i) ∀ t ∈ (t1, t2) : uεk

(t) ⇀ u(t) in V, (ii) u̇εk

∗
⇀ u̇ in L∞((t1, t2);X). (2.22)14



The following result provides su�ient onditions that guarantee that any suh limitprovides a weak solution of (2.17) for ε = 0.Theorem 2.10 Let X, V, Vε,Mε and Φε be suh that (2.18), (2.19), and (2.21) hold.Then, any limit u as obtained in (2.22) satis�es (2.17) for ε = 0. Moreover, for all
t ∈ (t1, t2) we additionally have G∗εk

Mεk
u̇εk

(t) ⇀M0u̇0(t) in V ∗0 for k → ∞.If furthermore the limit problem has the property that for eah (w0, v0) ∈ V0×X0 and eah
t∗ ∈ (t1, t2) there exists at most one weak solution u0 with (u0(t∗), u̇0(t∗)) = (w0, v0), thenthe onvergene (G∗εMεuε(t), G

∗
εMεu̇ε(t)) ⇀ (u0(t), u̇0(t)) in V ∗0 ×V ∗0 for one t implies thesame onvergene for all other t ∈ (t1, t2).Proof: The proof is essentially the same as for the linear ase. Start from the weaksolutions (uε)ε∈(0,1] we test with ϕ = Gεϕ0(t). Our a priori bounds allow us to apply thereovery onditions (2.19). Thus, we an pass to the limit and obtain that u0 is a weaksolution. Applying the regularity assumption we have u0 ∈ C0((t1, t2);Vε)∩C1((t1, t2);X).Thus, for all ε ∈ [0, 1] we may integrate by parts in (2.20) and obtain

∀ϕ0 ∈ C2
c((t1, t2);V0) :

∫ t2
t1
〈G∗εDΦε(uε(t)), ϕ0(t)〉 − 〈G∗εMεu̇ε(t), ϕ̇0(t)〉dt = 0.Now onsider S and T with t1 < S < T < t2 and let χ = χ[S,T ] be the harateristifuntion. Choose a sequene (χk)k∈N with χk ∈ C2

c((t1, t2)) and χ′k ∗
⇀ δS − δT in the senseof Radon measures (the dual of C0([t1, t2])). Replaing ϕ0 in the above identity by χkϕ0we may pass to the limit and obtain, for all ϕ0 ∈ C2

c((t1, t2);V0),
∫ T

S
〈G∗εDΦε(uε(t)), ϕ0(t)〉 − 〈G∗εMεu̇ε(t), ϕ̇0(t)〉dt+ 〈G∗εMεu̇ε(t), ϕ0(t)〉

∣∣T
S

= 0.Now we may undo the integration by parts again and see that weak solutions even satisfythe weak form on subintervals inluding the boundary terms as given in (2.11).Based on (2.11), the arguments about the onvergene of G∗εk
Mεk

u̇εk
(t) and the onver-gene of (GεMεuε(t), GεMεu̇ε(t)) works as in the proof of Theorem 2.7.2.5 Hamiltonian systemsHere, we onsider general Hamiltonian system. We will mainly restrit to the linear aseand address the nonlinear ase only shortly at the end of this subsetion. We onsidera Hilbert spae Z, losed subspaes Zε and Hamiltonians Hε : Z → R∞ with Hε|Vε

∈
C1(Vε; R) and Hε = ∞ on V \Vε. The linear ase is given by symmetri linear operators
Lε ∈ L(Zε, Z

∗
ε ) de�ning the Hamiltonians

Hε(z) =

{
1
2
〈Lεz, z〉 for z ∈ Zε,

∞ otherwise. (2.23)15



As above, we assume uniform oerivity:
∃ c > 0 ∀ ε ∈ [0, 1] ∀ z ∈ Z : Hε(z) ≥ c‖z‖2

Z . (2.24)To de�ne the Hamiltonian �ow via a di�erential equation we have to speify sympletistrutures Ωε ∈ L(Zε, Z
∗
ε ), i.e., Ωε is skew symmetri (Ω∗ε = −Ωε) and nondegenerate:If 〈Ω∗εzε, vε〉 = 0 for all zε ∈ Zε, then vε = 0. (2.25)The Hamiltonian system now takes the strong form

Ωεżε = DHε(zε), zε ∈ Zε. (2.26)Again we de�ne the notion of weak solutions zε ∈ L∞((t1, t2);Zε) by test funtions:
∀ϕε ∈ C1

c((t1, t2);Zε) :
∫ t2

t1
〈Ωεzε(t), ϕ̇(t)〉 + 〈DHε(zε(t)), ϕε(t)〉dt = 0. (2.27)As in the ase of mehanial systems we assume that every weak solution is slightlysmoother and onserves energy:All weak solutions zε of (2.26) satisfy

zε ∈ C0((t1, t2);Zε) and Hε(zε(t)) = const.
(2.28)The above linear mehanial systems an be put into this Hamiltonian form by introduing

p = N−1
ε u̇ε and setting Z = V × X, Hε(u, p) = 1

2
〈Aεu, u〉V + 1

2
〈N∗εMεNεp, p〉 and Ωε =(

0 −MεNε

N∗
ε Mε 0

). In the ase Nε = Mε we obtain the anonial setting while Nε = I givesthe Lagrangian setting. In general, the weak-onvergene properties of these two systemsmight be di�erent.The ruial assumption to obtain the desired onvergene result is again the existene ofa family of joint reovery operators, i.e.,
∀ ε ∈ (0, 1] ∃Gε ∈ L(Z0;Zε) :if zε ⇀ z0 in Z and supε∈[0,1]Hε(zε) <∞, then(i) G∗εΩεzε ⇀ Ω0z0 in Z∗0 ,(ii) G∗εDHε(zε) ⇀ DH0(z0) in Z∗0 . (2.29)Thus, if we have a sequene (zε)ε∈(0,1] of solutions of (2.26) with bounded energy thissequene is bounded in L∞((t1, t2);Z). Thus, we may extrat a subsequene that onvergesweak* to a limit funtion, namely

zεk

∗
⇀ z in L∞((t1, t2);Z). (2.30)Note that this onvergene is equivalent to the weak onvergene

∫ τ2
τ1
zεk

(s)ds ⇀
∫ τ2

τ1
z(s)ds in Z for all τ1, τ2 with t1 ≤ τ1 < τ2 ≤ t2. (2.31)However, weak∗ onvergene is not ompatible with nonlinearities ourring in DHε. Toexploit (2.29)(ii) we would need weak onvergene pointwise in t. How this an be obtainedwe disuss at the end of this setion. At present we restrit to the linear ase, where weak∗onvergene is su�ient. 16



Theorem 2.11 Let Z,Zε, Lε, and Ωε be as above and assume that Hε is given through(2.23) suh that (2.28) holds. Moreover, let the joint reovery ondition (2.29) be satis�ed.Then, every limit z0 obtained as in (2.30) from a sequene of the weak solutions zε of(2.26) is a solution of (2.26) for ε→ 0.Moreover, if G∗εΩεzε(t) ⇀ Ω0z0(t) for some t ∈ R, then this onvergene holds for all
t ∈ R without extrating a subsequene.Proof: First, by using the linearity DHε(zε) = Lεzε and the haraterization (2.31) forweak∗ onvergene, the reovery onditions (2.29) yield

G∗εΩεzε
∗
⇀ Ω0z and G∗εLεzε

∗
⇀ L0z in L∞(R;Z∗0).Seond, we use the weak form of (2.27) for the solutions zε and test it with ϕε(t) = Gεϕ0(t)for ϕ ∈ C1(R, Z0). Pushing Gε to the other side we an pass to the limit and �nd that z0is again a weak solution.As in the proof of Theorem 2.10 we may now restrit the weak form to intervals [S, T ] ⊂

(t1, t2) giving
0 = −〈G∗εΩεz, ϕ0〉

∣∣∣
T

S
+
∫ T

S
〈G∗εΩεzε(t), ϕ̇0(t)〉 + 〈G∗εLεzε(t), ϕ0(t)〉dt. (2.32)From this the results onerning the onvergene of G∗εΩεzε(t) follows as above. We usehere that the linear limit problem Ω0ż0 = L0z0 has at most one solution for a given value

w = Ω0z0(t∗), see the following lemma.In the following result we inlude the ase that Ω0 has a nontrivial kernel. Hene, z0(0)will not be uniquely determined through η0 = Ω0z0.Lemma 2.12 Let Ω0, L0 ∈ L(Z0, Z
∗
0) with Ω0 = −Ω∗0, L0 = L∗0, and 〈L0z, z〉 ≥ c‖z‖2

X.Then, Ω0ż0 = L0z0 has at most one solution for a given value η0 = Ω0z0(0).Proof: By linearity it su�es to show that η = 0 implies z ≡ 0. We use (2.32) for ε = 0with ϕ0(t) = ψ for t ∈ [0, t∗] and obtain 〈Ω0z(t∗)−Ω0z(0)−L0

∫ t∗
0
z(s)ds, ψ〉 = 0 for all ψ.Using Ω0z(0) = 0 and letting w(t) =

∫ t

0
z(s)ds we �nd w ∈ W1,∞

loc (R, Z0) and Ω0ẇ = L0w.From d
dt
H0(w) = 〈L0w, ẇ〉 = 〈Ω0ẇ, ẇ〉 = 0 we onlude H0(w(t)) = H0(w(0)) = H0(0) =

0 for all t. This implies w ≡ 0 and, hene, z = ẇ ≡ 0, whih is the desired result.Example 2.13 Consider the ase Z = Z = R4 with Ωε = ( 0
−I2

I2
0 ), where I2 ∈ R2×2. TheHamiltonians are given via Lε = diag(1, 1, 1/ε2, 1). We �nd Z0 = span{e1, e2, e4} ⊂ R4and L0 = idZ0. As reovery operators we may take the onstant family Gε : Z0 → R4,

z0 7→ z0 whih is the simple embedding. The above results are appliable and using theoordinates z0 = α1e1 + α2e2 + α3e4 we �nd the limit problem
(

0 0 0

0 0 1

0 −1 0

)
α̇ = α,17



that has the solution α(t) = (0, b cos(t+β), b sin(t+β))T.Note that the original problem has the solutions
zε(t) = (cε cos(γε+t/ε), bε cos(t+βε), εcε sin(γε+t/ε), bε sin(t+βε))

T,with energy Hε(zε(t)) ≡ 1
2
(c2ε+b

2
ε). Boundedness of energy implies boundedness of bεand cε. Hene, we may assume onvergene of (bε, cε, βε, γε) to (b, c, β, γ), by passingto a suitable subsequene. Then, we obtain uniform onvergene of the seond, third,and fourth omponent of zε. However, the �rst omponent onverges to 0 only weak*in L∞(R). Note that G∗εΩεzε(t) also onverges in Z∗0 , sine Ωε = ( 0

−I2

I2
0 ) moves the �rstomponent into the third one, and G∗ε = diag(1, 1, 0, 1) projets out the third omponent.We �nally address the question how nonlinear problems an be treated in the Hamiltoniansetting. To improve the weak∗ onvergene into a weak pointwise onvergene we needsome ontrol over the temporal behavior. One natural way of doing this is to impose abound on the inverses of Ωε. For this we assume that Z is ontinuously embedded into abigger spae Y suh that we have

∃CΩ > 0 ∀ ε ∈ [0, 1] : ‖Ω1
ε‖Y←Zε

≤ CΩ.For the energy we impose the existene of a ontinuous and nondereasing funtion Rupp :

R → [0,∞), suh that
∀ ε ∈ [0, 1] ∀ z ∈ Zε : ‖DHε(z)‖Z∗ ≤ Rupp(Hε(z)).Now an energeti bound Hε(zε(·)) ≤ E∗ provides the bound ‖DHε(zε(·))‖L∞(R;Z∗

ε ) ≤ R∗ =

Rupp(E∗) and moreover ‖żε‖L∞(R;Y ) ≤ CΩR∗. Thus, Arzela-Asoli an be applied in
C∗([t1, t2], Yweak) and the boundedness on Z then provides pointwise weak onvergene in
Z as well.2.6 Strong onvergeneIn general, we should not expet strong onvergene of uε to u0, sine this is usually in-ompatible with Γ-onvergene (exept in the ase of Moso onvergene, where ondition(G2) in (2.2) is strengthened by asking ûε → û). However, weak onvergene as well asonvergene of the energy implies a stronger onvergene involving the reovery operators.Lemma 2.14 Let (Kε)ε∈[0,1] be a family of operators in S(V ) with QKε

(v) ≥ c‖v‖2 for
c > 0 and all v ∈ V , and let (Gε)ε∈(0,1] be reovery operators, then we have the impliation

〈Kεuε, uε〉 → 〈K0u0, u0〉

uε ⇀ u0




 =⇒ ‖Gεu0 − uε‖V → 0.18



Proof: We use the uniform oerivity and �nd
c‖Gεu0 − uε‖2 ≤ 〈Kε(Gεu0 − uε), Gεu0 − uε〉

= 〈KεGεu0, Gεu0〉 − 2〈KεGεu0, uε〉 + 〈Kεuε, uε〉

→ 〈K0u0, u0〉 − 2〈K0u0, u0〉 + 〈K0u0, u0〉 = 0,where we used KεGεu0 → K0u0 together with Gεu0 ⇀ u0 and uε ⇀ u0. As c > 0 isindependent of ε, the proof is �nished.We now state a strong onvergene result for linear Hamiltonian systems. A orrespond-ing result is valid for linear mehanial systems. If in addition to the weak or weak∗onvergene of the solutions zε we also have the onvergene of the energies to the energyof the limiting solution, then the onvergene statement an be improved onsiderably.Theorem 2.15 Let Z,Zε, Lε,Ωε be as in the previous setion and assume that Hε = QLε
.Moreover, assume that a family (Gε)ε>0 of joint reovery operators as in (2.29) exists.Let zε : R → Z, ε ∈ [0, 1], be weak solutions of the Hamiltonian system (2.26) suh that

zε
∗
⇀ z in L∞(R, Z) and Hε(zε(t0)) → H0(z(t0)) for some t0 ∈ R (and hene all t ∈ R).Then, for a.a. t ∈ R we have

zε(t) ⇀ z(t) and ‖Gεz(t) − zε(t)‖Z → 0.Proof: We use Lemma 2.14 and the energy onservation Hε(zε(t0)) = Hε(zε(t)) for all
t ∈ R and ε ∈ [0, 1]. However, to apply Lemma 2.14 we need to show zε(t0) ⇀ z(t0). Forthis, we use zε

∗
⇀ z and Gεz

∗
⇀ z in L∞(R, Z). Moreover, we have

c‖Gεz(t) − zε(t)‖2 ≤ 〈Lε(Gεz(t) − zε(t)), Gεz(t) − zε(t)〉

= 〈LεGεz(t), Gεz(t) − 2zε(t)〉 + 2Hε(zε(t)).Using Hε(zε(t)) = Hε(zε(t0)) → H0(z(t0)) and LεGεz(t) → L0z(t) for all t ∈ R we �ndafter integration over [t1, t2] that
c
∫ t2

t1
‖Gεz(t) − zε(t)‖2 dt ≤

∫ t2
t1
〈LεGεz(t), Gεz(t) − 2zε(t)〉dt+ 2(t2 − t1)Hε(zε(t0))

→
∫ t2

t1
〈L0z(t), z(t) − 2z(t)〉dt+ 2(t2 − t1)H0(z(t0))

−
∫ t2

t1
2H0(z(t))dt + 2(t2 − t1)H0(z(t0)) = 0This implies that, hoosing a subsequene, we have Gεz(t) − zε(t) → 0 a.e. in R. Using

Gεz(t) ⇀ z(t) this implies zε(t) ⇀ z(t) a.e. in R. Sine the limit zε
∗
⇀ z is unique, theresult holds without hoosing a subsequene.
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3 Appliations to wave equations3.1 Homogenization and Γ-onvergeneWe onsider the situation of fast osillating oe�ients in funtionals. In priniple theresult seems to be well known, however, mostly the assumptions on the oe�ients aremore restritive. We onsider an open domain Ω ⊂ Rd with Lipshitz boundary and set
Y = (R/Z)d for the unit torus of dimension d. We assume
a ∈ L∞(Ω × Y ; Rm×msym ) and ∃α > 0 ∀ξ ∈ R

m : a(x, y)ξ · ξ ≥ α|ξ|2 a.e. in Ω × Y. (3.1)The oe�ient funtions aε are then de�ned via
aε(x) =

∫
w∈Cε(x)

a(w, 1
ε
x)dw where Cε(x) = ε([1

ε
x] + [0, 1)d). (3.2)Here, ∫ means the average, [ · ] denotes the omponentwise appliation of the Gauÿbraket, and 1

ε
x as seond argument of a is understood modulo 1 in eah omponent.Proposition 3.1 For a and aε satisfying (3.1) and (3.2) we de�ne
a∗(x) =

( ∫
Y
a(x, y)−1 dy

)−1 and a∗(x) =
∫

Y
a(x, y)dyas well as the following funtionals on L2(Ω; Rm):

Φε(u) =
∫
Ω
aε(x)u(x)·u(x)dx,

Φ∗(u) =
∫
Ω
a∗(x)u(x)·u(x)dx, Φ∗(u) =

∫
Ω
a∗(x)u(x)·u(x)dxThen the following holds true:(a) If uε → u (strongly) in L2(Ω), then Φε(uε) → Φ∗(u).(b) In the weak topology of L2(Ω) we have Φε

Γ→ Φ∗. A family of reovery operators isgiven by Gε : u 7→ (aε)
−1a∗u.() De�ne Ψε : H1

0((0, l); R
m) → R; v 7→ Φε(v

′) and Ψ∗(v) = Φ∗(v
′), then Ψε

Γ→ Ψ∗ in theweak topology of H1
0((0, l); R

m). A family of reovery operators is given by
Ĝε : H1

0((0, l); R
m) → H1

0((0, l); R
m);

(Ĝεu)(x) =
∫ x

0
(aε(y))

−1a(y)u′(y)dy − x
l

∫ l

0
(aε(y))

−1a(y)u′(y)dy.Proof: Note that the funtionals Φε, Φ∗, and Φ∗ are uniformly oerive and bounded,i.e., there exists C > 0 suh that for all ε > 0 and all u ∈ L2(Ω; Rm) we have 1
C
‖u‖2

2 ≤
Φε(u) ≤ ‖u‖2

2. This implies uniform ontinuity:
∀ ε > 0 ∀u, v ∈ L2(Ω; Rm) : |Φε(u) − Φε(v)| ≤ C

(
‖u‖2 + ‖v‖2

)
‖u− v‖2. (3.3)20



ad (a). Using (3.3) it is su�ient to show the statement for onstant sequenes uε = u.Moreover, it is su�ient to show the result for a dense subset like C∞c (Ω; Rm). Set Nε =

{n ∈ Zd | ε(n+[0, 1)d) ⊂ Ω } and yε
n = ε(n+(1

2
, . . . , 1

2
)) suh that ε(n+[0, 1)d) = Cε(y

ε
n).With this de�ne Ωε = ∪n∈Nε

Cε(y
ε
n), then Ωε ⊂ Ω and vol(Ω\Ωε) ≤ Cε, sine Ω is boundedand has a Lipshitz boundary. We have

∣∣Φε(u) −
∫
Ωε
aε(x)u(x) · u(x)dx

∣∣ ≤ vol(Ω \ Ωε

)
‖aε‖∞‖u‖2

∞ ≤ Cε.The same result holds, when aε is replaed by a∗. Hene, it su�es to estimate theintegrals over Ωε. For this de�ne the pieewise onstant approximation
a∗ε(x) =

∫
w∈Cε(x)

a∗(w)dx if Cε(x) ⊂ Ωε.The lassial result for the density of Lebesgue points of a∗ shows that a∗ε(x) → a∗(x)a.e. in Ω. Hene, we have Φ∗ε(u) → Φ∗(u), where Φ∗ε(u) =
∫
Ω
a∗εu · u dx. The remainingdi�erene is estimated as follows

∣∣ ∫
Ωε

[
aε(x)−a∗(x)

]
u(x) · u(x)dx

∣∣ ≤∑n∈Nε

∣∣∣
∫

Cε(yε
n)
aε(x)−a∗ε(yε

n)
]
u(x) · u(x)dx

∣∣∣

≤
∑

n∈Nε

∣∣∣
∫

Cε(yε
n)

[
aε(x)−a∗ε(yε

n)
]
u(yε

n) · u(yε
n)dx

∣∣∣+ vol(Cε(y
ε
n))2‖a‖∞‖u‖∞ε

√
d‖∇u‖∞Using ∫

Cε(yε
n)
aε(x)dx =

∫
Cε(yε

n)×Y
a(w, y)dwdy = vol(Cε(y

ε
n))a∗ε(y

ε
n) the �rst term vanishesand then ∑n∈Nε

vol(Cε(y
ε
n)) = vol(Ωε) gives the desired onvergene result.ad (b). We �rst argue as in the proof of part (a) to show that for all u in L2(Ω) wehave Gεu = (aε)

−1a∗u ⇀ u for ε → 0. It su�es to onsider smooth u and v with
a∗u, v ∈ C∞c (Ω; Rm) and to show 〈Gεu, v〉 → 〈u, v〉. As above, onsider the average of
(aε)

−1 over Cε(y
ε
n), namely

bε(x) =
∫

Cε(x)
aε(z)

−1 dz =
∫

Cε(x)

(∫
Cε(z)

a(w, 1
ε
z)dw

)−1
dz =

∫
Y

(∫
Cε(x)

a(w, y)dw
)−1

dy.Sine a is measurable and bounded from above and below, we an use the densityof the Lebesgue points and the ontinuity of the inversion to onlude that bε(x) →∫
Y
a(x, y)−1 dy = a∗(x)

−1 for a.e. x ∈ Ω. This proves Gεu ⇀ u. Moreover, hoosing v = uwe have
Φε(Gεu) = 〈aεGεu,Gεu〉 = 〈a∗u, (aε)

−1a∗u〉 → 〈a∗u, u〉 = Φ∗(u).It remains to show the liminf estimate. For this, we use the identity
Φε(uε) = Φε(uε−Gεu0) + 2〈aεGεu0, uε〉 − Φε(Gεu0).Now uε ⇀ u0 implies that the two last terms onverge to 2〈a∗u0, u0〉 − Φ∗(u0) = Φ0(u0).Sine the �rst term on the right-hand side is non-negative, the desired estimate follows.ad (). The result follows by applying part (b) to the derivative of the funtions in

H1((0, l); Rm). In partiular, note that
(Ĝεu)

′(x) = aε(x)
−1a∗(x)u

′(x) −
∫ l

0
aε(y)

−1a∗(y)u
′(y)dy = (Gεu

′)(x) −
∫ l

0
Gεu

′(y)dy.21



Using ∫ l

0
u′(y) dy = u(l)−u(0) = 0 we easily �nd (Ĝεu)

′ ⇀ u′ in L2((0, l); Rm). Togetherwith the boundary onditions this implies Ĝεu ⇀ u in H1((0, l); Rm).The onvergene Ψε(Ĝεu0) → Ψ∗(u0) is now a diret onsequene of Part (b). The liminfestimate follows exatly as in (b). Thus, Ψε
Γ→ Ψ∗ is established.3.2 Lagrangian wave equationIn this setion we show how the abstrat results of Setion 2.4 apply to semilinear waveequations with osillatory oe�ients. The emphasis here is on the fat that we are ableto allow for general oe�ients of L∞ type. The same holds true for the nonlinearity oflower order. For simpliity we only treat the one-dimensional ase, sine only for this asewe have available the Γ-onvergene result for the derivative in Proposition 3.1(). Weexpet that the analogous result also holds in higher dimensions when the nonlinearityhas su�iently slow growth.By Y = S1 = R/Z we denote the mirosopi periodiity interval and by Λ = (0, l) themarosopi physial domain. Consider density and sti�ness matries

ρ, a ∈ L∞(Λ × Y ; Rm×msym ) suh that,
∃α, r > 0 ∀ ξ ∈ Rm ∀ (x, y) ∈ Λ × Y : a(x, y)ξ · ξ ≥ α|ξ|2, ρ(x, y)ξ · ξ ≥ r|ξ|2.

(3.4)Moreover, onsider a potential F : Λ × Y × R
m → R suh that

F ∈ L∞(Λ × Y ; C1lo(Rm)), F (x, y, u) ≥ 0. (3.5)For ε > 0 we let Cε(x) = (ε[x
ε
], ε[x

ε
]+ε) ∩ Λ, de�ne the osillatory funtions

ρε(x) =

∫

Cε(x)

ρ(w,
x

ε
)dw, aε(x) =

∫

Cε(x)

a(w,
x

ε
)dw, Fε(x, u) =

∫

Cε(x)

F (w,
x

ε
, u)dw,and onsider the hyperboli systems

ρε(x)utt(t, x) =
∂

∂x

(
aε(x)ux(t, x)

)
− DuFε(x, u(t, x)). (3.6)Our aim is to show that the solutions of this problem onverge to solutions of the homo-genized problem

ρ∗(x)utt(t, x) =
∂

∂x

(
a∗(x)ux(t, x)

)
− DuF

∗(x, u(t, x)), (3.7)where the e�etive quantities are given by
ρ∗(x) =

∫

Y

ρ(x, y)dy, a∗(x) =
(∫

Y

a(x, y)−1 dy
)−1

, F ∗(x, u) =

∫

Y

F (x, y, u)dy. (3.8)22



The following result will be a diret appliation of the abstrat results in Setion 2.4. AsHilbert spaes we hoose V = Vε = H1
0(Λ; Rm) and X = L2(Λ; Rm). The total energypotential Φε : V → R and the kineti energy Kε read

Φε(v) =
∫
Λ

1
2
aε(x)u

′(x) · u′(x) + Fε(x, u(x))dx and Kε(v) =
∫
Λ

1
2
ρε(x)v(x) · v(x)dx.Theorem 3.2 Take any family (uε)ε>0 of weak solutions uε ∈ C0(R;Vε) ∩ C1(R;X) of(3.6) whih is uniformly bounded in energy. Assume that for a subsequene we have

∀ t ∈ R : uεk
(t) ⇀ u(t) and u̇εk

∗
⇀ u̇ in L∞(R;X).Then, u is a solution of the homogenized problem (3.7).Moreover, if for some time t we have additionally (uε(t), u̇ε(t)) ⇀ (u(t), u̇(t)) in V ∗×V ∗,then this onvergene holds true for all t ∈ R.Remark 3.3 We emphasize that the Γ-limit of the Lagrangian energy funtional Eε =

Φε + Kε in the weak topology of V ×X (whih is the natural topology) is not the limitenergy. This is only true if we use the weak topology in V × V , i.e, strong onvergene ofthe veloities in L2(Λ; Rm).Proof: It is easy to see that Φε ∈ C1(V,R) with DΦε(u) = − ∂
∂x

(aεu
′) + DuFε(·, u)and that (2.18) is satis�ed. In partiular, we note that V is ompatly embedded into

C0(Λ; Rm) and, hene, into X.The limiting spae V0 equals V and the limiting quantities are de�ned via ρ∗, a∗ and F ∗in a similar manner. For the reovery operator Gε : V → V we hoose Ĝε as de�ned inProposition 3.1(). It remains to verify ondition (2.19). The ondition (ii) there means
uε ⇀ u0 in V = H1(Λ; Rm) =⇒ Ĝ∗ερεuε ⇀ ρ∗u0 in V ∗ = H−1(Λ; Rm). (3.9)To verify this, note that we have uε → u0 in X and as in the proof of Proposition 3.1 weonlude ρεuε → ρ∗u0 in X (arithmeti mean). Applying 〈·, v〉 to Ĝ∗ερεuε, using dualityas well as Ĝεv ⇀ v in V , the desired result follows.For ondition (2.19)(i) we deompose

〈Ĝ∗εDΦε(uε), v〉 =
∫
Λ
−(aεu

′
ε)
′ Ĝεvdx+

∫
Λ

DuFε(x, uε(x))Ĝεv(x)dx.The �rst term onverges to 〈a∗u′0v′〉 by Proposition 3.1. For the seond term we againuse the ompat embedding of V into C0(Λ; Rm) giving uε → u0 and Ĝεv → v uniformlyin Λ. Thus, we onlude ∫
Λ

DuFε(x, uε(x))Ĝεv(x) dx →
∫
Λ

DuF
∗(x, u0(x))v(x) dx, whereagain the osillations of Fε in x are simply averaged out.
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3.3 Hamiltonian wave equationFor the Hamiltonian ase we restrit to the linear ase by assuming F ≡ 0. For a generalmatrix-valued funtion b(x, y) ∈ Rm×m with b, b−1 ∈ L∞(Λ× Y ; Rm×m) we de�ne bε as in(3.2). With this we introdue the veloity variable v and the Hamiltonian Hε via
ut = bεv and Hε(u, v) =

1

2

∫

Λ

bTε ρεbεv · v + aεu
′ · u′dx.We keep bε general at this moment to be able to explore all possibilities that are ompatiblewith our method.The underlying spae is Z = V × X = H1

0(Λ; Rm) × L2(Λ; Rm) and the orrespondingsympleti struture reads Ωε = ( 0
bT
ε ρε

−ρεbε
0 ) and is to be onsidered as a mapping from Zinto Z∗ = H−1(Λ; Rm) × L2(Λ; Rm).For the reovery operator Gε : Z → Z we may assume the diagonal form Gε =

( bGε 0

0 eGε

)with Ĝε from Proposition 3.1(). The seond omponent G̃ε has to be hosen suh thatthe joint reovery onditions (2.29) hold. Letting Aε : Z → Z∗;
(

u
v

)
7→
(
−(aεu′)′

bT
ε ρεbεv

) and usingLemma 2.2 this is equivalent to showing ΩεGε

(
u
v

)
→ Ω0

(
u
v

) and AεGε

(
u
v

)
→ A0

(
u
v

) for all(
u
v

)
∈ Z. Sine A0 and Ω0 must have the form A0

(
u
v

)
=
(
−(a∗u′)′

rv

) and Ω0

(
u
v

)
=
(
−µv
µTu

), wehave to satisfy
∀ v ∈ L2(Λ; Rm) : bTε ρεbεG̃εv → rv and G̃εv ⇀ v in L2(Λ; Rm), (3.10a)
∀ v ∈ L2(Λ; Rm) : ρεbεG̃εv → µv in H−1(Λ; Rm), (3.10b)
∀u ∈ H1(Λ; Rm) : bTε ρεĜεu→ µTu in L2(Λ; Rm). (3.10)In relation (3.10) we have Ĝεu → u (strongly) in L2(Λ; Rm), hene we must hoose bεsuh that bTε ρεû → µTû for all ũ. Thus, we are fored to take bε = ρ−1

ε µ (where the slightgeneralization bε = ρ−1
ε µε with µεv → µv would also be possible). Inserting this into the�rst ondition of (3.10a) we see that G̃ε must be hosen suh that

G̃εv − µ−1ρεµ
−Trv → 0 in L2(Λ; Rm).Together with G̃εv ⇀ v and ρεṽ ⇀ ρ∗ṽ this implies

r = µT(ρ∗)−1µ and G̃εv = µ−1ρεµ
−Trv,again negleting a slight generalization, where r might depend on ε. Finally, ondition(3.10b) follows sine ρεbεG̃εv = µG̃εv onverges to µv weakly in L2(Λ; Rm), whih isompatly embedded into H−1(Λ; Rm).Thus, we have explored the possible ways to transform the linear wave equation into aHamiltonian systems in suh way that a family of joint reovery operators exists. Theessential freedom we have is the hoie of µ : Λ → Rm×m suh that µ, µ−1 ∈ L∞(Λ; Rm×m).We de�ne the sympleti form Ω =

(
0 −µ

µT 0

) and the Hamiltonians Hε, ε > 0, and H0 via
Hε(u, v) = 1

2

∫
Λ

µTρ−1
ε µv·v + aεu

′·u′dx and H0(u, v) = 1
2

∫
Λ

µT(ρ∗)−1µv·v + a∗u
′·u′dx.24



Theorem 3.4 Let ρ, a ∈ L∞(Λ × Y ; Rm×m) and ρε, aε, µ be as de�ned above. For ε > 0let zε = (uε, vε) : R → V × Z be weak solutions of the Hamiltonian system
µTu̇ε = DvHε(uε, vε), −µv̇ε = DvHε(uε, vε),and assume that zε
∗
⇀ z = (u, v) in L∞(R;V ×X). Then, z is a solution of the e�etiveHamiltonian system

µTu̇ = DvH0(u, v), −µv̇ = DvH0(u, v),In partiular, the homogenized problem is given by the e�etive Hamiltonian H0 that isthe Γ limit of Hε for ε → 0 in the weak topology of the natural energy spae V ×X.While the above results have potential for generalization into the multi-dimensional ase,we now treat a partiular simple Hamiltonian form, whih arises by using the momentum
p = ρεu̇ and the strain w = u′. The wave equation ρεü = (aεu

′)′ an be rewritten as thesystem
q̇ = (aεw)′

ẇ = (ρ−1
ε p)′

}
⇐⇒

(
0 ∂−1

x

∂−1
x 0

)(
ẇ

ṗ

)
=

(
aεw

ρ−1
ε p

)
= DHε(w, p),where Hε(w, p) = 1

2

∫
Λ
aεw · w + ρ−1

ε p · pdx. Now the relevant Hilbert spae is
Z0 = X0 ×X0 with X0 = {w ∈ L2(Λ; Rm) |

∫
Λ
w(x)dx = 0 }.On the spae X0 the operator ∂−1

x an be de�ned by (∂−1
x u
)
(x) =

∫
Λ
K(x, ξ)u(ξ)dξ with

K(x, ξ) = (x−ξ)/l + sign(x−l)/2. Sine K satis�es K(x, ξ) = −K(ξ, x) the operator
∂−1

x is skew symmetri, whih implies that Ω is a sympleti form. From the aboveit is again lear, that the e�etive Hamiltonian H0 is obtained as the Γ-limit, namely
H0(w, p) = 1

2

∫
Λ
a∗w

′ · w′ + (ρ∗)−1p · pdx.4 Disrete lattie modelsIn this setion we want to apply the abstrat theory for the passage from mirosopidisrete systems to marosopi ontinuum models. While the marosopi system willbe a system of wave equations as disussed above, the mirosopi system is an in�nitelattie of mass points subjeted to Newton's law aording to a bakground potential Ψγ,0and interation potentials Ψγ,β:
Mγ üγ = −DΨγ(uγ) +

∑

0<|β|≤R

DΨγ,β(uγ+β − uγ) − DΨγ,β(uγ − uγ−β), γ ∈ Z
d. (4.1)Here, uγ ∈ R

m denotes the vetor of all displaement of atoms in the ell assoiated withthe lattie site γ ∈ Zd. We write u = (uγ)γ ∈ ℓ2(Zd; Rm) and v = u̇ = (u̇γ)γ ∈ ℓ2(Zd; Rm)for vetor of displaements and veloities, respetively. The system is mehanial systemwith kineti and potential energies
K(u̇) =

∑

γ∈Zd

1

2
Mγ u̇γ·uγ and Φ(u) =

∑

γ∈Zd

(
Ψγ,0(uγ) +

∑

0<|β|≤R

Ψγ,β(uγ−uγ+β)
)
. (4.2)25



4.1 Embedding of latties into ontinuaThe main tehnique of treating the multisale passage is to embed the disrete systeminto the the ontinuous spae Z = V ×X with
V = H1(Rd; Rm) and X = L2(Rd; Rm).However, the embedding has to be suh that the dynamis of the disrete model is ex-atly represented in the ontinuous ounterpart in suitable losed subspaes Vε and Xε.Moreover, we want to be able to �nd exat formulas for the energies Kε(v) = 1

2
〈Mεv,v〉and Φε : Vε → R and for the indued sympleti struture Ωε.For ε > 0 we de�ne the embedding operator

Êε :





ℓ2(Zd) → H1(Rd),

u = (uγ)γ 7→
[
x 7→ ∑

γ∈Zd

uγĤ
(

1
ε
x−γ

)]
,where Ĥ ∈ W1,∞(Rd) is the pieewise a�ne interpolation between the values Ĥ(y) = 1for y ∈ [−1/4, 1/4]d and Ĥ(y) = 0 for y 6∈ [−3/4, 3/4]d. The embedding into L2(Rd) isdone in a similar spirit, namely

Eε :





ℓ2(Zd) → L2(Rd),

p = (pγ)γ 7→
[
x 7→ 2d

∑
γ∈Zd

pγH
(

1
ε
x−γ

)]
,where H(y) = 1 for y ∈ [−1/4, 1/4]d and 0 otherwise.The normalization onstants were hosen suh that for U ∈ C1

c(R
d) and uε = (U(εγ))γ wehave Êεuε ⇀ U in H1(Rd) and Eεuε ⇀ U in L2(Rd), whih orresponds in a natural wayto our relation x = εγ between the mirosopi and the marosopi sale. Note however,that the norms sale with ε, namely 2d‖p‖2

ℓ2 = εd‖Eεp‖2
L2 and ‖Êεu‖L2 ≈ εd‖u‖2

ℓ2. Theonstrution of Ĥ and H was done suh that the sympleti form in the disrete systemhas a partiularly simple representation in L2(Rd; Rm) after the embedding, namely
〈x, p̃〉 − 〈x̃,p〉 =

1

εd

∫

Rd

[
(Êεx)(y) · (Eεp̃)(y) − (Êεx̃)(y) · (Eεp)(y)

]
dy. (4.3)Thus, up to a normalization onstant we �nd the anonial sympleti form of the on-tinuous problem in the otangent bundle of L2(R; Rm).4.2 Transformation of the energies and equationMoreover, we are able to write the kineti and potential energies in terms of the embed-dings. For simpliity, we restrit ourselves in the sequel to the one-dimensional ase aswe did in Setion 3, sine we will rely on some results from there. We will also restrit to26



the ase of nearest-neighbor interation with a quadrati potential Ψγ,1. We expet thatthe analysis an be generalized using suitable elaborate notation, see e.g., [Mie06℄.We assume that the hain is mirosopially periodi with a period N ∈ N and that theoe�ients may vary marosopially as well in a L∞ manner. For this purpose we usethe funtions m, a, and ψ, satisfying
m, a ∈ L∞(R/NZ × R; Rm×m) and ψ ∈ L∞(R/NZ × R; C1lo(Rm)),

∃α > 0 ∀ (η, x) ∈ R/NZ × R ∀ ξ ∈ Rm :

min
{
m(η, x)ξ · ξ, a(η, x)ξ · ξ, ψ(η, x, ξ)

}
≥ α|ξ|2.

(4.4)We assume that the funtions m, a and ψ are pieewise onstant in the �rst variable,namely m(η, x) = m(γ, x) for γ ∈ Z/NZ and |η−γ| < 1/2. As in Setion 3.2 (f. (3.2)) wedenote with mε, aε, and ψε the pieewise averages over the small ells Cε(x), namely
mε(x) =

∫
Cε(x)

m(x/ε, y)dy with Cε(x) = ε(
[

x
εN

]
+N) + [0, εN ]and similarly for aε and ψε. With this we de�ne the disrete funtions as

Mγ = mε(εγ), Ψγ,0(u) = ε2ψε(εγ, u), Ψγ,1(u) =
1

2
aε(εγ)u · u.Relying heavily on the pieewise a�ne nature of our embedding operators the disreteenergies (4.2) take the form

K̂ε(p) =
∑

γ∈Z

1
2
M−1

γ pγ · pγ = 1
ε

∫
Rd

1
2
mε(x)

−1(Eεp)(x) · (Eεp)(x)dx,

Φ̂ε(u) =
∑

γ∈Z

(
Ψγ,1(uγ+1−uγ) + Ψγ,0(uγ)

)

= 1
ε3

∫
R

1
2

[
aε(x)(∂xÊεu)(x) · (∂xÊεu)(x)

]
+ Fε(x, Êεu)(x))dx,where Fε(x, u) = 2Hper(1

ε
x)ψε(x, u) with Hper(y) =

∑
γ∈Z

H(y−γ). For the nonlinearitywe used that Êεu is onstant on the small intervals (ε(γ−1/4), ε(γ+1/4)).In partiular, our onstrution guarantees that the disrete lattie system
mε(εγ)üγ = −ε2Duψε(x, uγ) + aε(εγ)(uγ+1−uγ) + aε(ε(γ+1))(uγ−1−uγ), γ ∈ Z, (4.5)is equivalent to the Hamiltonian system on Zε = Vε × Xε with Hamiltonian Hε andsympleti struture Ωε given by

Vε = Êεℓ
2(Z; Rm) ⊂ H1(R; Rm), Xε = Eεℓ

2(Z; Rm) ⊂ L2(R; Rm),

Hε(u, p) = Kε(u) + Φε(u) with Kε(Eεp) = εK̂ε(p) and Φε(Êεu) = ε3Φ̂ε(u),

〈Ω
(

u
p

)
,
(

eu
ep

)
〉 =

∫
R
u · p̃− ũ · pdx.The di�erent resaling in terms of ε for the kineti energy, the potential energy and thesympleti form arise from the fat that we also resale the time by de�ning a marosopitime τ = εt by letting u(τ) = Êεu(τ/ε) and p = εEεp(τ/ε), f. [Mie06, GHM06b℄ formore details. The resulting Hamiltonian system reads

(
0 −I
I 0

)( d
dτ
u

d
dτ
p

)
= Ω

( d
dτ
u

d
dτ
p

)
=

(
DΦε(u)

DKε(p)

)
= DHε(u, p) ⊂ V ∗ε ×X∗ε . (4.6)27



4.3 Passage to the limitWe are now able to pass to the limit in the problem (4.6) by using our abstrat theorytogether with the analysis for the wave equations in Setion 3.For this we need to onstrut reovery operators Ĝε : V = H1(R; Rm) → Vε for thepotential energy and reovery operators G̃ε : X = L2(R; Rm) → Xε for the kineti energy(i.e., (2.29)(ii) holds) suh that additionally the sympleti form passes to the limit in thesense of (2.29)(i). Here this means
Vε ∋ uε ⇀ u0 ∈ V0 = V in V =⇒ G̃∗εuε ⇀ u0 in X = L2(R; Rm),

Xε ∋ pε ⇀ p0 ∈ X0 = X in X =⇒ Ĝ∗εpε ⇀ p0 in V ∗ = H−1(R; Rm).
(4.7)Note that any reovery operators Ĝε and G̃ε provide weak onvergene of Ĝεv0 and G̃εp0 inthe better spaes V and X, respetively. However, this does not imply (4.7). Nevertheless,we show in the following result that the anonial reovery operators assoiated with thepotential and the kineti energies, respetively, do ful�ll these onditions.Lemma 4.1 With the funtions m, a, and ψ from (4.4) we have the limits

Φ0 = Γ-limε→0 Φε : u 7→
∫

R

1
2
a∗(x)u

′(x) · u′(x) + ψ∗(x, u(x))dxand K0(p) =
∫

R

1
2
m∗(x)−1p(x) · p(x)dx,where the e�etive funtions m∗, a∗, and ψ∗ are given by

m∗(x) = 1
N

∑N
γ=1m(γ, x) =

∫
[0,N ]

m(η, x)dη,

a∗(x) =
(

1
N

∑N
γ=1 a(γ, x)

−1
)−1

=
(∫

[0,N ]
a(η, x)−1 dη

)−1
,

ψ∗(x, u) = 1
N

∑N
γ=1 ψ(γ, x, u) =

∫
[0,N ]

ψ(η, x, u)dη.Moreover, the anonial reovery operators (Ĝε)ε and (G̃ε)ε onstruted as in Proposition2.5 satisfy (4.7).Proof: We �rst onvine ourselves that the given formulas are the assoiated Γ-limits,
Φε

Γ→ Φ0 in V and Kε
Γ→ K0 inX. For this we simply interprete Φε and Kε as speial asesof the funtionals onsidered in Proposition 3.1. This needs a generalization as we nowallow for the value +∞ under the integrand. For instane we implement the ondition

pε ∈ Xε = Eεℓ
2(R; Rm) by allowing pε ∈ X but de�ning Kε via ∫

R
kε(x, p(x)) dx with

kε(x, p) = 1
2
mε(x)

−1p·p for x ∈ (− ε
4
, ε

4
) mod ε and kε(x, p) = +∞ otherwise. Taking theharmoni mean the values +∞ turn into 0, the average is well de�ned, and we obtain thedesired results. We assume that G̃ε : X → Xε ⊂ X is given via Proposition 2.5 whenapplied to Kε. For the onstrution of Ĝε we use the auxiliary quadrati form

Qε(u) =
∫

R

1
2
aε(x)u

′(x) · u′(x) + κ2

2
|u(x)|2 dx for u ∈ Vε and ∞ otherwise,28



where κ is an arbitrary, �xed number. Sine the leading term is idential to that of Φε it iseasy to see that the reovery sequene Ĝε forQε is a reovery sequene of the nonquadrati
Φε as well.Seond, we derive ondition (4.7). Consider any family (uε)ε with uε ⇀ u0 in V . As
G̃∗εuε is bounded in X, it su�es to test with a dense set of w ∈ X. We hoose any w ∈
C0

c(R; Rm). Let sppt(w) ⊂ [−R+1, R−1] for some R > 0. Then, sppt(G̃εw) ⊂ [−R,R]and uε|[−R,R] → u0|[−R,R] in L2([−R,R]; Rm), and we �nd
〈G̃∗εuε, w〉 =

∫ R

−R
uε (G̃∗εw)dx→

∫ R

−R
u0wdx = 〈u, w〉,whih is the �rst line in (4.7).For Ĝε we argue similarly by using C1

c(R; Rm) as a dense set in V . Now, Ĝεv will not haveompat support, sub satisfy a uniform bound |Ĝεv(x)| ≥ Ce−κ|x|. Moreover, Ĝεv ⇀ vin V implies strong L2-onvergene on ompat intervals [−R,R]. For a family (pε)ε with
pε ⇀ p0 in X we an estimate as follows

|〈Ĝ∗εpε, v〉 − 〈p0, v〉| = |〈pε, Ĝεv〉 − 〈p0, v〉|
≤
∫
|x|>R

(
|pε|+|p0|

)
Ce−κ|x|dx+

∣∣ ∫
|x|<R

pε · Ĝεv−p0 · vdx
∣∣.The �rst term an be estimated by supε∈[0,1] ‖pε‖X2Ce−κR/

√
κ and, thus, an be madesmall independently of ε by hoosing R big enough. Then, keeping R �xed the seondterm tends to 0 for ε → 0 beause of weak onvergene of pε and strong onvergene of

Ĝεv in L2([−R,R]; Rm). Thus, the seond ondition in (4.7) is established as well.We summary the �nding in the main result as follows.Theorem 4.2 Let m, a, and ψ be given as in (4.4). Consider a family (uε)ε of solutionsin C2(R; ℓ2(Z; Rm)) suh that
(Êεu( ·

ε
), EεMεεu̇( ·

ε
))
∗
⇀ (u, p) in L∞(R; H1(R; Rm)×L2(R; Rm)).Then, (u, p) is a solution of the e�etive, marosopi wave equation

d

dτ
u(τ, x) = m∗(x)−1p(τ, x),

d

dτ
p(τ, x) = ∂x

(
a∗(x)∂xu(τ, x)

)
− Duψ

∗(x, u)with the e�etive Hamiltonian ∫
R

1
2
(m∗)−1p · p + 1

2
a∗u

′ · u′ + ψ∗(·, u) dx. Moreover, if forsome τ ∈ R we have (Êεu(τ/ε), EεMεεu̇(τ/ε)) ⇀ (u(τ), p(τ)), then the same holds forall τ ∈ R.A AppendixLemma A.1 Let Y be a re�exive or separable Banah spae. Then, yn → y is equivalentto the property that for all sequenes (ηn)n∈N in Y ∗ with ηn
∗
⇀ η we have 〈yn, ηn〉 → 〈y, η〉.29



Proof: The impliation �⇒� follows by the triangle inequality via 〈ηn, yn〉 = 〈ηn, y〉 +

〈ηn, yn−y〉 → 〈η, y〉+0, sine yn−y → 0 and (ηn)n∈N is bounded due to weak* onvergene.For the opposite impliation �rst note that taking ηn ≡ η implies yn ⇀ y. Seond, we usethat there exists ηn ∈ Y ∗ suh that ‖ηn‖∗ = 1 and 〈yn−y, ηn〉 = ‖yn−y‖ = δn. Now hoosea subsequene suh that limk→∞ δnk
= lim supn→∞ δn. Choosing a further subsequene ifneessary, we may assume ηnk

∗
⇀ η by using the property of Y . We de�ne the sequene

(ηn)n∈N as ηn = ηnk
if n = nk for some k and as ηn = η else. Then ηn

∗
⇀ η and we have

δnk
= ‖ynk

− y‖ = 〈ynk
, ηnk

〉 − 〈y, ηnk
〉 → 〈y, η〉 − 〈y, η〉 = 0.As lim sup ‖yn−y‖ = limk→∞ δnk
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