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AbstratA general abstrat approximation sheme for rate-independent proesses inthe energeti formulation is proposed and its onvergene is proved under var-ious rather mild data quali�ations. The abstrat theory is illustrated on sev-eral examples: plastiity with isotropi hardening, damage, debonding, mag-netostrition, and two models of martensiti transformation in shape-memoryalloys.1 IntrodutionRate independent proesses our (after ertain, and usually neessary, simpli�-ations) in various physial (mainly mehanial but not only) systems exhibitinghystereti response during isothermal evolution proesses. Mathematial analysis ofsuh proesses, based on the notion of energeti solutions introdued in [40, 42℄, hasbeen intensively srutinized and develop in partiular in [31, 35, 36, 37, 38, 41, 43, 53℄.However, exept for some partiular attempts [7, 18, 32, 54℄, there has been no nu-merial analysis developed for suh proesses so far.This paper �lls the gap of a universally-appliable numerial sheme in the ontext ofrate-independent proesses and its analysis. After introduing the energeti formu-lation in Set. 2, a fairly general oneptual numerial disretization is proposed andits onvergene is analyzed in Set. 3. Then, in Set. 4, the generality is reduedto problems based on Banah spaes and with dissipation distanes governed bydegree-1 homogeneous potentials, whih in turn allows for various spei� onstru-tions diretly appliable in onrete situations. This is demonstrated in Set. 5 onvarious examples from ontinuum mehanis of deformable bodies, namely plastiitywith hardening, two models of martensiti transformation, damage, debonding, andmagnetostrition.In partiular, it aompanies a large variety of existing models by oneptual �nite-element disretizations supported by rigorous analysis as far as onvergene on-erns, and in some ases o�ers new results or improves known results as far as mereexistene of solutions onerns.2 An abstrat setting: energeti solutionWe onsider a state spae Q (independent of time) as a topologial spae. Typially,it is subset of a loally onvex spae. We will distinguish between a �non-dissipative�1



omponent u ∈ U and a �dissipative� omponent z ∈ Z of the state q = (u, z) ∈
Q := U × Z.For a �xed time horizon T > 0, we onsider a Gibbs-type stored energy E : [0, T ] ×
Q → R ∪ {+∞}. The further ingredient is a (time-independent but not neessarilysymmetri) dissipation distane D : Z ×Z → R∪ {+∞} whih will later determinethe dissipated energy and whih is assumed to satisfy

∀z1, z2, z3∈Z : D(z1, z1) = 0 & D(z1, z3) ≤ D(z1, z2) + D(z3, z3). (2.1)Let us agree to write oasionally D(q1, q2) with the meaning D(z1, z2) for q1 =
(u1, z1) and q2 = (u2, z2).In ase of Q having a linear struture, D(z1, z2) := R(z2 − z1) (as in Set. 4 below)and onvexity of both E and R, we want to address an evolution of q = q(t) governedby the doubly nonlinear inlusion

∂R
(∂q

∂t

)

+ ∂qE(t, q) ∋ 0 (2.2)where �∂� denotes the subdi�erential. Under some additional quali�ation, it isequivalent (see [36, 41℄) to the energeti formulation based on De�nition 2.1 belowwhih, however, works under muh weaker data quali�ation where (2.2) loses anysense. In fat, this de�nition is based on a global-minimization hypothesis ompetingwith the maximum-dissipation priniple (or rather Levitas' realizability priniple[33℄). In mathematial terms, it means stability
∀q̃ ∈ Q : E

(

t, q(t)
)

≤ E(t, q̃) + D
(

q(t), q̃
)

, (2.3)and energy equality
E(t, q(t)) + VarD(q; s, t) = E(s, q(s)) +

∫ t

s

P(r, q(r)) dr, (2.4)where
P(t, q) :=

∂

∂t
E(t, q) and (2.5)

VarD(q; s, t) := sup

j
∑

i=1

D
(

q(ti−1), q(ti)
) (2.6)with the supremum taken over all j ∈ N and over all partitions of [s, t] in the form

s = t0 < t1 < ... < tj−1 < tj = t. The partiular terms in (2.4) represent the storedenergy at time t, the energy dissipated by hanges of the internal variable duringthe time interval [s, t], the stored energy at the initial time s, and the work done byexternal loadings during the time interval [s, t]; P is then the power.De�nition 2.1 The proess q : [0, T ] → Q is alled an energeti solution to theinitial-value problem given by the triple (E ,D, q0) if2



(i) it is stable in the sense that (2.3) holds for all t ∈ [0, T ],(ii) the energy balane (2.4) holds for any 0 ≤ s < t ≤ T , in partiular
t 7→ P(t, q(t)) is in L1(0, T ), and(iii) the initial ondition q(0) = q0 holds.For the analysis of the rate-independent problems, it is onvenient to introdue thesets of stable states S(t) for any t ∈ [0, T ] by putting

S(t) :=
{

q∈Q; E(t, q) <+∞ & ∀q̃∈Q : E(t, q) ≤ E(t, q̃) + D(q, q̃)
}

. (2.7)This allows us to reast the stability ondition (i) in De�nition 2.1 in the form
q(t) ∈ S(t) for all t ∈ [0, T ]. Yet, more importantly, we may address losednessproperties of S(t).In Set. 4, we will speialize this setting by introduing an additional linear struture,i.e. Q will be (a subset of) a Banah spae equipped with the weak or the normtopology. This will allow us to make the abstrat properties more spei�.3 An abstrat approximationFor an abstrat approximation, we onsider three positive parameters τ , h, and
ε. Here τ > 0 represents the �neness of a time disretization by a partition (notneessarily equidistant) of the time interval [0, T ]. The parameter h > 0 denotes aspatial disretization of the state spae Q by a subset Qh again having the struture
Qh := Uh × Zh. Moreover, ε > 0 is used for a possible approximation of thefuntionals E and D to be implemented more easily when restrited on Qh (see alsoRemark 3.10 below) or just to guarantee the onvergene in some more ompliatedases. Typially, a penalization of some onstraints may be involved by this way,f. Set.5. These last approximations lead to Eε : [0, T ] × ⋃

h>0 Qh → R ∪ {+∞}and Dε :
⋃

h>0(Zh × Zh) → R ∪ {+∞}.Using the indiator funtion δQh
: Q → {0,+∞}, i.e. δQh

= 0 on Qh and δQh
= +∞on Q\Qh, it will oasionally be onvenient to introdue the restrition to Qh alsoby replaing Eε and Dε respetively by

Eε,h = Eε + δQh
and Dε,h : (q, q̃) 7→ Dε(q, q̃) + δQh

(q) + δQh
(q̃). (3.1)3.1 Basi assumptionsWe �rst ollet a few basi assumptions. We assume (2.1) also for eah Dε, i.e. forall ε > 0:

∀z1, z2, z3∈Z : Dε(z1, z1) = 0 & Dε(z1, z3) ≤ Dε(z1, z2) + Dε(z3, z3). (3.2)3



For proving existene results we will need the following lower semi-ontinuity andompatness results:
∀ ε, h > 0 : Dε : Qh×Qh → R∞ are lower semi-ontinuous, (3.3)
∀ ε, h > 0 ∀ t∈ [0, T ] ∀ a∈R :the sublevels { q∈Qh ; Eε(t, q)≤a } are sequentially ompat in Q. (3.4)To pass to the limit will need a uniform inf-ompatness of the olletion

(Eε,h(t, ·))ε,h>0, t∈[0,T ]:
∀ a∈R ∀ ε, h > 0, θ∈ [0, T ], qh,ε∈Qh : Eε(θ, qh,ε) ≤ a

=⇒ ∃ q∈Q ∃ subsequene {qhn,εn}n∈N : q = lim
n→∞

qhn,εn. (3.5)Next we need a �Γ-liminf estimate� for the family (Dε)ε>0 on (Qh×Qh)h>0 in thelimit ε, h→ 0:
z∈Z, zh,ε∈Zh, z = lim

(h,ε)→(0,0)
zh,ε

z̃∈Z, z̃h,ε∈Zh, z̃ = lim
(h,ε)→(0,0)

z̃h,ε







⇒ D(z, z̃) ≤ lim inf
(h,ε)→(0,0)

Dε(zh,ε, z̃h,ε). (3.6)The limit funtional D has to satisfy a positivity ondition:
∀ z∈Z ∀K ⊂ Z sequentially ompat ∀ zn∈K :
lim

n→∞
min{D(zn, z),D(z, zn)} = 0

}

⇒ z = lim
n→∞

zn. (3.7)Like for Dε we also need a �Γ-liminf estimate� for the family (Eε(t, ·))ε>0, t∈[0,T ] on
(Qh)h>0:

∀ q∈Q ∀ qh,ε∈Qh with q = lim
(h,ε)→(0,0)

qh,ε: E(t, q) ≤ lim inf
(h,ε,θ)→(0,0,t)

Eε(θ, qh,ε). (3.8)Note that (3.6) and (3.8) are only �lower� Γ-liminf estimates for (Dε,h)ε,h>0 and
(Eε,h(t, ·))ε,h>0, t∈[0,T ]. The orresponding upper estimates are onsequenes of theentral ondition (3.16) whih postulates the existene of joint reovery sequenes.So far all onditions above relate to stati onepts. The next three onditionsrelate to the time dependene, whih involves the power of external fores Pε(t, q) =
∂
∂t
Eε(t, q). The �rst assumption provides a uniform energeti ontrol of the power

Pε, viz.,
∃ c0, c1∈R ∀ ε, h > 0 ∀q∈Qh :

(

∃t0∈ [0, T ] : Eε(t0, q) < +∞
)

=⇒
Eε(·, q) ∈ C1([0, T ]) and (3.9a)
∀ t∈ [0, T ] :

∣

∣Pε(t, q)
∣

∣ ≤ c1
(

Eε(t, q)+c0
)

. (3.9b)Using a Gronwall estimate we immediately obtain the growth restritions
∀ s, t ∈ [0, T ] : Eε(s, q) + c0 ≤ ec1|t−s|

(

Eε(t, q)+c0
)

. (3.10)4



The seond assumption is a onditioned (with respet to sublevels of E) equi- (withrespet to q) uniform (with respet to t) ontinuity of P(·, q):
∀ a∈R ∀σ > 0 ∃ δ > 0 ∀s, t∈ [0, T ] ∀q∈Q :if E(0, q) ≤ a and |t−s| < δ, then ∣

∣P(s, q) −P(t, q)
∣

∣ < σ. (3.11)The third assumption on Pε,h onerns the onvergene of Pε,h for ε, h → 0. It is a�ontinuous onvergene� but onditioned by the fat that the onsidered argumentsare in the assoiated sets of stable states
Sε,h(t) :=

{

q∈Qh; Eε(t, q) <+∞ &

∀q̃∈Qh : Eε(t, q) ≤ Eε(t, q̃) + Dε(q, q̃)
}

, (3.12)and that the energies are bounded:If (εn, hn, tn) → (0, 0, t), qn ∈ Sεn,hn(tn), qn → q, and
sup
n∈N

Eεn,hn(tn, qn) < +∞, then lim
n→∞

Pεn(tn, qn) = P(t, q). (3.13)Reall that Dε and D only depend on the z-omponent of q = (u, z) and we haveagreed to write oasionally, as e.g. in (3.12), Dε(q, q̃) in the meaning of Dε(z, z̃).An essential ingredient for the onvergene analysis is the abstrat version of Helly'sseletion priniple, whih has been proved in the Appendix of [39℄ generalizing [35,Theorem 3.2℄.Lemma 3.1 (Abstrat Helly's seletion priniple [39℄.) Under the onditions(2.1), (3.6) and (3.7), for every sequene zn : [0, T ] → Z, n ∈ N satisfying
∃C > 0 ∀n ∈ N : VarDεn,hn

(zn; 0, T ) ≤ C, (3.14a)
∃K ⊂ Z sequentially ompat ∀n ∈ N ∀ t∈ [0, T ] : zn(t) ∈ K, (3.14b)there exists a subsequene (znj

)j∈N, a nondereasing funtion D : [0, T ] → R, and alimit proess z : [0, T ] → Z suh that we have
∀ t∈ [0, T ] : z(t) = lim

j→∞
znj

(t), D(t) = lim
j→∞

VarDεnj ,hnj
(znj

; 0, t), and (3.15a)
∀ s, t ∈ [0, T ] with s ≤ t : VarD(z; s, t) ≤ D(t) − D(s). (3.15b)Remark 3.2 (Weakening (3.13) on Banah spaes.) In the appliations presentedin this paper we will not make use of the full strength of the �onditioned� ontinuousonvergene. However, we refer to [14℄, where a setting is onsidered where Q is aBanah spae equipped with its weak topology. It is shown that the assumptionsin (3.13) �rst imply the energy onvergene Eεn,hn(tn, qn) → E(t, q). This, togetherwith the weak onvergene qn ⇀ q, an then be used to improve the onvergeneinto the strong onvergene. Hene, in that ase the onditioning implies that onlystrongly onvergent sequenes have to be onsidered for the ontinuous onvergenein (3.13). 5



3.2 Stability of sets of stable statesAll the assumptions of the previous subsetion are either on the family (Dε,h)ε,h>0 oron the family (Eε,h)ε,h>0. The �nal ondition links the behavior of these two familiesand thus provide the upper Γ-limit estimates whih are needed to omplement thelower Γ-limit estimate for D in (3.6) and for E in (3.8). Sometimes, in partiularwhen some holonomi-type onstraints are involved in E , it ours that a onvergeneriterion of the type h ≤ H(ε), for some H : R+ → R+ monotone and satisfying
H(ε) → 0 for ε→ 0, is needed.The following entral ondition states the existene of a �joint reovery sequene�under suitable quali�ations:

∀ q, q̃∈Q ∀tn∈ [0, T ] with tn → t ∀ εn, hn → 0+ with hn ≤ H(εn)

∀qn ∈ Sεn,hn(tn) with qn → q and supn∈N
Eεn,hn(tn, qn) < +∞

∃ q̃n ∈ Qhn with q̃n → q̃ :

lim sup
n→∞

(

Eεn,hn(tn, q̃n)+Dεn,hn(qn, q̃n)−Eεn,hn(tn, qn)
)

≤ E(t, q̃)+D(q, q̃)−E(t, q). (3.16)The following assertion says, in other words, that the graph of the set-valuedmapping S : [0, T ] ⇉ Q ontains Kuratowski's limes superior of the graphs of
Sε,h : [0, T ] ⇉ Qh at least if restrited to states with bounded energy as in (3.5) andif h ≤ H(ε) is taken into aount. This upper semiontinuity result establishes aertain stability of sets of stable states that is ruial for the onvergene analysis.Lemma 3.3 (Conditioned upper semi-ontinuity of the sets of stablestates.) Let (3.8) and (3.16) hold and tn, εn, hn, qn and q = lim

n→∞
qn be as in (3.16).Then q∈S(t).Proof. By (3.8), we have

E(t, q) ≤ lim inf
n→∞

Eεn,hn(tn, qn) ≤ sup
n∈N

Eεn,hn(tn, qn) < +∞, (3.17)where the last inequality is assumed in (3.16). Next, for q̃ ∈ Q arbitrary, hoose
q̃n ∈ Qhn as in (3.16). By de�nition (3.12), qn ∈ Sεn,hn(tn) says that Eεn,hn(tn, q̃n) +
Dεn,hn(qn, q̃n)−Eεn,hn(tn, qn) ≥ 0. Using now the limsup estimate in (3.16) we obtain

0 ≤ lim sup
n→∞

Eεn,hn(tn, q̃n) + Dεn,hn(qn, q̃n) − Eεn,hn(tn, qn)

≤ E(t, q̃) + D(q, q̃) − E(t, q). (3.18)Sine q̃ was arbitrary, de�nition (2.7) gives q ∈ S(t). 2Remark 3.4 (Weakening of (3.16).) In this proof the ondition q̃n → q̃ was notused. Thus, in priniple assumption (3.16) ould be weakened by dropping this ad-ditional request. However, in doing so, the limsup estimate in (3.16) degenerates in6



the sense that the two sides in this estimate no longer depend on eah other. In fat,the best hoie for making the left-hand side small is, by realling stability, the hoie
q̃n = qn, whih makes eah member in the sequene idential 0. Sine this is inde-pendent of q̃, the weakened ondition (3.16) just means 0 ≤ E(t, q̃)+D(q, q̃)−E(t, q),whih is the desired stability of q. As we will see in the appliations in Setion 5,the strengthened ondition is useful, sine properly hosen joint reovery sequenesallow us to prove

0 ≤
(

Eεn,hn(tn, q̃n)+Dεn,hn(qn, q̃n)−Eεn,hn(tn, qn)
)

→ E(t, q̃)+D(q, q̃)−E(t, q),from whih we then onlude stability. See [39℄ for more disussion of this point.Example 3.5 Quite typial way how the quali�ation (3.16) an be ensured is thesituation when Dε,h onverges ontinuously to D in the sense
lim

ε→0, h→0
qh,ε→q, q̃h,ε→q̃
qh,ε,q̃h,ε∈Qh

Dε(qh,ε, q̃h,ε) = D(q, q̃) (3.19)and, in addition,
∀q̃∈Q ∀h, ε > 0 ∃q̃h,ε∈Qh : lim

(h,ε)→(0,0)
q̃h,ε = q̃ and

lim sup
h≤H(ε)

(h,ε,θ)→(0,0,t)

Eε(θ, q̃h,ε) ≤ E(t, q̃). (3.20)Then (3.16) holds: indeed, it su�es to sum (3.20) used for q̃n = q̃hn,εn with (3.19)used for qn = qhn,εn and q̃n = q̃hn,εn and subtrat (3.8) used for qn = qhn,εn, andeventually estimate the sum of limits superior from below by limits superior of thesum. Let us still remark that (3.20) together with (3.8) is just the onditioned
Γ-onvergene (sometimes also alled epi-onvergene) of the olletion (Eε,h(θ, ·) +
δQh

)h,ε>0, θ∈[0,T ] to E if (h, ε, θ) → (0, 0, t) onditioned by h ≤ H(ε).3.3 Approximate solutionsWe onsider now τ > 0, and a partition 0 = t0τ < t1τ < ... < tkτ
τ = T with

tτi − tτi−1 ≤ τ for i = 1, ..., kτ . (3.21)We do not assume this partition to be equidistant. Further, we onsider an ap-proximation [q0]h,ε of the initial ondition q0 and the following reursive inrementalformula: we put q0
τ,h,ε = [q0]h,ε a given initial ondition, and, for k = 1, ..., kτ wede�ne qk

τ,h,ε, an approximation of a solution at time tkτ , to be any solution of theminimization problemMinimize Eε,h(t
k
τ , q) + Dε,h(z

k−1
τ,h,ε, z)subjet to q = (u, z)∈Qh.

} (3.22)7



We de�ne the approximate solution qτ,h,ε : [0, T ] → Q as a pieewise onstantapproximation, namely
qτ,h,ε(t) :=

{

qk
τ,h,ε for tk−1

τ < t ≤ tkτ , k = 1, ..., kτ ,

q0
τ,h,ε = [q0]h,ε for t = 0.

(3.23)We also need the �retarded� approximate solution qRτ,h,ε : [0, T ] → Q with
qRτ,h,ε(t) :=

{

qk
τ,h,ε for tk−1

τ ≤ t < tkτ , k = 1, ..., kτ ,

qkτ
τ,h,ε for t = T,

(3.24)Proposition 3.6 (Disrete stability and energy inequalities.) Let (3.2), thelower semiontinuity (3.3)�(3.4) of the approximate stored and the dissipated ener-gies, and smoothness of external foring (3.9a) hold. Then (3.22) has a solution
qk
τ,h,ε for any k = 1, ..., kτ and qτ,h,ε is stable in the sense

qτ,h,ε(t) ∈ Sε,h(t
k
τ ) for any t ∈ (tk−1

τ , tkτ ], k = 0, ..., kτ , (3.25)and satis�es the disrete upper energy inequality
Eε,h(s, qτ,h,ε(s)) + VarDε,h

(qτ,h,ε; r, s) − Eε,h(r, qτ,h,ε(r)) ≤
∫ s

r

∂Eε,h

∂t

(

t, qRτ,h,ε(t)
)

dt(3.26)for r = tk1
τ and s = tk2

τ with any k1, k2 ∈ N ∪ {0}, 0 ≤ k1 ≤ k2 ≤ kτ , as well as asimilar disrete lower energy inequality
Eε,h(s, qτ,h,ε(s)) + VarDε,h

(qτ,h,ε; r, s) − Eε,h(r, qτ,h,ε(r)) ≥
∫ s

r

∂Eε,h

∂t

(

t, qτ,h,ε(t)
)

dt(3.27)for r = tk1
τ and s = tk2

τ but now only with k1, k2 ∈ N, 1 ≤ k1 ≤ k2 ≤ kτ .Proof. The existene of qk
τ,h,ε solving (3.22) follows from (3.3) and (3.4) via a reursiveargument for k = 1, ..., kτ . Hene qτ,h,ε and qRτ,h,ε exist, too.The disrete stability ondition (3.25) follows by using suessively that qk

τ,h,ε is asolution to (3.22) and the triangle inequality (2.1) for Dε,h:
Eε,h(t

k
τ , q

k
τ,h,ε) ≤ Eε,h(t

k
τ , q̃) + Dε,h(q

k−1
τ,h,ε, q̃) −Dε,h(q

k−1
τ,h,ε, q

k
τ,h,ε)

≤ Eε,h(t
k
τ , q̃) + Dε,h(q

k
τ,h,ε, q̃) (3.28)for any k = 1, ..., kτ .As to (3.26), we again use that qk

τ,h,ε solves (3.22) and, omparing it with qk−1
τ,h,ε, weget

Eε,h(t
k
τ , q

k
τ,h,ε) − Eε,h

(

tk−1
τ , qk−1

τ,h,ε

)

+ Dε,h

(

qk−1
τ,h,ε, q

k
τ,h,ε

)

≤ Eε,h

(

tkτ , q
k−1
τ,h,ε

)

− Eε,h

(

tk−1
τ , qk−1

τ,h,ε

)

=

∫ tkτ

tk−1
τ

∂Eε,h(t, q
k−1
τ,h,ε)

∂t
dt. (3.29)8



Now the estimate (3.26) follows after a summation for k = k1+1, ..., k2. As to theestimate (3.27), by the stability (3.28) written for qk−1
τ,h,ε q̃ = qk

τ,h,ε, we �nd
Eε,h

(

tkτ , q
k
τ,h,ε

)

− Eε,h

(

tk−1
τ , qk−1

τ,h,ε

)

+ Dε,h

(

qk−1
τ,h,ε, q

k
τ,h,ε

)

≥ Eε,h

(

tkτ , q
k
τ,h,ε

)

− Eε,h

(

tk−1
τ , qk

τ,h,ε

)

=

∫ tkτ

tk−1
τ

∂Eε,h(t, q
k
τ,h,ε)

∂t
dt. (3.30)By a summation for k = k1+1, ..., k2, we obtain (3.27). 2Remark 3.7 (Approximation of initial onditions.) Note that (3.30) does not workfor k = 1 beause we (intentionally) did not assume �numerial� stability of theapproximate initial ondition, i.e. [q0]h,ε ∈ Sε,h(0) whih would only very hardly beguaranteed in onrete numerial shemes. This is also why (3.27) does not holdwith r = 0, unlike (3.26).3.4 Convergene of the approximate solutionsNow we investigate the asymptotis for τ → 0, h → 0, and ε → 0. Like forspae disretization, we do not assume the partition of the time interval [0, T ] to benested, but we assume that both time and spae disretization re�nes when τ → 0and h → 0, respetively. Namely (3.21) for the time disretization while, for thespatial disretization, this re�nement requirement is impliitly ontained in (3.16);later it will be assumed expliitly (4.2) to prove (3.16).Theorem 3.8 Let the assumptions (2.1), (3.2)� (3.9), (3.13), (3.16) and (3.21)hold. Assume that the initial ondition q0 is stable, i.e.

q0 ∈ S(0), (3.31)and is approximated by [q0]h,ε ∈ Qh in the sense
[q0]h,ε → q0 and Eε(0, [q0]h,ε) → E(0, q0). (3.32)Then, there exists a subsequene {(τn, hn, εn)}n∈N with (τn, hn, εn) → (0, 0, 0) for

n → ∞ satisfying the onvergene riterion hn ≤ H(εn) from ondition (3.16) anda proess q : [0, T ] → Q being an energeti solution aording to De�nition 2.1 suhthat the following holds:(i) for all t ∈ [0, T ] we have Eεn(t, qn(t)) → E(t, q(t)),(ii) for all t ∈ [0, T ] we have VarDεn
(qn; 0, t) → VarD(q; 0, t),(iii) for all t ∈ [0, T ] we have zn(t) → z(t) in Z,(iv) ∂

∂t
Eεn(·, qn(·)) → ∂

∂t
E(·, q(·)) in L1(0, T ),(v) for all t ∈ [0, T ] there is a subsequene {nl}l∈N suh that liml→∞ unl

(t) =
u(t) in U , hene liml→∞ qnl

(t) = q(t) in Q,where we wrote shortly qn = (un, zn) for qRτn,hn,εn
= (uRτn,hn,εn

, zRτn,hn,εn
).9



Proof. We follow the steps for the existene proof formulated in [14, 39℄. However,we are more general than [14, 39℄ as we do not require [q0]h,ε to be stable.Let us abbreviate
Gτ,h,ε(t) := Eε,h(t, q

R
τ,h,ε(t)), Dτ,h,ε(t) := VarDε,h

(qRτ,h,ε; 0, t). (3.33)Step 1: A priori estimates. By (3.9) and (3.10), we an estimate the right-hand sideof (3.29) as
∫ tkτ

tk−1
τ

∂Eε,h(t, q
k−1
τ,h,ε)

∂t
dt ≤

∫ tkτ

tk−1
τ

c1
(

Eε,h(t, q
k−1
τ,h,ε) + c0

)

dt

≤
∫ tkτ

tk−1
τ

c1e
c1(t−tk−1

τ )
(

Eε,h(t
k−1
τ , qk−1

τ,h,ε) + c0
)

dt

=
(

ec1(tkτ−tk−1
τ ) − 1

)(

Eε,h(t
k−1
τ , qk−1

τ,h,ε) + c0
)

. (3.34)Forgetting, for a moment, Dε,h in (3.29) and linking it with (3.34) yields
Eε,h(t

k
τ , q

k
τ,h,ε) + c0 ≤ ec1(tkτ−tk−1

τ )(Eε,h(t
k−1
τ , qk−1

τ,h,ε) + c0) from whih, by indution for
k = 1, 2, ..., kτ we get

Eε,h(t
k
τ , q

k
τ,h,ε) ≤ ec1tkτ

(

Eε,h(0, q
0
τ,h,ε) + c0

)

− c0. (3.35)By (3.32), we onlude that Eε,h(t
k
τ , q

k
τ,h,ε) is upper bounded independently of k, h,

τ , and ε. By (3.9b) we an bound Gτ,h,ε(t) from below and, by (3.35) with (3.10)after some still some alulations from above:
−c0 ≤ Gτ,h,ε(t) ≤ a∗e

c1t − c0 with a∗ := c0 + sup
τ,h,ε

Eε,h(0, q
0
τ,h,ε), (3.36)where the �sup� is onsidered for (τ, h, ε) small enough. Note that a∗ < +∞ due to(3.32) with the assumption E(0, q0) < +∞.Using (3.35) again for (3.34) but summed for k = 1, ..., kτ , we obtain

∫ T

0

∂Eε,h(t, q
R
τ,h,ε)

∂t
dt =

kτ
∑

k=1

∫ tkτ

tk−1
τ

∂Eε,h(t, q
k−1
τ,h,ε)

∂t
dt

≤
(

Eε,h(0, q
0
τ,h,ε) + c0

)

kτ
∑

k=1

(

ec1tkτ − ec1tk−1
τ

)

=
(

Eε,h(0, q
0
τ,h,ε) + c0

)(

ec1T − 1
)

. (3.37)Coming bak to (3.29) and ombining it with the lower bound (3.9b) for Eε,h(T, q
kτ
τ,h,ε)and with (3.37), we now an estimate the total variation of Dτ,h,ε as

Var(Dτ,h,ε; 0, T ) =
kτ

∑

k=1

Dε,h

(

qk−1
τ,h,ε, q

k
τ,h,ε

)

≤ Eε,h(0, q
0
τ,h,ε) + c0 +

(

Eε,h(0, q
0
τ,h,ε) + c0

)(

ec1T−1
)

=
(

Eε,h(0, q
0
τ,h,ε) + c0

)

ec1T ≤ a∗e
c1T (3.38)10



with a∗ from (3.36). We an now estimate also the total variation of Gτ,h,ε simplyby (3.9b) and (3.10) as
Var(Gτ,h,ε; 0, T ) =

∫ T

0

∣

∣

∣

∂Eε,h(t, q
R
τ,h,ε)

∂t

∣

∣

∣
dt+

kτ
∑

k=1

∣

∣Eε,h(t
k
τ , q

k
τ,h,ε) − Eε,h(t

k
τ , q

k−1
τ,h,ε)

∣

∣

≤
∫ T

0

c1
(

Gτ,h,ε(t) + c0
)

dt+

kτ
∑

k=1

∣

∣Eε,h(t
k
τ , q

k
τ,h,ε) − Eε,h(t

k−1
τ , qk−1

τ,h,ε)
∣

∣

+
kτ

∑

k=1

∫ tkτ

tk−1
τ

∣

∣

∣

∂Eε,h(t, q
k−1
τ,h,ε)

∂t

∣

∣

∣
dt =: T1 + T2 + T3. (3.39)The term T1 is bounded sine we have already proved |Gτ,h,ε(t)| a-priori bounded,and also T3 ≤ T1, see (3.37), so it remains to bound T2. By (3.29) and (3.30), wean estimate

T2 ≤ Var(Gτ,h,ε; 0, T ) + max

(

T1,

∫ T

0

∣

∣

∣

∂Eε,h(t, qτ,h,ε)

∂t

∣

∣

∣
dt

)

+ max
(

0, Eε,h(0, q
0
τ,h,ε) − Eε,h(t

1
τ , q

1
τ,h,ε)

) (3.40)and, again by (3.9b) and (3.10),
∫ T

0

∣

∣

∣

∂Eε,h(t, qτ,h,ε)

∂t

∣

∣

∣
dt ≤

∫ T

0

c1
(

Eε,h(t, qτ,h,ε) + c0
)

dt

=
kτ

∑

k=1

∫ tkτ

tk−1
τ

c1
(

Eε,h(t, q
k
τ,h,ε)+c0

)

dt ≤
kτ

∑

k=1

∫ tkτ

tk−1
τ

c1e
c1(tkτ−t)

(

Eε,h(t
k
τ , q

k
τ,h,ε)+c0

)

dt

=

kτ
∑

k=1

(

ec1(tkτ−tk−1
τ )−1

)(

Eε,h(t
k
τ , q

k
τ,h,ε) + c0

)

≤
kτ

∑

k=1

(

ec1(tkτ−tk−1
τ )−1

)

ec1tk−1
τ a∗e

τ

=

kτ
∑

k=1

(

ec1tkτ − ec1tk−1
τ

)

a∗e
τ =

(

ec1T − 1
)

a∗e
τ , (3.41)where we also used, by (3.35)�(3.36), the estimate

Eε,h(t
k
τ , q

k
τ,h,ε) + c0 ≤ ec1tkτa∗ ≤ ec1tk−1

τ a∗e
τ ,and eventually the last term in (3.40) an be estimated simply beause, by (3.9b)and (3.32), Eε,h(t

1
τ , q

1
τ,h,ε) ≥ −c0 and Eε,h(0, q

0
τ,h,ε) ≤ a∗ − c0, hene this last term isbounded from above by a∗ from (3.36).Step 2: Seletion of subsequenes. Sine the salar funtions Gτ,h,ε and Dτ,h,ε from(3.33) are uniformly bounded in BV([0, T ]) by (3.38) and (3.39) together with theobvious bounds on |Gτ,h,ε(0)| = |Eε(0, [q0]h,ε)| ≤ max(|c0|, a∗) with a∗ from (3.36) and

|Dτ,h,ε(0)| = 0, we may apply Helly's seletion priniple both in the lassial form11



and, relying on the assumptions (3.2), (3.6), (3.7), also in the form of Lemma 3.1 to�nd a subsequene {(τn, hn, εn)}n∈N suh that for all t ∈ [0, T ] we have the followingonvergene:
Gτn,hn,εn(t) → G(t), Dτn,hn,εn(t) → D(t), and zτn,hn,εn(t) → z(t) in Z, (3.42)for suitable limit funtions D, G and z satisfying also (3.15b). This shows that theonvergene at the point (iii) holds. We further set

Pn(t) :=
∂

∂t
Eεn(t, qn(t)) (3.43)to denote the power of the external fores. Choosing another subsequene (notrelabeled), if neessary, we also obtain

Pn
w*→ p in L∞([0, T ]), (3.44)sine losed balls in L∞([0, T ]) are sequentially weakly* ompat. For �xed t, let

P(t) := lim sup
n→∞

Pn(t). (3.45)Using Fatou's lemma we onlude P ∈ L∞(0, T ) and p(t) ≤ P(t) for a.a. t ∈ [0, T ].Further, let us set
A(t) :=

{

ũ∈U ;
∂

∂t
E(t, ũ, z(t)) = P(t)

}

. (3.46)For any t �xed, A(t) is nonempty: Indeed, we an hoose a subsequene (nt
j)j∈N(depending on t!) suh that

P(t) = lim
j→∞

Pnt
j
(t) = lim

j→∞

∂

∂t
Eε

nt
j

(t, qnt
j
(t)), (3.47)f. (3.45) and (3.43). Taking into aount the energy bound Gτ,h,ε(t) obtained inStep 1 and the ompatness assumption (3.5), we an even assume that also qnt

j
(t)onverges to some q(t). By (3.42), q(t) = (u(t), z(t)) with z(t) just from (3.42). Let

tj := max{θ ∈ [0, t]; θ = t
τnj

k , k = 0, ..., kτnj
}. Then qnt

j
(t) ∈ Sε

nt
j
,h

nt
j

(tj). Obviously,also tj → t. Hene we an use (3.13) to obtain
lim
j→∞

∂

∂t
Eε

nt
j
,h

nt
j

(tj , qnt
j
(t)) =

∂

∂t
E(t, q(t)). (3.48)Comparing it with (3.47) we get

∂

∂t
E(t, q(t)) = P(t). (3.49)Thus u(t) forming the pair q(t) = (u(t), z(t)) lies in A(t) from (3.46). Ranging tover [0, T ] thus yields a mapping u : [0, T ] → U with u(t) ∈ A(t) for all t ∈ [0, T ].12



Step 3: Stability of the limit proess. The stability of the limit proess q is nowensured by (3.16) as a diret onsequene of Lemma 3.3. For �xed t ∈ (0, T ] onsider
qnt

j
(t) and tj onverging for j → ∞ to q(t) and t in the position of qn and tn in theondition (3.16), respetively, and then Lemma 3.3 just yields q(t) ∈ S(t). For t = 0,stability of q(0) = q0 holds by assumption.Step 4: Upper energy estimate. By (3.26) with r = 0 we have Gτn,hn,εn(t) +

Dτn,hn,εn(t) − Gτn,hn,εn(0) ≤
∫ t

0
Pn(s) ds for any t = tkτn

, k = 0, ..., kτn. For a gen-eral t ∈ [0, T ], this inequality is ful�lled with an auray O(τn); this is beause
|Gτn,hn,εn(t) − Gτn,hn,εn(tk−1

τn
)| ≤ τn‖Pn‖L∞(0,T ) for t ∈ [tk−1

τn
, tkτn

) and beause also
|
∫ t

0
Pn(s) ds−

∫ tk−1
τn

0
Pn(s) ds| ≤ τn‖Pn‖L∞(0,T ) while there is no additional error inthe piee-wise onstant Dτn,hn,εn. By the onvergene properties (3.42), (3.44) and(3.45) with Fatou's lemma we get

G(t) + D(t) − G(0) ≤
∫ t

0

p(s)ds ≤
∫ t

0

P(s)ds. (3.50)Using further (3.8), (3.42), and the notation from Step 2, we have
E(t, q(t)) ≤ lim inf

j→∞
Eεnt

j
,hnt

j

(tj, qnt
j
(t)) = lim

j→∞
Gnt

j
(t) = G(t). (3.51)By (3.15b) with s = 0 and D(s) = D(0) = 0, we have VarD(q; 0, t) ≤ D(t). More-over, by (3.32) we have G(0) = E(0, q(0)). Inserting this into (3.50) and using still(3.49), we obtain

E(t, q(t)) + VarD(q; 0, t) − E(0, q(0)) ≤ G(t) + D(t) − G(0)

≤
∫ t

0

P(s) ds =

∫ t

0

∂

∂s
E(s, q(s)) ds, (3.52)whih is the desired upper energy estimate.Step 5: Lower energy estimate. The opposite estimate E(t, q(t)) + VarD(q; 0, t) −

E(0, q(0)) ≥
∫ t

0
∂
∂s
E(s, q(s))ds is a onsequene of the stability whih is alreadyestablished in Step 3. We refer to [36, Prop. 5.7℄ or also [39, Prop. 2.4℄ for thistehnial proof where (3.49) with P ∈ L∞(0, T ) and (3.11) have been used. Thus,we have proved that q : [0, T ] → Q is a solution.Step 6: Improved onvergene. Having energy equality, we onlude that in (3.50)all the inequalities must be equalities. In partiular, this implies

p(t) = P(t), G(t) = E(t, q(t)) and Var(q; 0, t) = D(t). (3.53)Together with the onvergene properties established in Step 2, we obtain the as-sertions (i)�(iii). Finally, employing [14, Prop. A.2℄ together with p = P yields (iv).
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Remark 3.9 (Two-sided energy estimate (3.26)�(3.27).) In fat, (3.26)�(3.27) wasused only to prove the a-priori BV-bound for Gτ,h,ε in Step 1. This bound is notreally needed, sine we may postpone the de�nition of G : [0, T ] → R from Step 2to Step 4 and set G(t) = lim supn→∞ Gτn,hn,εn(t). Then (3.50) and (3.51) remaintrue but the last equality in (3.51) whih has to be replaed by �≤�. Finally, Step 5implies G(t) = E(t, q(t)) as before. However, the two-sided energy estimate (3.26)�(3.27) has its own relevane as it an be used to hek implementation of numerialalulations. Namely, evaluating the terms in (3.26)�(3.27) at eah time step andheking a-posteriori the estimate (3.26)�(3.27) may detet, e.g., a failure of theminimization proedure, whih we have to apply to solve numerially the globaloptimization problem (3.22) at every urrent time step; see [31℄ for numerial resultsin a onrete example. Violation of (3.26) or (3.27) mean that qk
τ,h,ε or qk−1

τ,h,ε annotbe stable, respetively.Remark 3.10 (Numerial integration.) Another approximation of Eε and Dε in-volving, e.g., numerial integration an quite easily be inorporated, too. For this,
Eε and Dε in the onditions in Set. 3.1 as well as (3.16) should additionally dependon h by still another way than only by adding δQh

. As suh a generalization wouldompliate, in partiular, Setion 4 and as it will not be used in Setion 5, we haveomitted it ompletely.4 Linear strutureWe onsider now the ase that U and Z are subsets of some re�exive separableBanah spaes U and Z, respetively. This enables more detailed onsiderations.4.1 Setting the data and their approximationThe weak topology, if restrited on bounded onvex sets, will play the role of thesequentially ompat topology used in Set. 3 for (3.3)�(3.8), (3.13), and (3.16); yetf. Remark 3.2 for (3.13). Here we will denote it by �w-lim� or � w→ � to distinguishit from the norm topology whih we will denote by �s-lim� or � s→ �. In ase ofnon-re�exive spaes having preduals, we ould work with weak* topologies insteadof the weak ones. For an abstrat parameter h > 0, we onsider �nite-dimensionalsubspaes Uh ⊂ U and Zh ⊂ Z. The onrete onstrutions of Qh := Uh × Zh usedin numerial analysis are reated by (here an abstrat) �(quasi-)interpolation� linearbounded operators ΠU,h : U → U and ΠZ,h : Z → Z. We put Πh = ΠU,h × ΠZ,h :
Q→ Q, and

Uh := ΠU,hU , Zh := ΠZ,hZ, Qh := Uh×Zh = ΠhQ. (4.1)To guarantee the entral ondition (3.16), we assume the natural basi approxima-tion property that Πh onverges pointwise to the identity, i.e.
∀q ∈ Q : s-lim

h→0
Πhq = q. (4.2)14



The quasi-interpolation operators need not be onformal with onstraints involvedimpliitly in U and Z so that Qh need not be a subset of Q. As an analytial toolthe Γ-onvergene approah allow also for suh situations (f. [39℄) but, in order touse the theory from Setions 2�3 in a quantitative numerial way, we will alwaysrestrit ourselves on �onformal� situations when
ΠU,hU ⊂ U and ΠU,hZ ⊂ Z; (4.3)i.e. Qh = ΠhQ ⊂ Q. Possible �nononformities� an be handled via the penalizationparameter ε.For X another Banah spae, it is often useful to onsider a mapping Ξ : U×Z → Xto desribe possible equality onstraints of the form Ξ(u, z) = 0 that may impliitlybe involved in the de�nition of E . Moreover, we assume the foring by f : [0, T ] →

U∗ × Z∗ to be given expliitly in E , whih overs many appliations (exept, e.g.,�hard-devie� loading of mehanial systems through Dirihlet boundary onditions).Then, for E : U × Z → R we onsider
E(t, u, z) :=

{

E(u, z) − 〈f(t), (u, z)〉 if u ∈ U , z ∈ Z, Ξ(u, z) = 0,
+∞ otherwise. (4.4)The approximate energy deals with possible inompatibility of the �nite-dimensionaldisretization with the equality onstraints by a penalization of them (f. [49℄):

Eε(t, u, z) :=

{

E(u, z) − 〈f(t), (u, z)〉 +
1

ε

∥

∥Ξ(u, z)
∥

∥

α

X
if u ∈ U , z ∈ Z,

+∞ otherwise. (4.5)To satisfy (3.4), we assume a super-linear growth of E to dominate the linear be-havior of 〈f(t), ·〉:
lim
q∈Q

‖q‖→∞

E(q)

‖q‖ = +∞. (4.6)Obviously, (4.4) and (4.5) yield simply ∂
∂t
E(t, q) = ∂

∂t
Eε(t, q) = 〈 ∂

∂t
f(t), q〉 and (3.9a)requires

f ∈ C1([0, T ];Q∗). (4.7)The oerivity (4.6) with (4.7) ensure also (3.9b), (3.11) and (3.13).A quite anonial way to indue the dissipation distanes in simpler ases is througha degree-1 homogeneous dissipation potentials. For this, we onsider K ⊂ Z alosed onvex one with the vertex at 0, R : Z → R a ontinuous onvex degree-1homogeneous funtional, i.e. R(az) = aR(z) for any z ∈ Z and a ≥ 0. Then weonsider the speial ase of D de�ned by
D(z1, z2) :=

{

R(z2 − z1) if z2 − z1 ∈ K,
+∞ otherwise. (4.8)15



Note that D(z1, z1) = 0 and the triangle inequality (2.1) holds. As R is onvexand ontinuous and K onvex losed, D : Z × Z → R ∪ {+∞} is weakly lowersemiontinuous.If K 6= Z, then it might be numerially suitable to avoid the unilateral onstraintsinvolved by exat penalization by hoosing the approximate potential Dε in the form
Dε(z1, z2) := Rε(z2 − z1) where Rε(z) := R(z) + inf

ẑ∈K

‖z − ẑ‖
ε

. (4.9)As K is a one, Rε is again a homogeneous degree-1 funtional for any ε > 0 and(3.2) thus holds. As R is onvex and ontinuous and K is onvex, Rε is onvexand ontinuous, and the weak lower-semiontinuity (3.3) of Rε holds, too. Notethat always Rε ≤ R + δK . Unfortunately, smoothening of R + δK e.g. by Yosida'sapproximation, whih would be sometimes numerially desirable, does not ful�ll(3.2) and expetedly nontrivial modi�ations of the theory in Set. 3 would then beneeded.The stability (3.31) of the initial ondition q0 is, in general, di�ult to verify andexpliit onstrutions an be done in very speial ases only. Anyhow, there is oneuniversal way how to design a �gentle start�, namely taking q0 = (u0, z0) minimizing
E(0, ·), i.e. here a solution to the problemminimize E(u, z) − 〈f(0), (u, z)〉,subjet to Ξ(u, z) = 0, u ∈ U , z ∈ Z.

} (4.10)Suh a �gentle start� is, in fat, pratially the only option applied in engineeringsimulations.The other assumptions from Set. 3 deserve a more detailed proof.Proposition 4.1 (Veri�ation of (3.5)�(3.8).) Let E be weakly lower semion-tinuous, Ξ : Q → X be weakly ontinuous, and let K be onvex and losed, R beonvex and also positive on K \ {0}, i.e.
∀z∈K : z 6= 0 ⇒ R(z) > 0. (4.11)Then (3.5)�(3.8) with �→� referring to the weak topology hold.Proof. In view of (4.4), the ondition Eε(θ, qh,ε) ≤ a < +∞ in (3.5) implies E(qh,ε) ≤

C+〈f(θ), qh,ε〉, and by (4.6) a sequene of {qh,ε}h,ε>0 must be bounded hene it has asubsequene whih onverges weakly (reall that we assume re�exivity of Q), whihproves (3.5).As to (3.6), for z2 − z1 ∈ K we have
lim inf

(h,ε)→(0,0)
Dε(zh,ε, z̃h,ε) = lim inf

(h,ε)→(0,0)
R(z̃h,ε − zh,ε) + inf

ẑ∈K

‖z̃h,ε − zh,ε − ẑ‖
ε

≥ lim inf
(h,ε)→(0,0)

R(z̃h,ε − zh,ε) ≥ R(z̃ − z) = D(z, z̃) (4.12)16



beause R is weakly lower semiontinuous. If z2−z1 6∈ K, then inf ẑ∈K ‖z̃−z−ẑ‖ > 0beause K is losed. Using also (4.11), we then have
lim inf

(h,ε)→(0,0)
Dε(zh,ε, z̃h,ε) ≥ lim

(h,ε)→(0,0)
inf
ẑ∈K

‖zh,ε − z̃h,ε − ẑ‖
ε

= +∞ = D(z, z̃). (4.13)To prove (3.7), take z ∈ Z and a sequentially weakly ompat K in Z and a sequene
(zn)n∈N in K with limn→∞ min(D(zn, z),D(z, zn)) = 0. For a subsequene we have
znj

w→ z̃, and the mentioned weak lower semiontinuity ofD implies eitherD(z, z̃) =
0 or D(z̃, z) = 0. Thus we an onlude z̃ = z and the whole sequene must weaklyonverge, whih proves (3.7).As to (3.8), let us distinguish whether Ξ(q) = 0 or Ξ(q) 6= 0. The former aseensures the last equality in the following estimate:

lim inf
(h,ε,θ)→(0,0,t)

Eε(θ, qh,ε) = lim inf
(h,ε)→(0,0)

E(qh,ε) − 〈f(θ), qh,ε〉 +
1

ε
‖Ξ(qh,ε)‖α

X

≥ lim inf
(h,ε,θ)→(0,0,t)

E(qh,ε) − 〈f(θ), qh,ε〉 ≥ E(q) − 〈f(t), q〉 = E(t, q), (4.14)where the last inequality is by the weak lower semiontinuity of E. This provesthat (3.8) holds with respet to the weak topology if Ξ(q) = 0. In the ase
Ξ(q) 6= 0, qh,ε

w→ q and the weak ontinuity of Ξ ensures lim inf ‖Ξ(qh,ε)‖X ≥
‖w- lim Ξ(qh,ε)‖X = ‖Ξ(q)‖X > 0. Then, beause of the oerivity (4.6) of E, wehave
lim inf

θ→t
(h,ε)→(0,0)

Eε(θ, qh,ε) ≥ inf
q̃∈Q

θ∈[0,T ]

[

E−f(θ)
]

(q̃) + lim
(h,ε)→(0,0)

1

ε

∥

∥Ξ(qh,ε)
∥

∥

α

X
= +∞ = E(t, q).

2In view of the above onsiderations, we have guaranteed the assumptions neededin Theorem 3.8 exept (3.16) and (3.32). This onditions are still to be veri�ed inpartiular ases, some of them srutinized in Setions 4.2�4.4.Remark 4.2 (BV-estimates.) Assuming oerivity of R+δK on some Banah spae
Z1 ⊃ Z, i.e.

lim
z∈K, ‖z‖Z1

→∞
R(z) = +∞, (4.15)together with the degree-1 homogeneity will make (4.11) more spei�, namely [R+

δK ](z) ≥ c‖z‖Z1
with some c > 0, hene by (4.8) also D(q1, q2) ≥ c‖z1 − z2‖Z1

, andby the de�nition of �Var� in (2.6) then also
VarD(q; 0, T ) ≥ cVar‖·‖Z1

(z; 0, T ). (4.16)In view of the de�nition (2.6) applied now with the norm ‖ · ‖Z1
, the last expressionis just the standard total variation and the estimate (3.38) yields boundedness of

zτ,h,ε and thus also the limit z in the bounded-variation spae BV(0, T ;Z1).17



4.2 The ase K = ZLet us onsider an additional norm | · |, whih may indue a weaker topology thanthe anonial norm making Q a Banah spae.Proposition 4.3 (Veri�ation of (3.16) and (3.32) for K=Z.) Let (4.6) and(4.7) hold, and let α ≥ 1, let E : Q → R in (4.4) be weakly lower semiontinuousand norm ontinuous, both Ξ : Q → X and R : Z → R be weakly ontinuous, and
K = Z (hene Rε ≡ R), and Ξ be also Lipshitz ontinuous with respet to | · |, i.e.

∃ℓΞ ∈ R ∀q1, q2 ∈ Q :
∥

∥Ξ(q1) − Ξ(q2)
∥

∥

X
≤ ℓΞ

∣

∣q1 − q2
∣

∣ (4.17)and let the operator Πh satis�es the onvergene-rate estimate
∃γ > 0, C ∈ R ∀q ∈ Q :

∣

∣q − Πhq
∣

∣ ≤ Chγ
∥

∥q
∥

∥. (4.18)Then (3.16) and (3.32) with q0 ∈ S(0) are satis�ed, the last two onditions relyingon the onvergene riterion
H(ε) = o

(

ε
1

αγ
) and with q̃h,ε

s→ q̃. (4.19)Proof. Let us prove (3.16). For any q̃ ∈ Q, with Ξ(q̃) = 0, by (4.17) and (4.18), wehave
∥

∥Ξ(Πhq̃)
∥

∥

X
=

∥

∥Ξ(Πhq̃) − Ξ(q̃)
∥

∥

X
≤ ℓΞ

∣

∣q̃ − Πhq̃
∣

∣ ≤ CℓΞh
γ
∥

∥q̃
∥

∥. (4.20)For (h, ε) → (0, 0) with h ≤ H(ε) with H from (4.19) we therefore have
1

ε

∥

∥Ξ(Πhq̃)
∥

∥

α

X
≤ CαℓαΞ

hαγ

ε

∥

∥q̃
∥

∥

α → 0. (4.21)We put q̃h,ε := Πhq̃ for (3.16); note that, in fat, we do not need any expliitdependene on ε exept that we assume h ≤ H(ε). As E is strongly ontinuousand, by (4.2), q̃h,ε
s→ q̃, and as R is weakly ontinuous and qh,ε

w→ q is assumed in(3.16), it holds
lim

h≤H(ε)
(ε,h)→(0,0)

Eε(θ, q̃h,ε) + D(qh,ε, q̃h,ε) = lim
h≤H(ε)

(ε,h)→(0,0)

E(q̃h,ε) − 〈f(θ), q̃h,ε〉 +R(q̃h,ε−qh,ε)

+
1

ε

∥

∥Ξ(Πhq̃)
∥

∥

α

X
= E(q̃) − 〈f(t), q̃〉 +R(q̃−q) = E(t, q̃) + D(q, q̃)whenever Ξ(q̃) = 0. Combining this with (3.8), we obtain (3.16) for Ξ(q̃) = 0. If

Ξ(q̃) 6= 0, then due to the de�nition (4.4) the right-hand side in (3.16) is +∞ and(3.16) is ful�lled trivially.The stability of q0 onsidered in Theorem 3.8 implies E(0, q0) < +∞, and then theassumption (3.32) is ful�lled if one hooses
[

q0
]

h,ε
:= Πhq0 (4.22)in (3.32). Indeed, [q0]h,ε

s→ q0 for h → 0 just by (4.2) and then also Eε(0, [q0]h,ε) =
E(Πhq0) + 1

ε
‖Ξ(Πhq0)‖α

X − 〈f(0),Πhq0〉 → E(q0) − 〈f(0), q0〉 = E(0, q0) beause
E is assumed norm ontinuous and beause, sine the �nite energy of q0 implies
Ξ(q0) = 0, we an employ the estimate (4.21) for h ≤ H(ε). 218



4.3 The ase K$ZCertain appliations to unidiretional proesses (like damage, delamination, debond-ing, or hardening in plastiity or in ferromagnets) require modelling with K $ Z.This needs further �ner investigations for whih we onsider some topology σ on
U × Z whih is �ner than the weak one and oarser than the norm one; see thepartiular examples in Set. 5.Proposition 4.4 (Unonditional onvergene for K $ Z.) Let E : Q → Rbe weakly lower semiontinuous and σ-ontinuous. Assume both R : Z → R and
Ξ : Q → X be weakly ontinuous, and let (4.7), and that the following attainabilityondition, expressing ertain onsisteny of the disretization with the onstraintsgiven by Ξ and K, hold:

∀q, q̃∈Q, Ξ(q) = 0, q̃−q ∈ K, Ξ(q̃) = 0, ∀qh∈Qh, qh
w→ q

∃q̃h∈Qh : q̃h
σ→ q̃,

∥

∥Ξ(q̃h)
∥

∥

X
≤

∥

∥Ξ(qh)
∥

∥

X
, q̃h−qh ∈ K. (4.23)Then (3.16) with Dε,h from (4.9) is satis�ed, now with H ≡ 1, i.e. �unonditionally�.Moreover, the quali�ation (3.32) of the stable initial ondition q0 holds if

∃q0h ∈ Qh : Ξ(q0h) = 0 & q0h
σ→ q0. (4.24)Proof. The a-priori bound Eε,h(θ, qh,ε) ≤ C assumed in (3.16) means

1

ε

∥

∥Ξ(qh,ε)
∥

∥

α

X
≤ C − E(qh,ε) +

〈

f(θ), qh,ε

〉

≤ C + sup
q∈Q

θ∈[0,T ]

[

f(θ)−E
]

(q) <+∞ (4.25)due to (4.6) so that ‖Ξ(qh,ε)‖X = O(ε1/α). In the limit therefore Ξ(q) = 0 beause
Ξ is assumed weakly ontinuous. Thus we take qh,ε from (3.16) for qh in (4.23). As(3.16) is trivially satis�ed if Ξ(q̃) 6= 0 beause the right-hand side in (3.16) is +∞,we an onsider only Ξ(q̃) = 0. Then we an take q̃h from (4.23) for q̃h,ε in (3.16).Note that q̃h,ε − qh,ε ∈ K in (4.23) ensures Dε,h(qh,ε, q̃h,ε) = R(qh,ε − q̃h,ε) due tothe de�nition (4.9) and by the assumed weak ontinuity of R and losedness andonvexity of K, we have

lim
(h,ε)→(0,0)

Dε,h(qh,ε, q̃h,ε) = lim
(h,ε)→(0,0)

R(q̃h,ε − qh,ε) = R(q̃ − q) = D(q, q̃). (4.26)Then, using the σ-ontinuity and weak lower semiontinuity of E the ontinuity of
f (see (4.7)), and ‖Ξ(q̃h,ε)‖X ≤ ‖Ξ(qh,ε)‖X (see (4.23)), we obtain

lim sup
(h,ε,θ)→(0,0,t)

(

Eε,h(θ, q̃h,ε) + Dε,h(qh,ε, q̃h,ε) − Eε,h(θ, qh,ε)
)

= lim sup
(h,ε,θ)→(0,0,t)

(

E(q̃h,ε)

−〈f(θ), q̃h,ε − qh,ε〉 +
1

ε
‖Ξ(q̃h,ε)‖α

X + D(qh,ε, q̃h,ε) − E(qh,ε) −
1

ε
‖Ξ(q̃h,ε)‖α

X

)

≤ lim sup
(h,ε,θ)→(0,0,t)

(

E(q̃h,ε) − 〈f(θ), q̃h,ε − qh,ε〉 + D(qh,ε, q̃h,ε) − E(qh,ε)
)

= lim
(h,ε,θ)→(0,0,t)

(

E(q̃h,ε) − 〈f(θ), q̃h,ε − qh,ε〉 + D(qh,ε, q̃h,ε)
)

− lim inf
(h,ε)→(0,0)

E(qh,ε)

≤ E(q̃) − 〈f(t), q̃−q〉 + D(q, q̃) −E(q) = E(t, q̃) + D(q, q̃) − E(t, q). (4.27)19



Eventually, we are to prove (3.32) provided (4.24) and provided q0 ∈ S(0); the lastinlusion implies E(0, q0) < +∞ whih here further implies Ξ(q0) = 0). Then, with
[q0]h,ε := q0h in (4.24), it holds

Eε,h(0, [q0]h,ε) = E(q0h) − 〈f(0), q0h〉 → E(q0) − 〈f(0), q0〉 = E(0, q0) (4.28)as required in (3.32) beause E is assumed σ-ontinuous. Note that the last equalityin (4.28) relies on Ξ(q0) = 0 for whih σ-ontinuity of Ξ is needed; in fat, weassumed even weak ontinuity of Ξ. 24.4 The ase K$Z and �semiquadrati� E.Some appliations exhibits the �main� part of the stored energy E quadrati in termsof the dissipating variable z in the sense
E(u, z) :=

1

2
〈Bz, z〉 + E0(u, z) , B : Z → Z∗ linear and bounded,

E0 : U×Z → R (s×w)-ontinuous. (4.29)In smooth ases, this orresponds to problems governed by �semilinear� mappings
E ′(q) =

(0 0
0 B

)

+E ′
0(q). Suh problems are well �tted for unonditional onvergeneunder some partiular irumstanes.As to (3.32), we an guarantee it again through (4.24) now with σ the strong topologyto have the quadrati term in (4.29) ontinuous. The veri�ation of (3.16) is nowmore sophistiated:Proposition 4.5 (�Semiquadrati� ase: unonditional onvergene.) Let(4.7) and (4.29) hold, R be ontinuous, let further Ξ be independent of u, a�ne andontinuous, i.e. in the form Ξ(u, z) = Ξ0(z) + ξ with ξ ∈ X, and Ξ0 ∈ L(Z,X)ompatible with the disretization operator ΠZ,h in the sense that ΠZ,h(Ker Ξ0) ⊂

KerΞ0. Let also Z +K ⊂ Z, and the one K be ompatible with ΠZ,h in the sensethat ΠZ,hK ⊂ K. Then (3.16) with H ≡ 1 holds.Proof. We will prove (3.16) by using Proposition 4.4 and for this we will verify(4.23) with σ being the strong×weak topology on U × Z. The reovery element q̃hin (4.23) an be hosen simply as
ũh := ΠU,hũ, (4.30a)
z̃h := zh + ΠZ,h(z̃ − z). (4.30b)It holds q̃h ∈ Qh; indeed, ũh ∈ Uh just by the de�nitions (4.1) and (4.30a) while

z̃h ∈ Zh beause z̃−z ∈ K, assumed in (4.23), implies z̃h−zh = ΠZ,h(z̃−z) ∈ ΠZ,hKand further Z + K ⊂ Z implies Zh = ΠZ,hZ ⊃ ΠZ,h(Z + K) = Zh + ΠZ,hK andeventually zh ∈ Zh is assumed in (4.23), hene z̃h ∈ Zh indeed follows.20



Also, the inequality ‖Ξ(qh)‖X ≤ ‖Ξ(q̃h)‖X in (4.23) follows from
Ξ(q̃h) = Ξ0z̃h + ξ = Ξ0(zh + ΠZ,h(z̃ − z)) + ξ = Ξ(qh) (4.31)beause Ξ0(ΠZ,h(z − z̃)) = 0 holds. Indeed, Ξ(q̃) = 0 is also expliitly assumed in(4.23) while Ξ(q) = 0 follows from qh

w→ q assumed in (4.23) by the ontinuityof Ξ, and therefore Ξ0(z − z̃) = Ξ(q) − Ξ(q̃) = 0, hene z − z̃ ∈ Ker Π0, and bythe assumed ompatibility ΠZ,h(KerΞ0) ⊂ Ker Ξ0 also ΠZ,h(z − z̃) ∈ Ker Ξ0, heneeventually Ξ0(ΠZ,h(z − z̃)) = 0. Then also, by using also (4.2), it holds(s×w)-lim
h→0

q̃h =
( s-lim

h→0
ũh , w-lim

h→0
z̃h

)

=
( s-lim

h→0
ΠU,hũ , w-lim

h→0
zh + s-lim

h→0
ΠZ,h(z̃−z)

)

=
(

ũ, z + (z̃−z)
)

= q̃.Although for σ =s×w the energy E itself need not be σ-ontinuous like in Proposi-tion 4.4, in the ase (4.29) it is however possible to pass to the limit in the di�erene
E(θ, q̃h) − E(θ, qh) by using (4.31) and the binomial formula:
Eε(θ, q̃h) − Eε(θ, qh) = E(θ, q̃h) + 1

ε
‖Ξ(q̃h)‖α

X − E(θ, qh) − 1
ε
‖Ξ(qh)‖α

X

= E(θ, q̃h) − E(θ, qh)

= 1
2
〈Bz̃h, z̃h〉 − 1

2
〈Bzh, zh〉 + E0(q̃h) −E0(qh) − 〈f(θ), q̃h−qh〉

= 1
2
〈B(z̃h − zh), z̃h + zh〉 + E0(q̃h) − E0(qh) − 〈f(θ), q̃h−qh〉

→ 1
2
〈B(z̃ − z), z̃ + z〉 + E0(q̃) − E0(q) − 〈f(t), q̃ − q〉

= 1
2
〈Bz̃, z̃〉 − 1

2
〈Bz, z〉 + E0(q̃) − E0(q) − 〈f(t), q̃ − q〉

= E(t, q̃) − E(t, q). (4.32)For the limit passage it was important that z̃h−zh = ΠZ,h(z̃−z) s→ z̃−z beause of(4.2) so that
〈B(z̃h−zh), z̃h+zh〉 → 〈B(z̃ − z), z̃ + z〉 (4.33)beause z̃h+zh

w→ z+z̃. We have z̃h − zh = ΠZ,h(z̃ − z) ∈ ΠZ,hK ⊂ K. Then, inview of the de�nition in (4.8) and the strong ontinuity of R, we have
lim

(ε,h)→(0,0)
Dε(qh, q̃h) = lim

(ε,h)→(0,0)
Rε(z̃h−zh) = lim

h→0
R(z̃h−zh)

= lim
h→0

R
(

ΠZ,h(z̃−z)
)

= R
(

lim
h→0

ΠZ,h(z̃−z)
)

= R(z̃−z) = D(q, q̃). (4.34)By (4.32) and (4.34), we an pass diretly to the limit in (4.27). Thus (3.16) with
H ≡ 1 is proved in this ase, too. 2Alternatively to the setting (4.29), we an onsider a variant with a fully quadrati�main� part of E: 21



Proposition 4.6 (Semiquadrati ase II: unonditional onvergene.) Let
E(q) :=

1

2
〈Bq, q〉 + E0(q) , B : Q→ Q∗ linear and bounded,

E0 : Q→ R w-ontinuous. (4.35)hold, R be ontinuous and U = U and and Ξ be a�ne and ontinuous, i.e. in theform Ξ(q) = Ξ0q + ξ with ξ ∈ X and Ξ0 ∈ L(Q,X) suh that Πh(Ker Ξ0) ⊂ Ker Ξ0.Let again Z + K ⊂ Z, ΠZ,hK ⊂ K, and f satisfy (4.7). Then (3.16) with H ≡ 1holds.Proof. Instead of (4.30), we take
q̃h := qh + Πh(q̃ − q). (4.36)Then it su�es to modify the proof of Proposition 4.5 quite straightforwardly, e.g. toonsider q's instead of z's in (4.31) and (4.32). 2Remark 4.7 (No penalization.) In ase of the unonditional onvergene, one anonsider a numerial sheme with ε = 0, i.e. with the original E and D instead of

Eε,h and Dε,h. The orresponding inremental problem might then involve unilateralonstraint; f. also Remark 5.3.5 Partiular examples in ontinuum mehanisThe doubly-nonlinear inlusion (2.2) is a framework for desription of so-alled gen-eralized standard materials with internal parameters as introdued by Halphen andNguen [21℄ in those ases where onvexity of stored and dissipated energies an beexpeted and inertial e�ets an be negleted. Here we have in mind various inelas-ti rate-independent proesses in suh materials having possibly a nononvex storedenergy. The following examples illustrate how the general theory applies in parti-ular situations, f. Table 1 for a survey. As a by-produt of the presented numerialtheory, we obtain analytial existene/onvergene results whih have not yet beenderived in literature. For the sake of explanatory luidity, we on�ne ourselves torather onventional models from ontinuum mehanis although some less onven-tional models (e.g. those involving a mirostruture desribed by so-alled Youngmeasures, see [32, 52, 53, 54℄) allow for suh numerial analysis, too. In Set. 5.7we present a ombination of mehanial and ferromagnetial e�ets, i.e. magne-tostrition with hysteretial e�ets, but the ombination with ferroeletrial e�ets,i.e. piezoeletriity with hysteresis (see [43℄), or even purely non-mehanial rate-independent models developed in ferromagnetis (e.g. [52, 53, 58, 59℄) and ferro-eletris (e.g. [25, 48, 56℄) ould be treated similarly. We neglet any temperaturedependene or, in other words, if there is a possible dependene of data on tem-perature, we onsider su�iently slow proesses so that the released heat due todissipative proesses an e�iently be transferred away to allow for onsideringisothermal proesses. 22



proess unidiretional onstraints quadrati proposition/ setion (i.e.K $ Z) (i.e.X 6={0}) energy E usedplastiity with hardening + − + 4.5 or 4.6at small strains / 5.2phase transformation: − − − 4.4 (σ=s)mixture approah / 5.3phase transformation: − + − 4.4 (σ=s)non-mixture approah/5.4damage / 5.5 + − ± 4.5debonding / 5.6 + − − 4.4 (σ=s×w∗)magnetostrition / 5.7 − + − 4.3Table 1. Organization and features of the examples presented in Setion 5.5.1 Sketh of ontinuum mehanis of deformable bodiesWe assume a speimen oupying in its referene on�guration a bounded domain
Ω ⊂ R3. As usual, y : Ω → R3 denotes the deformation and u : Ω → R3 thedisplaement, related to eah other by y(x) = x+u(x), x ∈ Ω. Hene the deformationgradient equals F = ∇y = I + ∇u with I ∈ R3×3 being the identity matrix and ∇is the gradient operator. For simpliity, we will treat only the soft-devie loadingrealized through tration (Neumann or Robin-type) boundary onditions. The stateof the material and possibly also of boundary onditions is assumed to depend on (aset of) ertain parameters z that may evolve in time in a rate-independent manner.Then naturally U and Z used before will be the spaes of u's and of z's, respetively.The spei� energy stored in the inter-atomi links in the homogeneous (possiblyanisotropi) ontinuum ϕ̂ = ϕ̂(F, z) is phenomenologially desribed as a funtionof the deformation gradient F and the mentioned variable z ∈ Rm. Mostly thevetor z ∈ Z0 ⊂ Rm in not diretly aessible for a marosopial loading (for anexeption see Set. 5.7) and will thus play the role of internal parameters. The frame-indi�erene, i.e. ϕ̂(F, z) = ϕ̂(RF, z) for any R ∈ SO(3) = the group of orientation-preserving rotations, requires that ϕ̂(·, z) in fat depends only on the (right) Cauhy-Green streth tensor

F⊤F = (I + ∇u)⊤(I + ∇u) = I + (∇u)⊤ + ∇u+ (∇u)⊤∇u. (5.1)An important property of ϕ̂(·, z) is quasionvexity, whih means ϕ(A, z) ≤
infu∈W 1,p

0 (Ω;R3)

∫

Ω
ϕ(A+∇u, z) dx for any A ∈ R3×3. The following assertion modi�esthe elebrated result by Aerbi and Fuso [1℄:Lemma 5.1 Let ϕ : R3×3 × Rm → R be ontinuous, ϕ(·, z) quasionvex, p, p1 ∈

(1,+∞) and, for some c2 ≥ c1 > 0,
∀A∈R3×3 ∀z∈Z0 : c1

(

|A|p+|z|p1−1
)

≤ ϕ(A, z) ≤ c2
(

1+|A|p+|z|p1
)

. (5.2)23



Then the funtional (u, z) 7→
∫

Ω
ϕ(∇u, z) dx is (w×s)-lower semiontinuous on

W 1,p(Ω; R3) × {z∈Lp1(Ω; Rm); z(·)∈Z0 a.e. on Ω}.Sketh of the proof. By oerivity, we do not need to distinguish between sequentialand topologial lower semiontinuity.Let us take a sequene {(un, zn)}n∈N (w×s)-onverging to (u, z). Then (∇un, zn)(w×s)-onverges to (∇u, z) in Lp(Ω; R3×3) × Lp1(Ω; Rm). Also, seleting a suitablesubsequene, it generates (a set) of Lp×Lp1-Young measures of the form ν⊗µz where
µz = {δz(x)}x∈Ω with δz(x) denoting here the Dira distribution on Rm supported at
z(x); f. [44, Corollary 3.4℄. This means, in terms of a mentioned subsequene, that

lim
n→∞

∫

Ω

v(∇un, zn)dx =

∫

Ω

∫

R3×3×Rm

v(A, r)
[

νx ⊗ δz(x)

]

(dA×dr)dx

=

∫

Ω

∫

R3×3

v(A, z(x)) νx(dA)dx (5.3)for any v ontinuous of a growth less than p in the A-variable, while for ϕ ontinuoussatisfying (5.2) we have only
lim inf
n→∞

∫

Ω

ϕ(∇un, zn) dx ≥
∫

Ω

∫

R3×3

ϕ(A, z(x)) νx(dA)dx; (5.4)f. [45, Theorem 3.2℄.As νx is a gradient Lp-Young measure with ∫

R3×3 Aνx(dA) = ∇u(x) for a.a. x ∈ Ω,and as ϕ(·, z(x)) is quasionvex, for a.a. x ∈ Ω it holds
∫

R3×3

ϕ(A, z(x))νx(dA) ≥ ϕ
(

∫

R3×3

Aνx(dA), z(x)
)

= ϕ(∇u(x), z(x)). (5.5)see [30, 45℄. Combining (5.4) and (5.5) yields lim infn→∞

∫

Ω
ϕ(∇un, zn) dx ≥

∫

Ω
ϕ(∇u(x), z(x)) dx. As the Young measure is not involved in the last estimateat all, this estimate holds, in fat, for the whole original sequene. 2An example of a frame-indi�erent quasionvex (in fat even polyonvex, i.e. onvexin terms of F and its determinant and ofators) energy ϕ̂(F, z) := ϕ̃(F ) satisfying(5.2) is the Ogden-type material

ϕ(F, z) = α1tr
(

F⊤F − I
)p/2

+ α2

∣

∣tr
(

cof(F⊤F )−I
)
∣

∣

p0
+ φ0

(

det(F )
)

; (5.6)here α1, α2 > 0, p ≥ 3, p0 ≤ p/2, φ0 is a onvex funtion of at most p/3 growth, and�nally tr(·) in (5.6) denotes the trae of a matrix.As F = I+∇u, we an express the spei� stored energy in terms of the displaementgradient as
ϕ = ϕ(∇u, z) = ϕ̂

(

I+∇u, z
)

. (5.7)24



The Piola-Kirhho� stress σ : R3×3 → R3×3 is given by σ = ϕ′
∇u(∇u, z) = ϕ̂′

F (I+
∇u, z) with ϕ′

∇u and ϕ̂′
F denoting the tensor-valued partial gradients.If the displaement gradient ∇u is small, one an neglet the quadrati term (5.1)so that the Green-Lagrange strain tensor E from (5.6) turns into a so-alled small-strain tensor e(u) := 1

2
∇u+ 1

2
(∇u)⊤, i.e.

eij(u) =
1

2

∂ui

∂xj
+

1

2

∂uj

∂xi
, i, j = 1, ..., 3. (5.8)For all examples below, we assume Ω ⊂ R3 to be a polyhedral domain. The disretiza-tion is made by a nested family of regular triangulations of Ω with the mesh param-eter h > 0 and ΠU,h and ΠZ,h will always be onsidered as quasi-interpolation op-erators related with standard onformal �nite elements of polynomial type, namelyP0 (i.e. element-wise onstant funtions) or P1 (i.e. element-wise a�ne ontinu-ous funtions). To be more expliit, we an onsider a molli�er u 7→ ũh with

ũh(x) =
∫

Ω
kh(x, ξ)u(ξ)dξ using a ontinuous kernel kh : Ω×Ω → R+ supported onan h-neighbourhood of the diagonal in Ω×Ω and ∫

Ω
kh(x, ξ) dξ = 1 for all x ∈ Ω.Then de�ne uh = ΠU,hu as a Lagrange pieewise a�ne interpolation of ũh usingthe nodal points in ase of P1-elements, or pieewise onstant interpolation usingbaryenters of the simplexes of the partiular triangulation in ase of P0-elements.Moreover, we will assume the nested triangulations onformal with the spei� dis-joint partition of Γ where possibly di�erent boundary onditions are presribed. Asto the initial ondition q0, we will always assume its stability (3.31), e.g. ensuredthrough a �gentle start� (4.10) and thus not disussed in partiular ases.5.2 Plastiity with hardening at small strainsThe �rst example on whih we want to demonstrate our theory is a fully rate-independent plastiity with isotropi hardening. The vetor of the internal param-eters z := (π, η) ∈ L2(Ω; R3×3

sym,0) × L2(Ω) =: Z is therefore now omposed from theplasti strain π and a hardening variable η; here we used the notation
R3×3

sym,0 :=
{

A ∈ R3×3; A⊤ = A, tr(A) = 0
}

. (5.9)For simpliity, we onsider homogeneous Dirihlet boundary onditions on a part Γ0of the boundary ∂Ω with nonvanishing surfae measure, so that
U := U =

{

u ∈W 1,2(Ω; R3); u = 0 a.e. on Γ0}, (5.10)
Z :=

(

L2(Ω; R3×3
sym,0) × L2(Ω)

)

∩K (5.11)where K is the one of admissible evolution diretions, see (5.14) below. The oini-dene that the z-omponent of states an be restrited equally in the stored energyand dissipation energy is important for (5.17) below. We postulate the stored energyas
E(u, z) ≡ E(u, π, η) :=

1

2

∫

Ω

(e(u) − π)⊤C(e(u) − π) + bη2 dx (5.12)25



where C = [Cijkl] ∈ R3×3×3×3 is a positive-de�nite 4th-order tensor of elasti moduliand b > 0 a hardening parameter. There are no onstraints of the type Ξ(u, π, η) = 0so we onsider Eε ≡ E . In view of Remark 3.10, it also means that no numerial-integration error is expeted. Considering the loading by a time-varying fore gating on Γ1 := ∂Ω \ Γ0, we postulate f as
〈f(t), (u, z)〉 :=

∫

Γ1

g(t, x)·u(x) dS. (5.13)The hardening is a unidiretional proess and is, in standardly aepted models,re�eted by the one of admissible evolution diretions in the form
K := {z = (π, η); η ≥ δ∗P (π) a.e. on Ω}. (5.14)Here P ⊂ R3×3 is a onvex losed neighbourhood of the origin, δP is its indiatorfuntion, and δ∗P the onjugate funtional to δP with respet to the duality pairing

σ : e =
∑3

i,j=1 σijeij . Note that the physial dimension of this pairing is Pa=J/m3.Hene, δ∗P is onvex, homogeneous degree-1 and positive exept at the origin, andthus K is indeed a one. The interior of P is alled elastiity domain while itsboundary is alled the yield surfae. More preisely, it orresponds to the initialelastiity domain if η = 1 is onsidered as an initial ondition while the atualelastiity domain may be in�ated during the loading proess just by the isotropialhardening. The ontinuous part of the degree-1 homogeneous dissipation potentialis
R(z) :=

∫

Ω

δ∗P (π) dx (5.15)so that the overall dissipation distane is, in view of (4.8),
D(z1, z2) ≡ D(π1, η1, π2, η2) :=

{

∫

Ω
δ∗P (π2−π1) dx if η2−η1 ≥ δ∗P (π2−π1) on Ω,

+∞ otherwise.This leads naturally to Z1 := L1(Ω; R3×3
sym,0)×L1(Ω) in Remark 4.2. Beside the men-tioned initial ondition η(0, ·) = 1, we must presribe π(0, ·) = π0 ∈ L2(Ω; R3×3

sym,0).The required stability (3.31) of q0, ahieved e.g. through the �gentle start� (4.10) assuggested in Set. 5.1, yields z0 = (π0, η0) ∈ K, i.e. here δ∗K(π0) ≤ 1. The mentionedinitial ondition η0 = 1 is, in general, guaranteed by this way only if f(0) is smallenough. Moreover, it is well-known (f. [22, 36℄) that this problem has a uniqueenergeti solution (u, z) ∈W 1,∞([0, T ];U × Z).We assume a polyhedral domain Ω with also Γ0 and Γ1 having a polyhedral shape,and assume Ω triangulated by a nested family of regular triangulations with themesh parameter h > 0 onformal with the partition Γ = Γ0 ∪Γ1, and ΠU,h and ΠZ,hquasi-interpolation operators related with onformal P1-elements and P0-elements,respetively. It is also important that the P0-elements are onformal with the one
K from (5.14) used also for Z in (5.11) in the sense ΠZ,hK ⊂ K, as needed forPropositions 4.5 and 4.6. As there is no Ξ in this problem, we have Eε = E but Rε26



from (4.9) is to be onsidered (unless one thinks about R + δK in plae of Re assuggested in Remark 4.7), and also (4.24) with σ the norm topology works simplyfor [q0]h,ε := Πhq0.Corollary 5.2 Let the data Ω, Γ0, Γ1, P , and q0 be quali�ed as above, and g ∈
C1([0, T ];L4/3(Γ1; R3)) and [q0]h,ε be taken as above. Then the approximate solutions
qε,τ,h = (uε,τ,h, πε,τ,h, ηε,τ,h) with

uε,τ,h ∈ L∞(0, T ;W 1,2(Ω; R3)), (5.16a)
πε,τ,h ∈ L∞(0, T ;L2(Ω; R3×3

sym,0)) ∩ BV([0, T ];L1(Ω; R3×3)), (5.16b)
ηε,τ,h ∈ L∞(0, T ;L2(Ω)) ∩ BV([0, T ];L1(Ω)), (5.16)based on the P0-elements for π and η and the P1-elements for u onverge for

(ε, τ, h) → (0, 0, 0) (even as the whole sequene in the sense of Theorem 3.8 withRemark 4.2) to the energeti solution of the problem given by E, R, K, f and q0above.Proof. The oerivity (4.6) is ensured due to the Poinaré inequality through theDirihlet boundary onditions, ensuring
E(u, π, η) ≥ c

(

‖u‖2
W 1,2(Ω;R3) + ‖π‖2

L2(Ω;R3×3) + ‖η‖2
L2(Ω)

) (5.17)provided also δ∗P (π) ≤ η; note that suh oerivity does not hold for general (π, η) ∈
Z, whih is why for the de�nition (5.11) of Z the restrition to K had to be used.As P is assumed bounded, δ∗P is Lipshitz ontinuous, and hene R is ontinuous.Moreover, stability of q0 as well as (4.24) have already been disussed above.Using the oerivity of E already proved, we an verify (3.9b) with Eε = E by
∂E
∂t

(t, q) = −〈∂f
∂t
, q〉 = −

∫

Γ1

∂g
∂t

(t, x) · u(x) dS and the estimate
∣

∣

∣

∂E
∂t

(t, q)
∣

∣

∣
≤ N

∥

∥

∥

∂g

∂t

∥

∥

∥

L4/3(Γ1;R3)

∥

∥u
∥

∥

W 1,2(Ω;R3)
≤ NG1‖q‖ ≤ N2G2

1

2c
+
c

2

∥

∥q
∥

∥

2

≤ N2G2
1

c
+ E(t, q) = c1

(

E(t, q) + c0
)with c1 = 1 and c0 = N2G2

1/c. Here c is from (5.17) and N is the norm of thetrae operator u 7→ u|Γ1
in Lin(W 1,2(Ω), L4(Γ1)) and G1 = ‖g‖C1([0,T ];L4/3(Γ1)). Herewe used the estimate E(t, q) = E(q) − 〈f(t), q〉 = E(q) −

∫

Γ1

∂g
∂t

(t, x) · u(x) dS ≥
c‖q‖2 −NG1‖q‖ ≥ c

2
‖q‖2 − 1

2c
N2G2

1.Then we use the assertions from Set. 3 through either Propositions 4.5 or 4.6. Inthe former ase, the setting (4.29) takes now
B(π, η) :=

(

Cπ , bη
)

, E0(u, π, η) :=

∫

Ω

e(u)⊤Ce(u)
2

− e(u)⊤Cπ dx,27



while for the latter ase the setting (4.35) works simply with B = E ′ and E0 = 0,i.e.
B(u, π, η) :=

(

div
(

C(e(u) − π)
)

, C(π − e(u)) , bη
)

, E0 := 0,with the �div� term onsidered in the weak sense, of ourse. Note that Z +K ⊂ Z,holds, too. Eventually, due to the uniqueness result [22, 36℄ or [51, Set.11.1.3℄, weonlude that the whole sequene onverges. 2Remark 5.3 (Implementation without regularization by LQ-programme.) Inanisotropi media like single-rystals, the domain P is onsidered to be polyhe-dral, f. e.g. [12℄, hene δ∗P has a polyhedral epigraph and the inremental problem(3.22) without any regularization (f. Remark 4.7) represents a minimization prob-lem of a sum of a quadrati and a polyhedral-graph funtional whih an be, aftera omputationally heap enhanement, solved by e�ient linear-quadrati solvers;f. [52, Lemma 4℄ for this enhanement.Remark 5.4 The P0/P1-disretization of this plastiity problem has been alreadyused by Alberty and Carstensen [2℄ and thus Corollary 5.2 reovers some resultsfrom [2℄. Note that our onvergene result does not use higher-order regularity ofthe solutions (u, z) ∈W 1,∞(0, T ;U×Z). Hene we annot expet onvergene ratesas in [2℄ and thus our results are loser to [23℄ where the above onvergene resultwas established already by a more elaborate method.5.3 Phase transformation: a mixture approahIn engineering, modelling of inelasti response of the materials undergoing marten-siti transformation is of high interest. Here we want to demonstrate our theory ona simpli�ed mixture-like model for martensiti transformation.Taking Γ0 as in Setion 5.2 and Z0 := {s ∈ Rm; sl ≥ 0 &
∑m

l=1 sl = 1} the Gibbssimplex, we put
U := U =

{

u ∈W 1,p(Ω; R3); u = 0 a.e. on Γ0}, (5.18)
Z :=

{

z∈Z := W α,2(Ω; Rm); z(x)∈Z0 for a.a. x∈Ω
} (5.19)with α > 0 denoting (possibly a frational) order of derivatives of the vetor of theinternal parameters z whih now represents volume frations referring to m phases(or phase variants). For simpliity, we onsider the loading again through g as inSet. 5.2, i.e. f is again de�ned by (5.13). We postulate the stored energy as

E(u, z) :=

∫

Ω

ϕ(∇u, z) dx+
κ

2
|z|2α (5.20)

28



with κ, α > 0 and | · |α denoting the usual seminorm in the Sobolev (or, for αnoninteger, Sobolev-Slobodetski��) spae, i.e.
|z|2α =















∫

Ω

|∇αz|2 dx for α ∈ N,

1

4

∫

Ω

∫

Ω

|∇[α]z(x) −∇[α]z(ξ)|2
|x− ξ|3+2(α−[α])

dxdξ for α > 0 noninteger (5.21)with [α] the integer part of α. In priniple, more physially justi�ed kernels with asupport loalized around the diagonal {x = ξ} with the same singular behaviour as
|x− ξ|−3−2(α−[α]) for |x− ξ| → 0 ould equally be used in (5.21).The degree-1 homogeneous dissipation potential is now postulated as

R(z) :=

∫

Ω

δ∗M (z) dx (5.22)where δ∗M is determined, in analogy with δ∗P from Set. 5.2, by a onvex om-pat neighbourhood M ⊂ Rm of the origin whih presribes ativation energiesfor martensite/austenite phase-transformation or for re-orientation of partiularmartensiti variants. In partiular, the martensiti transformation is a reversibleproess, so that K = Z. Also, there is nor Ξ neither K 6= Z and thus both Eε ≡ Eand Dε ≡ D and the ε-regularization is irrelevant here.For the disretization, we onsider naturally P1-elements for u and either P0-elements for z (if α < 1/2) or P1-element also for z if (α < 3/2). Again, taking
[q0]h,ε := Πhq0 guarantees (4.24) with σ being the norm topology.Corollary 5.5 Let the data Ω, Γ0, and Γ1 be quali�ed as in Set. 5.2, let ϕ bequali�ed as in Lemma 5.1 (note that p1 is irrelevant as Z0 is bounded here), andfurther let

g ∈ C1([0, T ];Lp#/(p#−1)(Γ1; R3)), where p#







= 2p
3−p

for p < 3,

< +∞ for p = 3,
= +∞ for p > 3,

(5.23)and q0 ∈ S(0) be approximated by [q0]h,ε := Πhq0. Then the approximate solutions
qτ,h = (uτ,h, zτ,h) with

uτ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (5.24a)
zτ,h ∈ L∞(0, T ;W α,2(Ω; Rm)) ∩ BV([0, T ];L1(Ω; Rm)), (5.24b)based on the P1-elements for u and the P0- or P1-elements for z onverge for

(τ, h) → (0, 0) (in terms of subsequenes in the sense of Theorem 3.8 with Re-mark 4.2) to energeti solutions of the problem given by E, R, f and q0 above.Proof. Coerivity on Q = U ×Z follows from the assumed oerivity (5.2) of ϕ(·, z)by Poinaré inequality ombined with the Dirihlet ondition on Γ0 and by the29



regularizing κ-term in (5.20) ombined with the onstraint z(x) ∈ Z0 involved in Zin (5.19).The lower-semiontinuity of the �rst term in (5.20) needed for (3.8) follows byLemma 5.1 with p1 < +∞ arbitrary sine Z0 is now bounded.The ontinuity of R : L1(Ω) → R follows from (in fat is equivalent to) the assumedboundedness of M ⊂ Rm.The assumption in Proposition 4.4 are satis�ed simply if σ : equals the strongtopology on W 1,p(Ω; R3) ×W α,2(Ω; Rm). Here the onvexity of the Gibbs simplex
Z0 involved in Z is used, whih makes both P0- and P1-elements ompatible with Zin the sense ΠZ,hZ ⊂ Z, f. (4.3), whih makes our results from Setion 4.3 working.
2Example 5.6 At small strains, a popular model takes a �mixture� of quadratienergies in the form

ϕ(∇u, z) :=

m
∑

ℓ=1

zℓ
(e(u)−eℓ)

⊤Cℓ(e(u)−eℓ)

2
+ ψ(z) where eℓ :=

U⊤
ℓ +Uℓ

2
,with the distortion matries Uℓ of partiular pure phases (or phase variants). Thesetting here is related with the situation of martensiti transformation in a single-rystal and z's are volume frations of the so-alled austenite and of partiularvariants of martensite, e.g. m = 4 or 7 for tetragonal or orthorhombi martensite,respetively. The funtion ψ re�ets the di�erene between hemial energies ofaustenite and martensite and also between pure phases and �mixtures�. As ϕ(·, z)is now onvex, it quali�es for Lemma 5.1 with Z0 bounded. The philosophy ofmixtures of austenite/martensite phases in so-alled shape-memory alloys has beenproposed by Frémond [15℄; in rate-independent variant also presented in [16℄. For itsanalysis and numerial implementation see [10, 11, 17, 24℄. Gradients of mesosopialvolume frations (i.e.. (5.20) with α = 1 has already been used in Frémond's model[16, p.364℄ or [17, Formula (7.20)℄. Another way for obtaining physially relevantmixture energies is the quasionvexi�ation under volume onstrains, also alledross-quasionvexi�ation, see [42℄.Example 5.7 If the elasti-moduli tensors Cℓ = C are equal for all phases, thespei� energy in Example 5.6) transforms to

ϕ(∇u, z) =
m

∑

ℓ=1

(e(u)−etr(z))⊤C(e(u)−etr(z))
2

+ ψ̃(z) with etr(z) =
m

∑

ℓ=1

zℓeℓ,where etr(z) the is so-alled transformation strain. Note that, although (5.20) hasgot now a quadrati form exept the lower-order term ψ̃(z), we annot use Proposi-tion 4.5 or 4.6 beause of the onstraint z(x) ∈ Z0. Hene, the quadrati strutureof the regularizing term κ|z|2α annot be exploited and a non-quadrati regularizingterm ould equally be onsidered through this setion. For suh a model we refere.g. to [5, 6, 8, 19, 20, 28, 60℄. 30



5.4 Phase transformation: non-mixture approahThe mixture approah in Set. 5.3 is rather designed for phenomenologial models ofpolyrystals but is too oarse for the desription of ompliated mirostrutures o-urring in shape-memory-alloy single-rystals. An attempt to build a mirosopialmodel has been done in [34℄ (see also [35℄) by restriting z to be valued in verties ofthe Gibbs' simplex, i.e. only pure phase(variant)s are allowed; then α < 1/2 shouldbe taken in (5.20) or, as onsidered in [34, 35℄, a BV-like term κ|∇z|. In this model,
z �swithes� ϕ.A di�erent philosophy with presumably similar e�ets, pioneered by Falk [13℄, on-siders the vetorial �order parameter� z related to the deformation gradient ∇u andpartiular shapes are then swithed rather by ∇u. Spinodal regions are then allowedinstead of mixtures. The spei� stored energy ϕ now depends only on ∇u but neednot be quasionvex. For example, in [3, 4, 32, 50, 54℄, a multiwell potential ϕ̂ (re-lated with ϕ by (5.7)) arises by the ombination of St.Venant-Kirhho� materialsonsidered for eah partiular phase:

f̂(F ) := min
ℓ=1,..,m

(1

2
(U−⊤

ℓ F⊤FU−1
ℓ − I)⊤Cℓ(U

−⊤
ℓ F⊤FU−1

ℓ − I) + cℓ

)

, (5.25)where Uℓ are distortion matries as in Example 5.6, Cℓ are elasti-moduli tensors,
cℓ are some onstants, and U−⊤

ℓ := (U⊤
ℓ )−1. Now naturally p = 4.We postulate the stored energy in terms of E and Ξ as

E(u, z) :=

∫

Ω

ϕ(∇u) dx+
κ

2
|u|2α, (5.26)

Ξ(u, z) := z − L(∇u), (5.27)with κ > 0, α > 1 and L : R3×3 → Z0 playing the role of a �phase indiator�with Z0 being again the Gibbs simplex. The seminorm | · |α de�ned in (5.21) usedfor 1 < α < 2 with the Frobenius norm in the enumerator, now ating on (3×3)-matries is frame-indi�erent, as observed by Arndt in [3℄. We onsider the sameloading as in Sets. 5.2 and 5.3, i.e. f from (5.13), but now we put
U := U =

{

u ∈W α,2(Ω; R3); u = 0 a.e. on Γ0}, (5.28)
Z :=

{

z ∈ Z := L2(Ω; Rm); z(x) ∈ Z0 for a.a. x ∈ Ω
}

, (5.29)and then naturally X := Z. The dissipation potential R is again from (5.22). Thereis no K involved, hene Dε = D, but as Ξ from (5.27) ours, the regularization Eεis, in priniple, to be onsidered.Choosing α < 3/2 allows for the usage of P1-elements for u and P0-elements for z.As now Q = Q and K = Z, so in partiular their onformity (4.3) is automati.The proof of the following assertion shows that they are onformal also with theonstraints Ξ(q) = 0 so, in view of Remark 4.7, it would be possible to avoid the
ε-regularization at all. When taking [u0]h,ε = ΠU,hu0, we have ∇[u0]h,ε element-wiseonstant and so is L(∇[u0]h,ε) =: [z0]h,ε, and (4.24) is satis�ed.31



Corollary 5.8 Let ϕ : R3×3 → R be ontinuous (not neessarily quasionvex)satisfying (5.2) here with m := 0 (so no z-dependene), let g satisfy (5.23),
L : R3×3 → Z0 be ontinuous, and α ∈ (1, 3/2) and p < 6/(5−2α) in (5.2), and q0and [q0]h,ε as spei�ed above. Then the approximate solutions qε,τ,h = (uε,τ,h, zε,τ,h)with

uε,τ,h ∈ L∞(0, T ;W α,2(Ω; R3)), (5.30a)
zε,τ,h ∈ L∞(0, T ;L∞(Ω; Rm)) ∩ BV([0, T ];L1(Ω; Rm)), (5.30b)based on the P1-elements for u and the P0-elements for z onverge for (ε, τ, h) →

(0, 0, 0) (in terms of subsequenes in the sense of Theorem 3.8 with Remark 4.2) toenergeti solutions of the problem given by E, R, f and q0 above.Proof. Weak lower semiontinuity of E is due to onvexity of the regularizing term
κ|u|2α in (5.26) while ϕ is now treated by ompatness of the embedding W α,2(Ω) ⊂
W 1,p(Ω) (guaranteed if p < 6/(5−2α)) as a lower-order term. The limit passagein the z-variable is trivial. This ompatness also ensures the weak ontinuity of
Ξ : U × Z → X.As K = Z, ondition (4.23) with σ being the strong topology holds, if we show, forgiven z̃ = L(∇ũ), the existene of (ũh, z̃h)

σ→ (ũ, z̃) suh that z̃h = L(∇ũh). As faras ũh, this an be done by a density argument of smooth funtions in W α,2(Ω; R3),and then the usual Lagrange interpolation. By the embedding W α,2(Ω) ⊂W 1,p(Ω),
∇ũh

s→ ∇ũ in Lp(Ω; R3×3) and z̃h = L(∇ũh)
s→ L(∇ũ) = z̃ by ontinuity of theNemytski�� mapping indued by L.Then we use the results from Set. 3 via Proposition 4.4 with σ being the strongtopology on W α,2(Ω; R3) × L2(Ω; Rm). 2Remark 5.9 The inequalities α < 3/2 and p < 6/(5−2α) restrit us to p < 3,whih unfortunately exludes (5.25). Hene we are tempted to take higher α whih,however, brings the neessity to use higher-order elements (or to split the problemto a system). Considering P2-elements for u would allow for α < 5/2 whih, in turn,would allow for arbitrarily high p. Sine L is inevitable nonlinear, it is no longeronformal with the onstraint Ξ(q) = 0 no matter what (polynomial) elements aretaken for z. This would drive us to a penalization tehnique based on Proposition 4.3.However, here it is simpler to modify our analysis to allow for expressing the modelin terms of u only, f. the following Remark 5.10.Remark 5.10 In fat, a �visous� rate-dependent variant of the above model wasproposed in [50℄, for the rate-independent dissipation term f. [50, Formula (33)℄.The regularizing term | · |α used for α < 1/2 and the P0/P1-disretization was sug-gested and implemented in [3℄ and omputational experiments on NiMnGa singlerystals reported in [4℄. In [46℄, the model was analyzed and implemented in the1-dimensional ase with α = 2. Pure analysis then followed also in [47℄; in partiu-lar for α ≥ 3, [47, Prop.3℄ investigated an invisid variant of this model aounting,32



ontrary to our paper, also for inertial e�ets. In fat, the model was formulatedonly in terms of u in [3, 46, 47, 50℄ but then the dissipation distane took the form
D(u1, u2) =

∫

Ω
|L(∇u1)−L(∇u2)| dx, having lost the struture based on the degree-1 homogeneous potential R. Negleting di�ulties in numerial evaluation of suh

D if α = 2 would be onsidered, by this way one gets rid of the neessity to penalize
Ξ (whih, in ase α < 1/2, is made possible due to Corollary 5.8 together withRemark 4.7 in our ase too). Nevertheless, a fully rate-independent model, usedin fat for alulations in [4℄, has not been subjeted to any rigorous mathemati-al/numerial analysis, and therefore Corollary 5.8 brings indeed new results.5.5 Damage at large strainsIn engineering, other inelasti proess in the materials of a high interest is damage.We onsider a fully rate-independent isotropi and nonloal damage, and againonsider the body Ω �xed on a nonvanishing part Γ0 and loaded by a surfae fore
g on Γ1 = ∂Ω \ Γ0, so that U = U is again from (5.18). As we onsider isotropidamage, the internal parameter z ∈ Z will be salar valued with

Z :=
{

z ∈ Z := W α,2(Ω); z(x) ≥ 0 for a.a. x ∈ Ω
}

. (5.31)We postulate the stored energy again by the formula (5.20); κ > 0 in (5.20) is nowa oe�ient responsible for nonloal e�ets in gradient-of-damage theories as, e.g.,in [16℄, f. [38℄ for a disussion and more referenes. Note that we admitted, ratherformally, ϕ operating on the argument z nonrestrited from above to allow for asimple onstrution of the reovery sequene (4.30). The loading f is onsideredagain by (5.13).Like isotropi hardening in Set. 5.2, the proess of damaging is unidiretional inthe sense that, if in progress, it an only inrease but the material never an heal,whih leads us to de�ne the one of admissible evolution diretions as
K := {z ∈W α,2(Ω); z ≥ 0 a.e. on Ω} ≡ Z. (5.32)The degree-1 homogeneous dissipation potential is onsidered as

R(z) :=

∫

Ω

c1z dx, (5.33)where c1 is a phenomenologial spei� energy (with physial dimension J/m3=Pa)expressing the energy needed for a damage of a unit volume desribed by a unitjump of the damage parameter z. Considering the initial ondition for z0 = 0and ϕ(A, ·) dereasing for z ∈ [0, 1] and with ϕ(A, z) = ϕ(A, 1) + (z − 1)2 for
z ∈ (1,+∞), we e�etively fore the values of z to range only the interval [0, 1] and
c1 refers to the spei� energy dissipated by damaging the original material (havingthe stored-energy ϕ(·, 0)) to the fully damaged material (having the stored-energy
ϕ(·, 1) assumed to be still oerive so we exlude the ase when the material fullydisintegrates). 33



As no equality onstraints of the type Ξ(q) = 0 are involved, we have Eε = E butthe ε-regularization Dε from (4.9) is to be still onsidered unless one takes R + δKinstead of Rε, f. Remark 4.7. For the disretization, as in Set. 5.3, we onsiderP1-elements for u and either P0-elements for z (if α < 1/2) or P1-element also for zif (α < 3/2). Again, both P0- and P1-elements are onformal with the onstraintsin Z = K from (5.31)�(5.32) in the sense ΠZ,hZ ⊂ Z and ΠZ,hK ⊂ K, as requiredin Proposition 4.5.Corollary 5.11 Let the data Ω, Γ0, and Γ1 be quali�ed as in Set. 5.2, let ϕ bequali�ed as in Lemma 5.1 with m := 1 and Z0 := {z ≥ 0} and p1 := 2, let gsatisfy (5.23), and let q0 ∈ S(0) and [q0]h,ε := Πhq0. Then the approximate solutions
qε,τ,h = (uε,τ,h, zε,τ,h) with

uε,τ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (5.34a)
zε,τ,h ∈ L∞(0, T ;W α,2(Ω)) ∩ BV([0, T ];L1(Ω)), (5.34b)based on the P1-elements for u and the P0- or P1-elements for z onverge for

(ε, τ, h) → (0, 0, 0) (in terms of subsequenes in the sense of Theorem 3.8 withRemark 4.2) to energeti solutions of the problem given by E, R, K, f and q0above.Proof. Coerivity on Q = U ×Z follows from the assumed ondition |A|p ≤ ϕ(A, z)by the Poinaré inequality ombined with the Dirihlet ondition on Γ0 and by theregularizing κ-term in (5.20) ombined with the onstraint z(x) ≥ 0 involved in Zin (5.31). Then we use Proposition 4.5 with the deomposition (4.29) using B = E ′
1with E1(z) := κ

2
|z|2α and E0(u, z) =

∫

Ω
ϕ(∇u, z) dx. Note also that [q0]h,ε := Πhq0satis�es (4.24). 2Remark 5.12 The partial damage at large strains has been analyzed in [38℄ butwithout any numerial approximation and nonquadrati regularizing term κ

p1
|∇z|p1with p1 > 3 had to be used, ontrary to the quadrati term in (5.20) whih isusual in engineering literature but never was mathematially analyzed so far. HeneCorollary 5.11 represents a new extension in this �eld.Example 5.13 (Engineering �(1−d)-model�.) Considering two materials havinglinear response desribed in small strains by elasti moduli tensors C1 and C2, the�rst one undergoing a damage in a linear way leads to the potential ϕ in the form

ϕ(∇u, z) = (1−z)+ e(u)
⊤C1e(u)

2
+

e(u)⊤C2e(u)

2
+ ((z−1)+)2where (·)+ = max(0, ·). This potential satis�es all our assumptions with p = p1 = 2in (5.2) if C1 is positive semide�nite and C2 positive de�nite. Suh a model is alledin engineering literature a 1−d model (here rather 1−z) and an be used for two-omponent materials as e.g. �lled polymers or �lled rubbers whih do not undergoa full damage. 34



5.6 Debonding at large strainsOther inelasti proesses may our not in the materials themselves but on theboundary. Here we want to onsider a possible debonding of an elasti support on apart Γ2 of the boundary ∂Ω. The internal parameter z ∈ L∞(Γ2) is therefore now asalar debonding parameter assumed to range [0, 1] and expressing volume frationof the adhesive whih �xes elastially the body on Γ2 if not debonded. It is naturalalso to onsider a unilateral Signorini ontat on Γ2. Moreover, we again onsiderthe body Ω �xed on a nonvanishing part Γ0 of ∂Ω (disjoint with Γ2) and loaded bya surfae time-varying fore g on Γ1 = ∂Ω \ (Γ0 ∪ Γ2), so that
U :=

{

u ∈W 1,p(Ω; R3); u = 0 a.e. on Γ0, ν · u ≥ 0 a.e. on Γ2}, (5.35)
Z :=

{

z ∈ Z := L∞(Γ2); 0 ≤ z ≤ 1 a.e. on Γ2

} (5.36)with ν = ν(x) a normal to Γ2. We postulate the stored energy as
E(u, z) :=

∫

Ω

ϕ(∇u) dx+

∫

Γ2

(1 − z)ψ(u) dS, (5.37)where ψ : R3 → R+ desribes the elasti response of the adhesive �xing the bodyon Γ2.Considering naturally that debonding an only develop but never heal bak leadsus to pose the one of admissible evolution diretions as
K := {z ∈ L∞(Γ2); z ≥ 0 a.e. on Γ2}. (5.38)Similarly like in (5.33), the degree-1 homogeneous dissipation potential is

R(z) :=

∫

Γ2

c2z dS (5.39)with c2 a phenomenologial spei� energy (with physial dimension J/m2) express-ing the energy needed for a full debonding of a unit area of Γ2.Natural �nite-element approximation is now P1-elements for u and P0-elements onthe boundary for z. We assume that the disjoint partition Γ = Γ0 ∪ Γ1 ∪ Γ2 ispolyhedral and that the nested triangulations are onformal with this partition. Tosimplify tehnial details, let us assume that Γ2 is �at; this ensures ΠU,hU ⊂ U ,f. (4.3). Also the onstraints in (5.36) are onformal with P0-elements in the sense
ΠZ,hZ ⊂ Z. As there is no Ξ here, we have Eε ≡ E but Dε 6= D is still to beonsidered.Corollary 5.14 Let the disjoint partition Γ = Γ0 ∪ Γ1 ∪ Γ2 be polyhedral, Γ2 �at,and the nested triangulations be onformal with this partition, ϕ be quali�ed as inLemma 5.1 with n := 0 (i.e. with no z-dependene in ϕ), g satisfy (5.23), and
ψ : R3 → R be ontinuous satisfying the growth ondition 0 ≤ ψ(u) ≤ C(1+ |u|p#−ǫ)35



with p# from (5.23) and ǫ > 0, and q0 ∈ S(0) is approximated by [q0]h,ε := Πhq0.Then the approximate solutions qε,τ,h = (uε,τ,h, zε,τ,h) with
uε,τ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (5.40a)
zε,τ,h ∈ L∞(0, T ;L∞(Γ2)) ∩ BV([0, T ];L1(Γ2)), (5.40b)based on the P1-elements for u and the P0-elements for z onverge for (ε, τ, h) →

(0, 0, 0) (in terms of subsequenes in the sense of Theorem 3.8 with Remark 4.2) tosome energeti solutions of the problem given by E, R, K, f and q0 above.Proof. The oerivity of E follows as in Corollary 5.5; note that the term on Γ2,being nonnegative, annot destroy it. The weak lower-semiontinuity is again as inCorollary 5.5, the term on Γ2 being even weakly ontinuous due to a�nity in z-variable and due to the ompatness of the trae operator u 7→ u|Γ2
: W 1,p(Ω; R3) →

Lp#−ǫ(Γ2; R3).We will expliitly onstrut the reovery sequene {q̃h}h>0 for (4.23). As to ũh weuse the onstrution (4.30a); as Γ2 is �at, ν is onstant on Γ2, and ΠU,hU = Uh ∩U ,whih ensures Uh ⊂ U beause Uh := ΠU,hU . As for ΠZ,h, we have in mind thestandard Clément's quasi-interpolation by element-wise onstant averages, henee.g. funtions valued in [0,1℄ are again mapped to (element-wise onstant) funtionsvalued in [0,1℄. Then we put
z̃h := 1 − (1 − zh)ΠZ,h

(1 − z̃

1 − z

)

. (5.41)If z(x) = 1, then also z̃(x) = 1 beause always z ≤ z̃ ≤ 1 and the fration in (5.41)an be de�ned arbitrarily in valued [0, 1]. The produt of element-wise onstantfuntions 1 − zh and ΠZ,h(
1−z̃
1−z

) is again element-wise onstant, hene zh ∈ Zh. As
0 ≤ ΠZ,h(

1−z̃
1−z

) ≤ 1, we have also zh ≤ z̃h ≤ 1, hene z̃h ∈ Zh and z̃h − zh ∈ K.As ΠZ,h(
1−z̃
1−z

) s→ 1−z̃
1−z

in any Lp(Γ2), p < +∞, and zh
w*→ z, from (5.41) we have

z̃h
w*→ 1 − (1 − z)1−z̃

1−z
= z̃ in fat in L∞(Γ2) due to the a-priori bound of values in[0,1℄.Then, having (4.23) proved, we an verify (3.16) through Proposition 4.4 used withthe topology σ := s × w∗ on W 1,p(Ω; R3) × L∞(Γ2). 2Remark 5.15 As we do not have any gradient-type regularization like in Set. 5.5,we had to assume ψ(u, ·) a�ne to allow for a passage via weak onvergene. Ithowever does not allow for any arti�ial de�nition of ψ like we did for ψ in Set. 5.5for z > 1, whih is why here we had to inlude the onstraint z(x) ∈ [0, 1] expliitlyinto Z in (5.36) but this, in turn, destroyed any quadrati struture in z and henewe had to rely on Proposition 4.4 supported by the rather sophistiated onstrution(5.41).Remark 5.16 A debonding on a-priori presribed surfaes inside the body, alledthen rather a delamination, ould be treated similarly only by introduing a more36



extensive notation, f. [31℄. Let us emphasize that Corollary 5.14 adapted to suh aproblem substantially improves results from [31℄, where onvergene has only beenproved for a semidisretization in time while the onvergene of the full time-spaedisretization has only silently been assumed under an additional onvergene ri-terion h/τ → 0.5.7 Magnetostrition at small strainsIn this setion, we illustrate our theory on a deformable ferromagnet oupying adomain Ω ⊂ R3 and undergoing quasistati isothermal evolution at small strains.Again, the non-dissipative omponent u : Ω → R3 will be the displaement while thedissipating variable z : Ω → R3 will now be the magnetization vetor; thus m = 3here. The stored energy is then onsidered in the form
E(u, z) :=

∫

Ω

(

ϕ
(

∇u(x), z(x)
)

+
κ

2

∣

∣∇z
∣

∣

2
)

dx+
µ0

2

∫

R3

∣

∣∇φ
∣

∣

2
dx. (5.42)The partiular terms in (5.42) represent the mehanial stored energy interatingwith an anisotropi magnetization energy, the exhange energy (with κ > 0 a oef-�ient having a quantum-mehanial origin), and the energy of the demagnetizing�eld φ ∈ W 1,2(Ω) (with µ0 > 0 the vauum permeability) whih is determined bythe magnetization z by the (weak solution to the) following 2nd-order linear elliptiequation on the whole spae R3:

div(µ0∇φ− χΩz) = 0 on R3, (5.43)where χΩ : R3 → {0, 1} denotes the harateristi funtion on Ω. The externalforing might be both mehanial and magnetial. Let us onsider it again via asurfae fore g (as in Setion 5.2) and by an external magneti �eld hext:
〈f(t), (u, z)〉 :=

∫

Γ1

g(t, x) · u(x) dS +

∫

Ω

hext(t, x) · z(x) dx. (5.44)Contrary to the previous setions, z is not any internal parameter beause it an besubjeted diretly to outer loading by hext. For notational simpliity, we onsideragain the Dirihlet ondition on Γ0 and then take U = U from (5.18) while Z isnaturally to be taken as W 1,2(Ω; R3). The standard model involves also the so-alled Heisenberg onstraint
∣

∣z(x)
∣

∣ = ms for a.a. x (5.45)with ms > 0 a given saturation magnetization. In fat, due to (5.45) we an rede�ne
ϕ(A, z) for |z| > ms, if needed, suitably so that the oerivity (5.2) holds. For thedissipation potential R we onsider, for example,

R(z) :=

∫

Ω

d0

∣

∣z
∣

∣ + d1

∣

∣e3 · z
∣

∣ dx (5.46)37



where d0 > 0 and d1 ≥ 0 and e3 = (0, 0, 1). The d0-term has been onsidered in[58℄ while for the d1-term see [59℄ or also [52, 53℄. The former term orrespondsto a basi dissipation and ensures oerivity of R while the latter term desribesdissipation during remagnetization in a uniaxial magnet with easy-magnetizationaxis in the diretion e3; then the anisotropi energy ϕ(A, ·) is assumed to haveminima along this axis and d0 + d1 is a so-alled oerive fore whih determinesthe width of a parent hysteresis loop during yli magnetization proesses. Themagnetization proess is fully reversible (beause we do not onsider any sort ofunidiretional �hardening� like in [53℄) and therefore we put K = Z = W 1,2(Ω; R3).The initial magnetization z0 should satisfy the onstraint (5.45) and, together with
u0, be stable with respet to the loading hext(0, ·) and g(0, ·); we will not speify thisrather tehnial ondition.We annot simply involve the onstraint (5.45) into Z beause (4.3) annot onven-tionally be ahieved beause no polynomial �nite elements are ompatible with theHeisenberg onstraints (5.45). Hene we implement it by Ξ and then take simply
Z := Z = W 1,2(Ω; R3) and de�ne Ξ as

Ξ : U × Z → X := L2(Ω) : (u, z) 7→ |z|2 −m2
s

√

|z|2 +m2
s

. (5.47)Note that the nonlinearity r 7→ (|r|2 − m2
s )/

√

|r|2 +m2
s involved in (5.47) has alinear growth and is Lipshitz ontinuous, and so is Ξ : L2(Ω; R3 × R3) → L2(Ω).Simultaneously, Ξ is weakly ontinuous on U ×Z due to the ompat embedding of

U × Z into L2(Ω; R3 × R3).Again we onsider a polyhedral domain Ω and its nested regular triangulations,and in view of (5.42) take P1-elements both for u and z. Then, in priniple, exatintegration formulae an be exploited for (5.43) and for the last term in (5.42), too.So no disretization of ϕ would be needed, although pratial alulations usuallyexploit some numerial approximation of this proedure (and hene of E itself, too).As we did not onsider it in previous setions, we omit it here too. Beause ofthe mentioned inompatibility of the P1-elements (and in fat with any polynomial�nite-elements), with the onstraint Ξ(u, z) = 0, i.e. |z| = ms, we must onsider thepenalization method. Using α = 2 in (4.5), it yields
Eε(u, z) =

∫

Ω

(

ϕ
(

∇u(x), z(x)
)

+
κ

2
|∇z|2 +

(

|z|2−m2
s

)2

ε
(

|z|2+m2
s

)

)

dx+
µ0

2

∫

R3

|∇φ|2 dx. (5.48)The onformity (4.3) is here automati beause there are no other onstraints in-volved, i.e. Q ≡ Q and K ≡ Z.Corollary 5.17 Let the data Ω, Γ0, and Γ1 be quali�ed as in Set. 5.2, let ϕ bequali�ed as in Lemma 5.1 with Z0 := Rm, m = 3, p1 = 2, let g satisfy (5.23), andlet further hext ∈ C1([0, T ];L6/5(Ω; R3)), q0 ∈ S(0) and [q0]h,ε := Πhq0. Then the38



approximate solutions qε,τ,h = (uε,τ,h, zε,τ,h) with
uε,τ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (5.49a)
zε,τ,h ∈ L∞(0, T ;W 1,2(Ω; R3)) ∩ BV([0, T ];L1(Ω; R3)), (5.49b)based on the P1-elements and the penalization of the Heisenberg onstraint (5.45)as in (5.48) onverge for (ε, τ, h) → (0, 0, 0) (in terms of subsequenes in the senseof Theorem 3.8 with Remark 4.2) to energeti solutions of the problem given by E,

R, Ξ, f and q0 above under the onvergene riterion h2/ε→ 0.For the onvergene riterion h ≤ H(ε) an take H , e.g., in the form
H(ε) = εa with any 0 < a < 1/2. (5.50)Proof of Corollary 5.17. The weak lower semiontinuity in the sense (3.8) of the

ϕ-term in (5.48) is by Lemma 5.1, while that of the terms |∇z|2 and |∇φ|2 is due tothe onvexity and linearity of (5.43). The penalty term in (5.48) has the 2nd-order-polynomial growth and is therefore ontinuous beause of the ompat embeddingof W 1,2(Ω) into L2(Ω). The oerivity of E on U × Z follows from (5.2) throughPoinaré's inequality.For our P1-elements, the estimate (4.18) with γ = 1 is then known to hold with | · |and ‖ · ‖ being respetively the L2- and the W 1,2-norms. The Lipshitz ontinuity(4.17) of Ξ from (5.47) holds for X := L2(Ω), whih just makes the penalty form in(5.48) with α = 2. The hoie [q0]h,ε := Πhq0 again satis�es (4.24). Our assertionthen follows from Theorem 3.8 through Proposition 4.3 where (4.19) just says that
h = o(

√
ε), as laimed. 2Remark 5.18 Referenes for magnetostrition usually addresses large strains wheremore ompliations arise, f. [9, 26, 27, 55, 57℄. Mathematial analysis at largestrains needs some additional regularization, e.g. like [55℄. A onventional formof ϕ in (5.42) in term of small strains, as onsidered here, is ϕ(∇u, z) = ϕ0(z) +

1
2
(e(u) − ez)

⊤C(e(u) − ez) with ez a preferred strain tensor orresponding to themagnetization z; for the onrete form of ez we refer to [27, 57℄. No numerial andeven purely theoretial analysis of this rate-independent evolution problem seemsto be reported in literature hene Corollary 5.17 represents a new result for thisoneptual algorithm.Aknowledgments. The �rst author aknowledges the support from C18-subprojet ofthe Researh Center �Matheon� (Deutshe Forshungsgemeinshaft). The seond authoraknowledges the hospitality of Weierstraÿ Institute, Berlin, where the majority of thisresearh has been arried out, supported through the Alexander von Humboldt Foundation.Partial support of this researh from the grants A 1075402 (GA AV �R), and LC 06052 andMSM 21620839 (M�MT �R) as well as from the European grants HPRN-CT-2002-00284�Smart systems� and MRTN-CT-2004-505226 �Multi-sale modelling and haraterisationfor phase transformations in advaned materials� is aknowledged, too.39
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