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1 IntrodutionRate-independent models for material behavior are useful in many ontexts. Elasto-plastiity is the most prominent appliation, but reently also damage, frature,hystereti behavior in magneti, magnetostritive and ferroeletri materials, andphase transformations in shape-memory alloys have been desribed via suh mod-els, see [Mie05℄ and the referenes there.Here, we want to ontribute to the abstrat mathematial foundations for suhmodels. While a quite �exible existene theory has been developed over the last years(f. [MTL02, MT04, MM05, Mie05, FM06℄), there is still a need to develop a theoryfor parameter dependene and for numerial approximation properties. The �rstpart of this work will address these questions in the framework of Γ-onvergene. Inthe seond part, we are onerned with the question of relaxation of rate-independentevolutionary systems. This topi is important for the understanding of evolution ofmirostrutures in materials, see [ORS00, BCHH04, Mie04, KMR05, CT05, MO06℄.While the stati questions of Γ-onvergene or relaxation are well studied, the relatedquestions for evolutionary systems are treated less systematially, see e.g., [Ott98,Bre99, Bre00℄. Only reently, a systemati study for gradient �ows was initializedin [SS04, Ort05b, Ort05a, Ste06℄.To present our main ideas we introdue the main notions. The state spae of oursystem is denoted by Q and the stored-energy funtional E : [0, T ]×Q → R∞ :=

R ∪ {∞} is assumed to depend on the (proess) time through a time-dependentloading. Additionally, there is given a dissipation distane D : Q×Q → [0,∞],whih is assumed to satisfy the triangle inequality but may be unsymmetri. Here,
D(q0, q1) measures the minimal amount of energy that is dissipated when the state ishanged from q0 into q1. In rate-independent systems the dissipation depends onlyon the path but not on the veloity.A proess q : [0, T ] → Q is alled an energeti solution of the rate-independentproess assoiated with the funtionals E and D, if it satis�es the stability ondition(S) and the energy balane (E) for all t ∈ [0, T ]:

(S) ∀q̃ ∈ Q : E(t, q(t)) ≤ E(t, q̃) + D(q(t), q̃),

(E) E(t, q(t)) + DissD(q; [0, t]) = E(0, q(0)) +
∫ t

0
∂sE(s, q(s))ds.

(1.1)Here, the dissipation DissD(q; [r, s]) along a part of the urve is de�ned as a totalvariation with respet to the �metri� D. In this ase, we also say that q solves the1



energeti formulation (S)&(E). If E and D are replaed by Ek and Dk, we all thisthe energeti formulation (S)k&(E)k.Under the assumption that Q is a Banah spae, that D is translation invariant, i.e.
D(q0, q1) = R(q1−q0), and that E(t, ·) is onvex, the energeti formulation (S)&(E)is equivalent to the doubly nonlinear di�erential inlusion

0 ∈ ∂R(q̇(t)) + ∂E(t, q(t)) ⊂ Q∗ (dual spae),f. [MT04, Mie05℄. The advantage of the energeti formulation (S)&(E) is that itis totally derivative free and hene an be formulated on an abstrat topologialspae Q, see [MM05℄. The stability is a purely stati onept and the evolutionaryonept is brought into hearing solely by the salar energy balane.In Setions 2 and 3 we study the situation that a sequene of pairs (Ek,Dk) is givenas well as limit funtionals (E∞,D∞). Assume that qk : [0, T ] → Q is an energetisolution assoiated with Ek and Dk. We study the question in what sense (Ek,Dk)has to onverge to (E∞,D∞) suh that a limit proess q(t) = lim
k→∞

qk(t) solves theenergeti formulation (S)∞&(E)∞. It turns out that the right notion of onvergeneis related to Γ-onvergene. However, it is easy to see that
E∞ = Γ�lim

k→∞
Ek and D∞ = Γ�lim

k→∞
Dk (1.2)is not su�ient. See (2.14) for the de�nition of Γ-onvergene and Example 3.2 fora simple system where (1.2) is not su�ient for onvergene of solutions. Note also,that the Γ-limit D∞ may no longer satisfy the triangle inequality, so this will be anextra assumption.Central objets are the set of stable states and stable sequenes. The sets of stablestates Sk(t) depend on t ∈ [0, T ] and k ∈ N∞ := N ∪ {∞} and are de�ned via

Sk(t) := { q ∈ Q ; Ek(t, q) <∞, ∀q̃ ∈ Q : Ek(t, q) ≤ Ek(t, q̃) + Dk(q, q̃) }. (1.3)A sequene (tl, qkl
)l∈N is alled a stable sequene if

qkl
∈ Skl

(tl) and sup
l∈N

Ekl
(tl, qkl

) <∞. (1.4)Here we always assume that (kl)l∈N denotes a subsequene, i.e., kl < kl+1 → ∞.The ruial onditions for the desired onvergene result are now(a) E∞(t, q) ≤ inf{ lim inf
l→∞

Ekl
(tl, qkl

) ; (tl, qkl
) is stable and (tl, qkl

)
[0,T ]×Q

→ (t, q) },(b) D∞(q, q̃) ≤ inf{ lim inf
l→∞

Dkl
(qkl

, q̃kl
) ; (tl, qkl

), (t̃l, q̃kl
) are stable,

(tl, qkl
)

[0,T ]×Q

→ (t, q), (t̃l, q̃kl
)

[0,T ]×Q

→ (t̃, q̃) },() ∀ stable sequenes (tl, qkl
)l∈N : (tl, qkl

)
[0,T ]×Q

→ (t, q) =⇒ q ∈ S∞(t).2



While the onditions (a) and (b) are usually satis�ed by assuming (1.2), the on-dition () is genuinely new and onerns the interplay between the two sequenes
(Ek)k∈N and (Dk)k∈N. In Setion 2 we provide several su�ient onditions for theimpliation (), whih an be understood as onditioned upper semi-ontinuity ofthe stable sets. The strongest of these onditions is that E∞ = Γ�lim

k→∞
Ek and that Dkontinuously onverges to D∞. Note that (a) and (b) only ask for a lower estimate,however our theorems will prove that, along the approximate solutions, the lowerlimits E∞ and D∞ are attained, see assertions (i) and (ii) in the Theorems 3.1, 3.3,and 4.1.Having in mind numerial approximation we also ombine this result with timedisretizations. The most e�etive way to study energeti formulations is based onthe inremental minimization problems

(IP)k qk
j ∈ Arg min{ Ek(t

k
j , q̃) + Dk(q

k
j−1, q̃) ; q̃ ∈ Q },where Πk =

{
0 = tk0 < tk1 < · · · < tkNk

= T
} is an arbitrary partition of [0, T ]. Us-ing the same onditions as for the above onvergene result together with suit-able uniform ompatness results, we show that the pieewise onstant interpolants

qk : [0, T ] → Q assoiated with solutions of (IP)k ontain a subsequene that on-verges to a solution of (S)∞&(E)∞, see Theorem 3.3.In Setion 4 we onsider the situation that the sequenes (Ek)k∈N and (Dk)k∈N areonstant, i.e. Ek = E1 and Dk = D1. However, we do not assume that E1 and
D1 are lower semi-ontinuous. Hene, (IP)k may not be solvable and we replae itby an approximate inremental problem (AIP)k where we only need to reah thein�mum up to an auray εk(t

k
j − tkj−1). Of ourse, (AIP)k is solvable and we studythe sequene qk : [0, T ] → Q of pieewise onstant interpolants. Using a slightlystrengthened version of the upper semi-ontinuity of the stable sets we show thatthe sequene (qk)k∈N again ontains a onvergent subsequene the limit of whihsolves (S)∞&(E)∞. The onstrution of subsequenes relies on an abstrat versionof Helly's seletion priniple that is due to [MM05℄ and that we prove in a slightlymore general form in Appendix A.In the �nal Setion 5 we illustrate the two main results by three relatively simpleexamples. In Setion 5.1 we deal with a quadrati energy funtional E∞ on a Hilbertspae H = Q and a weakly ontinuous and translationally invariant dissipation dis-tane D∞. De�ning a sequene Hk of �nite-dimensional subspaes ofH with ∪∞

k=1Hkdense in H , we de�ne Ek equal to E∞ on Hk and +∞ else. Letting Dk = D∞ it iseasy to hek the abstrat onditions and, thus, a onvergene result for spae-timedisretizations is established. The idea of using Γ-onvergene for treating numerialapproximations was �rst investigated in [KMR05℄. As a partiular appliation, thisprovides the onvergene result in elastoplastiity derived �rst in [HR99a℄. Furtherappliations that use the full strength of the theory developed here, are found in[MR06a℄. Stronger onvergene results of numerial methods, also giving spei�onvergene rates are disussed in [HR99b, AMS06℄.3



In Setion 5.2 we address the question of the ontinuity of the play and the stopoperator with respet to the yield or harateristi set Ck. This question was studiedin [Kre99, Thm. 3.12℄ and [Ste06, Cor. 4.6℄ and we show that our abstrat resultreovers the known results.The example in Setion 5.3 deals with Q = H1((0, 1)) equipped with the weaktopology, with the dissipation Dk(q, q̃) = ‖q̃−q‖L1 and with the energy funtional
Ek(t, q) =

∫ 1

0

W (q′(x)) + q(x)2 − f(t, x)q(x)dx,where W : R → R is a oerive, nononvex double-well potential. The Γ-limits inthe weak topology of H1((0, 1)) of the onstant sequenes Dk = D1 and Ek = E1 are
D∞ = D1 and E∞ = convE1, whih has the same form as Ek but W is replaed byits onvexi�ation W ∗∗. Using the results of Setion 4 we show that the solutions of(AIP)k, whih develop mirostruture, onverge weakly to an energeti solution as-soiated with the relaxed funtionals E∞ and D∞. The question of relaxations of thistype was already addressed in [MTL02, Mie04, MO06℄. However, rigorous resultswere only obtained in [The02, CT05℄. The analogous is obtained by regularizing E1in the form Ek(t, z) = E1(t, z) + 1

k

∫ 1

0
(z′′(x))2 dx.Another appliation of the theory presented here is given in [GP06℄, where the Γ-onvergene of families of rak problems is studied. There the notion of �stabilityof the unilateral minimality property� is used for what we all upper semi-ontinuityof the stable sets.2 Assumptions and preliminary resultsThroughout this work we assume that the state spae Q is a produt Q = F×Z,where eah of the fators is a Hausdor� topologial spae. All our notions on-erning (lower semi−) ontinuity, losedness and ompatness are in fat meant�sequentially�. (The typial appliations we have in mind are the weak topologies ina separable, re�exive Banah spaes, possibly restrited to a weakly losed subset.)We will denote the onvergene in these spaes by Q

→, F
→, and Z

→ respetively. Forsequenes (tk, qk)k∈N we write (tk, qk)
[0,T ]×Q

→ (t, q) if tk → t in R and qk Q
→ q.On the state spaeQ a sequene of time-dependent energy funtionals Ek : [0, T ]×Q →

R∞ as well as a limit E∞ : [0, T ]×Q → R∞ are given. Moreover, we have a sequeneof dissipation distanes Dk : Z×Z → [0,∞] and a limit D∞ : Z×Z → [0,∞]. Notethat our dissipation distanes are not assumed to be symmetri, i.e. Dk(z1, z2) 6=
Dk(z2, z1) is possible. Moreover, we allow for the value +∞, whih is often needed inontinuum mehanial models. We use the notation N∞ := N ∪ {∞} whih enablesus to address the sequene as well as the limits together.Throughout we will swith between the two equivalent notations q ∈ Q and (ϕ, z) ∈4



F×Z as it is most appropriate in the given ontext. In partiular, we also onsider
Dk, k ∈ N∞, as funtions on Q×Q and write Dk(q1, q2) instead of Dk(z1, z2), where
qj = (ϕj, zj) ∈ F×Z = Q is taken for granted.To formulate our assumptions we reall the de�nition of the stable sets Sk(t) from(1.3) and all a sequene (tl, qkl

)l∈N a stable sequene (abbreviated as �stab.seq.�further on), if
qkl

∈ Skl
(tl) for all l ∈ N and sup

l∈N

Ekl
(tl, qkl

) <∞. (2.1)Note that (qkl
)l∈N denotes a subsequene to indiate the index kl for whih we havestability. We now state our assumptions in one list and omment on it afterwards.Pseudo distane: ∀ k ∈ N∞ ∀ z1, z2, z3 ∈ Z :

Dk(z1, z1) = 0 and Dk(z1, z3) ≤ Dk(z1, z2) + Dk(z2, z3).
(2.2)Lower semi-ontinuity of Dk:

∀ k ∈ N∞ : Dk : Z×Z → [0,∞] is lower semi-ontinuous. (2.3)Positivity of D∞: For all ompat K ⊂ Z :If zk ∈ K and min {D∞(zk, z),D∞(z, zk)} → 0, then zk
Z
→ z.

(2.4)Lower Γ-limit for Dk:
∀ stab.seq. (tl, qkl

), (t̃l, q̃kl
) with (tl, qkl

)
[0,T ]×Q

→ (t, q), (t̃l, q̃kl
)

[0,T ]×Q

→ (t̃, q̃) :

D∞(q, q̃) ≤ lim inf
l→∞

Dkl
(qkl

, q̃kl
).

(2.5)Compatness of energy sublevels:For all t ∈ [0, T ] and all E ∈ R we have
(i) ∀ k ∈ N∞ : { q ∈ Q ; Ek(t, q) ≤ E } is ompat;
(ii)

⋃∞
k=1{ q ∈ Q ; Ek(t, q) ≤ E } is relatively ompat. (2.6)Here (with our agreement about �sequential� notions) relative ompatness of A ⊂ Qmeans that every sequene in A has a onvergent subsequene.Uniform ontrol of the power ∂tE∞:

∃ cE0 ∈ R ∃ cE1 > 0 ∀ k ∈ N∞ ∀ t ∈ [0, T ] ∀ q ∈ Q :If Ek(t, q) <∞, then Ek(·, q) ∈ C1([0, T ]) and
|∂tEk(s, q)| ≤ cE1 (cE0 +Ek(s, q)) for all s ∈ [0, T ].

(2.7)Uniform time-ontinuity of the power ∂tE∞:
∀ ε > 0 ∀E ∈ R ∃ δ > 0 :

E∞(0, q) ≤ E and |t1−t2| < δ =⇒ |∂tE∞(t1, q)−∂tE∞(t2, q)| < ε.

(2.8)5



Conditioned ontinuous onvergene of the power:
∀ stab.seq. (tl, qkl

)
[0,T ]×Q

→ (t, q) : ∂tEkl
(tl, qkl

) → ∂tE∞(t, q)
(2.9)Lower Γ-limit for Ek:

∀ stab.seq. (tl, qkl
) with (tl, qkl

)
[0,T ]×Q

→ (t, q) : E∞(t, q) ≤ lim inf
l→∞

Ekl
(tl, qkl

).
(2.10)Conditioned upper semi-ontinuity of stable sets:

∀ stab.seq. (tl, qkl
)

[0,T ]×Q

→ (t, q) : q ∈ S∞(t).
(2.11)Assumptions (2.2)�(2.5) mainly onern the dissipation distanes, whereas assump-tions (2.6)�(2.10) are mainly on the stored-energy funtionals. Conditions (2.5),(2.9)�(2.11) are based on the stable sets, whih involve the interplay of Ek and Dk.For a given funtion z : [0, T ] → Z (de�ned everywhere!) we de�ne the dissipationassoiated with Dk, k ∈ N∞, on the subinterval [r, s], via

Dissk(z; [r, s]) = sup
{ N∑

j=1

Dk(z(tj−1), z(tj)) ; N ∈ N, r ≤ t0 < t1 < · · · < tN ≤ s
}
.The lower Γ-limit ondition (2.5) for Dk implies that, if zk : [0, T ] → Z onvergespointwise to z : [0, T ] → Z and if (t, qk(t)) is stable for all t ∈ [0, T ], then

Diss∞(z; [r, s]) ≤ lim inf
k→∞

Dissk(zk; [r, s]). (2.12)The positivity ondition (2.4) forD∞ implies that a funtion z withDiss∞(z; [0, T ]) <

∞ is ontinuous on [0, T ] exept for at most ountably many points, namely the jumppoints of t 7→ Diss∞(z; [0, t]).The major ompatness result is a generalization of Helly's seletion priniple, whihis proved in Appendix A. Using (2.2), (2.4) and (2.5) it is shown that every sequeneof funtions zk : [0, T ] → Z for whih Dissk(zk; [0, T ]) is bounded has a pointwiseonvergent subsequene.The ompatness ondition (2.6) on the energy funtionals implies lower semi-ontinuity of eah Ek(t, ·) : Q → R∞ and is essential for onstruting solutionsfor inremental minimization problems.For a given q ∈ Q the mapping t 7→ Ek(t, q) maps [0, T ] into R∞. Hene the partialderivative ∂tE(t, q) makes sense even though Q does not have a manifold struture.Moreover, it has the physial dimension of a power, namely energy divided by time.In [MR03℄ ∫ t

0
∂sE(s, q(s))ds is alled the redued work of the external fores, sine itrelates to the �work of the external fores�, as used in the mehanis literature. In thesimple ase E(t, ϕ, z) = U(ϕ, z)−〈ℓ(t), ϕ〉 the former has the form −

∫ t

0
〈ℓ̇(s), ϕ(s)〉dswhile the latter one reads ∫ t

0
〈ℓ(s), ∂sϕ(s)〉ds. From our energy balane (E) in (1.1)it is lear that ∂tE(t, q(t)) is the power assoiated with the hanging external fores.For simpliity, we ontinue to all this term simply power.6



Condition (2.7) gives a uniform energeti ontrol on the power ∂tEk(t, q). Using asimple Gronwall argument yields the estimate
Ek(t1, q) + cE0 ≤ ecE

1 |t1−t2|
(
Ek(t2, q)+c

E
0

)
, (2.13)whih provides simple a priori estimates for the energy and the dissipation alongsolutions, see Step 1 in the proof of Theorem 3.3.The ontinuity ondition (2.9) for the power ∂tEk is weaker than the so-alled on-tinuous onvergene of ∂tEk to ∂tE∞, viz., (tl, qkl

)
[0,T ]×Q

→ (t, q) =⇒ ∂tEkl
(tl, qkl

) →
∂tE∞(t, q). In fat, we only need to know the onvergene of the power along on-verging stable sequenes. We will see that, under some additional assumptions, theonvergene of stable sequenes leads to improved onvergene, e.g., to onvergeneof the energies Ekl

(tl, qkl
) → E∞(t, q), see Proposition 2.2(A) below. In the Banahspae ontext this may be used to onvert a weak onvergene into a strong one.Moreover, the abstrat Proposition 3.3 in [FM06℄ shows that this energy onver-gene together with the lower semi-ontinuity (2.10) of (Ek)k∈N∞

and (2.8) impliesthe onditioned ontinuous onvergene (2.9) of the power.The two onditions (2.5) and (2.10) on the lower Γ-limits of Dk and Ek, respetively,are formulated in a general setting involving the stable sequenes. However, inall the appliations in this paper we will use the major results under the strongerassumption that D∞ and E∞ are the Γ-limits in the usual sense:
I∞ = Γ�lim

k→∞
Ik

def
⇐⇒






(i) qk
Q
→ q =⇒ I∞(q) ≤ lim infk→∞ Ik(qk),(ii) ∀ q ∈ Q ∃ (q̂k)k∈N with q̂k Q

→ q :

I∞(q) ≥ lim supk→∞ Ik(q̂k).

(2.14)Here the sequene (q̂k)k∈N is alled a reovery sequene for the limit q. Clearly(i) and (ii) gives Ik(q̂k) → I∞(q). Our weaker assumptions (2.5) and (2.10) anbe useful in ertain more involved appliations sine the additional stability andenergy boundedness for the onverging sequenes might be helpful in establishingthe desired lower bound. However, our main results in Setions 3 and 4 imply thatalong our solution sequenes qk we will have onvergene of the energies, see thestatements (i) in the Theorems 3.1, 3.3, and 4.1.The major ondition that makes the whole theory working is (2.11). This onditionouples the potentials Ek and Dk and provides a kind of upper Γ-limit estimatefor Ek and Dk simultaneously. In [GP06℄ a similar ondition is derived to studythe Γ-onvergene of the solutions in families of rak problems. There our notionof stability is alled �unilateral minimality property� and our notion of upper semi-ontinuity of the stable sets is alled �stability of the unilateral minimality property�.In that paper the Theorems 7.2 and 8.3 provide what we all ondition (2.11).7



Lemma 2.1 The upper semi-ontinuity ondition (2.11) is equivalent to
∀ stab.seq. (tl, qkl

)
[0,T ]×Q

→ (t, q) ∀ q̃ ∈ Q ∃ (q̃kl
)l∈N :

lim sup
l→∞

(
Ekl

(tl, q̃kl
)+Dkl

(qkl
, q̃kl

)−Ekl
(tl, qkl

)
)
≤ E∞(t, q̃)+D∞(q, q̃)−E∞(t, q).(2.15)Proof: For abbreviation we set Hk(t, q, q̃) = Ek(t, q̃) + Dk(q, q̃) − Ek(t, q). Then,

q ∈ Sk(t) is equivalent to Hk(t, q, q̃) ≥ 0 for all q̃ ∈ Q.The impliation (2.11) ⇒ (2.15) follows immediately by taking the sequene q̃kl
=

qkl
. Then, (2.15) holds, sine Hkl

(tl, qkl
, q̃kl

) = 0 and (2.11) implies H∞(t, q, q̃) ≥ 0.The opposite impliation (2.15)⇒ (2.11) is seen as follows. For arbitrary q̃ we hoosea sequene (q̃kl
)l∈N aording to (2.15). Using qkl

∈ Skl
(tl) we have Hkl

(tl, qkl
, q̃kl

) ≥
0. Taking the lim supl→∞ and employing (2.15) we onlude H∞(t, q, q̃) ≥ 0. Sine
q̃ ∈ Q was arbitrary, this gives q ∈ S∞(t).Note that ondition (2.15) does not ask for q̃kl

Q
→ q̃, hene (q̃kl

)l∈N is not a reoverysequene in the sense of (2.14). In fat, the inequality in (2.15) has the propertythat the right-hand side depends on q̃ but not on (q̃kl
)l∈N, while the left-hand sideis independent of q̃. Nevertheless, the ondition is useful when hoosing a suit-able sequene (q̃kl

)l∈N with q̃kl

Q
→ q̃ suh that Ekl

(tl, q̃kl
)+Dkl

(qkl
, q̃kl

)−Ekl
(tl, qkl

) →
E∞(t, q̃)+D∞(q, q̃)−E∞(t, q). For later use we display this slight strengthening of(2.15) for �nding a joint reovery sequene (q̃kl

)l∈N:
∀ stab.seq. (tl, qkl

)
[0,T ]×Q

→ (t, q) ∀ q̃ ∈ Q ∃ q̃kl

Q
→ q̃ :

lim sup
l→∞

(
Ekl

(tl, q̃kl
)+Dkl

(qkl
, q̃kl

)−Ekl
(tl, qkl

)
)
≤ E∞(t, q̃)+D∞(q, q̃)−E∞(t, q).(2.16)We provide two more onditions whih are stronger than (2.16) and, hene, an beused to establish the ruial upper semi-ontinuity (2.11) of the stable sets. Theweaker of these two onditions is based on the existene of a joint reovery sequeneand reads

∀ stab.seq. (tl, qkl
)

[0,T ]×Q

→ (t, q) ∀ q̃ ∈ Q ∃ q̃kl

Q
→ q̃ :

lim sup
l→∞

(
Ekl

(tl, q̃kl
)+Dkl

(qkl
, q̃kl

)
)
≤ E∞(t, q̃)+D∞(q, q̃).

(2.17)The stronger of these two onditions onsists on two separate onvergene resultsfor the energy funtionals and for the dissipation distanes: E∞ is the Γ-limit of Ek,i.e., (2.10) holds and ∀ t ∈ [0, T ] ∀ q̂ ∈ Q

∃ (q̂k)k∈N with q̂k Q
→ q̂ : E∞(t, q̂) ≥ lim sup

k→∞
Ek(t, q̂k),

(2.18)8



and Dk ontinuously onverges to D∞ onditioned by bounded energy, i.e.,
qk

Q
→ q and q̃k Q

→ q̃

sup
k∈N

(
Ek(t, qk)+Ek(t, q̃k)

)
<∞



 =⇒ Dk(qk, q̃k) → D∞(q, q̃). (2.19)Proposition 2.2 Assume that (2.10) holds.(A) If for eah stable sequene (tl, qkl
) that onverges to (t, q) there exists a sequene

(q̃l)l∈N suh that lim supl→∞ Ekl
(tl, q̃l)+Dkl

(qkl
, q̃l) ≤ E∞(t, q), then the energy on-verges along the stable sequenes, i.e.,

∀ stab.seq. (tl, qkl
)

[0,T ]×Q

→ (t, q) : Ekl
(tl, qkl

) → E∞(t, q). (2.20)In partiular, we have (2.17) =⇒ (2.20).(B) We have the following impliations:
( (2.18)& (2.19) ) =⇒ (2.17) =⇒ (2.16) =⇒ (2.15) ⇐⇒ (2.11).Proof: ad (A). By (2.10) we have E∞(t, q) ≤ lim inf l→∞ Ekl

(tl, qkl
). UsingDkl

(qkl
, q̃l) ≥

0 we immediately obtain lim supl→∞ Ekl
(tl, qkl

) ≤ E∞(t, q). This proves (2.20). Sine(2.17) inludes the assumption by speifying q̃ = q, the �nal impliation holds.ad (B). For the �rst impliation we start from a onverging stable sequene (tl, qkl
) →

(t, q) and from a general q̃. We hoose q̃l via the reovery sequene q̂k from (2.18),namely q̃l = q̂kl
. Employing (2.19) we then obtain lim supl→∞ Ekl

(tl, q̃l)+Dkl
(qkl

, q̃l) ≤
E∞(t, q̃)+D∞(q, q̃), whih is the desired result (2.17).For �(2.17)⇒ (2.16)� note that (2.10) implies lim supl→∞

(
−Ekl

(tl, qkl
)
)
≤ −E∞(t, q),whenever (tl, qkl

)
[0,T ]×Q

→ (t, q). Adding this to (2.17) we easily �nd the desired result(2.16).The next impliation follows diretly from the de�nition as the requirement q̃kl

Q
→ q̃is dropped. The �nal equivalene is the ontent of Lemma 2.1.The following examples show that the above impliations annot be reversed. Itis easy to provide suh examples taking E∞ and D∞ stritly lower than the orre-sponding Γ-limits. Our examples below are hosen suh that equality between E∞and D∞ and the orresponding Γ-limits hold. In partiular, this means that (2.10)and (2.18) hold. For simpliity, we drop the dependene on the time t ∈ [0, T ],as the main emphasis of ondition (2.11) is on the onvergene of qk. Using theassumptions (2.7)�(2.9) it is then easy to obtain the more general version inluding

tk → t.Example 2.3(I) �(2.16) 6⇒ (2.17)�. Consider Q = L2(Ω) equipped with its weak topology. The se-quenes Ek andDk are assumed to be onstant, namely Ek(t, q) =
∫
Ω

1
2
q(x)2−f(t, x)q(x)dx9



with f ∈ C1([0, T ],L2(Ω)) and Dk(q0, q1) = ‖q1−q0‖L1 . Obviously, we have Sk(t) =

{ q ∈ L2(Ω) ; ‖q−f(t, ·)‖L∞ ≤ 1 } and it is easy to see that (2.11) holds. However,even without this knowledge, we may establish (2.16) diretly. We hoose the reov-ery sequene q̃kl
= q̃ − q + qkl

, hene q̃kl
⇀ q̃. Moreover, Dkl

(qkl
, q̃kl

) = ‖q̃−q‖L1 =

D∞(q, q̃) and
Ekl

(tl, q̃kl
) − Ekl

(tl, qkl
) =

〈
1
2
(q̃−q) + qkl

− f(tl, ·), q̃−q
〉
L2

→
〈

1
2
(q̃+q) − f(tl, ·), q̃−q

〉
L2 = E∞(t, q̃) − E∞(t, q),whih proves (2.16) with equality.To show that (2.17) does not hold we onsider tl = 0 and the stable sequene ql with

|ql−f(0, ·)| ≡ 1 but ql ⇀ q = f(0, ·). Moreover, let q̃ = q, suh that the right-handside in (2.17) takes the value −1
2
‖q‖2

L2. Writing the joint reovery sequene q̃l in theform q̃l = ql + wl we must have wl ⇀ 0 and the left-hand side in (2.17) gives
E(0, q̃l) + D(ql, q̃l) =

∫
Ω

1
2

(
ql+wl−q

)2
− 1

2
|q|2 + |wl|dx

≥
∫
Ω

1
2
− 1

2
|q|2 dx > −1

2
‖q‖2

L2 = E(0, q)+D(q, q),where we used |ql−q| ≡ 1 and minimized with respet to wl. Thus, we have shownthat (2.17) annot hold.This example is relevant to the lassial linearized elastoplastiity with hardening.An appliation of (2.16) in the framework of two-sale homogenization is given in[MT06℄.(II) �(2.16) 6⇒ (2.17) 6⇒ (2.19)�. We onsiderQ = R, Ek(q) = 1
2
(kαq)2, andDk(q, q̃) =

kβ|q̃−q|. Here, α, β ≥ 0 are parameters. The orresponding stable sets are Sk =

[−kβ−α, kβ−α]. The Γ-limits are easily obtained, namely E∞ = E1 if α = 0 and
E∞ = I{0} else and D∞(q, q̃) = |q̃−q| if β = 0 and D∞(q, q̃) = I{0}(q̃−q) else.The di�erent onditions an be heked easily. In partiular, (2.19) holds if and onlyif α > β ≥ 0 or if α = β = 0. Condition (2.17) holds if and only if α > β ≥ 0 or if
α = 0, whih is a stritly bigger set. Note that for 0 < α ≤ β the property (2.20)does not hold and hene, by Proposition 2.2(A), ondition (2.17) must be violated.Finally, ondition (2.16) holds in all ases by hoosing q̃kl

= qkl
+q̃−q.(III) �(2.11)⇔ (2.15) 6⇒ (2.16)�. We let Ek(q) = E(q) = 1

2
q2 for k ∈ N∞ and hoose

Dk via Dk(q, q̃) =
∣∣ ∫ q

eq
mk(p) dp

∣∣ with mk(p) = 1 for p ≥ 0 and k otherwise. The
Γ-limit D∞ reads D∞(q, q̃) = |q̃−q| for q, q̃ ≥ 0, D∞(q, q̃) = 0 for q̃ = q < 0, and
+∞ otherwise. Some omputations give Sk = [−k, 1] and S∞ = (−∞, 1], and thus(2.11) holds. The sequene qk = −1/k is a stable sequene onverging to q = 0. For
q̃ = 1, any sequene (q̃k)k∈N with q̃k → q̃ = 1 satis�es Dk(qk, q̃k) → 2 < D∞(q, q̃) =

D∞(0, 1) = 1. Hene, sine E is ontinuous, (2.16) annot hold.The next result states that the stability ondition (S) in (1.1) implies a lower energyestimate. This observation was �rst done in [MTL02℄ and is proved more generallyin [Mie05, Prop. 5.7℄. 10



Proposition 2.4 Let the ondition (2.7) for k = ∞ and (2.8) hold. If q : [0, T ] →
Q satis�es (S)∞, if E∞(·, q(·)) ∈ BV([0, T ]) and if ∂tE∞(·, q(·)) ∈ L1([0,T]), then forall r, s ∈ [0, T ] with r < s we have the lower energy estimate

E∞(s, q(s)) + Diss∞(q; [r, s]) ≥ E∞(r, q(r)) +
∫ s

r
∂tE∞(t, q(t))dt.Proof: Take an arbitrary partition r = τ0 < τ1 < · · · < τN = s of [r, s]. Testingstability of q(τj−1) with q(τj) we �nd

E∞(τj−1, q(τj−1)) ≤ E∞(τj−1, q(τj)) + D∞(q(τj−1), q(τj))

= E∞(τj , q(τj)) −
∫ τj

τj−1
∂sE∞(s, q(τj))ds + D∞(q(τj−1), q(τj)).Rearranging this inequality and summation over j = 1, . . . , N gives

E∞(s, q(s)) + Diss∞(q; [r, s]) ≥ E∞(s, q(s)) +
∑N

j=1 D∞(q(τj−1), q(τj))

≥ E∞(r, q(r)) +
∑N

j=1

∫ τj

τj−1
∂tE∞(t, q(τj))dt

= E∞(r, q(r)) +
∫ s

r
∂tE∞(t, q(t))dt (2.21a)

+
∑N

j=1 ∂sE∞(τj , q(τj))(τj−τj−1) −
∫ s

r
∂tE∞(t, q(t))dt (2.21b)

+
∑N

j=1

∫ τj

τj−1

(
∂tE∞(t, q(τj)) − ∂tE∞(τj, q(τj))

)
dt (2.21)Here (2.21a) ontains the desired estimate, the term in (2.21b) tends to 0, if wehoose a suitable sequene of partitions suh that the Riemann sums onverge tothe the L1-integral, see [FM06℄. The term in (2.21) tends to 0 beause of (2.8).Remark 2.5 In fat, the notion of stable sequenes ould be strengthened slightlyby asking also that the dissipation distane remains bounded as well. For this onehas to �x a sequene of initial onditions (qk

∗)k∈N suh that the initial onditions qk
0to be imposed later for the solutions satisfy D∗ = supk∈N

Dk(q
k
∗ , q

k
0) < ∞. By theuniform ontrol of power it is shown that all solutions (inremental or ontinuous)satisfy the a priori bound

Dk(q
k
∗ , q

k(t)) + Ek(t, q
k(t)) ≤ D∗ + 2ecE

1 T
(
cE0 + sup Ek(0, q

k
0)
)
,see (3.10) and (3.11). Hene, we ould use the additional ondition

sup
l∈N

Dk(q
kl
∗ , qkl

) <∞ (2.22)in the de�nition (2.1) of stable sequenes, whih will weaken the ruial ondition(2.11) as well as some of the other. Sine this does not lead to any substantial im-provement in the present analysis, we refrained from using the weakening ondition(2.22) in the de�nition of stable sequenes and, thus, keep our text easier readable.11



3 Γ-onvergeneOur �rst result onerns the onvergene of the solutions qk : [0, T ] → Q of theenergeti formulations (S)k&(E)k assoiated with the funtionals Ek and Dk:
(S)k ∀ t ∈ [0, T ] : qk(t) ∈ Sk(t),

(E)k ∀ t ∈ [0, T ] : Ek(t, qk(t)) + Dissk(qk; [0, t])

= Ek(0, qk(0)) +
∫ t

0
∂sEk(s, qk(s))ds.

(3.1)Theorem 3.1 Let assumptions (2.5), (2.7)�(2.11) hold and let qk : [0, T ] → Q besolutions of (3.1). If for all t ∈ [0, T ] we have qk(t) Q
→ q(t) for k → ∞ and if

Ek(0, qk(0)) → E∞(0, q(0)), then q : [0, T ] → Q is a solution of (S)∞&(E)∞, i.e., forall t ∈ [0, T ] we have
(S)∞ q(t) ∈ S∞(t)

(E)∞ E∞(t, q(t)) + Diss∞(q; [0, t]) = E∞(0, q(0)) +
∫ t

0
∂sE∞(s, q(s))ds.

(3.2)Moreover, for all t ∈ [0, T ] we have
(i) Ek(t, qk(t)) → E∞(t, q(t)),

(ii) Dissk(qk; [0, t]) → Diss∞(t, q(t)),

(iii) ∂tEk(t, qk(t)) → ∂tE∞(t, q(t)).

(3.3)Proof: First we use Ek(0, qk(0)) → E∞(0, q(0)) and ondition (2.7) to show that
Ek(t, qk(t)) is bounded uniformly in t ∈ [0, T ] and k ∈ N, see also (2.13). Now,ondition (2.11) gives (S)∞ and ondition (2.9) implies the onvergene (iii) in (3.3).Passing to the limit k → ∞ in (E)k and using (2.12) and (2.10) we �nd the upperenergy estimate

E∞(t, q(t)) + Diss∞(q; [0, t]) ≤ e∗(t) + δ∗(t) = E∞(0, q(0)) +
∫ t

0
∂sE∞(s, q(s))ds,where e∗(t) = lim infk→∞ Ek(t, qk(t)) and δ∗(t) = lim infk→∞ Dissk(qk; [0, t]). Propo-sition 2.4 shows the opposite estimate and we obtain e∗(t) = E∞(t, q(t)) and δ∗(t) =

Diss∞(q; [0, t]). Sine the limits inferior e∗(t) and δ∗(t) are identi�ed a priori and donot depend on hoosing a subsequene, we onlude that they are true limits suhthat (i) and (ii) in (3.3) are shown.The following ounterexample shows that a joint ondition on the sequenes (Ek)k∈Nand (Dk)k∈N is neessary to obtain the above onvergene result. In partiular, theabove result as well as the onlusion of Theorem 3.3 below may be false if we havemerely the following two independent Γ-onvergenes
E∞ = Γ�lim

k→∞
Ek and D∞ = Γ�lim

k→∞
Dk. (3.4)12



Example 3.2 Take Q = R
2 and, for α > 0 and β ≥ 0 let

Ek(t, q) =
1

2
q2
1 +

kα

2

(
q2−

1

k
q1

)2

− tq1 and Dk(q, q̃) = |q1−q̃1| + kβ|q2−q̃2|.Under the initial ondition q(0) = 0, the expliit solution an be obtained from thesubdi�erential equation
0 ∈ ∂Rk(q̇) + Akq − (t, 0)⊤, q(0) = 0,f. [MT04, MR06b℄ for the equivalene to (S)k&(E)k in the onvex ase. Here

Ak =

(
1+kα−2 −kα−1

−kα−1 kα

)
, ∂Rk(v) = Sign(v1)×

(
kβSign(v2)

)
⊂ R

2,where Sign is the multi-valued signum funtion. With T (k) = 1 + kβ−1 + kβ+1−α wehave the solutions qk : [0,∞) → R
2 with

qk(t) =





(0, 0)⊤ for t ∈ [0, 1],(
t−1

kα−2+1
, 0
)⊤ for t ∈ [1, T (k)],(

t−1−kβ−1, t−T (k)
k

)⊤ for t ≥ T (k).For all hoies of α and β, the limit q(t) = limk→∞ qk(t) exists. For t ∈ [0, 1] wealways have q(t) = 0, and for t ≥ 1 we �nd
lim
k→∞

qk(t) =





(max{0, t−1}, 0)⊤ for β ∈ [0, 1) or α ∈ (0, 2),(
max{0, (t−1)/2, t−2}, 0

)⊤ for (α, β) = (2, 1),

(max{0, (t−1)/2}, 0)⊤ for α = 2 and β > 1,(
max{0, t−2}, 0

)⊤ for α > 2 and β = 1,

(0, 0)⊤ for α > 2 and β > 1.It is easy to see that we have
Ek(t, ·)

Γ
→ E∞(t, ·): q 7→

{
1
2
q2
1 − tq1 for q2 = 0,

∞ otherwise.For β = 0 we have D∞ = Dk and onlude the ontinuous onvergene (2.19).Hene, (2.11) holds. For β > 0 we have
Dk

Γ
→ D∞ : (q, q̃) 7→

{
|q1−q̃1| for q2 = q̃2 = 0,

∞ otherwise.The unique energeti solution assoiated with E∞ and D∞ is given by
q(t) = (max{0, t−1}, 0)⊤. Thus, we onlude that onvergene of qk to the limitsolution holds if and only if α ∈ (0, 2) or β ∈ [0, 1).13



It is interesting to see that the ruial onditional upper semi-ontinuity of (2.11)of the stable sets holds if and only if β ∈ [0, 1). To see this, note S∞(t) =

[t−1, t+1]×{0} and that Sk(t) is the parallelogram de�ned by the orners A−1
k (t +

σ1, σ2k
β)⊤ with σ1, σ2 ∈ {−1, 1}. Note that the restrition sup Ek(t, qk) < ∞ forstable sequenes implies qk·(0, 1)⊤ → 0. In fat, the stronger ondition of unondi-tioned upper semi-ontinuity of the stable sets (i.e., (2.11) without the boundednessof the energy in the de�nition of �stab.seq.�) holds if and only if 0 ≤ β < min{α, 1}.The major result of this setion is the onstrution of solutions of (S)∞&(E)∞ with-out �rst deriving solutions qk of (S)k&(E)k. Instead it is su�ient to have solutionsof the time-inremental minimization problems (IP)k.For this we hoose a sequene of partitions

Πk =
{
0 = τk

0 < τk
1 < · · · < τk

Nk−1 < τk
Nk

= T
}suh that the �neness φ(Πk) = maxj=1,...,Nk

(
τk
j −τ

k
j−1

) satis�es φ(Πk) → 0. Thetime-inremental problem reads as follows:(IP)k Given qk
0 ∈ Q, for j = 1, . . . , Nk �nd qk

j ∈ Arg Min
eq∈Q

(
Ek(τ

k
j , q̃)+Dk(q

k
j−1, q̃)

)
.This inremental problem is fully impliit and thus an be alled a bakward Euleror Rothe sheme. We then de�ne the (bakward) pieewise onstant interpolants

qk : [0, T ] → Q via
qk(t) = qk

j−1 for t ∈ [τk
j−1, τ

k
j ) and qk(T ) = qk

Nk
. (3.5)Theorem 3.3 Let the onditions (2.2)�(2.11) hold. Let the sequene of partitions

Πk, k ∈ N, satisfy φ(Πk) → 0. Let qk
0 , k ∈ N, be a sequene of initial onditionssatisfying

qk
0 ∈ Sk(0), qk

0
Q
→ q0 and Ek(0, q

k
0) → E∞(0, q0). (3.6)Then, eah (IP)k has at least one solution qk = (ϕk, zk) : [0, T ] → Q = F×Z andthere exist a subsequene (qkj

)j∈N and a solution q = (ϕ, z) : [0, T ] → Q = F×Z of
(S)∞&(E)∞ suh that (i)�(v) hold:

(i) ∀ t ∈ [0, T ] : Ekj
(t, qkj

(t)) → E∞(t, q(t)),

(ii) ∀ t ∈ [0, T ] : Disskj
(qkj

; [0, t]) → Diss∞(q; [0, t]),

(iii) ∀ t ∈ [0, T ] : zkj
(t)

Z
→ z(t),

(iv) ∂tEkj
(·, qkj

(·)) → ∂tE∞(·, q(·)) in L1([0,T]),

(v) ∀ t ∈ [0, T ] ∃ subsequene (Kt
n)n∈N of (kj)j∈N : ϕKt

n
(t)

F
→ ϕ(t).

(3.7)
Moreover, any q̃ : [0, T ] → Q obtained as suh a limit is a solution of (S)∞&(E)∞.Finally, if the topology on Q restrited to ompat subsets is separable and metrizable,then the mapping ϕ : [0, T ] → F an be hosen measurable, i.e., for any open subset
A ⊂ F the pre-image ϕ−1(A) ⊂ [0, T ] is Lebesgue measurable.14



An alternative way of formulating the onvergene in (v) is based on onvergene ofnets, see Remark 3.4 below.Proof: We follow the six steps of the existene proof for rate-independent problemsgiven in [Mie05, FM06℄ and add Step 7 to prove the measurability.Step 1: A priori estimatesUsing assumptions (2.3) and (2.6) we immediately see that the solution (qk
j )j∈{1,...,Nk}exist by indution on j. Thus, the interpolants qk : [0, T ] → Q are well de�ned.Moreover, we have qk

j ∈ Sk(τ
k
j ), sine for all q̃ ∈ Q we have

Ek(τ
k
j , q

k
j ) ≤(IP)k

Ek(τ
k
j , q̃) + Dk(q

k
j−1, q̃) −Dk(q

k
j−1, q

k
j )

≤(2.2) Ek(τ
k
j , q̃) + Dk(q

k
j , q̃).Letting ek

j = Ek(τ
k
j , q

k
j ) and δk

j = Dk(q
k
j−1, q

k
j ) and using the minimization propertyin (IP)k one again, we derive the upper energy estimate

ek
j + δk

j ≤(IP)k Ek(τ
k
j , q

k
j−1) = ek

j−1 +
∫ τj

τj−1
∂sEk(s, q

k
j−1)ds. (3.8)Inserting �rst (2.7) and then (2.13) into (3.8) we obtain

ek
j + δk

j ≤ ek
j−1 +

∫ τk
j

τk
j−1

cE1 (ek
j−1 + cE0 )ecE

1 (s−τk
j−1) ds

= ek
j−1 + (ek

j−1 + cE0 )(ecE
1 (τk

j −τk
j−1) − 1).

(3.9)Negleting δk
j ≥ 0 we obtain by indution ek

j + cE0 ≤ (ek
0 + cE0 )ecE

1 τk
j and using (2.13)and the de�nition of qk we �nd, with E∗ = cE0 + supk∈N

Ek(0, q
k
0),

∀ t ∈ [0, T ] ∀ k ∈ N : Ek(t, qk(t)) + cE0 ≤ E∗e
cE
1 t. (3.10)Note that E∗ < ∞ by assumption (3.6). Summing (3.9) over j ∈ {1, . . . ,M} we�nd

∑M

j=1 δ
k
j ≤ ek

0 − ek
M +

∑M

j=1(e
k
j−1 + cE0 )(ecE

1 (τk
j −τk

j−1) − 1)

≤ (ek
0 + cE0 ) − (ek

M + cE0 ) + (ek
0 + cE0 )

∑M

j=1(e
cE
1 τk

j − ecE
1 τk

j−1)

≤ (ek
0 + cE0 )ecE

1 τk
M .Choosing M = Nk and using the de�nition of qk we �nd

Dissk(qk; [0, T ]) =
∑Nk

j=1 δ
k
j ≤ E∗e

cE
1 T . (3.11)Finally we want to show that the funtions ek : [0, T ] → R with ek(t) = Ek(t, qk(t))satisfy a BV bound independent of k. For this we test the stability of qk

j−1 ∈ Sk(τ
k
j−1)by q̃ = qk

j and obtain ek
j−1 ≤ Ek(τ

k
j−1, q

k
j ) + Dk(q

k
j−1, q

k
j ) ≤ ek

j + δk
j + C(τk

j −τ
k
j−1).Together with (3.9) we obtain

|ek
j + δk

j − ek
j−1| ≤ C1(τ

k
j −τ

k
j−1), (3.12)15



where C1 is independent of k and j. Moreover, for t ∈ [τk
j−1, τ

k
j ) we have ėk(t) =

∂tEk(t, q
k
j−1) and onlude, using (2.7), that ∫ τk

j

τk
j−1

|ėk(t)|dt ≤ C2(τ
k
j −τ

k
j−1).Finally, using (3.12) we estimate the jumps

∆ek
j = limhց0

(
ek(τ

k
j ) − ek(τ

k
j −h)

)
= ek

j −
(
ek

j−1 +
∫ τk

j

τk
j−1

ėk(t)dt
)

≤ |ek
j − ek

j−1| + C2(τ
k
j −τ

k
j−1) ≤ δk

j + (C1+C2)(τ
k
j −τ

k
j−1).Combining everything we arrive at

Var(ek; [0, T ]) =
∑Nk

j=1

( ∫ τk
j

τk
j−1

|ėk(t)|dt+ ∆ek
j

)

≤
∑Nk

j=1

(
δk
j + (C1+2C2)(τ

k
j −τ

k
j−1)

)
≤ E∗e

cE
1 T + (C1+2C2)T.

(3.13)Step 2: Seletion of subsequenesEstimates (3.10) and (3.11) provides bounds, whih are independent of k. Thedissipation estimate (3.11) together with the assumptions (2.2),(2.5) and (2.4) allowus to extrat a subsequene (not renumbered) and limit funtions z : [0, T ] → Z,
e∞ : [0, T ] → R, and δ∞ : [0, T ] → R suh that for all s, t ∈ [0, T ] with s ≤ t we have

Dissk(qk; [0, t]) → δ∞(t), ek(t) → e∞(t),

zk(t)
Z
→ z(t), Diss∞(z; [s, t]) ≤ δ∞(t) − δ∞(s).Moreover, the energy boundedness (3.10) together with assumption (2.7) shows thatthe sequene pk : [0, T ] → R, t 7→ ∂tEk(t, qk(t)) is bounded in L∞([0, T ]). Choosinga further subsequene (not renumbered) we may assume

pk
∗
⇀ p∞ in L∞([0, T ]).We also de�ne p∗ ∈ L∞([0, T ]) via

p∗(t) = lim sup
k→∞

pk(t).By Fatou's lemma we know p∞ ≤ p∗ a.e. on [0, T ].The onstrution of the limit funtion ϕ : [0, T ] → F is more involved. For eah
t ∈ [0, T ] we de�ne

A(t) = { ϕ̃ ∈ F ; ∂tE∞(t, ϕ̃, z(t)) = p∗(t), ∃ (kl)l∈N : ϕkl
(t)

F
→ ϕ̃ }.First, we show that A(t) is nonempty. We are now areful about subsequenes,sine they now depend on t ∈ [0, T ]. First, hoose a subsequene (Kt

l )l∈N suhthat pKt
l
(t) → p∗(t) for l → ∞. Next, we use the energy bound (3.10) and theuniform ompatness of sublevels postulated in (2.6), whih allows us to extrata subsequene (mt

n)n∈N from (Kt
l )l∈N suh that qmt

n
(t)

Q
→ q(t) = (ϕ(t), z(t)) for16



n → ∞. Let tn = max{ τ ∈ Πmt
n

; τ ≤ t }, then qmt
n
(t) ∈ Smt

n
(tn). Hene,

(tn, qmt
n
(t)) forms a onverging, stable sequene and assumption (2.9) provides

∂tEmt
n
(tn, qmt

n
(t)) → ∂tE∞(t, q(t)) = p∗(t). (3.14)Thus, ϕ̃ = ϕ(t) from q(t) = (ϕ(t), z(t)) lies in A(t). Using the axiom of hoie we�nd a mapping ϕ : [0, T ] → F with ϕ(t) ∈ A(t).Step 3: Stability of the limit proessThe limit proess q = (ϕ, z) : [0, T ] → F×Z = Q was de�ned for eah t ∈ [0, T ]suh that qmt

n
(t) → q(t) and qmt

n
∈ Smt

n
(tn) with tn → t. As in Step 2 we have aonverging, stable sequene and assumption (2.11) provides q(t) ∈ S∞(t).Step 4: Upper energy estimateReall ek(t) = Ek(t, qk(t)), δk(t) = Dissk(qk; [0, t]) and the �neness φk = φ(Πk) →

0. Using the energy bound (3.10) and (2.7) we have |ek(t)−ek
j−1| ≤ Cφk for t ∈[

τk
j−1, τ

k
j

). Moreover, summing (3.8) over j ∈ {1, ..., m} gives ek(τ
k
m) + δk(τ

k
m) ≤

ek(0) +
∫ τk

m

0
∂sEk(s, qk(s)) ds. Sine pk = ∂sEk(·, qk(·)) is uniformly bounded in

L∞([0, T ]) by Cp, we �nd
ek(t) + δk(t) ≤ Ek(0, q

k
0) +

∫ t

0
pk(s)ds+ (C + Cp)φk. (3.15)By (2.10) and (2.5) we have E∞(t, q(t)) ≤ e∞(t) = limk→∞ ek(t) and Diss∞(z; [0, t]) ≤

δ∞(t) = limk→∞ δk(t). Hene, passing to the limit k → ∞ in (3.15) and using theassumption (3.6), we onlude
E∞(t, q(t)) + Diss∞(q; [0, t]) ≤ e∞(t) + δ∞(t)

≤ E∞(0, q0) +
∫ t

0
p∞(s)ds ≤ E∞(0, q0) +

∫ t

0
p∗(s)ds.

(3.16)Step 5: Lower energy estimateSine in Step 3 we have found q(t) ∈ S∞(t) and sine (3.14) provides ∂tE∞(t, q(t)) =

p∗(t) with p∗ ∈ L∞([0, T ]), we an employ Proposition 2.4, whih gives the lowerenergy estimate giving E∞(t, q(t)) + Diss∞(q; [0, t]) ≥ E∞(0, q0) +
∫ t

0
p∗(s)ds.Step 6: Improved onvergeneCombining (3.16) and Step 5 we obtain E∞(t, q(t))+Diss∞(q; [0, t]) = e∞(t)+ δ∞(t)for all t ∈ [0, T ] and p∞ = p∗ a.e. in [0, T ]. Using E∞(t, q(t)) ≤ e∞(t) and

Diss∞(q; [0, t]) ≤ δ∞(t) yields E∞(t, q(t)) = e∞(t) and Diss∞(q; [0, t]) = δ∞(t) forall t ∈ [0, T ], whih establishes the assertions (i) and (ii) in (3.7). Finally, employ-ing Proposition A.2 from [FM06, Prop. A.2℄ together with p∞ = p∗ gives (iv) in(3.7).Step 7: Measurability of the limit proessIf the sublevels of E∞ are separable and metrizable, then it is shown in [Mai05,Set. 1.6℄ that t 7→ A(t) is a measurable set-valued map whih allows us to �nd ameasurable seletion ϕ : [0, T ] → F . For the onveniene of the reader we repeatthe main arguments. By Step 6 we have L1-onvergene in (iv). Choosing a fur-ther subsequene (not relabeled) we may assume that for a.a. t ∈ [0, T ] we have17



∂tEkj
(t, qkj

(t)) → ∂tE∞(t, q(t)). We now de�ne
A0(t) = Limsup

j→∞
{ϕkj

} = { ϕ̃ ∈ F ; ∃ subseq. (j(n))n∈N : ϕkj(n)

F
→ ϕ̃ } ⊂ A(t),whih is a measurable set-valued mapping from [0, T ] intoF with has losed nonemptyvalues, see [AF90, Thm. 8.2.5℄. Filippov's theorem (f. [AF90, Thm. 8.2.10℄) nowprovides a measurable seletion ϕ : [0, T ] → F with ϕ(t) ∈ A0(t).Remark 3.4 As in [MR03, MR06a℄, the pointwise onvergene in (3.7.v) an beformulated alternatively via onvergene on nets, whih is a standard tool of generaltopology. To do this, reall that an index set Ξ is alled direted by an ordering ���,if for any ξ1, ξ2 ∈ Ξ there exists ξ3 ∈ Ξ suh that both, ξ1 � ξ3 and ξ2 � ξ3. Havinga direted set (Ξ,�) and another set B, we say that {bξ}ξ∈Ξ is a net in B, if thereis a mapping Ξ → B : ξ 7→ bξ. If B is a topologial spae, we write b = limξ∈Ξ bξif, for any neighborhood N of b there is ξ0 ∈ Ξ suh that bξ ∈ N whenever ξ0 � ξ,and then we say that the net {bξ}ξ∈Ξ onverges to b (in the so-alled Moore-Smithsense).The notion �net� generalizes that of a �sequene�, where Ξ equals N with the standardordering. The term �subsequene� is generalized via the notion ��ner net�. A net

{x̃eξ
}eξ∈eΞ in X is alled �ner than the net {xξ}ξ∈Ξ, if there is a mapping j : Ξ̃ → Ξsuh that x̃eξ

= x
j(eξ) for all ξ̃ ∈ Ξ̃ and that for any ξ ∈ Ξ there exists ξ̃0 ∈ Ξ̃ suhthat j(ξ̃) � ξ for all ξ̃ with ξ̃ � ξ̃0. Obviously, a �ner net may have an index set Ξ̃of stritly greater ardinality than the index set Ξ of the original net.To reformulate (3.7.v) we use Ξ ⊂ N (ordered standardly) to denote the subsequene

(kj)j∈N and Ξ̃ ⊂ {�nite subsets of [0, T ]} to denote pointwise onvergene. Note that
Ξ̃ ordered by inlusion is indeed a direted set. Then Theorem 3.3 an be reformu-lated in suh a way that, instead of the mentioned subsequene {q̄kj

}j∈N, there existsa net {q̄kξ
}

ξ∈eΞ �ner than the subsequene {q̄k}k∈N and suh that lim
ξ∈eΞ kξ = ∞, anda proess q : [0, T ] → Q suh that, instead of (3.7.v), we have limξ∈eΞ ϕkξ

(t)
F
→ ϕ(t)for any t ∈ [0, T ].4 RelaxationIn this setion we treat a question that is losely linked to the Γ-onvergene on-sidered above. However, this time we onsider only one pair of funtionals E1 and

D1 suh that the inremental problem (IP) need not have any solution due to miss-ing lower semi-ontinuity. We provide joint onditions on E1 and D1 and suitablerelaxations E∞ and D∞ suh that approximate solutions of the inremental problemfor E1 and D1 onverge to energeti solutions assoiated with E∞ and D∞. Our18



assumptions on the stored-energy funtionals Ej : [0, T ]×Q → R∞ and dissipationdistanes Dj : Z×Z → R∞ need the new notion of the set of α-stable points Sα
j (t).For α ≥ 0 we let

Sα
j (t) = { q ∈ Q ; Ej(t, q) <∞, ∀ q̃ ∈ Q : Ej(t, q) ≤ α + Ej(t, q̃) + Dj(q, q̃) }.Note that now j only takes the two values 1 or ∞. Our onditions are the following:
∀ j ∈ {1,∞} ∀ z1, z2, z3 ∈ Z :

Dj(z1, z1) = 0, Dj(z1, z3) ≤ Dj(z1, z2)+Dj(z2, z3).
(4.1)

∀ qk ∈ Sαk

1 (tk), q̃k ∈ Sαk

1 (t̃k) with αk ց 0 and qk
Q
→ q, q̃k

Q
→ q̃ :

D∞(q, q̃) ≤ lim inf
k→∞

D1(qk, q̃k).
(4.2)

∀ ompat K ⊂ Z and zk ∈ K :

min {D∞(zk, z),D∞(z, zk)} → 0 =⇒ zk
Z
→ z.

(4.3)
∀ t ∈ [0, T ] ∀E ∈ R : { q ∈ Q ; E1(t, q) ≤ E } is relatively ompat. (4.4)
∃ cE0 ∈ R ∃ cE1 > 0 ∀ t ∈ [0, T ] ∀ j ∈ {1,∞} :If Ej(t, q) <∞, then Ej(·, q) ∈ C1([0, T ]) and
|∂sEj(s, q)| ≤ cE1 (Ej(s, q) + cE0 ) for all s ∈ [0, T ].

(4.5)
∀E ∈ R ∀ ε > 0 ∃ δ > 0 :

E∞(0, q) ≤ E and |t1−t2| < δ =⇒ |∂tE∞(t1, q)−∂tE∞(t2, q)| < ε.
(4.6)

(tk, qk)
Q
→ (t, q), supk∈N

E1(tk, qk) <∞, qk ∈ Sαk

1 (tk) with αk ց 0

=⇒ ∂tE1(tk, qk) → ∂tE∞(t, q).
(4.7)

qk
Q
→ q =⇒ E∞(t, q) ≤ lim inf

k→∞
E1(t, qk). (4.8)

qk ∈ Sαk

1 (tk) with αk ց 0, (tk, qk)
[0,T ]×Q

→ (t, q), supk∈N
E1(tk, qk) <∞

=⇒ q ∈ S∞(t).
(4.9)Like in Setion 2 the last ondition an be established via a hierarhy of severalstronger onditions. We only state the simplest one, namely(i) D1 = D∞ and D1 : Z×Z → [0,∞) is ontinuous,(ii) E∞(t, ·) = Γ�lim

k→∞
E1(t, ·).

(4.10)Here (i) in (4.10) orresponds to the ontinuous onvergene ondition (2.19). The
Γ-limit E∞(t, ·) of the onstant sequene (E1(t, ·))k∈N is exatly the lower semi-ontinuous envelope of E1(t, ·), see [Dal93, Bra02℄. Like in Proposition 2.2 we easilyobtain that (4.10) implies (4.9). 19



The essential di�erene to the previous setion is that the inremental problem (IP)for E1 and D1 may not be solvable. We replae it by an approximate inrementalproblem (AIP). As before we hoose an arbitrary sequene (Πk)k∈N of partitionswith �neness φk := φ(Πk) → 0. Moreover, the sequene (εk)k∈N with 0 < εk → 0will be used to ontrol the auray in the energy minimization.(AIP)k 



Given qk
0 , for j = 1, . . . , Nk �nd iteratively qk

j ∈ Q suh that
E1(τ

k
j , q

k
j ) + D1(q

k
j−1, q

k
j ) ≤ (τk

j −τ
k
j−1)εk + inf

eq∈Q

(
E1(τ

k
j , q̃)+D1(q

k
j−1, q̃)

)
.Clearly, (AIP)k has always at least one solution (qk

j )j=1,...,Nk
, whih leads to pieewiseonstant interpolants qk : [0, T ] → Q de�ned as in (3.5). Our main result is thatsuitably hosen subsequenes onverge to a limit proess q : [0, T ] → Q, whih is anenergeti solution assoiated with E∞ and D∞.Theorem 4.1 Let (Πk)k∈N be a sequene of partitions of [0, T ] with φk = φ(Πk) → 0and let (εk)k∈N satisfy 0 < εk → 0. Let (qk

0)k∈N be a sequene of initial onditionssatisfying
qk
0

Q
→ q0, E1(0, q

k
0) → E∞(0, q0) and qk

0 ∈ Sεkφk

1 (0). (4.11)Then, for every sequene (qk)k∈N of pieewise onstant interpolants of solutions of(AIP)k with initial value qk
0 , there exist a subsequene (kl)l∈N and a solution q =

(ϕ, z) : [0, T ] → Q = F×Z of (S)∞&(E)∞ suh that (i)�(v) hold:
(i) ∀ t ∈ [0, T ] : E1(t, qkl

(t)) → E∞(t, q(t)),

(ii) ∀ t ∈ [0, T ] : Diss1(qkl
; [0, t]) → Diss∞(q; [0, t]),

(iii) ∀ t ∈ [0, T ] : zkl
(t)

Z
→ z(t),

(iv) ∂tE1(·, qkl
(·)) → ∂tE∞(·, q(·)) in L1([0, T ]),

(v) ∀ t ∈ [0, T ] ∃ subsequene (Kt
n)n∈N of (kl)n∈N : ϕKt

n
(t)

F
→ ϕ(t).Moreover, any q̃ : [0, T ] → Q obtained as suh a limit is a solution of (S)∞&(E)∞.Finally, if the topology on Q restrited ompat sets is separable and metrizable, thenthe mapping ϕ : [0, T ] → F an be hosen measurable.Proof: We follow the proof of Theorem 3.3 and point out the di�erenes only.Step 1: A priori estimatesWith ek

j = E1(τ
k
j , q

k
j ) we obtain as in (3.9) the estimate

ek
j + δk

j ≤ ek
j−1 + εk(τ

k
j − τk

j−1) + (ek
j−1 + cE0 )(ecE

1 (τk
j −τk

j−1) − 1).Introduing the auxiliary variable Ek
j = ek

j + cE0 + εk/c
E
1 and Ek

0 = ek
0 + cE0 we �nd

Ek
j + δk

j ≤ ecE
1 (τk

j −τk
j−1)Ek

j−1. (4.12)20



With E∗ = sup
k∈N

(
cE0 + E1(0, q

k
0)
)
< ∞ we �nd Ek

j ≤ ecE
1 τk

j E∗ and, hene, the k-independent a priory energy bound ek
j ≤ −cE0 +Ek

j ≤ −cE0 + ecE
1 TE∗. Adding (4.12)over j = 1, . . . , Nk we �nd

∑Nk

j=1 δ
k
j ≤ Ek

0 − Ek
Nk

+
∑Nk

j=1(e
cE
1 (τk

j −τk
j−1) − 1)Ek

j−1

≤ Ek
0 +

∑Nk

j=1

(
ecE

1 τk
j E∗ − ecE

1 τk
j−1E∗

)
≤ ecE

1 TE∗.Like in Setion 3 we de�ne, for the pieewise onstant interpolant qk, the real-valuedfuntions
δk(t) = Diss1(qk, [0, t]), ek(t) = E1(t, qk(t)), pk(t) = ∂tE1(t, qk(t)).Like in Step 1 of the proof of Theorem 3.3 we have |δk(t) + ek(t) − δk(s) − ek(s)| ≤

C∗|t− s| and thus
Var(δk; [0, T ]) ≤ ecE

1 TE∗ and Var(ek; [0, T ]) ≤ ecE
1 TE∗ + C∗T.Step 2: Seletion of subsequenesThis part is idential to that in Setion 3. We �nd one subsequene (kl) suh that

δkl
(t) → δ∞(t), ekl

(t) → e∞(t), zkl
(t)

Z
→ z(t), pkl

∗
⇀ p∞ ≤ p∗.Moreover, for t-dependent subsequenes we have ϕKt

n
(t)

F
→ ϕ(t).Step 3: Stability of the limit proessWith tk = min{ τ ∈ Πk ; τ ≤ t } and αk = εkφk ≥ εk(τ

k
j − τk

j−1) we �nd qk(t) ∈

Sαk

1 (tk). Clearly, (tk, qk(t))
[0,T ]×Q

→ (t, q(t)) and E1(tk, qk(t)) ≤ ecE
1 TE∗−cE0 . Hene,(4.9) implies the desired result q(t) ∈ S∞(t).Step 4: Upper energy estimateUsing the approximate minimization property of qk

j = qk(τ
k
j ) for j = 1, ..., m wehave, after summation, ek(τ

k
m) + δk(τ

k
m) ≤ ek(0) + εkτ

k
m +

∫ tk
k

0
pk(s)ds. As before weobtain the estimate ek(t) + δk(t) ≤ ek(0) + εkt+

∫ t

0
pk(s)ds+ Cφk for all t ∈ [0, T ].Using φk, εk → 0, pk

∗
⇀ p∞, ek(t) → e∞(t) and δk(t) → δ∞(t) we �nd

E∞(t, q(t))+Diss∞(q; [0, t]) ≤ e∞(t)+δ∞(t) ≤ E∞(0, q0)+
∫ t

0
p∞ds ≤ E∞(0, q0)+

∫ t

0
p∗ds.Step 5: Lower energy estimateApplying Proposition 2.4 to the stable limit proess q : [0, T ] → Q for the limit fun-tionals E∞ and D∞ results in E∞(t, q(t)) + Diss∞(q; [0, t]) ≥ E∞(0, q0) +

∫ t

0
p∗(s)ds.Step 6: Improved onvergeneExatly as in Step 6 of the proof of Theorem 3.3 we onlude Diss∞(q; [0, ·]) = δ∞,

E∞(·, q(·) = e∞, and p∞ = p∗.Step 7: Measurability works exatly as above.21



Remark 4.2 A losely related result onerning relaxations of rate-independentproesses is disussed in [MO06℄. There, the ase is studied that Q is a re�exiveBanah spae and that D1 is given in the form D1(z, z̃) = R1(z̃−z). Besides of theusual tehnial assumptions, the ruial onvergene onditions of the funtionalsare (4.10), namely (ontinuous) onvergene of R1 to R∞ and Γ-onvergene of E1to E∞. The relaxation of the non-relaxed, in most ases unsolvable rate-independentsystem (S)1&(E)1 is obtained by onsidering the funtional
Im(q) =

∫ T

0
e−mt

(
R1(ż) +mE1(t, q(t))

)
dt.Choosing the minimizers (or suitable approximate minimizers) qm : [0, T ] → Qfor Im under the initial ondition qm(0) = q0 we ask the question how possibleaumulation points q : [0, T ] → Q an be haraterized.The following three features of Im strongly depend on the fat that we are dealingwith rate-independent systems, i.e., R1 is 1-homogeneous. First it is shown thatfor �xed m ∈ N the relaxation of Im : L1([0, T ],Q) → R∞ is given by the sameexpression but with R1 and E1 replaed by R∞ and E∞. A seond result statesthat every minimizer of Im (or of its relaxation) satis�es the energy balane (E)jfor j ∈ {1,∞}, i.e., Ej(t, q(t)) +

∫ t

0
Rj(dz) = Ej(0, q0) +

∫ t

0
∂sEj(s, q(s)) ds. This issurprising sine the funtional depends on m whereas the energy balane does not.Finally, it is shown that aumulation points q of minimizers qm of Im are solutionsof the energeti formulation (S)∞&(E)∞.5 Some appliationsIn this setion we provide three examples to illustrate the theory developed above.In the �rst example we treat the numerial approximation of a standard evolutionaryvariational inequality with quadrati energy as an appliation of our Γ-limit theoryin Setion 3. The seond example onerns the ontinuity of the so-alled stop andplay operators. The third example onsiders a nononvex funtional E1 that hasa nontrivial lower semi-ontinuous envelope E∞ and thus provides an example ofrelaxation. For more realisti appliations we refer to [KMR05, MR06a℄, where wealso take full advantage of the abstrat theory using the weaker onditions (2.15) or(2.17). In the present appliations we will rely on the more restritive assumptions(2.18) and (2.19) for the �rst appliation, whereas we exploit diretly (2.11) for theseond and (4.10) for the third one.5.1 Approximation via �nite-dimensional subspaesWe onsider the ase that F and Z are separable Hilbert spaes HF and HZ , respe-tively, and set H = HF×HZ . For the topology we hoose the weak topology suh22



that bounded sets are relatively ompat. For the energy we assume a quadratiform
E∞(t, q) =

1

2
〈Aq, q〉 − 〈ℓ(t), q〉,where A = A∗ ∈ L(H,H∗) is a bounded symmetri operator, whih is additionallypositive de�nite, i.e., there exists c > 0 suh that 〈Aq, q〉 ≥ c‖q‖2 for all q ∈ H ,where ‖ · ‖ stands for the norm in H . The loading satis�es ℓ ∈ C1([0, T ], H∗).The dissipation distane is given via a onvex, 1-homogeneous funtional R : HZ →

[0,∞), i.e. R(γz) = γR(z) for all γ ≥ 0 and z ∈ HZ , whih satis�es
(i) zk ⇀ z =⇒ R(zk) → R(z),

(ii) z 6= 0 =⇒ R(z) > 0.
(5.1)Now we set D∞(z0, z1) = R(z1−z0).The sequene of funtionals Ek and Dk is now obtained by a hoosing a nestedsequene of �nite-dimensional subspaes Hk

F and Hk
Z , k ∈ N suh that

Hk
F ⊂ Hk+1

F and ⋃∞
k=1H

k
F is dense in HF ,

Hk
Z ⊂ Hk+1

Z and ⋃∞
k=1H

k
Z is dense in HZ .

(5.2)We now let Hk = Hk
F×H

k
Z and de�ne

Ek(t, q) =

{
E∞(t, q) for q ∈ Hk,

∞ otherwise, and Dk(z0, z1) =

{
R(z1−z0) for z0, z1 ∈ Hk

Z ,

∞ otherwise.We laim that the onditions (2.2)�(2.10) hold and that (2.11) an be dedued viaProposition 2.2 from (2.18) and (2.19).The triangle inequality (2.2) follows fromR being 1-homogeneous and onvex, whihgives R(z0+z1) ≤ R(z0) + R(z1). By assumption (5.1)(i) the funtion R and hene
D∞ : HZ×HZ → [0,∞) are weakly ontinuous. The de�nition of Dk keeps onvexityand strong lower semi-ontinuity. Thus, all Dk are weakly lower semi-ontinuousand (2.3) is established. Using this and D∞ ≤ Dk+1 ≤ Dk we immediately obtainthe lower Γ-limit ondition (2.4). Finally, for sequenes (zk)k∈N on bounded setsin HZ the ondition D∞(zk, z) = R(z − zk) → 0 implies zk ⇀ z, sine zk has aonvergent subsequene, namely zkl

⇀ z∗ for some z∗ ∈ HZ . By (5.1)(i) we have
R(z− z∗) = lim

l→∞
R(z − zkl

) = 0 and (5.1)(ii) yields z∗ = z. Hene, the full sequenemust onverge weakly to z. Thus, all onditions on Dk, k ∈ N, are satis�ed.For the onditions on Ek, we �rst onsider E∞, whih satis�es
E∞(t, q) ≥

c

2
‖q‖2 − Λ0‖q‖ with Λ0 = sup

t∈[0,T ]

‖ℓ(t)‖H∗ .Hene, the sublevels are bounded. By strong ontinuity and onvexity of E∞ thesublevels are weakly ompat. Sine the E-sublevel of Ek(t, ·) is the intersetion of
Hk with the E-sublevel of E∞, the ondition (2.6) follows.23



With Λ1 = supt∈[0,T ] ‖ℓ̇(t)‖H∗ and ∂tE∞(t, q) = −〈ℓ̇(t), q〉 we obtain |∂tE∞(t, q)| ≤

Λ1‖q‖ ≤ Λ1

Λ0

(2Λ2
0

c
+ E∞(t, q)

)
. Sine Ek and E∞ oinide if Ek takes �nite values, thefuntionals Ek satisfy the same estimate. Thus, (2.7) is established. Moreover, byuniform ontinuity of ℓ̇ : [0, T ] → H∗ we similarly obtain (2.8). Like for Dk, thelower Γ-limit ondition follows from E∞ ≤ Ek and the weak lower semi-ontinuity of

E∞. The onvergene of the power is trivial, sine ∂tEk(t, q) = −〈ℓ̇(t), q〉 is linear in
q and independent of k.To prove the ruial upper semi-ontinuity of the stable sets we use Proposition 2.2after establishing (2.17). Let (tl, qkl

) be a stable sequene with limit (t, q). For agiven test funtion q̃ ∈ H we hoose any sequene q̃l suh that q̃l ∈ Hkl and q̃l → q̃.For instane, q̃l may be the orthogonal projetion of q̃ onto Hkl. Hene,
Ekl

(tl, q̃l) + Dkl
(qkl

, q̃l) = E∞(tl, q̃l) + R(q̃l − qkl
)

→ E∞(t, q̃) + R(q̃ − q) = E∞(t, q̃) + D∞(q, q̃),and (2.17) is established.As a onlusion, we know that both theorems of Setion 3 are appliable. In parti-ular, taking �nite-dimensional subspaes Hk and hoosing time partitions Πk we areleft with a �nite number of �nite-dimensional minimization problems. If φ(Πk) → 0and (Hk)k∈N exhausts H (i.e., (5.2) holds), then Theorem 3.3 guarantees that thereexists subsequenes that onverge to an energeti solution assoiated with E∞ and
D∞. In fat, here the solution of (S)∞&(E)∞ for a given initial value q0 ∈ S∞(0) isunique (f. [Mie05℄). This proves that the whole sequene must onverge.We lose this subsetion by relating our funtionals to ontinuum mehanis. Let
Ω ⊂ Rd be a bounded domain with Lipshitz boundary. We let HF = (H1

0(Ω))d,whih is the spae for the displaements u(t, ·) : Ω → Rd. For some m ∈ N we let
HZ = (H1(Ω))m for the plasti variables, whih ontain the plasti strain εplast =

Bz as well as possible hardening variables. For the dissipation we hoose R(z) =∫
Ω
ρ(x, z(x))dx with ρ ∈ C0(Ω×Rm) suh that r1|v| ≤ ρ(x, v) ≤ r2|v| for all (x, v) ∈

Ω×Rm with 0 < r1 ≤ r2 and ρ(x, ·) : Rm → [0,∞) is 1-homogeneous and onvex.Hene, R is equivalent to the L1-norm and (5.1) holds.The energy funtional E∞ is usually taken in the form
E∞(t, u, z) =

∫
Ω

1
2
(ε(u)−Bz):C(x):(ε(u)−Bz)+ 1

2
A(x)z ·z+ κ

2

∣∣∇z
∣∣2 dx−

∫
Ω

fext(t)·udx,where ε(u) = 1
2
(∇u+∇u⊤), κ > 0, and B ∈ Rd×d×m. Moreover, C ∈ L∞(Ω, Sym(Rd×d))and A ∈ L∞(Ω, Sym(Rm)) are assumed to be uniformly positive de�nite. Thus, allonditions on E∞ are satis�ed, if we impose fext ∈ C1([0, T ],H−1(Ω)d).Suitable �nite-dimensional approximation spaes are, for instane, �nite-elementspaes with ontinuous pieewise a�ne funtions on a triangulation of the domain.24



The above result provides a simpli�ed and more straightforward onvergene prooffor elastoplastiity as given in [HR99a℄.Further appliations, whih use the full strength of the abstrat theory developed inthe present paper, are found in [MR06a℄. Convergene results of numerial methodswith expliit onvergene rates are disussed in [HR99b, AMS06℄.5.2 Continuity of the vetor-valued stop and play operatorIn a Hilbert spae H with the salar produt 〈·, ·〉 the play operator and the stopoperator of rate-independent hysteresis are de�ned in terms of the harateristi oryield set C ⊂ H, whih is non-empty, onvex, and losed. The stop operator mapsa given input funtion ℓ ∈ CLip([0, T ],H) and an initial value σ0 ∈ C to the solution
σ ∈ CLip([0, T ],H) of the following evolutionary variational inequality:
σ(0) = σ0 and for a.a. t ∈ [0, T ]: σ(t) ∈ C and 〈σ(t)−σ̃, σ̇(t)−ℓ(t)〉 ≤ 0 for all σ̃ ∈ C.The play operator is simply de�ned via the mapping from (σ0, ℓ) to z = PC(σ0, ℓ) =

ℓ−σ ∈ CLip([0, T ],H). These operators an equivalently be de�ned by the ener-geti formulation used in this paper. For this we de�ne the quadrati energy fun-tional E(t, z) = 1
2
〈z, z〉 − 〈ℓ(t), z〉. The dissipation distane is given as D(z0, z1) =

R(z1−z0), where the dissipation potential is the Legendre transform I∗C of the indi-ator funtion IC of the yield set C:
R(v) = I∗C(v) = sup

σ∈H

(
〈σ, v〉−IC(σ)

)
= sup

σ∈C
〈σ, v〉.An important question is now the dependene of the play operator PC on the yieldsset C. Under the assumptions that all the sets Ck ontain 0, are losed and onvex,it is shown in [Kre99℄ that Hausdor� onvergene of Ck to C∞ implies that PCk

(0, ℓ)onverges to PC∞(0, ℓ) in C0([0, T ], H). In [Ste06, Cor. 4.6℄ this result was generalizedto the weaker Moso onvergene:
Ck

M
−−→ C∞

def
⇐⇒

{ (i) C∞ ⊃ { z ∈ H ; zkl
⇀ z with zkl

∈ Ckl
},(ii) C∞ ⊂ { z ∈ H ; ∃ zk ∈ Ck : zk → z }.

(5.3)We may now apply our Γ-onvergene result from Setion 3. Sine Ek does notdepend on k and is a simple quadrati energy, the sublevels are balls, whih areompat with respet to the weak topology. Moreover, the stable sets an be givenexpliitly in the form
Sk(t) = { z ∈ H ; 0 ∈ ∂Rk(0) + z − ℓ(t) } = ℓ(t) − Ck.The onditioned upper semi-ontinuity of the stable sets (2.11) now simply meansthat zkl

−ℓ(tl) ∈ Ckl
, tl → t and zkl

⇀ z imply z ∈ C∞. However, sine ℓ is25



ontinuous, we easily see that this ondition is equivalent to (5.3.i). The remainingondition is the lower Γ-limit (see (2.5)), whih now reads
vk ⇀ v in H =⇒ R∞(v) ≤ lim inf

k→∞
Rk(vk). (5.4)It is easily seen that this ondition is a onsequene of ondition (5.3.ii).In fat, ondition (5.3.ii) and (5.4) are atually equivalent in the present situation.Sine 0 ∈ Ck for all k, one an simply follow the �rst steps in the proof of [Att84,Thm. 3.11a, p. 282℄ in order to hek that (5.4) yields

∀σ ∈ H : inf{ lim sup
k→∞

ICk
(σk) ; σk → σ } ≤ IC∞(σ),whih is learly equivalent to ondition (ii) in (5.3).Sine the limit problem has a unique solution, we additionally onlude that thewhole sequene onverges and we have thus reovered the result in [Ste06℄ thatMoso onvergene of Ck to C∞ implies onvergene of the stop operator. In fat,the results in that paper address the more general situation of approximating thedata as well.5.3 An example for relaxation and regularizationThis example overs the theory of Setion 4, where only two pairs of funtionals areonsidered. We hoose Q = Z = H1((0, 1)) equipped with the weak topology andde�ne the energy funtionals

E1(t, z) =
∫ 1

0
W (z′(x)) + z(x)2 − f(t, x)z(x) dx,

E∞(t, z) =
∫ 1

0
W ∗∗(z′(x)) + z(x)2 − f(t, x)z(x) dx,where f ∈ C1([0, T ],L2((0, 1))), W (a) = min {(a−1)2, (a+1)2} and W ∗∗ is the on-vexi�ation of W , i.e., W ∗∗(a) = W (a) for |a| ≥ 1 and W ∗∗(a) = 0 for |a| ≤ 1. It isa well-known fat that E1 is not weakly lower semi-ontinuous on Z and that E∞ isits relaxation on Z. Thus, all onditions on E1 and E∞ are easily proved to hold.For the dissipation we hoose

D1(z0, z1) = D∞(z0, z1) =
∫ 1

0
|z1(x) − z0(x)|dx = ‖z1 − z0‖L1 ,whih makes it easy to hek all the assumptions on D1 and D∞.The ruial assumption is the upper semi-ontinuity (4.9) of the stable sets.Lemma 5.1 Let 0 < αl → 0, tl → t, zl ⇀ z in Z, and zl ∈ Sαl(tl) ( i.e., ∀ l ∈

N ∀ z̃ ∈ Z : E1(tl, zl) ≤ αl+E1(tl, z̃)+D1(zl, z̃) ). Then, z ∈ S∞(t).26



Proof: Choose an arbitrary test funtion z̃ ∈ Z = H1((0, 1)). Sine E∞ is the Γ-limit of (E1)l∈N, there is a reovery sequene (z̃l)l∈N suh that z̃l ⇀ z̃ and E1(tl, z̃l) →
E∞(t, z). Now, we have
E∞(t, z) ≤ lim inf

l→∞
E1(tl, zl) ≤ lim inf

l→∞
(αl+E1(tl, z̃l)+‖z̃l−zl‖L1) = E∞(t, z̃)+‖z̃ − z‖L1 ,where we have used the weak H1-ontinuity of the L1-norm. Sine z̃ was arbitrary,this proves the assertion.Theorem 5.2 Assume 0 < εk → 0 and φ(Πk) → 0 for a sequene of partitions.Choose z0 ∈ S1(0) ⊂ Z and de�ne the pieewise onstant interpolants zk : [0, T ] → Zassoiated to some solution of the approximate inremental problem (AIP)k withinitial value zk

0 = z0. Then, there exist a subsequene (kj)j∈N and a limit funtion
z : [0, T ] → Z suh that for all t ∈ [0, T ] we have

zkj
(t) ⇀ z(t) in H1((0, 1)), E1(t, zkj

(t)) → E∞(t, z(t)),

Diss1(zkj
; [0, t]) → Diss∞(z; [0, t]) =

∫ t

0
‖ż(t)‖L1 dt.Moreover, z : [0, T ] → Z is an energeti solution assoiated with E∞ and D∞ andsatis�es z ∈ L∞([0, T ],H1((0, 1))) ∩ CLip([0, T ],L2((0, 1))).The only new part in this result is the time regularity of z, namely ż ∈ L∞([0, T ],L2(Ω)).This fat is a property of all solutions of (S)∞&(E)∞, sine E∞ is uniformly onvexon L2((0, 1)). The proof of this result follows the ideas in [MR06b℄.Proposition 5.3 Every solution z : [0, T ] → Z of (S)∞&(E)∞ lies in CLip([0, T ],L2((0, 1)))and satis�es, for a.e. t ∈ [0, T ], the estimate ‖ż(t)‖L2 ≤ 2‖ḟ(t)‖L2.Proof: Sine z(s) minimizes the funtional E∞(s, ·)+‖·−z(s)‖L1, whih is uniformlyonvex in the L2-norm, we have the obvious estimate

∀ z̃ ∈ Z : E∞(s, z(s)) + ‖z̃ − z(s)‖2
L2 ≤ E∞(s, z̃) + ‖z̃ − z(s)‖L1 .Here the left-hand side is a parabola supporting the graph of the funtional, whihis the right-hand side, in the minimizer z(s). Let e(r) = E∞(r, z(r)) for r ∈ [0, T ]and test the above inequality by z̃ = z(t), then

e(s) + ‖z(t) − z(s)‖2
2 ≤ E∞(s, z(t)) + ‖z(t) − z(s)‖L1

= e(t) − 〈f(s)−f(t), z(t)〉 + ‖z(t) − z(s)‖L1 .Assuming t > s and using the energy balane (E)∞ we have
‖z(t) − z(s)‖L1 ≤ Diss(z; [s, t]) = e(s) − e(t) −

∫ t

s
〈ḟ(τ), z(τ)〉dτ.27



Combining these estimates we arrive at
‖z(t) − z(s)‖2

2 ≤
∫ t

s
〈ḟ(τ), z(t)−z(τ)〉dτ ≤ sup

r∈[s,t]

‖ḟ(τ)‖2

∫ t

s
‖z(τ)−z(t)‖2 dτ.Now apply [MR06b, Lem. 3.3℄ to obtain the desired result.So far we are not able to prove that solutions assoiated with mirostruture reallyour as limits of solutions of (AIP)k. In (S)∞&(E)∞ this simply means that solu-tions satisfy |z′(t, x)| < 1. However, it is easy to see that (S)∞&(E)∞ has solutionsof this type. Consider the ase f(t, x) = (1−t)x and z0(x) = x. Then, the funtion

z : [0, 3] → H1((0, 1)) with
z(t, x) =

{
x for x ∈ [0, 1/(1+t)],

1
2

(
(1−t)x+ 1

) for x ∈ [1/(1+t), 1].is a solution. It would be su�ient to show that this solution is unique. Then, allaumulation points of solutions of (AIP)k would neessarily onverge to this uniquesolution.Instead of solving the approximate inremental problem we may also treat a regu-larized problem by using the energies
Ek(t, z) =

∫ 1

0

1

k

(
z′′(x)

)2
+W (z′(x)) + z(x)2 − f(t, x)z(x)dx.We show that for this situation the Γ-onvergene result of Setion 3 is appliable.For this we still keep the underlying spae Q = Z = H1((0, 1)) equipped with theweak topology. Now eah Ek has ompat sublevels as they are losed and boundedin H2((0, 1)), although not uniformly with respet to k, f. ondition (i) in (2.6). Inpartiular, hoosing a smooth stable initial value z0 the standard existene theoryfor energeti solutions (f. [MM05, Mie05, FM06℄) provides for eah k energetisolutions zk, whih are solutions of the di�erential inlusion

0 ∈ Sign(∂tz) + 1
k
∂4

xz − ∂x

(
DW (∂xz)

)
+ 2z − f(t, x) for a.e. (t, x) ∈ [0, T ]×Ω,

z(0, ·) = z0 ∈ H2((0, 1)),with zk ∈ L∞([0, T ],H2((0, 1))) ∩ BV([0, T ],L1((0, 1))). In L∞([0, T ],H2((0, 1))) thenorm will tend to∞ with k, whereas in L∞([0, T ],H1((0, 1))) there is a k-independentbound.Hene, we may pass to the limit for k → ∞, sine it is well-known that E∞ is the
Γ-limit of Ek, see [Dal93, Bra02℄. Theorem 3.1 is appliable and we onlude thatonvergent subsequenes of (zk)k∈N exist and that their limit points are energetisolutions assoiated with the relaxed funtionals E∞ and D∞. Moreover, Theorem3.3 an be employed to show that the solutions of suitable inremental problemsonverge to solutions of (S)∞&(E)∞ as well.28



An alternative relaxation is based on so-alled Young measures and a ontinuousextension of W . To be more spei�, let
Q := { q = (z, ν) ∈ H1((0, 1))×Y2((0, 1)) ;

∫
R
a νx(da) = z′(x) for a.a. x ∈ (0, 1) },where

Y2(0, 1) :=
{
ν = (νx)x∈(0,1) ; νx is a probability measure on R,

∀ψ ∈ C0(R): x 7→
∫

R
ψ(a)νx(da) is measurable,

∫ 1

x=0

∫
a∈R

a2νx(da)dx <∞
}is the set of the L2-Young measures. Then it is natural to de�ne

E1(t, z, ν) =

{ ∫ 1

0
W (z′(x))+z(x)2−f(t, x)z(x)dx if νx = δz′(x) a.e. in (0, 1),

∞ else.while
EYM(t, z, ν) =

∫ 1

x=0

( ∫
a∈R

W (a)νx(da) + z(x)2−f(t, x)z(x)
)
dx.The setQ an be onsidered as a onvex subset of the linear spae H1((0, 1))×

(
C([0, 1])⊗

{ a 7→ ψ(a)+αa2 ; ψ ∈ C0(R), α ∈ R }
)∗ under the natural embedding

(z, ν) 7→
(
z,
(
g ⊗ (ψ+αa2)

)
7→
∫ 1

0
g(x)

∫
R
(ψ(a)+αa2)νx(da)dx

)
.This spae is standardly topologized by the weak* topology, whih makes EYM(t, ·)the Γ-limit of E1(t, ·).Again the theory of Setion 4 is appliable. This shows that pieewise onstant in-terpolants of the solutions of the approximate inremental problem (AIP) assoiatedwith E1 and D1 have subsequenes, whih onverge to energeti solutions assoiatedwith EYM and D∞.In the vetorial, multidimensional ase a more sophistiated Young measure re-laxation in the rate-independent setting is given in [KMR05℄. Related evolution-ary systems for Young measures, also in the rate-dependent ase, are disussed in[The98, Mie99, BFS01, MR03, Mie04, MO06℄.A Generalization of Helly's seletion prinipleThe following result is an abstrat version of Helly's seletion priniple whih isagain a generalization of [MM05, Thm. 3.2℄. Sine we are onerned with a se-quene (Dk)k∈N of dissipation distanes rather than with a single one, we give a fullindependent proof.

∀ k ∈ N∞ ∀ z1, z2, z3 ∈ Z : Dk(z1, z1) = 0, Dk(z1, z3) ≤ Dk(z1, z2) + Dk(z2, z3).(A.1)29



For all ompat K ⊂ Z we have :If zk ∈ K and min {D∞(zk, z),D∞(z, zk)} → 0, then zk
Z
→ z.

(A.2)
(
zk → z and z̃k → z̃

)
=⇒ D∞(z, z̃) ≤ lim inf

k→∞
Dk(zk, z̃k). (A.3)Note that (A.1) and (A.2) are simply realled from Setion 2 while (A.3) is strongerthan the orresponding assumptions (2.5) and (4.2) (see below).Additionally, we use that Z is a Hausdor� topologial spae, whih implies that eahonverging sequene has a unique limit. For a funtion z : [0, T ] → Z and k ∈ N∞we reall

Dissk(z; [s, t]) = sup{
∑N

j=1 Dk(z(tj−1), z(tj)) ; N ∈ N, s ≤ t0 < t1 < · · · < tN ≤ t}.Of ourse, we have Dk(z(s), z(t)) ≤ Dissk(z; [s, t]).Theorem A.1 Assume that the sequene (Dk)k∈N∞
satis�es the onditions (A.1),(A.2) and (A.3). Moreover, let K be a ompat subset of Z and zk : [0, T ] → Z, k ∈

N, a sequene satisfying
(i) ∀ t ∈ [0, T ] ∀ k ∈ N : zk(t) ∈ K (ii) sup

k∈N

Dissk(zk; [0, T ]) <∞. (A.4)Then there exist a subsequene (zkl
)l∈N and limit funtions z : [0, T ] → Z and δ :

[0, T ] → [0,∞] with the following properties:
(a) ∀ t ∈ [0, T ] : δ(t) = lim

l→∞
Disskl

(zkl
; [0, t])

(b) ∀ t ∈ [0, T ] : zkl
(t)

Z
→ z(t)

(c) ∀ s, t ∈ [0, T ] with s < t : Diss∞(z; [s, t]) ≤ δ(t) − δ(s).Proof: We de�ne the funtions dk : [0, T ] → [0,∞] with dk(t) = Dissk(zk; [0, t])whih are nondereasing by de�nition and uniformly bounded by (A.4.ii). Hene,the lassial Helly's seletion priniple for real-valued funtions provides a subse-quene suh that dekn
(t) → δ(t) for all t ∈ [0, T ]. Hene, δ : [0, T ] → [0,∞] is alsonondereasing and bounded. This proves (a).Denote by J ⊂ [0, T ] the set of disontinuity points of δ, then J is ountable.Hene, we may hoose a ountable, dense subset T of [0, T ] with J ⊂ T . For eah

t ∈ T any subsequene of (zekn
(t))n∈N lies in the sequentially ompat set K ⊂ Z andthus ontains a onvergent subsequene. Hene, using Cantor's diagonal sheme we�nd a subsequene (zkl

)l∈N of (zekn
)n∈N suh that (a) remains true and additionallywe have

∀ t ∈ T : zkl
(t)

Z
→ z(t) for l → ∞.This de�nes the limit funtion z : T → Z.30



To show onvergene on [0, T ]\T we use the ontinuity of δ. We �x t∗ ∈ [0, T ]\T ,then the sequene (zkl
(t∗))l∈N has a onvergent subsequene zbkm

(t∗)
Z
→ z∗. Moreover,there exists a sequene tn ∈ T with tn → t∗. Below we will show z(tn)

Z
→ z∗. By theHausdor� property of Z we onlude that (zkl

(t∗))l∈N has exatly one aumulationpoint and we de�ne z(t∗) = z∗.To show z(tn)
Z
→ z∗ we �rst assume tn < t∗. Then, using (A.3) we have

D∞(z(tn), z∗)≤ lim inf
m→∞

Dbkm
(zbkm

(tn), zbkm
(t∗))≤ lim inf

m→∞
Dissbkm

(zbkm
; [tn, t∗]) = δ(t∗)−δ(tn).Similarly, for t∗ < tn we obtain D∞(z∗, z(tn)) ≤ δ(tn) − δ(t∗). Using the ontinuityof δ in t∗ we onlude min {D∞(z(tn), z∗),D∞(z∗, z(tn))} ≤ |δ(t∗)−δ(tn)| → 0 for

n→ ∞. Employing (A.2) we �nd z(tn)
Z
→ z∗ as laimed above. Thus, assertion (b)is proved.The �nal estimate is obtained using (A.3) again. For any partition of [s, t] we have

∑N

j=1 D∞(z(tj−1), z(tj)) ≤
∑N

j=1 lim inf
l→∞

Dkl
(zkl

(tj−1), zkl
(tj))

≤ lim inf
l→∞

∑N

j=1 Dkl
(zkl

(tj−1), zkl
(tj)) ≤ lim inf

l→∞
Disskl

(zkl
; [s, t]) = δ(t)−δ(s).(A.5)Thus, Diss∞(z; [s, t]) ≤ δ(t)−δ(s) and () is proved.As mentioned above, the latter ompatness lemma holds under assumption (A.3),whih is stronger than (2.5) and (4.2). In partiular, Theorem A.1 is not diretlysuited for the purposes of heking the ompatness of approximating sequenesin the proof of Theorems 3.1, 3.3, and 4.1. On the other hand, we atually needto prove ompatness for stable sequenes only. In partiular, by assuming (2.5)(analogously for (4.2)), the sequenes zk : [0, T ] → Z used in the above proofs aresuh that the following holds:

∀ sl → s and tl → t with sl ≤ tl :
(
zkl

(sl)
Z
→ z and zkl

(tl)
Z
→ z̃

)
=⇒ D∞(z, z̃) ≤ lim inf

l→∞
Dkl

(zkl
(sl), zkl

(tl)).
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