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AbstratThis work is onerned with the reformulation of evolutionary problems in aweak form enabling onsideration of solutions that may exhibit evolving mirostru-tures. This reformulation is aomplished by expressing the evolutionary problem invariational form, i. e., by identifying a funtional whose minimizers represent entiretrajetories of the system. The partiular lass of funtionals under onsideration isderived by �rst de�ning a sequene of time-disretized minimum problems and sub-sequently formally passing to the limit of ontinuous time. The resulting funtionalsmay be regarded as ellipti regularizations of the original evolutionary problem. We�nd that the Γ-limits of interest are highly degenerate and provide limited informa-tion regarding the limiting trajetories of the system. Instead we seek to haraterizethe minimizing trajetories diretly. The speial lass of problems haraterized bya rate-independent dissipation funtional is amenable to a partiularly illuminatinganalysis. For these systems it is possible to derive a priori bounds that are inde-pendent of the regularizing parameter, whene it is possible to extrat onvergentsubsequenes and �nd the limiting trajetories. Under general assumptions on thefuntionals, we show that all suh limits satisfy the energeti formulation (S) & (E)for rate-independent systems. Moreover, we show that the aumulation points ofthe regularized solutions solve the assoiated limiting energeti formulation.1 IntrodutionThe formation of mirostruture in quasi-stati problems and its onnetion with non-attainment has reeived onsiderable attention, partiularly following the seminal paperof Ball and James [BJ87℄. A vast body of mathematial literature exits at presentthat makes that onnetion sharp. The evolution of mirostruture is a somewhat moreomplex problem whose systemati study is omparatively less advaned. A fundamentalquestion onerns whether entire dissipative proesses involving mirostruture evolutionan be given a variational haraterization as solutions of a minimum problem. Thepresent pauity of suh minimum priniples onstitutes a severe impediment to the appli-ation of modern tools of the alulus of variations to evolutionary problems.In their lassial formulation, the lass of evolutionary problems under onsideration heretake plae in a Banah spae Y and their strong form is the doubly nonlinear di�erential
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inlusion (f. [CV90, MT04℄)
0 ∈ ∂Ψ(u̇(t)) + DE(t, u(t)), (1.1a)
u(0) = u0, (1.1b)where Ψ : Y → R∞ := R∪{∞} is a onvex dissipation potential; E : Y → R∞ is an energyfuntion; ∂Ψ is the subdi�erential of Ψ, representing the system of dissipative fores; DEis the Frehet derivative of E , representing the onservative fore system; and time t variesin the interval [0, T ]. Equation (1.1a) establishes a balane between dissipative fores andonservative fores, and the trajetory u(t) of the system is the result of this balaneand of the initial ondition (1.1b). We regard (1.1) as a model problem furnishing aonvenient illustration of the basi strategy proposed in this work. As a model problem,(1.1) is general enough to desribe, e. g., the quasistati visoelastiity of solids under theassumption of linearized kinematis; heat ondution; visous drag on a solid immersedin a Stoke's �ow; and other ases of interest. However, it bears emphasis that the basistrategy for formulating variational priniples for trajetories developed here is appliableto more general dissipative systems, inluding systems with Newtonian visosity and �nite-deformation visoplastiity (f, e. g., [YSO06℄ for examples). However, these extensionsentail a ertain degree of added omplexity, e. g., in terms of geometrial mehanis (f,e. g., [MM06℄), and will not be pursed here in the interest of simpliity.The aim of this paper is to reformulate the evolutionary problem (1.1) in a weaker formenabling the onsideration of systems where E is not di�erentiable or not even lower semi-ontinuous, thus allowing for solutions that may exhibit evolving mirostrutures. Thisreformulation is aomplished by expressing (1.1) in variational form, i. e., by identifying afuntional whose minimizers represent entire trajetories of the system. A number of vari-ational priniples have been proposed for haraterizing entire trajetories of dissipativesystems, inluding: the Brézis-Ekeland priniple ([BE76℄, see also [Rou05, Thm. 8.93℄);Gurtin's variational priniple for linear visoelastiity ([Gur63℄, [Gur64℄); and others. Anobvious�albeit ontrived, as it unnaturally doubles the order of the problem�alternativevariational haraterization of trajetories is to minimize an L2-norm of the residual of(1.1a). This multipliity of proposals begs the question of what onstitutes a physiallyand mathematially meaningful variational haraterization, if any, of the trajetories ofdissipative systems.In this work, we investigate a possible answer to this question, whih builds upon reentwork on time-disretized inremental variational priniples for dissipative systems. Itis now widely appreiated that a arefully rafted time disretization of evolutionaryproblems may result in a sequene of minimum problems haraterizing the suessivestates of the system. (e. g., [JKO97℄, [JKO98℄, [OR99℄, [JKO99℄, [OS99℄, [MT99℄, [ORS00℄,[MTL02℄, [CHM02℄, [AO03℄, [HH03℄, [SO04℄, [CT05℄, [Mie05℄, [CO05℄, [YSO06℄). Thissequene of minimum problems must be solved ausally : the �rst problem propagates theknown initial onditions; the seond problem propagates the solution of the �rst problem;and so on. Instead of this time-stepping solution proedure, we proeed to ombine all2



the inremental funtionals under a single funtional for the entire trajetory by reourseto the notion of Paretto optimality of multi-objetive optimization problems (f, e. g.,[Cla90℄). Spei�ally, the resulting funtional for the�still time-disretized�trajetoriesis onstruted as a weighted sum of all the inremental funtionals. The weights applied tothe individual inremental funtionals are known as Paretto weights. In this ontext, thee�et of ausality is to introdue a strit ordering in the set of Paretto weights ensuringthat the �rst inremental problem is aorded disproportionately higher priority over theseond, the seond over the third, and so on. This is aomplished by introduing asequene of Paretto weights, parameterized by a small parameter ε, with the propertythat the ratio between suessive weights beomes vanishingly small as ε → 0. The laststep in the derivation of the trajetory-wise funtional is to formally pass to the limitof ontinuous time. In this limit, the disrete Paretto weights are replaed by a time-dependent Paretto weighting funtion. For example, for a partiular hoie of Parettoweighting funtion of exponential form, the resulting minimum problem is
Iε(u) = e−T/εE(T, u(T )) +

∫ T

0

e−t/ε
[
Ψ(u̇) +

1

ε
E(t, u)

]
dt. (1.2)Under onditions of su�ient smoothness, the Euler-Lagrange equations of this funtionalare

DΨ(u̇) + DE(t, u)− εD2Ψ(u̇)ü = 0, (1.3a)
u(0) = u0, (1.3b)
DΨ(u̇(T )) + DE(T, u(T )) = 0, (1.3)whih reveals that the funtional (1.2) de�nes an ellipti regularization of the lassialproblem (1.1). Under an additional requirement of stability, the lassial problem (1.1) is�nally replaed by the minimum problem

inf
u∈Y

Iε(u) (1.4)where Y represents some suitable spae of paths u : [0, T ] → Y . This ompletes thereformulation of the evolutionary problem (1.1) as a minimum problem for trajetories.This reformulation opens the way for the appliation of the tools of modern alulus ofvariations to evolutionary problems. Of partiular interest is the existene of trajetoriesfor the regularized problem (1.4), and its ausal limit as ε → 0. We are spei�allyinterested in the ase in whih E and hene Iε are not lower semi-ontinuous and, therefore,the in�mum of Iε is not attained in general. A natural extension of this program is toonsider sequenes of dissipation and energy funtionals, Ψk and Ek, respetively, arisingas a result of approximation, perturbation, or other modi�ations of the base funtionals.In this ase, we beome interested in understanding the joint limit of ε→ 0 and k → ∞.A natural hoie of topology for understanding the these limits is the topology of Γ-onvergene (e. g., [Da89℄, [Dal95℄). Unfortunately, we �nd that the Γ-limits of Iε are3



highly degenerate and provide limited information regarding the limiting trajetories ofthe system. Therefore, we instead attempt to haraterize the minimizers diretly.A lass of problems that is amenable to e�etive analysis onerns rate-independent sys-tems for whih the dissipation potential Ψ is homogeneous of degree 1. A striking �rstproperty of rate-independent problems is that all minimizers uε of Iε satisfy the energybalane
E(t, u(t)) +

∫ t

s

Ψ(du) = E(s, u(s)) +

∫ t

s

∂τE(τ, u(τ))dτ,independently of the value of ε. Under suitable oerivity assumptions it is then possibleto derive a priori bounds for uε whih likewise are independent of ε, with the result thatit is possible to extrat onvergent subsequenes and �nd limiting funtions u. Under verygeneral assumptions we show that all suh limits satisfy the energeti formulation for rate-independent systems of Mielke et al. ([MT99℄, [MTL02℄, [MT04℄, [MM05℄, [FM06℄ andthe survey [Mie05℄), i. e., they satisfy the stability ondition (S) and the energy balane(E). Moreover, we show that if (Ψk)k∈N ontinuously onverges to Ψ and Ek Γ-onvergesto E in the weak topology of a Banah spae, then the aumulation points of the family
(uε,k)ε>0,k∈N for ε, 1/k → 0 solve the assoiated limiting energeti formulation. Relatedrelaxations and Γ-limits for rate-independent systems are treated in [The02℄, [Mie04℄,[KMR05℄, [MRS06℄, [MR06a℄ by onsidering the sequene of inremental problems. Inthe latter works, onvergene of the time-inremental solutions assoiated with the Ekand Ψk to a solution of the limit problem is established under onditions similar to thoseonsidered here.2 Formal derivation of the variational priniple for tra-jetoriesA ommon devie for reduing evolutionary problems of the form (1.1) to a sequeneof variational problems is time disretization (e. g., [OS99℄, [MTL02℄, [AO03℄, [MM05℄,[YSO06℄). Spei�ally, suppose that we are given the state u0 of the system at time
t0 = 0 and wish to approximate the solution un at times tn = n△t, n = 1, . . . , N . Asequene of minimum problems that delivers onsistent approximations to the solution ofthe ontinuous-time evolutionary problem (1.1) is [OS99℄

inf
un+1∈Y

Fn+1(un+1; un), n = 0, . . . , N − 1, (2.1)where
Fn+1(un+1; un) = △tΨ

(
un+1 − un

△t

)
+ E(tn+1, un+1) − E(tn, un)is an inremental funtional that ombines energy and kinetis. In addition, in (2.1) it istaitly understood that the problems are solved ausally : problem n = 0 is solved �rstwith initial onditions u0 in order to omputed u1; subsequently, problem n = 1 is solved4



to ompute u2, taking the solution u1 of the preeding problem as initial ondition; andso on. We note that the datum −E(tn, un) is added to (2.1) so that kineti and energyterms are of the same order in △t.We wish instead to ollet the sequene (2.1) of inremental problems into a single mini-mum problem for the entire trajetory u = {u1, . . . , uN}. In the theory of optimization, astandard devie for ombining multiple objetive funtions is supplied by the onept ofParetto optimality (f, e. g., [Cla90℄). In this spirit, a andidate funtional on trajetoriesis
Ĩ(u;λ) =

N−1∑

n=0

λn+1Fn+1(un+1; un)where λ = {λ1, . . . , λN} are positive Paretto weights. However, it order to ensure ausalityit is neessary to hoose the weights in suh a way that the minimization of the singlefuntional I(u;λ) with respet to the entire trajetory u is equivalent to the sequentialsolution of the inremental problems (2.1). This is aomplished by introduing the or-dering: λ1 ≫ λ2 ≫ . . . , whih aords disproportionately larger importane to the �rstinremental problem relative to the seond; to the seond inremental problem relative tothe third, and so on. More spei�ally, we may aomplish this ausal ordering by on-sidering a sequene of positive weights λε
1 > λε

2 > . . . parameterized by a real parameter
ε ≥ 0 and suh that

lim
ε→0

λε
n+1

λε
n

= 0. (2.2)Inserting these weights into I(u;λ) gives
Ĩ(u;λε) =

N−1∑

n=0

λε
n+1

{
Ψ

(
un+1 − un

△t

)
+

E(tn+1, un+1) − E(tn, un)

△t

}
△t. (2.3)Suppose, in addition, that there is a funtion λε > 0 suh that

λε
n = λε(tn). (2.4)Then, ausality requires λε be monotonially dereasing, and the limiting ondition (2.2)requires that

lim
ε→0

λε(b)

λε(a)
= 0, ∀a, b ∈ [0, T ], a < b. (2.5)Inserting (2.4) into (2.3) we obtain

Ĩ(u;λε) =

N−1∑

n=0

λε(tn+1)

{
Ψ

(
un+1 − un

△t

)
+

E(tn+1, un+1) − E(tn, un)

△t

}
△t.This funtional may be regarded as a time disretization of the ontinuous-time funtional

Ĩ(u;λε) =

∫ T

0

λε

[
Ψ(u̇) +

d

dt
E(t, u)

]
dt,5



Alternatively, an integration by parts gives the funtional in the from
Ĩ(u;λε) = λε(T )E(T, u(T )) − λε(0)E(0, u(0))

+

∫ T

0

[
λεΨ(u̇) − λ̇εE(t, u)

]
dt,

(2.6)Given su�ient smoothness, the stationarity ondition for Ĩ(u;λε) is
δĨ(u;λε) = λε(T )DE(T, u(T ))v(T )− λε(0)DE(0, u(0))v(0)

+

∫ T

0

[
λεDΨ(u̇)v̇ − λ̇εE(t, u)v

]
dt = 0,where the variations v an be taken, e. g., to be smooth and have ompat support withinthe interval (0, T ). An integration by parts further gives

δĨ(u;λε) = λε(T )[DΨ(u̇(T )) + DE(T, u(T ))]v(T )

− λε(0)[DΨ(u̇(0)) + DE(0, u(0))]v(0)

+

∫ T

0

[
−

d

dt

(
λεDΨ(u̇)

)
− λ̇εDE(t, u)

]
vdt = 0and the orresponding Euler-Lagrange equations follow as

λε(t)D
2Ψ(u̇)ü+ λ̇ε(t)[DΨ(u̇) + DE(t, u)] = 0, (2.7a)

u(0) = u0, (2.7b)
DΨ(u̇(T )) + DE(T, u(T )) = 0, (2.7)From the identity

1

λε(a)

λε(b) − λε(a)

b− a
=

1

b− a

(
λε(b)

λε(a)
− 1

)and (2.5) it follows that λ̇ε/λε ↓ −∞, and (2.7) may be regarded as an ellipti regulariza-tion of the evolutionary problem (1.1). An admissible and partiularly simple hoie ofausal weights is obtained by assuming that
λ̇ε(t)

λε(t)
= −1/ε,whih gives

λε(t) = e−t/ε, (2.8)where, for de�niteness, we have set λε(0) = 1. For this partiular hoie of weights, thefuntional (2.6) beomes
Ĩε(u) = Iε(u) − E(0, u(0)) (2.9)with

Iε(u) = e−T/εE(T, u(T )) +

∫ T

0

e−t/ε
[
Ψ(u̇) +

1

ε
E(t, u)

]
dt.6



Sine u(0) = u0 is a given initial datum, Ĩε di�ers from Iε by an inonsequential additiveonstant. For de�niteness, heneforth we hoose to work with the funtional Iε. Theorresponding Euler-Lagrange equations (2.7) redue to
− εD2Ψ(u̇)ü+ DΨ(u̇) + DE(t, u) = 0, (2.10a)
u(0) = u0, (2.10b)
DΨ(u̇(T )) + DE(T, u(T )) = 0, (2.10)whene the ellipti harater of the regularization (2.10a) is partiularly apparent.We now may regard the one-parameter family of minimum problems:

inf
u∈Y, u(0)=u0

Iε(u), (2.11)where Y is some suitable spae of trajetories u : [0, T ] → Y , as a ontinuous-time versionof the sequene (2.1) of inremental problems. In partiular, one would expet that thelimit of △t → 0 of (2.1) and the limit of ε → 0 of (2.11) haraterize the same traje-tories, and that these trajetories satisfy (1.1) in some appropriate sense. Establishingthis onnetion rigorously is beyond the sope of this paper. Instead, we shall simplypostulate (2.11) as the fundamental physial priniple of interest and proeed to eluidateits properties and behavior in the strit ausal limit of ε → 0. A partial justi�ation isobtained from the analysis of the examples disussed in the following setion.3 Three illustrative examplesThe following examples illuminate the onnetions between the minimizers uε of the fun-tional Iε and the solution u of the original problem (1.1).3.1 A salar visous exampleAs a prototypial double-well potential we onsider the tri-quadrati energy funtion
Ftq(u) =






1
2
(u+1)2 for u ≤ −1

2
,

1
4
− 1

2
u2 for |u| ≤ 1

2
,

1
2
(u−1)2 for u ≥ 1

2
.

(3.1)and the assoiated evolutionary problem
u̇+ F ′

tq(u) − δ = 0,

u(0) = −1,with δ ∈ (1/2, 1). This is a gradient �ow for the potential E : u 7→ Ftq(u) − δu; andsine F ′
tq is pieewise linear, it is possible to alulate the exat solution u. This solution7



is stritly monotone and for t → ∞ it onverges to the unique steady state u = 1+δ.We additionally �x T suh that u(T ) = 1. The orresponding funtional (2.9) for uε :

[0, T ] → R takes the form
Iε(u) = e−T/εE(u(T )) +

∫ T

0

e−t/ε
(1

2
u̇2 +

1

ε

(
Ftq(u) − δu

))
dtand the assoiated Euler-Lagrange equations (1.3) redue to

− εü+ u̇+ F ′
tq(u) − δ = 0,

u(0) = −1,

u′(T ) + F ′
tq(u(T )) − δ = 0.

(3.2)This problem an onveniently be analyzed in the (u, u̇) phase plane, Fig. 3.1. The phase
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−1 +1(b)Figure 3.1: (a) Orbit for ε = 0. (b) Orbit for ε > 0 and three invariant straight lines.portrait follows readily from the pieewise linear struture of (3.2). Thus, the region
u ≤ −1/2 follows from the identity −εü+ u̇ + u+ 1 − δ = 0 and orresponds to a linearsaddle at (u, u̇) = (δ−1, 0), whih is outside the domain u ≤ −1/2. Similarly, the region
|u| ≤ 1/2 is governed by the identity −εü + u̇ − u − δ = 0, whih orresponds to a thesoure point at (−δ, 0), again outside the domain. For u ≥ 1/2 we again have a linearsaddle, now loated inside the domain at (1+δ, 0). A loser analysis of the invariantmanifolds assoiated with the three �xed points, inluding those whih are not in theorret domains, shows that any solution uε satisfying (3.2) has to stay ε-lose to thegraph u̇ = δ − F ′

tq(u).3.2 A salar rate-independent problemRate-independent systems are in sharp ontrast to systems with visosity in that the latterpossess an intrinsi time sale of visous relaxation, whereas the former lak a time-saleand an reat instantaneously via jumps. As a simple illustrative example we onsider8



the funtional
Iε(u) = e−T/εE(T, u(T )) +

∫ T

0
e−t/ε

(
ρ|u̇(t)| + 1

ε
E
(
t, u(t)

))
dt,with E(t, u) = Ftq(u(t))−ℓ(t)u(t)with ρ ∈ (0, 1), u : [0, T ] → R and ℓ : [0, T ] → R.The problem is now nonsmooth, beause the dissipation funtion Ψ(v) = ρ|v|, whileonvex, is not di�erentiable at the origin. We have ∂Ψ(v) = ρ Sign(v), where

Sign(v) = {−1} for v ∈ [−∞, 0),

Sign(0) = [−1, 1],

Sign(v) = {1} for v ∈ (0,∞],is the multi-valued signum funtion, and the Euler-Lagrange equation is given by [AC84℄
s(t) ∈ ρ Sign(u̇(t)),

− εṡ(t) + s(t) + F ′
tq(u(t)) = ℓ(t), a. e. in [0, T ],

(3.3)where we assume that u ∈ BV([0, T ]) and s ∈ W1,1([0, T ]). The �rst of these equationstells us that ±u̇ > 0 implies s = ±ρ. Hene, multiplying the seond equation by u̇ weobtain
ρ|u̇| + F ′

tq(u)u̇ = ℓ(t)u̇. (3.4)Integration over time gives the energy balane
Ftq(u(t)) − ℓ(t)u(t) +

∫ t

0

ρ|u̇(t)|dt = Ftq(u(0)) − ℓ(0)u(0) −

∫ t

0

ℓ̇(t) u(s)ds.Surprisingly, this equation is independent of ε, whih is a general feature of the rate-independent ase, see (4.4) and Proposition 4.1. In the salar ase it is easy to onstrutthe solution from energy balane. At points where u is di�erentiable (3.4) together with
s ∈ Sign(u̇) provide the di�erential inlusion

0 ∈ ρ Sign(u̇) + F ′
tq(u) − ℓ(t).In addition, we have the jump ondition

Ftq(u(t+0)) − ℓ(t)u(t+0) + ρ
∣∣u(t+0)−u(t−0)

∣∣

= Ftq(u(t−0)) − ℓ(t)u(t−0).In the speial ase ℓ(t) = min{t−1, 5−t} on the interval [0, 8] and u(0) = −2 we obtainthe solution
u(t) =





−2 for t ∈ [0, ρ],

t− ρ− 2 for t ∈ [ρ, 1+ρ),

t− ρ for t ∈ (1+ρ, 3],

3 − ρ for t ∈ [3, 3+2ρ],

6 − t+ ρ for t ∈ [3+3ρ, 5+ρ),

4 − t+ ρ for t ∈ (5+ρ, 8].9



This is also the solution of the global (S) & (E) energeti formulation disussed subse-quently.
ℓ(t)

u(t)
2

−1
63

t

(a)
ℓ(t)

u(t)

F ′
tq−ρ

F ′
tq+ρ (b)Figure 3.2: (a) u(t) (full line with jumps) and ℓ(t) (dashed line) as funtions of t. (b)Hystereti behavior with jumps in the (u, ℓ)�plane.3.3 Linear paraboli problemsOn the Hilbert spae H the linear evolutionary problem

u̇+ Au = ℓ(t),

u(0) = u0,
(3.5)de�nes an abstrat paraboli problem when A : D(A) → H is self-adjoint and positivede�nite, i. e., 〈Av, v〉 ≥ α‖v‖2 with α > 0. For s ≥ 0 we set Xs = D(As/2). whih is againa Hilbert spae when equipped with the graph norm. For s < 0 we let Xs = X∗

−s, thedual of X−s. We will use the well-known fat, that the unique solution u of (3.5) satis�esthe estimate (see e.g., [Tem88℄)
‖u‖L2([0,T ],X3) + ‖u̇‖L2([0,T ],X1) + ‖ü‖L2([0,T ],X−1)

≤ C
(
‖ℓ‖L2([0,T ],X0) + ‖ℓ̇‖L2([0,T ],X−1) + ‖u0‖X2

)
.

(3.6)Next we onsider the assoiated minimization problem for
Iε(u) = e−T/εE(T, u(T )) +

∫ T

0
e−t/ε

(
1
2
〈u̇, u̇〉 + 1

ε
E(t, u)

)
dt,with E(t, u) = 1

2
〈Au, u〉 − 〈ℓ(t), u〉,where 〈·, ·〉 denotes the salar produt in H = X0. The orresponding Euler�Lagrangeequation is
− εü+ u̇+ Au = ℓ(t),

u(0) = u0,

u̇(T ) + Au(T ) = ℓ(T ).

(3.7)10



In [LM72, Ch. 6℄ this equation is alled the ellipti regularization of (3.5). It is shownthere that (3.7) has a unique solution whih satis�es similar estimates to those given for
u in (3.6). Let u∗ and uε be the unique solutions of (3.5) and (3.7), then the estimate

∥∥u∗ − uε

∥∥
L2((0,T ),X0)

≤
ε

α
‖ü∗‖L2((0,T ),X−1) (3.8)holds, whih again shows that the funtional Iε is useful to onstrut approximate solu-tions to (3.5). For the proof of this result, we de�ne the di�erene w = uε − u∗ whihsatis�es the problem

− εẅ + ẇ + Aw = εü∗, (3.9a)
w(0) = 0, (3.9b)
ẇ(T ) + Aw(T ) = 0. (3.9)We begin by noting that ‖ü∗‖L2([0,T ],X−1) is �nite, see (3.6). Next we set
ρ(t) =

1

2
〈w,w〉 =

1

2
‖w‖2

X0and multiply (3.9a) by w to obtain
αρ+ ε2

2α
‖ü‖2

X−1
≥ ε‖ü∗‖X−1‖w‖X1 ≥ 〈εü∗, w〉

= −ερ̈+ ε〈ẇ, ẇ〉 + ρ̇+ 〈Aw,w〉 ≥ −ερ̈+ ρ̇+ 2αρ.Using the boundary onditions (3.9b) and (3.9) for w we �nd the di�erential estimate
− ερ̈+ ρ̇+ αρ ≤

ε2

2α
‖ü‖2

X−1
, (3.10a)

ρ(0) = ρ̇(0) = 0, (3.10b)
ρ(T ) ≥ 0, ρ̇(T ) = 〈w(T ), ẇ(T )〉 = −〈Aw(T ), w(T )〉 ≤ 0, (3.10)Integrating (3.10a) over [0, T ] we �nd the desired result (3.8):

α

2

∥∥uε − u∗
∥∥2

L2((0,T ),X0)
= α

∫ T

0

ρ(t)dt

≤

∫ T

0

ε2

2α
‖ü∗(s)‖

2
X−1

dt+ ε
(
ρ̇(T ) − ρ̇(0)

)
−

(
ρ(T ) − ρ(0)

)
≤

ε2

2α
‖ü∗‖

2
L2((0,T ),X−1),where the last estimate used the boundary ondtions (3.10b) and (3.10).4 Abstrat results for rate-independent problemsThe time-resaling invariane of rate-independent systems make them speial. In parti-ular, the minimizers are allowed to have jumps, whih is not possible if the dissipationfuntional Ψ has superlinear growth. 11



4.1 The abstrat assumptionsWe start by formulating the problem preisely in a re�exive Banah spae X that isompatly embedded into the larger Banah spae Z. In ontinuum mehanial applia-tions, typial hoies for the spaes X and Z are X = Wk,p(Ω), k ∈ N, and Z = L1(Ω),respetively, f. [MT99℄, [MM05℄.In this setion the general assumptions on Ψ and E are the following. The dissipationpotential Ψ is onvex, 1-homogeneous and lower semi-ontinuous on X. Moreover, it isoerive in Z, i. e.,
∃ c > 0 ∀ v ∈ X : Ψ(v) ≥ c‖v‖Z . (4.1)For the energy-storage funtional E : [0, T ] ×X → R∞ we assume that it is weakly lowersemi-ontinuous and satis�es the oerivity

∃α, c, C > 0 ∀ (t, u) ∈ [0, T ]×X : E(t, u) ≥ c‖u‖α
X − C. (4.2)We additionally assume that t 7→ E(t, u) is di�erentiable whenever E(t, u) <∞, namely,

∃ cE1 , c
E
0 > 0 ∀ (t, u) ∈ [0, T ]×X : |∂tE(t, u)| ≤ cE1

(
E(t, u)+cE0

)
. (4.3)This type of ontrol of power of the external loading was �rst introdued in [FM06℄ and[Mie05℄ and proves very useful for obtaining a priori bounds, see below.4.2 The energy balane and a priori boundsIt is shown in [MT04℄ (see also [MR06b℄) that under suitable assumptions any absolutelyontinuous solution u of the rate-independent di�erential inlusion (1.1) satis�es the en-ergy balane

E(t, u(t)) +

∫ t

0

Ψ(du) −

∫ t

0

∂sE(s, u(s))ds = C for all t ∈ [0, T ], (4.4)where C = E(0, u(0)). As in [MT04℄, [MTL02℄ and [MM05℄ we will deal with BV fun-tions that are de�ned everywhere. For a ∈ C([0, T ],R), an interval J ⊂ [0, T ] and
u ∈ BV([0, T ], Z) we use the BV notation

∫

J

a(s)Ψ(du) = sup
{ N∑

j=1

a(sj)Ψ(u(sj)−u(sj−1))
∣∣∣ N ∈ N,

s0, sN ∈ J, s0<s1< · · ·<sN−1<sN

}
.Note that it is important here, to distinguish the ase where the boundary points of J areinluded into J or not. The funtional Iε is now written as

Iε(u) = e−T/εE(T, u(T )) +

∫

[0,T ]

e−t/εΨ(du) +

∫ T

0

e−t/ε

ε
E(t, u(t))dt.A surprising fat is that the energy balane (4.4), whih is independent of ε, holds for allminimizers of Iε. 12



Proposition 4.1 Let Ψ and E satisfy the assumptions of Setion 4.1. If u∗ is a minimizerof Iε under the onstraint u(0) = u0, then u∗ satis�es the energy balane (4.4) for almostall t ∈ [0, T ]. If additionally, the initial ondition u0 sati�es the stability ondition
∀ ũ ∈ X: E(0, u0) ≤ E(0, ũ) + Ψ(ũ−u0), (4.5)then the energy balane (4.4) holds with C = E(0, u0).Proof: We ompare the energy of u with that of resaled funtions ũ. For this, hoosea di�eomorphism β : [0, T ] → [0, T ] and de�ne t = β(s) as well as ũ via u∗(s) = ũ(β(s)).Using the transformation rule for integrals with dt = β̇(s)ds and dũ|t=β(s) = du∗|s we mayexpress Iε(ũ) in terms of u∗ again and �nd

Iε(ũ) − e−T/εE(T, u∗(T ))

=
∫
[0,T ]

e−t/εΨ(dũ) +
∫ T

0
e−t/ε

ε
E(t, ũ(t))dt

=
∫
[0,T ]

e−β(s)/εΨ(du∗) +
∫ T

0
e−β(s)/ε

ε
β̇(s) E(β(s), u∗(s))ds.With ρ ∈ C∞

c ((0, T )) we hoose β via e−β(s)/ε − e−s/ε = δρ(s), where 0 < δ ≪ 1. Thisleads to the expansion β(s) = s− εδρ(s)es/ε +O(δ2). Sine u∗ is a minimizer we have
0 ≤ Iε(ũ) − Iε(u∗)

=
∫
[0,T ]

(
e−β(s)/ε − e−s/ε

)
Ψ(du∗)

+
∫ T

0
1
ε

(
e−β(s)/εβ̇(s)E(β(s), u∗(s)) − e−s/εE(s, u∗(s))

)
ds.Using β̇

ε
e−β/ε = 1

ε
e−s/ε − δρ̇, dividing by δ > 0 and taking the limit δ ց 0 we obtain

0 ≤
∫ T

0
ρ(s)Ψ(du∗) +

∫ T

0

(
− ρ(s)∂sE(s, u∗(s)) + ρ̇(s)E(s, u∗(s))

)
ds.Sine ρ ∈ C∞

c ((0, T )) is arbitrary, the almost everywhere validity of the energy balane(4.4) follows from the lemma of Du Bois�Reymond.Finally we assume that the stability ondition (4.5) holds. We let e(t) = E(t, u∗(t)), ∆(t) =∫
[0,t]

Ψ(du∗) and w(t) =
∫ t

0
∂sE(s, u∗(s))ds the energy balane reads e(t)+∆(t)−w(t) = C,where ∆ is monotone and hene in BV([0, T ]) and w ∈ W1,∞([0, T ]) (by using (4.3). Hene,we may de�ne ∆+0 = lim 0 < t→ 0∆(t) = Ψ(u+0−u0), where u+0 = lim0<t→0 u(t), whihexists in Z as ∫

(0,t]
Ψ(du) → 0 for t → 0. Setting e+0 = lim0<t→0 e(t) = C − ∆+0 we �ndby weak lower semi-ontinuity of E that E(0, u+0) ≤ e+0. Using the stability ondition(4.5) this provides
E(0, u0) ≤ E(0, u+0) + Ψ(u+0−u0) ≤ e+0 + ∆+0 = C.For the opposite estimate we use that u∗ minimizes. For κ ∈ (0, T ) let uκ(t) = u0 for

t ∈ [0, κ) and u∗(t) otherwise. Using the (almost everywhere) energy balane for u∗ gives
0 ≤ Iε(uκ) − Iε(u∗)

= e−κ/εΨ(u∗(κ)−u0) −
∫
[0,κ]

e−t/εΨ(du∗) +
∫ κ

0
e−t/ε

ε

(
E(t, u0) − C−w(t)+∆(t)

)
dt

= e−κ/ε
(
Ψ(u∗(κ)−u0) −

∫
[0,κ]

Ψ(du∗) +
∫ κ

0
e−t/ε

ε

(
E(0, u0) − C + o(1)t→0

)
dt,13



where the last step used a anellation ouring after integration by parts of ∫ κ

0
e−t/ε

ε
∆(t)dtwith ∆(t) =

∫
[0,t]

Ψ(du∗). Sine the �rst term in the last equation is non-positive, weonlude the desired result E(0, u0) ≥ C by making κ su�iently small.It is remarkable that the energy balane (4.4) holds exatly for the minimizers uε of Iε,despite their dependene on ε. For the subsequent analysis we always assume that thestability ondition (4.5) holds for the initial ondition u0. Then, the minimizers satisfyuseful energeti a priori estimates, namely
E(t, u(t)) + cE0 ≤

(
E(0, u(0)) + cE0

)
ecE

1 t (4.6a)
∫ t

0

Ψ(du) ≤
(
E(0, u(0)) + cE0

)
ecE

1 t. (4.6b)These estimates holds for any funtion u : [0, T ] → Z satisfying the energy balane (4.4).Writing e(t) = E(t, u(t)) again, the �rst is obtained by inserting (4.3) into the energybalane (4.4) and negleting the dissipation, namely e(t) ≤ e(0) +
∫ t

0
cE1

(
e(s)+cE0

)
ds.Adding cE0 on both sides and using Gronwall's lemma the estimate (4.6a) is established.Now using the energy balane one again the dissipation an be estimated via

∫
[0,t]

Ψ(du) ≤ e(0) − e(t) +
∫ t

0
cE1

(
E(s, u(s))+cE0

)
ds

≤ e(0) − e(t) +
∫ t

0
cE1

(
e(0)+cE0

)
ecE

1 s
)
ds

= e(0) − e(t) +
(
e(0)+cE0

)(
ecE

1 t−1
)

≤
(
e(0)+cE0

)
ecE

1 t.The energeti a priori estimates (4.6) and the oerivity assumptions (4.1) and (4.2) implythat all minimizers u of Iε satisfy ε-independent a priori bounds:
‖u‖L∞([0,T ],X) ≤ C1 and ∫ T

0

‖du‖Z ≤ C2. (4.7)These bounds suggest de�ning the funtional Iε on the Banah spae
Y := L∞([0, T ], X) ∩ BV([0, T ], Z),despite the lak of equi-oerivity of the sequene Iε in this spae. In fat, owing to theexponential weight the bound Iε(u) ≤ C results in the very weak a priori estimates

‖u‖α
Lα([0,T ],X) ≤ C

eT/ε

ε
and ∫ T

0

‖du‖Z ≤ CeT/ε.Only for minimizers we obtain the muh better estimates (4.6) and hene (4.7) that areindependent of ε.It is interesting to ontrast the preeding results with the ase of a general dissipationfuntional. Thus, suppose that Iε(u) =
∫ T

0
e−t/ε

(
Ψ(u, u̇) + 1

ε
E(t, u)

)
dt, where Ψ is addi-tionally allowed to depend on u, but still v 7→ Ψ(u, v) is onvex for eah u. Moreover,assume Ψ to be smooth. The orresponding Euler-Lagrange equation is

−ε
d

dt

(
∂vΨ(u, u̇)

)
+ ε∂uΨ(u, u̇) − ∂vΨ(u, u̇) + ∂uE(t, u) = 0.14



De�ning E(t) = E(t, u) − εR(u, u̇) with
R(u, v) = ∂vΨ(u, v)[v] − Ψ(u, v) =

∫ 1

θ=0
θD2Ψ(u, θv)[v, v]dθ ≥ 0(by onvexity) we easily �nd the identity d

dt
E = ∂tE(t, u) − ∂vΨ(u, u̇)[u̇], whih in turngives the energy balane

E(t, u(t)) − εR(u(t), u̇(t)) +
∫ t

s
∂vΨ(u(τ), u̇(τ))[u̇(τ)]dτ

= E(s, u(s)) − εR(u(s), u̇(s)) +
∫ t

s
∂τE(τ, u(τ))ds.In the rate-independent ase we have R(u, v) = 0 and ∂vΨ(u, v)[v] = Ψ(u, v), whihreturns the energy balane from above. In the rate-dependent ase we may write Ψ̂(u, v) =

∂vΨ(u, v)[v] and assume cΨ1 Ψ̂(u, v) ≤ R(u, v) ≤ cΨ2 Ψ̂(u, v), whih holds with c1 = c2 = p−1
pfor Ψ(u, v) = ‖v‖p

Lp. Let ẽ(t) = E(t, u(t))+cE0 −εR(u(t), u̇(t)) and ψ(t) = Ψ̂(u(t), u̇(t)).Then, for 0 ≤ s < t ≤ T we have the estimate
ẽ(t) + (1−εcE1 c

Ψ
2 )

∫ t

s
ψ(τ)dτ ≤ ẽ(s) +

∫ t

s
cE1 ẽ(τ)dτ.Thus, for ε ≤ 1/(cE1 c

Ψ
2 ) Gronwall's lemma and ψ ≥ 0 give ẽ(t) ≤ ecE

1 (t−s)ẽ(s). Insertingthis into the integral on the right-hand side we obtain an estimate in terms of ẽ(s) alone.However, it is not lear how the boundary ondition at t = T an be used to derive apriori bounds for E(t, u(t)) and for ∫
[0,T ]

Ψ(du) whih are independent of ε.4.3 Convergene to energeti solutionsAs already noted, a entral objetive of the analysis is to asertain the strit ausal limit
ε → 0. Unfortunately, the Γ-onvergene mahinery fails to deliver useful results, sinean easy alulation gives

Γ-lim
ε→0

1

ε
Iε(u) = Ψ

(
lim
sց0

u(s) − u(0)
)

+ E(0, lim
sց0

u(s)).This limit supplies sant information regarding the limiting trajetories, namely, whethera jump point u(0+0) = limsց0 u(s) minimizes energy plus dissipation from u(0). Byontrast, by virtue of the a priori estimates (4.6) or (4.7), the minimizers uε of Iε arewell-behaved and we are able to extrat onvergent subsequenes.We reall that we regard the funtionals Iε to be de�ned in the spae
Y = L∞([0, T ], X) ∩ BV([0, T ], Z),and we let Y

⇀ denote weak onvergene in this spae, namely,
uk

Y
⇀ u

def
⇐⇒





sup
k∈N

∫ T

0
‖duk‖Z <∞ and

∀w ∈ L1([0, T ], X∗):
∫ T

0
〈uk(t), w(t)〉X dt →

∫ T

0
〈u(t), w(t)〉X dt,

(4.8)15



The supremum ondition for the sequene is motivated by the a priori estimates (4.7),whih are valid for minimizers of Iε. Under the additional asumption that the re�exivespae X is ompatly embedded into Z the onvergene in Y implies in fat pointwiseonvergene almost everywhere, namely if uk
Y
⇀ u, thenFor a.e. t ∈ [0, T ]: uk(t) → u(t) in Z and uk(t) ⇀ u(t) in X. (4.9)In fat, to see this, we employ Helly's seletion priniple (f. [MTL02℄, [MM05℄) to �nda subsequene (ukn)n∈N that onverges for all t ∈ [0, T ] to a limit ũ(t) strongly in Zand hene weakly in X. However, sine the limit funtion ũ must be equal to u almosteverywhere, we onlude the onvergene of the whole sequene by the usual ontraditionargument.The following result is a �rst speial ase of Theorem 4.4 for onstant sequenes Ψk = Ψand Ek = E .Theorem 4.2 If X, Z, Ψ and E satisfy the assumptions of Setion 4.1, then any family

(uε)ε∈(0,1) of minimizers for the family Iε is weakly preompat in Y. Moreover, any limitpoint u ∈ Y obtained for ε → 0 is a solution of the energeti formulation, i. e., for eah
t ∈ [0, T ] we have stability (S) and energy balane (E):(S) ∀ y ∈ X: E(t, u(t)) ≤ E(t, y) + Ψ(y−u(t)),(E) E(t, u(t)) +

∫ t

0
Ψ(du) = E(0, u(0)) +

∫ t

0
∂sE(s, u(s))ds.

(4.10)This theorem shows that, under natural assumptions, all possible limit points are ener-geti solutions, i. e., solutions of the energeti formulation (4.10) of the rate-independentproblem assoiated with Ψ and E .4.4 RelaxationNext we onsider the ase of sequenes of Ψk, k ∈ N, of dissipation funtionals as wellas sequenes of energy funtionals Ek, k ∈ N, with properties as in the foregoing. Thesequenes (Ψk)k∈N and (Ek)k∈N in turn de�ne the sequene of funtionals
Ik

ε (u) = e−T/εEk(T, u(T )) +

∫

[0,T ]

e−t/ε Ψk(du) +

∫ T

0

e−t/ε

ε
Ek(t, u(t))dt.Suh sequenes may our in several ontexts, inluding: numerial approximations;penalty formulations of side onditions or onstraints; singular perturbations suh asourring in sharp-interfae models; and others. A partiular ase of interest is the on-stant sequene Ψk = Ψ and Ek = E onsidered in Setion 4.3. In this ase, the Γ-limit of

Ek oinides the relaxation with its lower semi-ontinuous envelop, or relaxation, in thesense of the diret method of the alulus of variations (f, e. g., [Da89℄, [Dal95℄).16



We work in a re�exive Banah spae X and denote by ⇀ and → weak and strong on-vergene, respetively. Our assumptions on the sequenes (Ψk)k∈N and (Ek)k∈N and theirlimits Ψ and E , respetively, are the following:(A1) Weak ontinuous onvergene of Ψk:
vk ⇀ v =⇒ Ψk(vk) → Ψ(v). (4.11)(A2) Weak Γ-onvergene of Ek:

Ek(t, ·)
Γ

−→ E(t, ·), i. e.(i) uk ⇀ u =⇒ lim infk→∞ Ek(t, uk) ≥ E(t, u),(ii) ∀ (t, u) ∃ ũk with ũk ⇀ u : Ek(t, ũk) → E(t, u).

(4.12)The sequene (ũk)k∈N is alled a reovery sequene for u. In addition we assumethat for eah r > 0 there exists R > 0 suh that for all (t, u) with ‖u‖X ≤ r thereovery sequene ũk an be hosen suh that ‖ũk‖X ≤ R.(A3) Energeti weak ontinuity of the power of external fores ∂tEk:
uk ⇀ u

Ek(t, uk) → E(t, u)

}
=⇒ ∂tEk(t, uk) → ∂tE(t, u). (4.13)In [FM06℄ and [Mie05℄ it is shown that (4.13) is a reasonable assumption in many applia-tions, inluding �nite-strain elastiity and plastiity. We also refer to [KMR05℄, [MRS06℄and [MR06a℄ for related relaxations and Γ-limits in the rate-independent setting basedon similar assumptions.Theorem 4.3 Let the assumptions of Setion 4.1 hold uniformly in k ∈ N and let (A1)to (A3) be satis�ed. Then, for eah ε > 0 the funtional Iε : Y → R∞ de�ned by

Iε(u) = e−T/εE(T, u(T )) +

∫

[0,T ]

e−t/εΨ(du) +

∫ T

0

1

ε
e−t/εE(t, u(t))dt (4.14)is the Γ-limit of (Ik

ε )k∈N with respet to weak onvergene in Y.Proof: ad (i) Lower semiontinuity:Choose any u ∈ Y and an arbitrary sequene (uk) in Y with uk
Y
⇀ u. Let β =

lim infk→∞ Ik
ε (uk). Then we have to show that α = Iε(u) ≤ β. For β = ∞ nothingis to be shown, whene we take β <∞ and may assume Ik

ε (uk) ≤ β+1. After extratinga subsequene if neessary (f. (4.9)) we may assume that
∀ t ∈ [0, T ] : uk(t) ⇀ u(t) in X. (4.15)17



Using (4.11) for any �nite partition 0 ≤ s0 < s1 < · · · < sN−1 < sN ≤ T we obtain
N∑

j=1

esj/εΨk(uk(sj)−uk(sj−1))
k→∞
−→

N∑
j=1

esj/εΨ(u(sj)−u(sj−1)).The right-hand side an be made larger than ∫
[0,T ]

e−t/εΨ(du) − δ for any δ > 0. Hene,there exists k0 suh that the left-hand side is larger than ∫
[0,T ]

e−t/εΨ(du)−2δ for all k ≥ k0.Taking the supremum on the left-hand side gives ∫
[0,T ]

e−t/εΨk(duk) ≥
∫
[0,T ]

e−t/εΨ(du)−2δfor k ≥ k0. Sine δ > 0 is arbitrary we obtain
lim infk→∞

∫
[0,T ]

e−t/εΨk(duk) ≥
∫
[0,T ]

e−t/εΨ(du). (4.16)Now we estimate the stored energy. Using (4.15) and part (i) of (4.12) gives E(t, u(t)) ≤

lim infk→∞ Ek(t, uk(t)) for all t ∈ [0, T ]. Now, (4.3) implies Ek(t, u) ≥ −cE0 , and Fatou'sLemma yields
∫ T

0
e−t/εE(t, u(t))dt ≤

∫ T

0
e−t/ε lim inf

k→∞
Ek(t, uk(t))dt

Fatou
≤ lim inf

k→∞

∫ T

0
e−t/εEk(t, uk(t))dt.Adding this inequality to (4.16) we obtain the desired assertion Iε(u) ≤ lim infk→∞ Ik

ε (uk).ad (ii) Reovery sequene:First we note that on bounded sets of Y the weak topology de�ned in (4.8) an bemetrized. We denote suh a metri by dY. We �x any u ∈ Y, and without loss ofgenerality we may assume α = Iε(u) < ∞. From [DFT05℄ we know for eah u ∈ Ythere exists a sequenes of partitions 0 ≤ sn
0 < sn

1 < · · · < sn
Nn−1 < sn

Nn
≤ T with

Φn = max{ sn
j − sn

j−1 | j = 1, . . . , Nn } → 0 suh that the sequene of pieewise onstantinterpolants Un ∈ Y with
Un(t) = u(sn

j ) for t ∈ (sn
j−1, s

n
j ], j = 1, . . . , Nn,

Un(t) = u(sn
0) for t ∈ [0, sn

0 ], U(t) = u(sn
Nn

) for t ∈ (sn
Nn
, T ].satis�es

ρn :=
∣∣Iε(u) − Iε(Un)

∣∣ → 0 and ∥∥u− Un‖L1((0,T ),X) → 0.We note that Iε(Un) is a Riemann-Stieltjes sum arising by approximation of the integral
Iε(u) by step funtions. Clearly we also have rn = dY(u, Un) → 0.Now we �x n ∈ N. Aording to part (ii) of (4.12) all u(sn

j ), j = 0, . . . , Nn, have a reoverysequene (ũn,j
k )k∈N for E(sn

j , ·), i. e.,
ũn,j

k

k→∞
⇀ u(sn

j ) in X and Ek(s
n
j , ũ

n,j
k )

k→∞
→ E(sn

j , u(s
n
j )).Again we de�ne the assoiated pieewise interpolants ũn,k ∈ Y via

ũn,k(t) = ũn,j
k for t ∈ (sn

j−1, s
n
j ], j = 1, . . . , Nn,

ũn,k(t) = un,j
0 for t ∈ [0, sn

0 ], ũn,k(t) = un,j
Nn

for t ∈ (sn
Nn
, T ].18



By onstrution and using (4.11) we onlude, for eah �xed n ∈ N,
ρ̃n,k =

∣∣Ik
ε (ũn,k) − Iε(Un)

∣∣ → 0 and r̃n,k = dY(ũn,k, Un) → 0 for k → ∞.For the latter statement we use (A2) to onlude that all ũn,k, n, k ∈ N, lie in a boundedset where dY provides the weak topology.Now letK0 = 1 and for n ∈ N hooseKn > Kn−1 suh that ρ̃n,k, r̃n,k ≤ 1/n for all k ≥ Kn.Then, de�ne ñ(k) suh that ñ(k) = m for Km ≤ k < Km+1 and set ûk = ũen(k),k ∈ Y.Then, ñ(k) → ∞ for k → ∞ and
dY(ûk, u) ≤ dY(ũen(k),k, Uen(k)) + dY(Uen(k), u)

≤ r̃en(k),k + ren(k) ≤ 1/ñ(k) + ren(k) → 0 for k → ∞.Moreover, for the funtional Iε we obtain similarly
∣∣Iε(u) − Ik

ε (ûk)
∣∣ ≤ ρ̃en(k),k + ρen(k) ≤ 1/ñ(k) + ren(k) → 0 for k → ∞.This proves that (ûk)k∈N is a reovery sequene.4.5 Joint limit ε→ 0 and k → ∞The question now naturally arises as to whether the joint limit of ε → 0 and k → ∞,orresponding to simultaneously enforing strit ausality and relaxing the funtionals, iswell behaved. Again we note that Γ-onvergene returns trivial funtionals that ontrol

u(0) and u(0+0) = limsց0 u(s) and only. This di�ulty notwithstanding, next we showthat the minimizers uε,k of Ik
ε are well behaved and eah of their aumulations pointsatis�es a rate-independent problem, namely the energeti formulation assoiated withthe limits Ψ and E .Theorem 4.4 Let the assumptions of Setion 4.1 hold uniformly in k ∈ N and let (A1)to (A3) (see (4.11)�(4.13)) be satis�ed. Then, any family (uε,k)ε>0,k∈N of minimizers forthe family Ik

ε is weakly preompat in Y. Moreover, any limit point u ∈ Y obtained for
(ε, 1/k) → (0, 0) is a solution of the energeti formulation for the limit dissipation Ψ andthe limit energy E , i. e., for eah t ∈ [0, T ] we have stability (S) and energy balane (E)as de�ned in (4.10). Moreover, the onvergent subsequene (uεl,kl

)l∈N an be hosen suhthat additionally the onvergene
Ekl

(t, uεl,kl
(t)) → E(t, u(t)) and ∫

[r,t]

Ψkl
(duεl,kl

) →

∫

[r,t]

Ψ(du) (4.17)holds for all 0 ≤ r ≤ t ≤ T .
19



Proof: Compatness and limit points: The uniform bounds on Ψk and Ek showthat the minimizers uε,k satisfy the uniform a priori bounds
‖uε,k‖L∞((0,T ),X) +

∫ T

0

‖du‖Z ≤ C.Now, Helly's seletion priniple is appliable and provides a subsequene whih onvergesfor eah t ∈ [0, T ] weakly in X and strongly in Z. Together with the a priori bound in
L∞((0, T ), X) this shows that the sequene also onverges in Y.ad (S): To establish stability, we onsider a subsequene suh that uεl,kl

(t∗) ⇀ u(t∗) in
X. We have to show that u(t∗) is stable, i. e.,(S) ∀ ũ ∈ X : E(t∗, u(t∗)) ≤ E(t∗, ũ) + Ψ(ũ−u(t∗)). (4.18)By the de�nition of Γ-limit, there exists a reovery sequene ûl suh that ûl ⇀ ũ and
Ekl

(t∗, ûl) → E(t∗, ũ). Hene, we de�ne the omparison funtions
ũεl,kl

(t) =

{
uεl,kl

(t) for t ≤ t∗,

ûl for t > t∗.Now assume t∗ < T . Sine uεl,kl
minimizes Ikl

εl
we have

0 ≤ et∗/εl

(
Ikl

εl
(ũεl,kl

) − Ikl
εl

(uεl,kl
)
)

= g̃l − gl where
gl =

∫
[t∗,T ]

e(t−t∗)/εlΨkl
(duεl,kl

) +
∫ T

t∗
e(t−t∗)/εl 1

εl
Ekl

(t, uεl,kl
(t))dt and

g̃l =
∫
[t∗,T ]

e(t−t∗)/εlΨkl
(dũεl,kl

) +
∫ T

t∗
e(t−t∗)/εl 1

εl
Ekl

(t, ũεl,kl
(t))dt,where we have negleted the boundary terms at t = T , sine they disappear in the limit

εl → 0. The limit l → ∞ of g̃l is readily obtained, sine ũεl,kl
(t) is onstant for t > t∗.We �nd

lim
l→∞

g̃l = lim
l→∞

Ψkl
(ûl−uεl,kl

(t∗)) + lim
l→∞

Ekl
(t∗, ûl) = Ψ(ũ−u(t∗)) + E(t∗, ũ), (4.19)where we used the weak ontinuous onvergene (4.11) for Ψk. To alulate the limit of glwe use the fat that uε,k minimizes Ik

ε and hene satis�es the energy balane (4.4). More-over, we employ the integration by parts formula for the BV funtion t 7→ ∫ t

t∗
Ψkl

(duεl,kl
)and the smooth funtion t 7→ e(t−t∗)/εl to obtain

gl =
∫
[t∗,T ]

e(t−t∗)/εlΨkl
(duεl,kl

) −
∫ T

t∗
e(t−t∗)/εl

∫
[t∗,t]

Ψkl
(duεl,kl

)dt

+
∫ T

t∗
e(t−t∗)/εl 1

εl

(
E(t∗, uεl,kl

(t∗)) +
∫ t

t∗
∂sEkl

(s, uεl,kl
(s))ds

)
dt

=
[
e(t−t∗)/εl

∫
[t∗,t]

Ψkl
(duεl,kl

)
]∣∣∣

t=T

t=t∗

+Ekl
(t∗, uεl,kl

(t∗))
(
1−e(T−t∗)/εl

)
+

∫ T

t∗
e(t−t∗)/εl 1

εl
O((t−t∗))dt.Hene, we �nd lim inf l→∞ gl = lim inf l→∞ Ekl

(t∗, uεl,kl
(t∗)) ≥ E(t∗, u(t∗)). Moreover, g̃l ≥

gl implies liml→∞ g̃l ≥ liml→∞ gl, and, together with (4.19), the desired stability (S) isestablished in the ase t∗ < T . 20



For the ase t∗ = T , we simply observe that Ikl
εl
takes the form

Ikl
εl

(u) = Jl(u) + e−T/ε
(
Ψkl

(u(T )−u(T−0)) + Ekl
(T, u(T ))

)where Jl(u) =
∫
[0,T )

e−t/εΨkl
(du) +

∫ T

0
e−t/εEkl

(t, u(t))dt.As above we may now ompare ukl,εl
with ũkl,εl

, whih is idential to ukl,εl
on [0, T ) andequals ûl at t = T , where ûl is a reovery sequene for E(T, ũ). With u−0

l = ukl,εl
(T−0)and ul = ukl,εl

(T ) we �nd
0 ≤ eT/ε

(
Ikl

εl
(ũ)−Ikl

εl
(u)

)

=
(
Ψkl

(ûl−u
−0
l ) + Ekl

(T, ûl)
)
−

(
Ψkl

(ul−u
−0
l ) + Ekl

(T, ul)
)

≤ Ekl
(T, ûl) − Ekl

(T, ul) + Ψkl
(ûl−ul),where we used the triangle inequality for the last estimate. We onlude by passing tothe limit l → ∞ and �nd

E(T, u(T )) ≤ lim inf
l→∞

Ekl
(T, ul) ≤ lim

l→∞
Ekl

(T, ûl)+Ψkl
(ûl−ul) = E(T, ũ)+Ψ(ũ−u(T )).ad (E): For the upper energy estimate we �rst show that we also have onvergeneof the energies. By Γ-onvergene we have E(t, u(t)) ≤ lim inf l→∞ Ekl

(t, uεl,kl
(t)), sine

uεl,kl
(t) ⇀ u(t). Sine eah uεl,kl

(t) is stable we also have
Ekl

(t, uεl,kl
(t)) ≤ Ekl

(t, ũl) + Ψkl
(ũl−uεl,kl

(t))for any ũl. Aording to (4.12) there exists a reovery sequene with ũl ⇀ u(t) and
Ekl

(t, ũl) → E(t, u(t)). Invoking the weak ontinuous onvergene of Ψk, the lower estimate
lim inf l→∞ Ekl

(t, uεl,kl
(t)) ≤ E(t, u(t)) + 0 is established and we onlude the onvergeneof energies as stated in (4.17). For eah l ∈ N the energy balane for uεl,kl

holds, namelyfor 0 ≤ r < t ≤ T we have
Ekl

(t, uεl,kl
(t)) +

∫ t

r
Ψkl

(duεl,kl
) = Ekl

(r, uεl,kl
(r)) +

∫ t

r
∂sEkl

(s, uεl,kl
(s))ds. (4.20)Taking the limit l → ∞ we use energy onvergene of (4.17) and ondition (4.13) andsee that the �rst, the third and the fourth term in the above equation onverge while theseond is lower semiontinuous (see the proof of (4.16), whih is based on (4.12)). Hene,the upper energy estimate holds:

E(t, u(t)) +
∫ t

r
Ψ(du) ≤ E(r, u(r)) +

∫ t

r
∂sE(s, u(s))ds.Finally using [Mie05, Prop.5.7℄ it is shown that stability of u implies the lower energyestimate E(t, u(t))+

∫ t

r
Ψ(du) ≥ E(r, u(r))+

∫ t

r
∂sE(s, u(s))ds. Hene, the limit proess usatis�es the energy balane. Moreover, the onvergene of the dissipation in (4.17) followsby taking the limit in (4.20). 21



This theorem has the drawbak that exat minimizers uε,k are required. However, often itis desirable to work with quasi-minimizers, whih onveniently allows for a ertain latituderelative to full minimization. For instane, this additional latitude is espeially usefulwhen the funtionals Ek or Ψk are not lower-semiontinuous and existene of minimizersannot established. It would appear possible to generalize the preeding theorem to suhsituations by a judiious hoie of the notion of quasi-minimizer. Firstly, we must beable to obtain an approximate version of the energy balane resulting in a priori boundsindependent of ε and k. However, under these onditions it is no longer su�ient tobring Ik
ε (u) lose to infv∈Y Ik

ε (v), but instead suh loseness must be ensured on eahsubinterval [t∗, T ]. We refer to [MRS06℄ where a similar onept of approximate solutionsfor the time-inremental problem is developed.5 Two examples of relaxationWe onlude with two illustrative examples for whih the relaxation of Iε an be aser-tained expliitly.5.1 A visous exampleWe begin by onsidering the simple problem on X = L2(Ω) with Ω = (0, 1) ⊂ R and
E(t, y) =

∫

Ω

Ftq(y(x))−ℓ(t, x)y(x)dx where ℓ ∈ C0([0, T ] × Ω).Here Ftq is the tri-quadrati potential introdued in (3.1) and ℓ is a general loading. Thedissipation funtional will the de�ned by the L2 norm via Ψ(v) =
∫
Ω

1
2
v(x)2 dx. Hene,the funtional to be investigated is

Iε(y) =

∫

ΩT

e−t/ε
(1

2
∂ty

2 +
1

ε
(Ftq(y)−ℓ(t, x)y)

)
dxdt,where ΩT = [0, T ] × Ω. Note that Y = L2([0, T ], X) = L2(ΩT ). The Euler-Lagrangeequations of Iε are

−ε∂2
t y + ∂ty + F ′

tq(y) − ℓ(t, x) = 0, y(0, x) = y0(x), ∂ty(T, x) = 0,whih is a singularly perturbed problem. The speial problem with the funtional is thatit is nononvex in the variable y. It has some regularizing term through |∂ty
2|, but thereis no term ontrolling the osillations in x. We ompare the relaxation of Iε with thenaive onvexi�ation Icvx

ε : Y → R with
Icvx

ε (u) =

∫

ΩT

e−t/ε
(1

2
∂tu

2 +
1

ε
(Fcvx(u)−ℓu)

)
dxdt,22



where
Fcvx(u) =

{
Ftq(u) for |u| ≥ 1,

0 for |u| ≤ 1.Theorem 5.1 Let Irelax
ε be the relaxation of Iε on Y, i. e.,
Irelax

ε (u) := inf
{

lim inf
k→∞

Iε(uk)
∣∣∣ uk ⇀ u in Y

}
.Then, for eah ε > 0 we have Iε > Irelax

ε , i. e., there exists u with Iε(u) > Irelax
ε (u).Moreover, if ℓ 6≡ 0, then Irelax

ε > Icvx
ε .Proof: For simpliity, we omit ε, whih is �xed throughout the proof. We �rst showthat Irelax is di�erent from I. Consider any sequene un for whih ∂tun ≡ 0, |un(x)| = 1a.e., and un ⇀ 0 in Y. Then, I(yn) → 0 but I(0) = 1−e−T/ε > 0. This shows that I isnot lower semi-ontinuous and hene I > Irelax. To prove that Irelax is not idential to

Icvx, we minimize I and Icvx under the onstraint y(0) = w ∈ X, namely
J(w) = inf{ I(u) | u ∈ Y, u(0) = w } and
Jcvx(w) = inf{ Icvx(u) | u ∈ Y, u(0) = w }.Sine in both funtionals there is no oupling between di�erent values of x ∈ Ω, we obtainfuntions j, jcvx : Ω×R → R suh that

J(w) =
∫
Ω
j(x, w(x))dx and Jcvx(w) =

∫
Ω
jcvx(x, w(x))dx with

j(x, w) = inf{
∫ T

0
e−t/ε

(
1
2
ż2+1

ε
[Ftq(z)−ℓ(t, x)z]dt | z ∈ H1(0, T ), z(0) = w }and similarly for jcvx(x, w) where Ftq is simply replaed by Fcvx. Clearly the onvexity of

Fcvx implies onvexity of Jcvx and of jcvx. Beause of Ftq(w) > Fcvx(w) for w ∈ (−1, 1)we have j(x, w) > jcvx(x, w) for all x ∈ Ω and all w ∈ (−1, 1). We laim that theonvexi�ation j∗∗(x, ·) of j(x, ·) lies stritly above jcxv(x, ·) unless ℓ ≡ 0. To obtain aontradition we assume j∗∗(x, ·) ≡ jcxv(x, ·). Hene, j(x, ·) lies stritly above its on-vexi�ation j∗∗(x, ·) and thus the onvexi�ation j∗∗ must be a�ne for w ∈ [−1, 1].From j∗∗ = jcvx we onlude that jcvx must be a�ne on [−1, 1] as well. Taking intoaount the Euler-Lagrange equation −εz̈ + ż + F ′
cvx(z) = ℓ(t, x) with the boundaryonditions z(0) = w and ż(T ) = 0, this an only be possible if ℓ ≡ 0. Thus, weknow that there exists w ∈ X, suh that Jcvx(w) < J∗∗(w). It is now easy to on-strut a sequene (wn)n∈N with wn ⇀ w in X, suh that J(wn) → J∗∗(w). De�nenow u ∈ Y suh that u(0) = w and Icvx(u) = Jcvx(w). Moreover, let (un)n∈N beany sequene of funtions suh that un ⇀ u in Y and lim infn→∞ I(un) = Irelax(u).Then, I(un) ≤ C implies a uniform bound on un in H1([0, T ], X). Hene, the mapping

un 7→ un(0) ∈ X is bounded and, thus, weakly ontinuous. We onlude un(0) ⇀ u(0) = win X and, moreover, lim infn→∞ I(un) ≥ lim infn→∞ J(wn) ≥ J∗∗(w). This implies
Irelax(u) ≥ J∗∗(w) > Jcvx(w) = Icvx(u), whih is the desired result.23



It would be interesting to onsider Young-measure relaxations instead of the simple relax-ation in the weak topology just onsidered. In partiular, it should be possible to derive atransport equation for Young measures in the spirit of [FBS94℄, [The98℄, [Mie99℄, [BFS01℄and [Mie04℄.5.2 A rate-independent exampleThe seond example has a similar struture but is formulated in the rate-independentsetting:
0 ∈ κ Sign(∂tu(t, x)) + F ′

tq(u(t, x)) − ℓ(t, x) for (t, x) ∈ ΩT . (5.1)The energeti formulation based on the stability ondition (S) and the energy balane (E)(f. [MTL02℄ , [MT04℄, [Mie05℄) takes the form:(S) ∀ ŷ ∈ Y : E(t, u(t)) ≤ E(t, û) + κ‖û−u(t)‖L1(Ω),(E) E(t, u(t)) +
∫
[0,t]

κ‖du‖L1(Ω) = E(0, u(0))−
∫
Ωt
ℓ̇(s, x)u(s, x)dxds,whih must hold for all t ∈ [0, T ]. In general, this problem does not have a strongsolution, and a question of entral interest onerns the preise manner in whih thepotential barrier at u ∈ [−1/2, 1/2] is overome. We onsider the funtional

Iε(u) =

∫

[0,T ]

e−t/εκ‖du‖L1(Ω) +

∫

ΩT

e−t/ε

ε

(
Ftq(u(t, x))−ℓ(t, x)u(t, x))

)
dxdt,with a �xed ℓ ∈ C1([0, T ]×Ω). Owing to the non-smooth harater of the problem, theorresponding Euler-Lagrange equations take the form of a di�erential inlusion. Next weshow that the relaxation of the funtional follows readily in the spae

Y = L2(ΩT ) ∩ BV([0, T ],L1(Ω)).where, as before, ΩT = [0, T ] × Ω.Theorem 5.2 The relaxation of Iε : Y → R equipped with the weak topology of L2(ΩT )is given by the onvexi�ation
Icvx

ε (u) =

∫

[0,T ]

e−t/εκ‖du‖L1(Ω)

+

∫

ΩT

e−t/ε

ε

(
Fcvx(y(t, x))−ℓ(t, x)y(t, x))

)
dxdt.Proof: Again we omit the index ε and for simpliity we assume that Ω = (a, b) ⊂ R.We trivially have Irelax ≥ Icvx sine Icvx is onvex and lower semi-ontinuous. To showthe reverse estimate, we have to onstrut for eah y ∈ Y a reovery sequene (un)n with

un ⇀ u in L2(ΩT ) and lim inf
n→∞

I(un) ≤ Icvx(u).24



By onsidering small representative volume elements x0+δ[0, 1) ⊂ Ω, introduing thevariable ξ = (x−x0)/δ ∈ [0, 1) and taking the limit δ → 0, we �nd that it su�es toonsider the ase that the limit funtion u ∈ Y is independent of x. Thus, we assumethat u(t, x) = z(t) with z ∈ BV([0, T ]; R). Moreover, we need to �nd one funtion
ũ ∈ L2([0, T ]×[0, 1)) with

∀ t ∈ [0, T ] :
∫ 1

0
ũ(t, ξ)dξ = z(t) and

Ix0(ũ) ≤
∫
[0,T ]

e−t/εκ|dz| +
∫ T

0
e−t/ε

ε

(
Fcvx(z(t)) − ℓ(t, x0)z(t)

)
dt,where

Ix0(ũ) =
∫
[0,T ]

e−t/εκ‖dũ‖L1([0,1))

+
∫ T

0

∫ 1

0
e−t/ε

ε

(
Ftq(ũ(t, ξ)) − ℓ(t, x0)ũ(t, ξ)

)
dξ dt.It is easy to verify that the following funtion ũ satis�es both onditions:

ũ(t, ξ) =





z(t) for (t, ξ) with z(t) ≤ −1,

−1 for (t, ξ) with 0 ≤ ξ ≤ (1−z(t))/2 ≤ 1,

+1 for (t, ξ) with − 1 ≤ (1−z(t))/2 < ξ ≤ 1,

z(t) for (t, ξ) with z(t) ≥ 1.Note that ũ does not take values in (−1, 1) where Ftq is larger than Fcvx. Weak onvergeneis obtained by resaling the above onstrution into the interval [x0, x0+δ), and the resultfollows.Thus, we may use the regularized funtional to obtain a regularization of the rate-independent evolutionary problem (5.1). It is obtained simply by replaing F by Fcvx:
0 ∈ κ Sign(∂ty(t, x)) + F ′

cvx(y(t, x)) − ℓ(t, x) for (t, x) ∈ ΩT . (5.2)Note that this problem is exatly the same that is obtained by solving the global mini-mization problem (S)&(E), whih always has solutions. To see this, just solve the problemfor eah value of x separately. Eah of the solutions obtained in this way also solves therelaxed problem (5.2). This relaxed problem admits solutions that may be mehaniallyunimportant, but they are nevertheless needed mathematially to make the set of solutionsweakly losed.AknowledgementsThis work was partly arried out during MO's stay at Institut für Analysis, Dynamikund Modellierung, Universität Stuttgart, Germany, under the auspies of the HumboldtFoundation. MO gratefully aknowledges the �nanial support provided by the Founda-tion and the hospitality extended by the Institute. Further support was obtain from DFGvia the Collaborative Researh Center SFB404 �Multi�eld Problems� under Projet C7.25
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