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Abstract

The subject matter of this paper is the thermodynamic description of the
nonlinear atomic chain with temperature. For this reason we consider special
approximate solutions of Newton’s equations, in which the atoms perform mi-
croscopic oscillations in form of modulated traveling waves. We start with an
existence result for periodic traveling wave with arbitrary large amplitudes,
and study several examples including the harmonic chain, the hard sphere
model, and the small-amplitude approximation. Then we discuss the thermo-
dynamic properties of traveling waves, and derive the corresponding Gibbs
equation. Afterwards we focus on the macroscopic evolution of modulated
traveling waves. For this purpose we apply Whitham’s modulation theory to
the atomic chain, and derive the modulation equation, which turns out to
be a system of four macroscopic conservation laws. The last part is devoted
to the justification problem: We state a conjecture for the general case, and
prove this conjecture for the harmonic chain and the hard sphere model.

1 Introduction

We consider an atomic chain with N identical particles, whose dynamics is given by
an ODE system, which consists of Newton’s equation of motion. The focus of this
study is the establishment of the macroscopic limit N →∞ in case that the micro-
scopic motion generates temperature on the macroscopic scale. This phenomenon
leads on the macroscopic scale to a coupling of fast oscillations and slowly varying
processes.

The particles of the chain, see Figure 1 have the mass m = 1, and they are indexed
by α. At time t the particles have the positions xα(t). The basic variables are the
distances rα(t) = xα+1(t) − xα(t) and the velocities υα(t) = ẋα(t). The particles
move according to nearest neighbour interactions with interaction potential Φ(r).
Their motion is determined by Newton’s equation of motion

ẍα = Φ′(xα+1 − xα)− Φ′(xα − xα−1), (1.1)

which can be written in conservative form as

ṙα = vα+1 − vα v̇α = Φ′(rα)− Φ′(rα−1). (1.2)

In the following we will mainly consider convex interaction potentials, so that the
force Φ′ is a monotone increasing function. For instance, the harmonic chain is
governed by a quadratic interaction potential, and the famous Toda chain ([Tod70,
Tod81]) results, if we set

Φ(r) = exp (1− r)− (1− r). (1.3)

1



xα−1 xα
xα+1 xα+2

rα

Figure 1: The atomic chain with nearest neighbour interaction.

The system (1.2) describes the evolution of the atomic chain on the microscopic scale,
where t and x denote the microscopic time and space, respectively. The discrete
particle index α may be interpreted as the microscopic Lagrange coordinate.

Thermodynamics describes a physical system, which consists of a very large number
of particle, on the macroscopic scale. There are several possibilities to establish
a transition from the microscopic to the macroscopic scale, which correspond to
different scalings. In this study we focus on the hyperbolic scaling, where time,
position and Lagrange coordinate are scaled in the same manner, see [DK00]. We
introduce the scaling parameter ε = 1/N , and we define the macroscopic time, the
macroscopic position and the macroscopic Lagrange coordinate by

τ = εt, ξ = εx, y = εα, (1.4)

respectively.

We mention two other scalings. The scaling τ = ε2t, y = ε(α− ct) was studied
by Giannoulis & Mielke in connection to the micro-macro transition for the atomic
chain that leads on the macroscopic scale to the nonlinear Schrödinger equation,
see [GM05, GM04]. Friesecke and Pego considered the Korteweg/de Vries scaling
τ = ε3t, y = ε(α− ct), in order to establish the Korteweg/deVries equation in
the macroscopic limit, see [FP99]. Note that the various macroscopic limits only
exist, if the chosen scaling fits to the microscopic initial data. For example, the
Korteweg/deVries scaling requires initial data of the type rα(0) = 1 + ε2ḡ(εα),
where ḡ is a macroscopic function.

The derivation of the thermodynamic limit is currently too difficult, if we allow
arbitrary microscopic oscillations. For this reason we only consider a restricted class
of oscillations, namely those which are generated by traveling waves. A traveling
wave is an exact solution of the atomic chain satisfying

xα(t) = rα + vt + X(kα + ωt). (1.5)

Here r, v, k and ω are constant parameters, which we call the mean distance, mean
velocity, the wave number and the frequency, respectively, and the wave profile X is
assumed to be periodic w.r.t. the phase ϕ = kα + ωt. Since the periodicity length
ϕper can be chosen arbitrarily, we usually suppose ϕper = 1. Only in Section 5.4 we
set ϕper = 2π.

Next we discuss the notion of the modulation theory, which is best suited to pass
from a microscopic ODE system to a macroscopic PDE system, if the macroscopic
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oscillations are generated by traveling waves. Modulation theory is a generalization
of the passage from the Maxwell equations to geometric optics due to Kelvin, see
Whitham’s textbook on waves [Whi74], and is already applied to many microscopic
systems including lattice models as well as nonlinear PDEs, but containing linear
differential operators. For formal derivations we refer to [HLM94, FV98] for lat-
tice models and to [Whi74] for PDEs. For rigorous mathematical justifications of
Hamiltonian modulation equations see [GM05, GM04] and [KSM92, Sch98].

Within the modulation theory for the atomic chain we consider modulated traveling
waves, which are approximate solutions of (1.1). They result from (1.5), if the
traveling wave parameter vary on the macroscopic scale. This gives rise to the
following ansatz

xapp
α (t) =

1

ε
X(εt, εα) + X

(
εt, εα;

1

ε
Θ(εt, εα)

)
, (1.6)

where X(τ, y) and Θ(τ, y) are the modulated position and phase, respectively, and
X̃ is a family of periodic traveling waves. The modulated traveling wave parameter
now are fields depending on (τ, y), and are determined by X and Θ via

v =
∂ X

∂ τ
, r =

∂ X

∂ y
, ω =

∂ Θ

∂ τ
, k =

∂ Θ

∂ y
.

The modulation equations are macroscopic PDEs, which describe the macroscopic
evolution of the modulated traveling wave parameters (r, v, k, ω). As discussed in
Section 4, they result as four macroscopic conservation laws:

∂

∂ τ
(r, v, k, S)T +

∂

∂ y
(−v, +p, −ω, +g)T = 0. (1.7)

Moreover, the constitutive relations closing (1.7) are given by the Gibbs equation

dF = S dω + p dr + g dk, (1.8)

where F = F (r, k, ω) is the internal action of a traveling wave.

However, up to now there is no rigorous derivation of the modulation equations for
the nonlinear case. For this reason we address the justification problem in Section 6.
At first we present a conjecture for the general case, which claims, roughly spoken,
that one can estimate the difference between the approximate solution (1.6) and a
corresponding exact solution of atomic chain. Finally, we prove this conjecture for
the harmonic chain and for the hard sphere model.

The paper is organized as follows:

In Section 2 we describe traveling waves as exact solutions of a difference-differential
equation, and present an existence proof for traveling waves. Our proof relies on a
result of Filip and Venakides, see [FV98], but simplifies some of their arguments.
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The thermodynamics of traveling waves is established in Section3, where we intro-
duce the thermodynamic quantities like temperature, internal energy, entropy and
so on. Furthermore, we consider different sets of basic variables and derive the
corresponding variants of the Gibbs equations (1.8).

Section 4 is devoted to modulated traveling waves and to the formal derivation of
the modulation equations (1.7) via the principle of least action. The strategy is
again similar to [FV98]; the new results regard the thermodynamic interpretation of
the modulation system. Moreover, we find the additional conservation law for the
energy, so that we can transform the system into the symmetric form. However, we
can not guarantee that we have at hand a symmetric hyperbolic system, because in
general the energy is not a convex function.

In Section 5 we consider three different interaction potentials that give rise to three
examples with traveling waves of quite simple structure. These examples include
the harmonic chain and the hard sphere model. For all three examples we exploit
the modulation equations explicitly. Finally, in Section 5.4 we study the small-
amplitude approximation of traveling waves, and obtain an explicit criterion for the
hyperbolicity of the modulation equations.

Section 6 regards the justification problem mentioned above. In particular, we
formulate the conjecture, and prove it in two cases.

2 Traveling waves

Recall that any traveling wave is an exact solution of (1.1), which satisfies the ansatz
(1.5). If we plug in (1.5) into Newton’s equation, we obtain a difference-differential
equation for the wave profile X, namely

ω2 d2

dϕ2
X(ϕ) = Φ ′

(
r + X(ϕ + k)− X(ϕ)

)
− Φ ′

(
r + X(ϕ)− X(ϕ− k)

)
, (2.1)

where ϕ = kα + ωt is the phase variable, and (r, v, k, ω) are four parameters. Note
that the velocity v does not enter in (2.1), because Newton’s equations are invariant
under Galilei transformations. However, in modulation theory it is necessary to
consider the parameter v explicitly.

We define the traveling velocity wave V and the traveling distance wave R by

V(ϕ) =
d

dϕ
X(ϕ), R(ϕ) = X

(
ϕ +

k

2

)
− X

(
ϕ− k

2

)
, (2.2)

so that the atomic distances and velocities in a traveling wave read

rα(t) = r + R(kα + ωt + k/2) and vα(t) = v + ωV(kα + ωt). (2.3)

Note that any traveling wave is completely determined by its traveling velocity wave.

4



Existence of traveling waves

The existence of traveling waves is a non-trivial and subtle problem. Many authors
have studied this problem for different potentials, see for instance [FW94, FP99,
FV98, IK00, Ioo00], and the references therein. Here we present a variational ap-
proach to this problem that is quite elementary but restricted to convex interaction
potentials. Our existence proof is similar to that given in [FV98], but simplifies
some arguments.

In order to avoid technical difficulties, we assume that the convex interaction poten-
tial Φ is in C2, and that it is defined on the whole real axis. Furthermore, we suppose
that the second derivative Φ′′ is bounded. These regularity assumptions imply, that
the following nonlinear operator ∂Φ is well defined and Lipschitz continuous

∂Φ : L2([0, 1]) → L2([0, 1]), ∂Φ(V)(ϕ) := Φ′(V(ϕ)). (2.4)

In what follows all functions from Lp([0, 1]), 1 ≤ p ≤ ∞, are supposed to be 1-
periodic. For any 0 < k < 1 we introduce two integral operators Ak and Âk by

(AkV)(ϕ) :=

ϕ+k/2∫

ϕ−k/2

V(ϕ′) dϕ′, ÂkV := AkV− k

1∫

0

V(ϕ′) dϕ′. (2.5)

Both integral operators are compact, symmetric, and map L2([0, 1]) into L∞([0, 1]).
Furthermore we define

Bk = ∂kAk, i.e. BkV(ϕ) :=
1

2
(V(ϕ + k/2) + V(ϕ− k/2)) (2.6)

(2.7)

which is a bounded automorphism of L2([0, 1]). The traveling wave equation (2.1)
can now be written as

dR
dϕ

(ϕ) = V(ϕ + k/2)− V(ϕ− k/2), (2.8)

ω2 dV
dϕ

(ϕ) = Φ′(r + R(ϕ + k/2)
)− Φ′(r + R(ϕ− k/2)

)
, (2.9)

or, equivalently,

R = ÂkV, ω2V = Âk∂Φ
(
r + R

)
. (2.10)

In order to prove the existence of traveling waves, we consider the following opti-
mization problem.

Problem 2.1 For fixed r, 0 < k < 1 and γ > 0, we maximize the functional

V ∈ L2([0, 1]) 7→ W(r, k, V) :=

1∫

0

Φ
(
r + ÂkV(ϕ)

)
dϕ (2.11)
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under the constraint V ∈ Hγ with

Hγ :=
{
V ∈ L2([0, 1]) :

1

2

1∫

0

V(ϕ)2 dϕ ≤ γ
}

. (2.12)

Theorem 2.2 For all r, 0 < k < 1 and γ > 0 there exists a maximizer Ṽ of
Problem 2.1 such that

1

2

1∫

0

Ṽ(ϕ)2 dϕ = γ (2.13)

Furthermore, there exists a positive Lagrangian multiplier ω̃2 so that Ṽ is a traveling
velocity wave with frequency ω̃, i.e.

ω̃2Ṽ = Âk∂Φ
(
r + ÂkṼ

)
. (2.14)

Proof. Since the operator Âk maps L2([0, 1]) compactly into itself, the functional
(2.11) is weakly continuous on the weakly compact set Hγ. Therefore there exists
a maximizer Ṽ ∈ Hγ. Since (2.11) is convex, the maximizer is an element of the
boundary of Hγ, which implies (2.13). Moreover, there exists a Lagrangian multiplier
ω̃2 such that (2.14) is satisfied. ¤

We conclude with two remarks: (i). The maximizer Ṽ from Theorem 2.2 is not
unique, because any shift of a maximizer is also a maximizer. It remains an open
problem to characterize all maximizers of problem 2.1. (ii). We have constructed
traveling waves as maximizers of the functional (2.11). We mention that any sta-
tionary point of (2.11) is a traveling wave, as long as it is an element of the boundary
of Hγ. The existence of non-maximizing traveling waves is another open question.

Binary oscillations

For an arbitrary potential Φ, it is hard to solve the difference-differential equations
(2.1) or the optimization problem 2.1. However, if we restrict the wave number to
k = 1

2
, we can do this explicitly.

Lemma 2.3 If k = 1/2 the difference-differential equations (2.8) and (2.9) become
ordinary differential equations, namely

ωR ′(ϕ) = −2V(ϕ− k/2) (2.15)

ωV′(ϕ− k/2) = Φ′(r + R(ϕ))− Φ′(r − R(ϕ)) (2.16)
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Proof. Since R and V are 1-periodic, the equations (2.8) and (2.9) yield

ωR ′(ϕ + 1/2) + ωR ′(ϕ) = 0, ωV′(ϕ + 1/2) + ωV′(ϕ) = 0. (2.17)

We conclude that R(ϕ + 1/2) + R(ϕ) and V(ϕ + 1/2) + V(ϕ) are constant. Inte-
grating over one period shows that both constants are zero. Thus we can eliminate
the delay terms, in (2.8)-(2.9) and we obtain (2.15), (2.16). ¤

Any traveling wave with k = 1/2, i.e. any solution of (2.15)-(2.16), is called a binary
oscillation.

3 Thermodynamics of traveling waves

In this section we study the physical properties of traveling waves. In particular,

1. we will identify the usual thermodynamic fields as energy, temperature, pres-
sure and so on,

2. we study the constitutive relations, i.e. the dependence of thermodynamic
fields on the parameters of the traveling waves.

Since on the macroscopic scale the atomic data in a traveling wave are highly oscil-
lating, we consider suitable microscopic mean values of the physical fields. All ther-
modynamic fields in a traveling wave are constant in the macroscopic Lagrangian
space-time. However, in Section 4 these fields depend on the macroscopic variables,
and we use the modulation theory to derive their macroscopic evolution equations.

Let X = (V, R) be a traveling wave with parameters r, v, k and ω. We introduce
the following thermodynamic quantities:

W :=

1∫

0

Φ(r + R(ϕ)) dϕ specific internal potential energy,

γ :=
1

2

1∫

0

V(ϕ)2 dϕ parameter γ,

p := −
1∫

0

∂Φ(r + R(ϕ)) dϕ, pressure,

and
K := ω2γ specific internal kinetic energy,
T := 2K temperature,
F := K −W specific internal action,
U := K + W specific internal energy.
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Furthermore, we define

S := 2ωγ specific entropy,

g := −
1∫

0

Φ′(r + R(ϕ))(BkV)(ϕ) dϕ entropy flux.
(3.1)

At a first glance, these definitions may look very artificial. However, in the following
we show, that (S, g) has all macroscopic properties of an entropy density-flux pair.

Next we consider (smooth) families X of traveling waves, which depend on a pa-
rameter set ~u. All physical fields then become functions in ~u. In order to have
a clear distinction between the parameter dependence and the ϕ-dependence, we
write X(~u; ϕ) as well as V(~u; ϕ) and R(~u; ϕ) for the corresponding families of ve-
locity and distance waves, respectively. In Theorem 2.2 we have proved, that there
exists a family of traveling waves depending on ~u = (r, k, γ). However, sometimes
it is convenient to consider other set of parameters.

The parameter dependence of the physical quantities lead to constitutive relations,
that become important in Section 4. In the following we derive these constitutive
laws for different sets of parameters. However, in all cases we will identify a ther-
modynamic potential, given by the equation of state, and a corresponding Gibbs
equation, that establishes the constitutive relations. We summarize the results as
follows:

independent thermodynamic Gibbs equation
variables potential

(r, k, γ) W = W (r, k, γ) dW = ω2 dγ − p dr − g dk
(r, k, ω) F = F (r, k, ω) dF = S dω + p dr + g dk
(r, k, S) U = U(r, k, S) dU = ω dS − p dr − g dk

(3.2)

In particular, if the equation of state is known, all other constitutive relations can
be determined by means of the corresponding Gibbs equation.

The parameter set ~u = (r, k, γ)

Let V(r, k, γ; ·) be a family of traveling velocity waves that is parameterized by
(r, k, γ). Recall that the existence of such families is provided by Theorem 2.2. We
define a function W by

W (r, k, γ) = W(r, k, V(r, k, γ; ·)), (3.3)

where W is given by (2.11).

Theorem 3.1 The function W = W (r, k, γ) is nondecreasing w.r.t γ, and there
holds

dW = ω2 dγ − p dr − g dk, (3.4)
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i.e. ω2 = ∂γW , p = −∂rW , and g = −∂kW .

Proof. The functional W is smooth in (r, k) and Gateaux-differentiable with respect
to its variable V. Since the family V(r, k, γ; ·) is assumed to be smooth, we find
that W is differentiable with respect to (r, k, γ). We differentiate W with respect
to γ, and obtain

∂γW =

1∫

0

Φ′
(
r + ÂkV(ϕ)

)
· Âk ∂γV(ϕ) dϕ = ω2

1∫

0

V(ϕ) ∂γV(ϕ) dϕ = ω2∂γγ > 0.

Here we did not write explicitly the dependence of V on r, k and γ. Differentiating
W with respect to r yields

∂rW =

1∫

0

Φ ′
(
r + ÂkV(ϕ)

)(
1 + Âk ∂γV(ϕ)

)
dϕ

= −p + ω2

1∫

0

V(ϕ) ∂rV(ϕ) dϕ = ω2∂rγ = −p.

Similarly, ∂kW = −g. ¤

According to this theorem, the internal potential energy W is the thermodynamic
potential, and (3.3) and (3.4) are the equation of state and the corresponding Gibbs
equation, respectively.

The parameter set ~u = (r, k, ω)

We now consider smooth families V(r, k, ω; ·) of traveling velocity waves that are
generated by the parameters (r, k, ω). In section 4 we will describe the modulation
theory of traveling waves and there we will start with such a family of traveling
waves. First we derive a variational result.

Lemma 3.2 Any traveling velocity wave V(r, k, ω; ·) is a stationary point of the
functional

V ∈ L2([0, 1]) 7→ F(r, k, ω, V) =
1

2
ω2

1∫

0

V(ϕ)2 dϕ−
1∫

0

Φ
(
r + ÂkV(ϕ)

)
dϕ. (3.5)

Proof. The functional F is Gateaux-differentiable w.r.t. its variable V, and the
derivative reads

∂VF(r, k, ω, V) = ω2V− Ãk∂Φ
(
r + ÂkV

)
. (3.6)
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We conclude, that (2.2) is just the Euler-Lagrange equation corresponding to (3.5).
¤

If (r, k, ω) are the independent variables, the thermodynamic potential is the inter-
nal action F with equation of state

F (r, k, ω) = F(r, k, ω, V(r, k, ω)), (3.7)

and the corresponding Gibbs equation reads

dF = γ dω2 + g dk + p dr. (3.8)

Both assertions can be proved similarly to Theorem 3.1.

The parameter set ~u = (r, k, S)

Sometimes it is convenient to consider a third family of traveling waves, that is pa-
rameterized by (r, k, S). In section 4 it will turn out, that the modulation equations
for these parameters exhibit a very symmetric structure.

Lemma 3.3 Any traveling velocity wave V(r, k, S, ·) is a stationary point of the
functional

V ∈ L2([0, 1])\{0} 7→ U(r, k, S, V) =
S2

2
1∫
0

V(ϕ)2 dϕ

+

1∫

0

Φ
(
r + ÃkV(ϕ)

)
dϕ.(3.9)

Proof. Equation (2.2) is the Euler-Lagrange equation of the functional (3.9). ¤

In this case, the thermodynamic potential is the internal energy U , given by the
equation of state

U(r, k, S) = U(r, k, S, V(r, k, S)), (3.10)

and the Gibbs Equation reads

dU = ω dS − g dk − p dr. (3.11)

Macroscopic changes of parameters

In classical thermodynamics, the transformation from a given set of independent
variables to another one is done by means of Legendre transforms (LT) of the ther-
modynamic potentials. Within the thermodynamics of traveling waves we find fol-
lowing analogue.
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Lemma 3.4 Let r and k be fixed.

1. If ω2 = ω2(γ) is invertible there holds: F is LT of W with respect to γ and W
is LT of F with respect to ω2.

2. If S = S(ω) is invertible there holds: U is LT of F with respect to ω and F is
LT of U with respect to S.

Proof. All propositions follow immediately from some basic calculations. ¤

We mention that it remains an open problem to validate the invertibility assumptions
for arbitrary atomic interaction potentials.

Thermodynamics of binary oscillations

Let r and ω be fixed and let V(ϕ), R(ϕ) be a binary oscillation, i.e. a solution of
(2.15)-(2.16). The system (2.15)-(2.16) is equivalent to an Hamiltonian system. To
show this, we define new functions V (σ) = ωV(ωσ/2− 1/2) and R(σ) = R(ωσ/2),
and introduce the oscillator energy Hosc by

Hosc(V, R) =
1

2
ω2V 2 + Φosc(R), Φosc(R) =

1

2
Φ(r + R) +

1

2
Φ(r −R). (3.12)

The ODE system (2.8)-(2.9) then reads

d

d σ
R(σ) = −∂ Hosc

∂ V
(V (σ), R(σ)),

d

d σ
V (σ) = +

∂ Hosc

∂ R
(V (σ), R(σ)). (3.13)

This Hamiltonian system describes the motion of a particle in the symmetric and
convex potential Φosc. Note that R(σ) and V (σ) are 2/ω-periodic functions.

The Hamiltonian structure allows to parameterize the binary oscillation of an atomic
chain by the variables r and Hosc, where the oscillator energy is equal to the internal
energy U in the sense of Section 3.

Theorem 3.5 For binary oscillations there holds:

1. The entropy flux vanishes, i.e. g = 0.

2. The Gibbs equation reduces to dU = ω dS − p dr.

3. The frequency ω and the entropy S are given by

1

ω
=

+R?∫

−R?

dR√
2(U − Φosc(R))

, S =

+R?∫

−R?

√
2(U − Φosc(R)) dR, (3.14)

where R? > 0 is determined by U = Φosc(R
?).
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Proof. From (2.17) we conclude BkV ≡ 0 and hence g = 0. Since g = 0, the Gibbs
equation (3.14) follows immediately from (3.11). Since Hosc is an integral of motion
for (3.13), we find

U =

1∫

0

1

2
V(ϕ)2 + Φ(r + R(ϕ)) dϕ =

ω

2

2/ω∫

0

Hosc(V (σ), R(σ)) dσ = Hosc.(3.15)

We may assume that V (σ) > 0 within the first half period. This implies R(σ = 0) =
−R? and R(σ = 1/ω) = +R?. Hence

2

ω
= 2

1/ω∫

0

dσ = 2

+R?∫

−R?

dR

V
= 2

+R?∫

−R?

dR√
2(U − Φosc(R))

. (3.16)

Furthermore, the definitions of S and γ imply

S =
1

ω

∫ 1

0

ω2V2(ϕ) dϕ =

∫ 1/ω

0

ω2V 2(σ) dσ =

+R?∫

−R?

2(U − Φosc(R))
dR√

2(U − Φosc(R))
,

which was claimed in (3.14). ¤

4 Modulation equations

As described in the introduction, a modulated traveling wave is an approximate
solution of (1.1), that satisfies

xα(t) =
1

ε
X(εt, εα) + X̃

(
εt, εα;

1

ε
Θ(εt, εα)

)
, (4.1)

where X(τ, y) and Θ(τ, y) are macroscopic functions. The wave profile X̃(τ, y; ϕ)
is assumed to be 1-periodic w.r.t to ϕ, and depends explicitly τ and y. The generic
traveling wave parameters (r, v, k, ω) now are macroscopic fields and read

ω(τ, y) =
∂ Θ

∂ τ
(τ, y), k(τ, y) =

∂ Θ

∂ y
(τ, y) (4.2)

and

v(τ, y) =
∂ X

∂ τ
(τ, y), r(τ, y) =

∂ X

∂ y
(τ, y) (4.3)

Furthermore, we assume that the wave profile describes periodic traveling waves,
i.e. we set

X̃(τ, y; ϕ) = X(r(τ, y), v(τ, y), k(τ, y), ω(τ, y), a(τ, y); ϕ), (4.4)
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where X(r, v, k, ω, a; ϕ) is a smooth family of traveling waves as in Section 3. Here,
a denotes an additional parameter as for instance the energy E, the entropy S or
the parameter γ. To ensure that no further degree of freedom is allowed, we have to
impose a further algebraic equation. The most prominent example is the dispersion
relation, which provides the frequency

ω = Ω(r, k, a). (4.5)

Recall that the family (4.4) does rather not depend on v, but some notations simplify,
if we introduce the formal dependence on v.

The modulation equations are macroscopic PDEs that describe the macroscopic
evolution of the traveling wave parameter (r, v, k, ω, a). They are determined so
that the ansatz (4.1) provides in fact approximate solutions of the atomic chain.
Since the dispersion relation eliminates one degree of freedom, we have to identify
four further macroscopic equations. In what follows we apply a variational approach
to derive these equations.

Formal derivation of the modulation equations

Let X = X(r, v, k, ω, a; ·) ∈ L2([0, 1]) be a smooth family of periodic traveling
waves. In what follows, we abbreviate the parameters by ~u = (r, v, k, ω, a). More-
over, let V(~u; ·) and R(~u; ·) be the corresponding families of traveling velocity and
traveling distance waves, respectively.

We now insert the ansatz (4.1) into the expression for the total action in the atomic
chain. The discrete sum w.r.t. α yields integrals over the microscopic phase ϕ as
well as integrals over the macroscopic Lagrangian coordinate y. There results

total action = L(X, Θ) :=

τfin∫

0

1∫

0

L(~u(τ, y)) dy dτ (4.6)

where L(~u) = L(~u, X(~u; ·)). The functional L is defined by

L(~u, X) =

1∫

0

(
1

2
(v + ωX ′(ϕ))

2 − Φ(r +∇kX(ϕ))

)
dϕ, (4.7)

where X is arbitrary in L2([0, 1]). Recall that ’′’ denotes the derivative with respect
to ϕ and ∇k is given by (∇kX)(ϕ) = X(ϕ + k) − X(ϕ). The modulation equations
result if we apply the principle of least action to (4.6). The variations with respect
to X and Θ yield

0 =
∂

∂ τ
∂ vL(~u(τ, y)) +

∂

∂ y
∂ rL(~u(τ, y)) (4.8)

0 =
∂

∂ τ
∂ωL(~u(τ, y)) +

∂

∂ y
∂ kL(~u(τ, y)) (4.9)
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respectively. Furthermore, there exist two compatibility conditions, which result
from (4.2) and (4.3), namely

∂ r(~u)

∂ τ
(τ, y) =

∂ v

∂ y
(τ, y),

∂ k(~u)

∂ τ
(τ, y) =

∂ ω(~u)

∂ y
(τ, y). (4.10)

In the next step we evaluate the constitutive relation in more detail. The Gateaux
differential of L w.r.t. an arbitrary function X ∈ L2([0, 1]) reads

∂XL(~u, X) = −ω2X ′′ +∇?
k∂Φ(r +∇kX), (4.11)

which is just the traveling wave equation with free parameter ω. The family X(~u; ·)
satisfies the traveling wave equation, if the parameter ω is replaced by the dispersion
relation. Thus there holds

∂XL(~u, X(~u; ·)) =
(
Ω2(r, k, a)− ω2

)
X(~u; ·) ′′. (4.12)

Since L does not explicitly depend on a we find

∂ aL(~u) = 〈∂XL(~u, X(~u; ·)), ∂ aX(~u; ·)〉 L2([0, 1])

=
(
Ω2(r, k, a)− ω2

) 1∫

0

X ′(~u; ϕ)∂ aX ′(~u; ϕ) dϕ. (4.13)

We conclude that the dispersion relation is equivalent to ∂ aL(~u) = 0. Moreover, it
implies

∂XL(~u, X(~u; ·)) = 0 as well as ∂xL(~u) = ∂xL(~u, X(~u; ·)) (4.14)

for all x ∈ {r, v k, ω}. This yields

∂ rL(~u) = −
1∫

0

∂Φ(r +∇kX(~u; ϕ)) dϕ = −
1∫

0

∂Φ(r + R(~u; ϕ)) dϕ, (4.15)

∂ vL(~u) = +

1∫

0

(v + ωX ′(~u; ϕ)) dϕ = v (4.16)

and

∂ kL(~u) = −
1∫

0

∂Φ(r +∇kX(~u; ϕ))X ′(~u; ϕ + k) dϕ

= −
1∫

0

∂Φ(r + R(~u; ϕ))BkV(~u; ϕ) dϕ, (4.17)

∂ωL(~u) = +

1∫

0

(v + ωX ′(~u; ϕ))X ′(~u; ϕ) dϕ = ω

1∫

0

V(~u; ϕ)2 dϕ. (4.18)
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According to the definitions in Section 3, we finally obtain

∂ rL(~u) = p(~u), ∂ vL(~u) = v, ∂ kL(~u) = g(~u), ∂ωL(~u) = S(~u). (4.19)

The modulation equations (4.8), (4.9) and (4.10) now read

∂

∂ τ




r
v
k

S(~u)


 (τ, y) +

∂

∂ y




−v
+p(~u)
−ω

+g(~u)


 (τ, y) = 0. (4.20)

Note that we did not eliminate the frequency ω by the algebraic dispersion relation
(4.5). According to Section 3, we may interpret the four PDEs as the macroscopic
conservation laws for mass, momentum, wave vector and entropy.

Let us now consider the fields r, v, k and ω as the independent variables. We set
a := ω and the dispersion relation (4.5) reads ω = a. The resulting modulation
equations are the same as (4.20), but now all constitutive relations are given by the
Gibbs Equation (3.8). In this form, the modulation system for the atomic chain
was derived by Filip and Venakides in [FV98]. Moreover, we find the same formal
structure as in the context of modulated traveling waves for PDEs, cf. [Whi74].

The modulation equations for (r, v, k, S)

Here we consider the independent parameters r, k, v and S, i.e. we choose a = S.
In densities of (4.20) are the independent variables, and the fluxes are given by the
Gibbs Equation

dE = ω dS − g dk − p dr + v dv, (4.21)

where E := 1
2
v2 +U(r, k, S) is the specific total energy. The system (4.20) now can

be written as

∂

∂ τ
~v + B

∂

∂ y
∂~vE(~v) = 0, (4.22)

where

~v =




r
v
k
S


 , B =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 . (4.23)

In fact, this is a very nice structure of the modulation equation. Moreover, the set of
variables (r, v, k, S) provide further information about the modulation equations.
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Theorem 4.1 Let a smooth solution of (4.22) be given. Then, the energy E is
conserved according to

∂ E

∂ τ
+

∂

∂ y

(
pv + gω

)
= 0. (4.24)

Furthermore, there holds a further conservation law

∂

∂ τ

(
rv + kS

)− ∂ E?

∂ y
= 0, (4.25)

where E? is the Legendre transform of E with respect to all variables, i.e.

E? = −rp + v2 − kg + ωS − E. (4.26)

Proof. Equation (4.21) yields

∂ E

∂ τ
= ω

∂ S

∂ τ
− p

∂ r

∂ τ
− g

∂ k

∂ τ
+ v

∂ v

∂ τ

= −ω
∂ g

∂ y
− p

∂ v

∂ y
− g

∂ ω

∂ y
− v

∂ p

∂ y
= − ∂

∂ y
(pv + ωg).

Let E? be given as in (4.26). Then there holds dE? = S dω − r dp − k dg + v dv.
Finally, we find

∂ E?

∂ y
= S

∂ ω

∂ y
− r

∂ p

∂ y
− k

∂ g

∂ y
+ v

∂ v

∂ y

= S
∂ k

∂ τ
+ r

∂ v

∂ τ
+ k

∂ S

∂ τ
+ v

∂ r

∂ τ
=

∂

∂ τ

(
rv + kS

)
.

¤

5 Examples of traveling waves

5.1 Harmonic chain

The most prominent example for an atomic chain with Φ(x) = a2x2/2, where a > 0
is a constant. It is easy to prove, that there exists the following family of traveling
waves, parameterized by (r, k, γ),

V(γ; ϕ) = 2
√

γ sin (2πϕ), R(k, γ; ϕ) :=
sin (πk)

π
V(ϕ). (5.1)

The dispersion relation ω(k) = a sin (πk)/π provides the frequency ω as function of
k, and does not depend on r or γ. Furthermore, the equation of state reads

W (r, k, γ) =
1

2
a2r2 + ω(k)2γ, (5.2)

and implies

g(r, k, γ) = −a2 sin (2πk)γ, F (r, k, γ) = −1

2
a2r2, S(r, k, γ) = 2ω(k)γ. (5.3)
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5.2 Hard sphere model

Here we consider the hard sphere model of the atomic chain, which describes all
interaction by hard sphere collisions. As long as the distance between two adjacent
atoms is larger than a fixed interaction distance rmin > 0, there is no interaction
between the atoms. If the distance meets the interaction distance, both atoms will
interact by an elastic collision, i.e. they will exchange their velocities. Although
there is no corresponding smooth interaction potential, we may apply the notion
of traveling waves and modulated traveling waves. There are three motivations
for studying this simple model: (i). We can derive explicit expressions for families
of traveling waves and thus also for the modulation equations. (ii). According to
[FM02], the model describes the high energy limit for certain potentials. (iii). In
Section 6 we can justify the modulation equations.

Using basic physical arguments, one can derive the following family of traveling
velocity waves, parameterized by (r, k, ω),

V(r, k; ϕ) =




−(r − rmin)

k
if 0 ≤ ϕ < k

+
(r − rmin)

1− k
if k ≤ ϕ < 1

. (5.4)

Recall that the frequency ω > 0 is a free parameter and may be chosen independently
of r and k.The equation of state reads

F (r, k, ω) =
(r − rmin)

2ω2

2k(1− k)
, (5.5)

and implies

S(r, k, ω) =
(r − rmin)

2ω

k(1− k)
, U = U(r, k, S) =

S2k(1− k)

2(r − rmin)
2 . (5.6)

Since there is no internal potential energy, there holds U = F .

Theorem 5.1 The modulation equations in the variables ~u = (r, v, k, ω)T read

∂

∂ τ
~u + C(~u)

∂

∂ y
~u = 0, (5.7)

where

C(~u) =




0 −1 0 0
ω2

k(1−k)
0 − (1−2k)rω2

k2(1−k)2
2(r−rmin)ω

k(1−k)

0 0 0 −1

− (1−2k)ω2

(r−rmin)k(1−k)
2ω

(r−rmin)
(1−4k(1−k))ω2

k2(1−k)2
− (1−2k)ω

k(1−k)


 . (5.8)

The system is hyperbolic with two linearly degenerate eigenvalues

λ1 = −ω

k
, λ2 =

ω

1− k
. (5.9)

Proof. See Theorem 5.2. ¤
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5.3 Harmonic interactions, interrupted by periods of free
flight

We consider an atomic chain in which the atomic interactions are given by the
potential

Φ(r) =





δ2(r − rmin)
2

4
iff r ≤ rmin,

0 iff r > rmin,
(5.10)

where δ and rmin are two fixed constants. This model combines properties of the
harmonic chain and of the hard sphere model. Next we give a family of traveling
velocity waves that is parameterized by (r, v, k, ω). To this end we set σ = πω/δ,
and define a 1-periodic auxiliary function Ṽ by

Ṽ (ϕ) =





+ cos
(
σ−1πϕ

)
iff 0 ≤ ϕ ≤ σ,

−1 iff σ ≤ ϕ ≤ k,
− cos

(
σ−1π(ϕ− k)

)
iff k ≤ ϕ ≤ k + σ,

+1 iff k + σ ≤ ϕ ≤ 1.

(5.11)

The family of traveling velocity waves results as

V(ϕ) =
r − rmin

2k(1− k)− πδ−1ω

(
Ṽ (ϕ)− (1− 2k)

)
. (5.12)

Note that the corresponding family of distance waves is given by R = ÂkV. In order
to ensure that (5.12) is well defined, the frequency must be sufficiently small, i.e.

σ = πδ−1ω ≤ min{k, 1− k}. (5.13)

This condition corresponds to the physical restriction, that all interactions in the
chain due to the harmonic part of Φ incorporate only two atoms. In other words,
as long as the atomic distance rα is smaller that rmin, the adjacent distances rα−1

and rα+1 are larger than rmin. We mention that there exist traveling waves violating
this condition, but for these the explicit expressions become more complicate.

The family (5.12) yields the following equation of state

F = F (r, v, k, ω) =
(r − rmin)

2ω2

2k(1− k)− πδ−1ω
, (5.14)

which implies

S =
(r − rmin)

2ω

(2k(1− k)− πδ−1ω)2

(
4k(1− k)− πδ−1ω

)
. (5.15)

Moreover, if σ = πδ−1ω tends to zero, we obtain both for the traveling waves and
for the equation of state the same expressions as in the hard sphere model.
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Theorem 5.2 The modulation equations in the variables ~u = (r, v, k, ω)T read

∂

∂ τ
~u + A−1(~u)B(~u)

∂

∂ y
~u = 0, (5.16)

where

A =




1 0 0 0
0 1 0 0
0 0 1 0

2rω(4k(1−k)−πδ−1ω)
(2k(1−k)−πδ−1ω)2

0 8r2ωk(1−k)(1−2k)

(2k(1−k)−πδ−1ω)3
8r2k2(1−k)2

(2k(1−k)−πδ−1ω)3


 , (5.17)

B =




0 −1 0 0

2ω2

(2k(1−k)−πδ−1ω)
1 − 4rω2(1−2k)

(2k(1−k)−πδ−1ω)2
2rω(4k(1−k)−πδ−1ω)

(2k(1−k)−πδ−1ω)2

0 0 0 −1

− 4rω2(1−2k)

(2k(1−k)−πδ−1ω)2
0

4r2ω2(2−6(1−k)−πδ−1ω)
(2k(1−k)−πδ−1ω)3

− 8r2ωk(1−k)(1−2k)

(2k(1−k)−πδ−1ω)3




.

The system is hyperbolic with two eigenvalues

λ1 = −ω

k
, λ2 =

ω

1− k
, (5.18)

which both are linearly degenerate.

Proof. The matrices A and B may be calculated directly from (4.22) and (5.14).
The characteristic polynomial of the matrix A−1B is

P (λ) =
(ω + kλ)2(ω − (1− k)λ)2

k2(1− k)2
. (5.19)

Hence, the system (5.16) has four real eigenvalues which are given by (5.18). The
right eigenvectors ~u1 and ~u2 of A−1B corresponding to λ1 and λ2, respectively, are
twofold degenerate and read

~u1 =
(
c1, c1

ω

k
, 1,

ω

k

)T

, c1 = − 2(r − rmin)k

2k(1− k)− πδ−1ω
, (5.20)

~u2 =

(
c2, −c2

ω

1− k
, 1, − ω

1− k

)T

, c2 =
2(r − rmin)(1− k)

2k(1− k)− πδ−1ω
. (5.21)

It is easy to check that both eigenvectors are perpendicular to the gradients of the
corresponding eigenvalues, which implies that both λ1 and λ2 are linearly degenerate.
¤
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5.4 Small-amplitude traveling waves

We now consider the small-amplitude approximation of traveling waves. This gives
an example where we can explicitly determine a criterion for the hyperbolicity of
the modulation equations. In order to simplify the notations we set the periodicity
length of traveling waves to 2π. At first we calculate the specific internal action, F ,
in the small-amplitude approximation. We have shown in Section 3 that F does not
depend on the velocity υ, so that we can set υ = 0 in the following calculation. The
traveling wave representations (4.1) and (4.4) will now be written

xα(t) = rα + X(r, k, δ; kα + Ω(r, k, δ)t). (5.22)

Note that within this section all traveling waves have period ϕper = 2π. The disper-
sion relation Ω(r, k, δ) is given here with a different parameter set as in Section 3.
The newly introduced parameter δ defines the amplitude of the wave. Furthermore
we assume

X(r, k, δ; ϕ + 2π) = X(r, k, δ; ϕ) (5.23)∫ 2π

0

X(r, k, δ; ϕ) dϕ = 0 (5.24)

∫ 2π

0

X(r, k, δ; ϕ)e−iϕ dϕ = 4πδ. (5.25)

In fact, assuming that Φ is sufficiently smooth, we construct X as a power series
expansion with respect to δ. The dispersion relation ω = Ω(r, k, δ) is then also
expanded in δ. The small-amplitude approximation relies on the ansatz

X(ϕ) = 2δ cos(ϕ) +
N∑

n=2

δn

n∑
m=−n

An,meimϕ +O(δN+1)δ→0, (5.26)

ω = Ω(r, k, δ) = Ω0 +
N∑

n=1

δnΩn +O(δN+1)δ→0. (5.27)

Here, we assume An,0 = An,1 = 0 as well as An,−m = An,m. Of course, all An,m and
Ωn will depend on r and k. Inserting this into (5.22) and (2.1) and equating to 0
the terms associated with δneimϕ yields equations for the desired coefficients:

δ1eiϕ : Ω2
0 = Φ′′(r)2(1− cos(k)) (5.28)

δ2eiϕ : Ω1 = 0 (5.29)

δ2ei2ϕ : A2,2 =
i sin k

1− cos k

Φ′′′(r)
Φ′′(r)

(5.30)

δ3eiϕ : Ω2 =
1

2Ω0

(
12(1− cos k)2Φ(4)(r) + 8(sin k)2 Φ′′′(r)2

Φ′′(r)

)
(5.31)

δ3ei2ϕ : A3,2 = 0 (5.32)

δ3ei3ϕ : A3,3 =
2Φ′′(r)Φ(4)(r)(cos(2k)− cos k)− 4Φ′′′(r)2(cos(2k) + 3 cos k + 2)

Φ′′(r)2(6− 4 cos k − 2 cos 2k)
(5.33)
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This expansion can now be inserted into the internal action F̃ as a function of
(r, k, δ):

F̃ (r, k, ω, δ) =
1

2π

∫ 2π

0

ω2

2
[X′(r, k, δ; ϕ)]

2−Φ (r + X(r, k, δ; ϕ + k)− X(r, k, δ; ϕ)) dϕ.

(5.34)
This resuls in the following expansion

F̃ (r, k, ω, δ) = −Φ(r) +

N/2∑
n=1

δ2n
(
ω2Kn(r, k)− Vn(r, k)

)
+O(

δN+2
)
, (5.35)

with

K1(r, k) = 1, (5.36)

V1(r, k) = Φ′′(r)2(1− cos k), (5.37)

K2(r, k) =

(
Φ′′′(r)
Φ′′(r)

)2
1 + cos k

1− cos k
, (5.38)

V2(r, k) = Φ(4)(r)(1− cos k)2 +
(Φ′′′(r))2

Φ′′(r)

[
3 + 2 cos k − (cos k)2

]
. (5.39)

Note that the function Ω(r, k, δ) appears here from solving ∂
∂δ

F̃ (r, k, ω, δ) = 0 for ω
as a function of (r, k, δ), namely

Ω(r, k, δ) =
(
V1(r, k) + 2δ2(V2(r, k)− V1(r, k)K2(r, k)) +O(δ4)

)1/2
. (5.40)

However, we rather consider ω as independent variable and eliminate δ instead. We
let Ω0(r, k) =

√
V1(r, k) and assume that

M(r, k)
def
= V1(r, k)K2(r, k)− V2(r, k)

= Ω0(r, k)2K2(r, k)− V2(r, k)

= −(Φ′′′(r))2

Φ′′(r)

[
1− (cos k)2

]− Φ(4)(r)[1− cos k]2 (5.41)

is different from 0. Then, ∂
∂δ

F̃ (r, k, ω, δ) = 0 can be solved for δ as a function
δ = D(r, k, ω) near ω = Ω0(r, k), namely

δ2 = D(r, k, ω)2 = − ω2 − Ω0(r, k)2

2[Ω0(r, k)2K2(r, k)− V2(r, k)]
+O (

(ω − Ω(r, k))4
)
. (5.42)

Thus, the reduced functional F (r, k, ω) = F̃ (r, k, ω, E(r, k, ω)) takes the form

F (r, k, ω) = −Φ′(r) + G(r, k)(ω − Ω0(r, k))2 +O (
(ω − Ω(r, k))4

)
, (5.43)

where

G(r, k) =
Ω0(r, k)2

V2(r, k)− Ω0(r, k)2K2(r, k)
= −Ω0(r, k)2

M(r, k)

=
2(Φ′′(r))2

Φ′′(r)Φ(4)(r)(1− cos k) + (Φ′′′(r))2(1 + cos k)
. (5.44)
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Of course, F is only correctly related to the atomic chain when δ2 ≥ 0 is satisfied,
i.e.

ω < Ω0(r, k) if G(r, k) < 0 (5.45)

and

ω > Ω0(r, k) if G(r, k) > 0. (5.46)

Finally, we consider Whitham’s modulation equation for the set of parameters from
Section 3.2

∂

∂t




r
v
k

∂ωF (r, k, ω)


 =

∂

∂y




v
−∂rF (r, k, ω)

ω
−∂kF (r, k, ω)


 . (5.47)

Hyperbolicity is checked by calculating the characteristic speeds λ from

0 = p(λ)
def
= det


λ




1 0 0 0
0 1 0 0
0 0 1 0

∂r∂ωF 0 ∂k∂ωF ∂2
ωF


 +




0 −1 0 0
∂2

rF 0 ∂r∂kF ∂r∂ωF
0 0 0 −1

∂r∂kF 0 ∂2
kF ∂k∂ωF





 .(5.48)

An expansion in terms of ω − Ω0(r, k) yields

p(λ) = 2G(r, k) (λ− ∂kΩ0(r, k))2 (
λ2 − Φ′′(r)

)
+O(ω − Ω0). (5.49)

For the case δ = 0 we obtain the two macroscopic wave speeds λ1,2 = ±
√

Φ′′(r)
and λ3,4 = ∂kΩ0(r, k), i.e., the group velocity is a double eigenvalue. The important
question is how this pair behaves for small δ. To this end we fix λ = ∂kΩ0(r, k) and
expand in terms of ω − Ω0(r, k):

p(∂kΩ0(r, k)) = −2G(r, k)∂2
kΩ0(r, k)N(r, k)(ω − Ω0(r, t)) +O (

(ω − Ω0)
2
)

(5.50)

with

N(r, k) = ∂kΩ0(r, k)2 − Φ′′(r) + G(r, k)∂rΩ0(r, k)2. (5.51)

An explicit calculation gives

N(r, k) = N̂(r, k)G(r, k)/Φ′′(r) with (5.52)

N̂(r, k) = Φ′′′(r)2[7−8 cos k+ cos(2k)] + Φ′′(r)Φ(4)(r)[4 cos k−3− cos(2k)].(5.53)

Since ∂2
kΩ0(r, k) = −1

4
Ω0(r, k) < 0 and (∂kΩ0(r, k))2 − Φ′′(r) < 0, we conclude

that the double zero λ = ∂kΩ0(r, k) splits into two real eigenvalues if N̂(r, k) > 0;
and it splits into a pair of complex conjugate eigenvalues if N̂(r, k) < 0. In the
latter case the Whitham equation is no longer hyperbolic and hence ill-posed. This
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indicates, at least on a formal level, that the traveling waves are unstable due to the
Benjamin-Feir instability, see e.g. [BM95].

For binary oscillations we have k = π and obtain

N̂(r, π) = 8
(
2Φ′′′(r)2 − Φ′′(r)Φ(4)(r)

)
. (5.54)

Similarly, for k = π
3

we have N̂
(
r, π

3

)
= 1

2

(
5Φ′′′(r)2 − Φ′′(r)Φ(4)(r)

)
. Using (5.54) it

is easy to construct examples where all binary oscillations with small amplitude are
unstable. In general one expects that the range of wave numbers k, which leads to
stable small-amplitude oscillations, depends on the specific length r.

For the Toda lattice (1.3) we have (Φ′′′(r))2 = Φ′′(r)Φ(4)(r) = e2−2r and hence

N̂Toda(r, k) = e2−2r[4− 4 cos k] ≥ 0. (5.55)

This coincides with the fact of complete integrability which leads to stability of the
traveling waves.

6 On the justification of Whitham’s

modulation equation

The mathematical justification of Whitham’s equation addresses the question whether
solutions which start at time t = 0 as a modulated traveling wave will stay in the
form of a modulated traveling wave on macroscopically long time scales, i.e., for
t ∈ [0, τ0/ε] for a τ0 > 0. If this is the case, then the above formal arguments show
that the macroscopic quantities (r, v, k, ω) have to satisfy Whitham’s equation. Of
course, the relevant τ0 cannot be larger than the existence time of smooth solutions
for Whitham’s equation. Since this is a system of hyperbolic conservation laws, it is
to be expected that shocks develop and it is clear that the modulation ansatz will
not be suitable to describe such cases.

6.1 The generally expected justification result

We believe that the following conjecture is in the heart of the matter. However,
at the moment we are far from being able to prove it in this general form. To
formulate the conjecture we assume that the potential Φ is sufficiently smooth (e.g.,
Φ ∈ C5(R,R)) and that a smooth family of traveling waves defined via X(r, k, ω; ·) :
S1 → R exists for (r, k, ω) ∈ D ⊂ R3 such that the action functional F , see (3.7), can
be constructed. Thus, Whitham’s equation can be formulated and we may define

M := {(r, k, ω) ∈ D | Whitham’s equation is strictly hyperbolic

in (r, 0, k, ω) and the traveling wave

X(r, k, ω; ·) is linearly stable},
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and assume that M is an open set.

Our conjecture follows similar justification results for partial differential equations
[KSM92, Sch98, Mie02] or for discrete systems [FP99, SW00, GM04, GM05].

For a given solution
(
r̃, ṽ, k̃, ω̃

)
of the Whitham equation we define the modulation

ansatz M ε via the global deformation X and the global phase Θ which are defined
as follows:

X(0, 0) = 0,
∂ X

∂ τ
= ṽ,

∂ X

∂ y
= r̃, Θ(0, 0) = 0,

∂ Θ

∂ τ
= ω̃,

∂ Θ

∂ y
= k̃.

For a given scale parameter ε ∈ (0, ε0) we define

M ε
(
r̃, ṽ, k̃, ω̃

)
α
(t) =


 r̃(εt, εα) + R

(
(r̃, k̃, ω̃)|(εt,εα);

1
ε
Θ(εt, εα) + 1

2
k̃(εt, εα)

)

ṽ(εt, εα) + ω̃(εt, εα)V
(
(r̃, k̃, ω̃)|(εt,εα);

1
ε
Θ(εt, εα)

)

,(6.1)

where

R
(
r̃, k̃, ω̃; ϕ

)
= X

(
r̃, k̃, ω̃; ϕ +

1

2
k̃

)
− X

(
r̃, k̃, ω̃; ϕ− 1

2
k̃

)
,

V
(
r̃, k̃, ω̃; ϕ

)
= X′

(
r̃, k̃, ω̃; ϕ

)
,

which is the modulation ansatz associated with the macroscopic solution of Whitham’s
equation.

Conjecture 6.1 Let (r̃, ṽ, k̃, ω̃) : [0, τfin]×R→ R4 be a smooth solution of Whitham’s

equation such that (r̃(τ, y), k̃(τ, y), ω̃(τ, y)) ∈ M for all (τ, y) ∈ [0, τfin] × R. More-
over, let (rε, vε) : R→ Yε be the solution of Newton’s equations (1.2) with the initial
condition

(rε(0), vε(0))T = M ε
(
r̃, ṽ, k̃, ω̃

)
(0),

where Υε is a Banach space, such that

‖(rε(0), vε(0))T ‖Υε = O(1).

Then, there exist constants C, ε0, α > 0 such that for all ε ∈ (0, ε0) and all t ∈
[0, τfin/ε] there holds the estimate

∥∥∥(rε(t), vε(t))T −M ε
(
r̃, ṽ, k̃, ω̃

)
(t)

∥∥∥
Υε

≤ Cεα.

A possible choice for Υε is Υε = `2
ε × `2

ε, where `2
ε is equipped with the norm

‖r‖`2ε
=

(
ε
∑

α

(rα)2

)1/2

.

We prove this conjecture in two cases. However, in none of these cases the assump-
tion concerning M is satisfied. Instead, the Whitham equation is degenerate and
explicitly solvable.
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6.2 Justification in the linear case

In Section 5.1 we studied the case of the harmonic potential Φ : x → α2

2
x2 leading

to the linear oscillator chain

ẍα = a2(xα+1 − 2xα + xα−1). (6.2)

It is now convenient to write (6.2) in discrete conservation form. We define Rα =
xα+1 − xα, Vα = ẋα, and obtain the system

Ṙα = Vα+1 − Vα, V̇α = a2(Rα −Rα−1). (6.3)

The linear system is degenerate since the frequency ω depends on k via the dispersion
relation

ω = Ω(k) = 2a sin
k

2
.

Moreover, the amplitude ρ =
√

γ plays the role of the fifth independent variable.
The Whitham equation takes the form

∂

∂τ




r
∂vL
k

∂ωL


 =

∂

∂y




v
−∂rL

ω
−∂kL


 and ∂ρL = 0

where L(r, v, k, ω, ρ) = 1
2
v2+ω2ρ2

4
−a2

2
r2−2a2(1−cos k)

4
ρ2. More explicitly, after inserting

ω = Ω(k) this reads

∂

∂τ




r
v
k

Ω(k)ρ2


 =

∂

∂y




v
a2r
Ω(k)

Ω′(k)Ω(k)ρ2


 . (6.4)

Note that the characteristic speeds of this system are λ1,2 = ±a (the macroscopic
wave speeds) and λ3,4 = Ω′(k) since both, the wave number and local energy, are
transported with the group velocity Ω′(k).

Associated with the scale parameter ε > 0 and a solution (r, v, k, ρ) of (6.4) is the
modulation ansatz:

(
Rα

Vα

)
(t) = M ε(r, v, k, ρ)α(t) :=

(
r + ρ+1eiΘ+1 − ρeiΘ/ε

v + (iρΩ(k) + ε ∂ ρ
∂ τ

) eiΘ/ε

)
,

where the functions r, v, k and ρ are evaluated at (τ, y) = (εt, εα), where ρ+1 and
Θ+1 are evaluated at (εt, ε(α+1)). As above, the phase function Θ : [0, τfin]×R→ R
is defined via Θ(0, 0) and ∂τΘ = Ω ◦ k and ∂yΘ = k, where we use that the third
component of (6.4) gives ∂τ∂yΘ = ∂τk = ∂y(Ω ◦ k) = ∂y∂τΘ.

Our justification result now reads as follows
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Theorem 6.2 Let (r, v, k, ρ) : [0, τfin] → C3
b(R) be a solution of (6.4) with (r, v, ρ) ∈

C0([0, τfin], H
4(R)). Then, there exists a constant C > 0 such that for all ε > 0 the so-

lution (Rε, V ε) ∈ C0([0, τfin/ε], `
2
ε×`2

ε) of (6.3) with initial condition (Rε(0), V ε(0)) =
M ε(r, v, k, ρ)(0) satisfies, for all t ∈ [0, τfin/ε], the estimate

∥∥(Rε(t), V ε(t))T −M ε ((r(εt), v(εt), k(εt), v(εt)))
∥∥

`2ε×`2ε
≤ Ctε2 ≤ Cτfinε.

Note that the solutions (Rε, V ε) and M ε are of order 1 in `2
ε × `2

ε.

Proof. We establish the result in the standard way of justifications of modulation
equations, cf. [KSM92, Sch98, Mie02, GM04, GM05]. Another proof using Wigner
measures is provided in [Mie05]. We first insert the ansatz M ε into (6.3) and calcu-
late the residuum “res”. Then we estimate the error (Rerr, V err) by the smallness of
the residuum and by stability.

Since the problem at hand is linear we split the calculation of the residuum into two
parts.

(i) The macroscopic part: Let (r, v) be the solution of ∂τr = ∂yv and ∂τv = a2∂yr

and

(
R̂

V̂

)
= M ε

1 (r, v)α(t) :=

(
r(εt, εα)
v(εt, εα)

)
. Insertion into (6.3) yields

res(M ε
1 (r, v))α =

(
d
dt

R̂α − V̂α+1 + V̂α
d
dt

V̂α − a2(R̂α −Rα−1

)

=

(
ε∂τr(εt, εα)− ε1

ε
[v(εt, ε(α + 1))− v(εt, εα)]

ε∂τv(εt, εα)− εa2

ε
[r(εt, εα)− r(εt, ε(α− 1))]

)

= ε

(
∂yv(εt, εα)− 1

ε
[v(εt, ε(α + 1))− v(εt, εα)]

a2(∂yr(εt, εα)− 1
ε
[r(εt, εα)− r(εt, ε(α− 1))]

)
,

where we have used that (r, v) satisfies (6.4). Using (r, v) ∈ C2(R) we obtain

res(M ε
1 (r, v))α = O(ε2)

and employing Prop. 3.3 in [GM04] gives

‖ res(M ε
1 (r, v))‖`2ε×`2ε

≤ Cε2‖(r, v)‖H3(R).

(ii) The microscopic oscillations: We insert
(

R̃α

Ṽα

)
= M ε

2 (k, ρ)α :=

(
ρ+1eiΘ+1/ε − ρ eiΘ/ε

[iΩρ + ε∂τρ]eiΘ/ε

)

into (6.3) and obtain res(M ε
2 (k, ρ))α = (0, d

dt
Ṽα − a2(R̃α − R̃α−1))

T with d
dt

Ṽα =
[−Ω2ρ + iε(∂τ (Ωρ) + Ω∂τρ) + ε2∂2

τρ]eiΘ/ε and

R̃α − R̃α−1 = ρ
[
eiΘ+1/ε − 2eiΘ/ε + eiΘ−1/ε

]
+

(
ρ+1 − ρ

)
eiΘ+/ε +

(
ρ−1 − ρ

)
eiΘ−1/ε

= ρ(2 cos k − 2)eiΘ/ε + iε[ρ∂yk cos k + ∂yρ2 sin k]eiΘ/ε +O(ε2).
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The fourth component of (6.4) reads ∂τ (Ωρ2) = ∂y(ΩΩ′ρ2) and thus provides

∂τ (Ωρ) + Ω∂τρ = ∂y(ΩΩ′)ρ + 2ΩΩ′∂yρ = a2(ρ∂yk cos k + 2∂yρ sin k).

From this we obtain res(M ε
2 ((k, ρ)))α = O(ε2) and conclude as above

‖res (M ε
2 ((k, ρ)))‖`2ε×`2ε

≤ Cε2
(
1 + ‖k‖C3(R)

) ‖ρ‖H3(R).

To control the error (
Rerr(t)
V err(t)

)
=

(
Rε(t)
V ε(t)

)
−M ε((r, v, k, ρ))(t)

we use that it satisfies the linear problem (6.3) with initial data equal to 0, but with
the residuum as an inhomogeneity:

d

dt

(
Rerr

α

V err
α

)
=

(
V err

α+1 − V err
α

a2(Rerr
α −Rerr

α−1)

)
+ res (M ε

1 + M ε
2 ) and

(
Rerr(0)
V err(0)

)
=

(
0
0

)
.

The energy norm provides a simple error control. Defining

e(t) := ε
∑

α∈Z

(
1

2
(V err

α (t))2 +
a2

2
(Rerr

α (t))2

)

we find e(0) = 0 and

d

dt
e(t) = ε

∑

α∈Z
V err

α

(
a2

(
Rerr

α −Rerr
α−1

)
+ ResV

α

)
+ a2Rerr

α

(
V err

α+1 − V err
α + ResR

α

)

= ε
∑

α∈Z
V err

α ResV
α + a2Rerr

α ResR
α ≤ Ca

√
2e(t) ‖res (M ε

1 + M ε
2 )‖`2ε×`2ε

with Ca = max{1, a}. Together with ‖ res(M ε
1 + M ε

2 )‖`2 ε×`2ε
≤ Cresε

2 this yields
∥∥(Rerr(t), V err(t))T

∥∥
`2ε×`2ε

≤ Ca

√
2e(t) ≤ C2

aCresε
2t,

which is the desired result. ¤

6.3 Justification for the hard sphere model

The hard sphere model, which was introduced in Section 5.2, will here be used to
establish a rigorous justification of the micro-macro transition. For simplicity we
set rmin = 0, so that Φ(d) = +∞ for d < 0 and Φ(d) = 0 for d > 0. As in the linear
case the microscopic discrete model as well as the associated Whitham equation
are explicitly solvable. This fact enables us to compare solutions of the microscopic
model with corresponding solutions of the modulation equations. To this end we pass
from the Lagrange representation to the Euler representation of thermodynamics.
Recall that in the Lagrange representation time t and particle index α are the
independent variables, where in the Euler representation the motion is studied in
the plane spanned by time t and physical space (position) x. Correspondingly, in
the macroscopic Lagrange representation all fields depend on τ and y, where in the
macroscopic Euler representation they depend on τ and ξ.
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Microscopic dynamics in the Euler representation

The microscopic dynamics can be characterized very simple (cf. Figure 2), if only
two particle collisions are involved.

1. Since we set r0 = 0, all atomic distances are nonnegative. As long as rα−1 and
rα are positive, the atom α moves along a free flight trajectory.

2. If the distance rα vanishes at a certain time t, the particles α and α + 1
interact by an elastic collision, i.e. both particles will exchange their velocities.
In particular, the particle α + 1 moves after the collision on the free flight
trajectory, which was occupied before the collision by the particle α and vice
versa.

3. All free flight trajectories are uniquely determined by the initial positions and
velocities. Any particle moves along a zig-zag curve on the pattern which is
generated by all free flight trajectories.

Position

T
im

e

Figure 2: Schematic representation of the microscopic dynamics in the Euler repre-
sentation. Any particle moves along a zig-zag curve on the free flight trajectories of
phonons.

In the sequel we refer to the free flight trajectories as phonons, and we label them
by the index β. At τ = 0, any particle α defines uniquely a phonon β, whose motion
is given by t 7→ xα(0)+ t vα(0). Any solution of the microscopic dynamics associates
to any phonon β a function t 7→ αβ(t), so that αβ(t) gives the index of the atom,
which moves at time t on the free flight trajectory of phonon β. Recall that for all
β the integer αβ(t) is well defined for almost all times t. Since we are free to choose
the initial labeling of phonons arbitrarily, we set αβ(0) = β.

The atomic interactions take place at the intersection points of free flight trajectories
and can be described as follows. Let β1 and β2 be two phonons, whose free flight
trajectories intersect at a certain time t. Moreover, let t−0 and t+0 denote two times
immediately before and after the collision, respectively. Before the collision there
holds either αβ1(t− 0) = αβ2(t− 0)−1 or αβ1(t− 0) = αβ2(t− 0)+1, depending on
whether β2 is faster or slower than β1. After the collision there holds αβ1(t + 0) =
αβ2(t− 0) and αβ2(t + 0) = αβ1(t− 0). The atomic collision is thus equivalent to an
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increment/decrement of αβ1 and αβ2 . The reformulation of the microscopic dynamics
in terms of phonons has the advantage, that we can compute both time and spatial
positions of the atomic interactions directly from the initial data. For fixed phonons
β1 and β2, the collision time tcoll(β1, β2) and the collision position xcoll(β1, β2) are
given by

tcoll(β1, β2) = −xβ2(0)− xβ1(0)

vβ2(0)− vβ1(0)
, (6.5)

xcoll(β1, β2) = xβi
+ tcoll(β1, β2) vβi

(0), i = 1, 2. (6.6)

Note that the collision time can take negative values or even indefinite values.

Traveling waves in the Euler representation

Recall from Section 5.2, that the family of traveling velocity waves for the hard
sphere model reads

V(r, k; ϕ) =




− r

k
falls 0 ≤ ϕ < k,

+
r

1− k
falls k ≤ ϕ < 1.

(6.7)

Now we characterize the structure of these traveling waves in the Euler representa-
tion, see figure 3. According to (6.7) and (2.3), in any traveling wave there appear
only two velocities v1 and v2. Assuming v1 > v2 we find

v1 = v + r
ω

1− k
, v2 = v − r

ω

k
. (6.8)

Consequently, the phonons split into two families, namely a faster one and a slower
one, where faster and slower phonons move with v2 and v1, respectively. Moreover,
all phonons of the same family move on parallel and equidistant straight lines. We
denote the constant spatial distance between adjacent faster and slower phonons by
r1 and r2, respectively.

Position

T
im

e

Figure 3: Schematic representation of a traveling wave in the microscopic Euler
representation with periodic boundary conditions.

The distances r1 and r2 are related to the generic traveling wave parameters r, v,
k, and ω via

r1 =
r

1− k
, r2 =

r

k
. (6.9)
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Figure 4: The microscopic dynamics in the macroscopic Euler representation for
N = 64. The trajectories of eight selected particles are drawn with red color.

For later purposes we define

%i :=
1

ri

, % := %1 + %2. (6.10)

The quantities %1, %2 can be interpreted as partial phonon densities, and their sum
is the particle density %. Any traveling wave can be characterized by (%1, v1, %2, v2),
because (6.8), (6.9), and (6.10) imply

r =
1

%1 + %2

, v =
%1v1 + %2v2

%1 + %2

, k =
%2

%1 + %2

, ω =
%1%2(v1 − v2)

%1 + %2

. (6.11)

Example for the microscopic dynamics

For an illustration of the microscopic dynamics we present a numerical simulations.
We consider finite particle numbers N < ∞ and impose periodic boundary condi-
tions, i.e. we assume

rα(0) = rα+N(0), vα(0) = vα+N(0) ∀ α. (6.12)

For given N , the atomic positions and velocities are initialized by

xα(0) = α, vα(0) =

{
v0

1(εα) if α is even,
v0

2(εα) if α is odd
(6.13)

where α = 1...N , and v0
1(y) = 1. + 0.2 cos (4πy), v0

2(y) = −1. + 0.3 sin (2πy). Figure
4 shows for N = 64 the exact solution in the macroscopic Euler representation. We
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Figure 5: The microscopic dynamics in the macroscopic Lagrange representation
for N = 4096 The atomic distances and velocities are depicted against y, for fixed
τ = 0.3. The dark colored macroscopic functions represent the macroscopic mean
values, whose dynamics is governed by the modulation system.

can distinguish two families of phonons, a left going one and a right going one. All
phonon trajectories of the same family are locally almost parallel. Furthermore,
since the macroscopic time interval is sufficiently small, the phonon trajectories of
the same family do not intersect.

For any macroscopic point (t, x) there is a vicinity in space time and a traveling
wave, such that the atomic motion within this vicinity can be approximated by the
traveling wave data, at least for large N . This claim is right, because the atomic
velocities are locally jumping between two (almost constant) values. It is easy
to construct microscopic initial data, so that locally more than two velocities are
involved. In this case we cannot expect the modulation theory to be valid. Similarly,
modulation theory will fail in our example, if the macroscopic time interval is so
large, that free flight trajectories of the same family intersect.

In Figure 5 we have depicted the atomic data for τ = 0.3 and N = 4096 against the
macroscopic particle index y. Here, the dark colored lines represent the local mean
values of the highly oscillating data. Again we observe that there are locally only
two velocities. For this reason we expect that the macroscopic evolution of the local
mean values is governed by the modulation system (5.7).

The modulations equations in the Euler representation

Within this subsection we study the modulation equations in the macroscopic Eu-
ler representation, which we introduce in the usual way by passing from time and
particle index to time and space. The change of variables will allow us to prove the
justification result.

In order to distinguish strictly between the different settings we use ”˜” and ”̂” to
denote fields in the Lagrange- and the Euler representation, respectively. With this
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notation the modulation system (4.20) reads

∂

∂ τ




r̃
ṽ

k̃

S̃


 +

∂

∂ y




− ṽ
+ p̃
− ω̃
+ g̃


 = 0, (6.14)

where S̃ = S
(
r̃, k̃, ω̃

)
, p̃ = p

(
r̃, k̃, ω̃

)
and q̃ = g

(
r̃, k̃, ω̃

)
. According to the

Equation of State (5.5), there hold

S(r, k, ω) =
r2ω

k(1− k)
, p (r, k, ω) =

r ω2

k(1− k)
, g(r, k, ω) =

r2ω2 (2k − 1)

2k2(1− k)2
.

Since these identities are satisfied both in the Lagrange- and Euler representation,
neither “˜nor “ ¨̂ıs used.

The macroscopic mass balance defines the macroscopic Euler coordinate z as follows.
We interpret the first equation in (6.14) as an integrability condition and introduce
a field z̃ by

∂ z̃

∂ τ
= ṽ,

∂ z̃

∂ y
= r̃ =

1

%̃
(6.15)

and z̃(0, 0) = 0 Under the change of coordinates (τ, y) → (τ, z) any field ũ trans-
forms into a field û with

ũ(τ, y) = û(τ, z̃(τ, y)). (6.16)

Consequently, the modulation equations (6.14) can be written as

∂

∂ τ




%̂
%̂ v̂

%̂ k̂

%̂ Ŝ


 +

∂

∂ z




%̂ v̂
%̂ v̂ 2 + p̂

%̂ k̂ v̂ − ω̂

%̂ Ŝ v̂ + ĝ


 = 0. (6.17)

Note that the fields %̂ v̂, %̂, k̂, %̂, and Ŝ are the volume densities of momentum, wave
number and entropy. Similarly as in the previous subsections we use the formulas
(6.8)-(6.10) in order to define the fields v̂1, v̂2, %̂1 and %̂2, which now depend on the
variables (τ, z). From (6.17) we can easily derive the equivalent system

∂

∂ τ




%̂1

v̂1

%̂2

v̂2


 +

∂

∂ z




%̂1 v̂1
1
2
v̂ 2

1

%̂2 v̂2
1
2
v̂ 2

2


 = 0. (6.18)

Furthermore, we state
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1. The inverse transform to (6.15) is given by

∂ ŷ

∂ z
= %̂,

∂ ŷ

∂ τ
= −%̂ v̂, (6.19)

with ŷ(0, 0) = 0, where %̂ = 1/r̂ is the mass density.

2. The systems (6.14) and (6.17)/(6.18) are equivalent, as long as all fields are
smooth.

3. The quantity z is the macroscopic Euler-coordinate, which up to now was
abbreviated by ξ. We have changed the notation in order to indicate that here
the macroscopic Euler-coordinate results from the mass balance in (6.14) and
not by scaling of atomic positions.

For later purposes we introduce two fields B̂1 and B̂2 by

∂ B̂j

∂ τ
(τ, z) = −(%̂j v̂j)(τ, z),

∂ B̂j

∂ z
(τ, z) = +%̂j(τ, z), (6.20)

and B̂j(0, 0) = 0. We mention that the sum B̂1+B̂2 gives the macroscopic Lagrange

coordinate ŷ, i.e. B̂1 + B̂2 = ŷ.

Our next task is the characterization of solutions of (6.18) in more detail. At first
we observe that any solution of (6.18) is determined by the two Burgers equations

∂ v̂j

∂ τ
+

1

2

∂
(
v̂2

j

)

∂ z
= 0, j = 1, 2, (6.21)

which can be solved explicitly. In particular, for sufficiently small times τ any
solution of (6.21) is given by v̂j(τ, z) = v̂j(0, η̂j(τ, z)), where η̂j(τ, z) gives the
initial position of the characteristic, which crosses at time τ the position z. This
means η̂j(τ, z) + τ v̂j(0, η̂j(τ, z)) = z, i = 1, 2. The two equations in (6.21) can be
solved uniquely for τ ∈ [0, τfin], as long as τfin satisfies

1 + τfin min
{

inf
z

∂ v̂1

∂ z
(0, z), inf

z

∂ v̂2

∂ z
(0, z)

}
> 0, (6.22)

because this condition guaranties that (for fixed τ∈[0, τfin] and z) the functions
η → η+τ v̂i(0, η), i = 1, 2, are strictly monotone. The next Lemma summarizes im-
portant properties of solutions of (6.18), which become important in our justification
result.

Lemma 6.3

1. The fields η̂1 and η̂2 satisfy

∂ η̂j

∂ τ
(τ, z) =

−v̂j(0, η̂j(τ, z))

1 + τ
∂ v̂j

∂ z
(0, η̂j(τ, z))

,
∂ η̂j

∂ z
(τ, z) =

1

1 + τ
∂ v̂j

∂ z
(0, η̂j(τ, z))

.
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2. For all times τ∈[0, τfin], with τfin satisfying (6.22), we find

v̂j(τ, z) = v̂j(0, η̂j(τ, z)), (6.23)

%̂j(τ, z) =
%̂j(0, η̂j(τ, z))

1 + τ
∂ v̂j

∂ z
(0, η̂j(τ, z))

, (6.24)

B̂j(τ, z) = B̂j(0, η̂j(τ, z)). (6.25)

For shortness we omit the proof of this Lemma, because all assertions follow from
straight forward calculations. For the details we refer to [Her04].

For the sake of simplicity we will restrict the following considerations to a special
class of solutions of (6.18).

Assumption 6.4 In what follows we assume:

1. Let %̂1, %̂2, v̂1 and v̂1 be a smooth solution (at least C2) of (6.18) with the
following properties

(a) All fields are periodic in z with period L.

(b) All fields are defined for macroscopic times τ with 0 ≤ τ ≤ τfin, where τfin

is acceptable in the sense of (6.22).

(c) The fields %̂, r̂, r̂j, k̂, ω̂, B̂1 and B̂2 are defined by (6.10)–(6.11) and
(6.20).

(d) There is a constant δ > 0, so that the fields v̂1, v̂2, %̂, %̂1, %̂2, r̂, r̂1, r̂2, ω̂,

k̂, 1− k̂ are all pointwise larger than 2δ.

2. Any Euler-field û transforms according to (6.16) into a corresponding Lagrange-

field ũ. The fields r̃, ṽ, k̃ and ω̃ are thus a smooth solution of (6.14).

3. There exist two smooth functions W1 and W2, defined on the hole real axis, so
that

v̂j(0, z) = Wj

(
B̂j(0, z)

)
, j = 1, 2. (6.26)

Modulated traveling waves in the Euler representation

We now insert this smooth solutions of (6.14) into the modulation ansatz (6.1) and
study the resulting modulated traveling wave. We denote by rTW

α (t) and vTW
α (t) the

atomic distances and velocities, respectively.

Our aim is to prove, that rTW
α (t) and vTW

α (t) indeed approximate an exact solution
of the microscopic dynamics. For this, we will estimate the difference between the
modulated traveling wave and a suitable exact solution.
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To be consistent with the macroscopic assumptions 6.4, we consider finite particle
numbers N < ∞ and impose periodic boundary conditions for the microscopic
system, see (6.12), and recall ε = 1/N .

Lemma 6.5 There holds

vTW
α (t) = W

((
B̃1, B̃2, k̃

)
(εt, εα);

1

ε
B̃2(εt, ετ)

)
, (6.27)

with

W(B1, B2, k; ϕ) =

{
W2(B2) if 0 ≤ ϕ < k mod 1,
W1(B1) if 1− k ≤ ϕ < 1 mod 1.

In particular, B̃2 gives the phase, i.e.

ω̃(τ, y) =
∂ B̃2

∂ τ
(τ, y), k̃(τ, y) =

∂ B̃2

∂ y
(τ, y). (6.28)

Sketch of the proof. We transform the ansatz (4.2) into the Euler representation.
Hereafter we can verify the equations (6.28) by straight forward calculations. Next
we define

V̂(τ, z; ϕ) = V
(
r̂(τ, z), k̂(τ, z); ϕ

)
,

where V is given by (6.7). From (4.1) we obtain

vTW
α (t) = ṽ(εt, εα) + V

(
r̃(εt, εα), k̃(εt, εα);

1

ε
B̃2(εt, εα)

)

= v̂(εt, z̃(εt, εα)) + V̂
(

εt, z̃(εt, εα);
1

ε
B̂2(εt, z̃(εt, εα))

)
,

which finally implies (6.27). ¤

Similarly, we can derive explicit expressions for the atomic distances in a modulated
traveling wave. There holds

rTW
α (t) = Z1

((
r̃1, r̃2, k̃

)
(εt, εα);

1

ε
B̃2(εt, εα)

)

+Z2

((
r̃1, r̃2, k̃

)
(εt, εα);

1

ε
B̃2(εt, εα)

)
,

where the 1-periodic functions Zj(r1, r2, k; ·) are given by

Z1(r1, r2, k; ϕ) =

{
+ r1ϕ for 0 ≤ ϕ ≤ 1− k,
− r2(ϕ− 1 + k) for 1− k ≤ ϕ ≤ 1,

Z2(r1, r2, k; ϕ) =

{
+ r2ϕ for 0 ≤ ϕ ≤ k,
− r1(ϕ− k) for k ≤ ϕ ≤ 1.
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The main idea for the justification result is to use the profile functions W from
Lemma 6.5 for the construction of exact solutions of the microscopic system. To
this end we define

k̃ ex(τ, y) :=
1

ε

(
B̃2(τ, y)− B̃2(τ, y − ε)

)
(6.29)

and

B̃ ex
2 (τ, y) := ε floor

(
1

ε
B̃2(τ, y)

)
, (6.30)

B̃ ex
1 (τ, y) := ε ceil

(
1

ε
B̃1(τ, y) + k̃ ex(τ, y)

)
. (6.31)

Here, floor (b) and ceil (b) denote integer parts of the real number b, and satisfy
0 ≤ b− floor (b) < 1 and 0 ≤ ceil (b)− b < 1, respectively. Obviously we have

k̃ ex(τ, y) = k̃(τ, y) +O(ε), (6.32)

B̃ ex
j (τ, y) = B̃j(τ, y) +O(ε). (6.33)

In the next step we define velocities vex
α (t) by

vex
α (t) := W

((
B̃ ex

1 , B̃ ex
2 , k̃ ex

)
(εt, εα);

1

ε
B̃2(εt, εα)

)
, (6.34)

Note that we did not replace the term B̃2 in the phase variable. The main step
is now to prove, that (6.34) in fact defines an exact solution of the microscopic
problem.

Theorem 6.6 The functions v ex
α (t) determine uniquely an exact solution of the

microscopic problem. In particular, there exist functions r ex
α (t) with

d

dt
r ex
α (t) := vex

α+1(t)− vex
α (t). (6.35)

Moreover, the distances rTW
α and rex

α are “in phase”, i.e. for all t and all α there
holds rTW

α (t) = 0 if and only if rex
α (t) = 0.

Sketch of the proof. We cannot present the complete proof, because it is rather
technical and long, see [Her04]. The main ideas can be summarized as follows:

1. First we introduce two different phonon numbers by b ex
j, α(t) := ε−1B̃ ex

j (εt, εα)
for j = 1, 2. The quantity b ex

1, α(t) gives the smallest number of all phonons,
which belong to the first family and which are located at time t on the right of
particle α. Similarly, b ex

2, α(t) is the largest number of all phonons of the second
family left of α.
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2. From b ex
i, α(t) we can reconstruct for each phonon β and for each time t the

information which particle moves on the free flight trajectory of β at time t.
This can be done by the following definition.

(a) Let aβ(0) = β.

(b) We set aβ(t) = α, if either

i. β = b ex
2, α(t) and vex

α (t) = W2(εβ), or

ii. β = b ex
1, α(t) and vex

α (t) = W1(εβ).

It can be shown, that the functions aβ(t) are well defined, as long as
t < ε−1τfin.

3. In the third step we define for all particles α the curve x ex
α (t) by ẋ ex

α (t) = v ex
α (t).

Then we check, that the functions x ex
α (t) are the atomic positions of an exact

solution, where we shall use the result from the first two steps. Finally we set
r ex
α (t) = x ex

α+1(t)− x ex
α (t)

4. Equation (6.29) implies that rTW
α (t) = 0 if and only if

B̃2(εt, εα) = 0. (6.36)

On the other hand, we have r ex
α (t) = 0 if and only if both v ex

α (t) and v ex
α+1(t)

jump simultaneously at time t. According to the definition (6.34), this happens
if and only if (6.36) is satisfied. We have thus proved the“in phaseproperty.

Now we can formulate and prove the justification result for the hard sphere model.
Note that here the space `2

ε has dimension N < ∞.

Theorem 6.7 Let
(
r̃, ṽ, k̃, ω̃

)
be a solution of (6.14) satisfying Assumption 6.4.

Then, there exists a constant C such that for all N the following holds. For ε = 1/N
let P ε(t) and Q ε(t) be the vectors with components

P ε
α(t) := (rex

α (t), vex
α (t)), (6.37)

Qε
α(t) :=

(
rTW
α (t), vTW

α (t)
)
, (6.38)

where α = 1, ..., N . Then, for all t ∈ [0, τfin/ε] we have

‖Q ε(t)− P ε(t)‖`2ε×`2ε
≤ εC. (6.39)

Sketch of the proof. Using the representations (6.29) we can compute ṙTW
α (t) explic-

itly. Then we show that there holds

ṙTW
α (t)− ṙ ex

α (t) = O(ε). (6.40)

Finally, the “in phaseproperty guaranties that (6.40) implies rTW
α (t)−r ex

α (t) = O(ε),
which provides

‖rTW(t)− r ex(t)‖`2ε
= O(ε). (6.41)
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Since the profile functions

W(B1, B2, k; ·) ∈ L2([0, 1]) (6.42)

depend Lipschitz continuously on their parameters B1, B2, and k, we find

‖U(τ, y, ·)‖L2([0, 1]) = O(ε) (6.43)

where

U(τ, y, ·) = W
((

B̃1, B̃2, k̃
)
(τ, y); ·

)
−W

((
B̃ ex

1 , B̃ ex
2 , k̃ ex

)
(τ, y); ·

)
.

There follows

‖vTW(t)− v ex(t)‖`2ε
= O(ε), (6.44)

which completes the proof. ¤
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