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AbstratThe passage from mirosopi systems to marosopi ones is studied bystarting from spatially disrete lattie systems and deriving several ontinuumlimits. The lattie system is an in�nite-dimensional Hamiltonian system dis-playing a variety of di�erent dynamial behavior. Depending on the initial on-ditions one sees quite di�erent behavior like marosopi elasti deformationsassoiated with aousti waves or like propagation of optial pulses. We showhow on a formal level di�erent marosopi systems an be derived suh as theKorteweg-de Vries equation, the nonlinear Shrödinger equation, Whitham'smodulation equation, the three-wave interation model, or the energy trans-port equation using the Wigner measure. We also address the question howthe mirosopi Hamiltonian and the Lagrangian strutures transfer to simi-lar strutures on the marosopi level. Finally we disuss rigorous analytialonvergene results of the mirosopi system to the marosopi one by eitherweak-onvergene methods or by quantitative error bounds.1 IntrodutionA major topi in the area of multisale problems is the derivation of marosopi,ontinuum models from mirosopi, disrete ones. The prototype of a disretemany-partile system is a periodi lattie for modeling a rystal. Starting fromthe seminal work of Fermi, Pasta, and Ulam ([FPU55℄), a lot of interest and workhas been attrated to the study of the statial and dynamial behavior of ordereddisrete systems. In the dynamial situation one is interested in marosopi limitsthat are obtained by hoosing well-prepared initial onditions: We hoose the initialdata in a spei�ed lass of funtions and want to obtain an evolution equation withinthis funtion lass, whih we all the marosopi limit problem. This approah ismotivated by the theory of modulation equations, whih evolved in the late 1960'sfor problems in �uid mehanis (see e.g. [Mie02℄ for a survey on this subjet). If thelinearized model has a spae-time periodi solution, one asks how initial modulationsof this pattern evolve in time. The modulations our on muh larger spatial andtemporal sales; thus the modulation equation is a marosopi equation.In mathematially rigorous terms this an be desribed by studying the followingoarse graining diagram:
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mirosopi Sε−−−−−→ marosopiinitial data t = 0 z0
ε

ε → 0−−−−−−−−→ A0time evolution yt > 0 τ > 0

y

zε(τ/εσ)
ε → 0−−−−−−−−→ A(τ)disrete, atomisti oarse graining ontinuumHere zε : [0, τ∗/ε

σ] → Zε denotes the solution of the mirosopi model depending onthe mirosopi time t and A : [0, τ∗] → Z0 is the solution of the marosopi model.In the best ase the diagram ommutes, i.e., if the oarse graining Sεzε(τ/εσ) →
A(τ) holds at time τ = 0, then it also holds for all τ ∈ [0, τ∗]. Examples of suhresults will be Theorems 5.1, 5.2, 7.1 and 7.2.Before establishing these results, we survey methods to derive marosopi models onthe formal level by using a suitable multisale ansatz and expanding the oe�ientsof equal powers of the small parameter and of the harmonis of the mirosopi�utuation to 0. The emphasis is to survey the theory and to explain the maintehniques and results on simple models like the FPU hain or the Klein-Gordonhain, see Setion 2.3.Naturally, our survey an only over a small part of the rih subjet of dynamisin disrete systems. We will totally omit any of the works on stati solutions forlatties, see e.g. [FJ00, BG02b, BG02a, Sh05a, Ble05, MBL06℄. Moreover, thereis a huge body of work onerning the understanding of speial solution lasseslike traveling or standing pulses with or without periodi modulations, see [FW94,MA94, Kon96, FP99, Ioo00, IK00, FM02, FP02, FM03, Jam03, FP04a, FP04b,IJ05, DHM06℄. The response of osillator hains to a simple initial disturbane orto Riemann initial data is studied in [DKV95, DKKZ96, DK00, BCS01, DHR06℄,where in partiular ompletely integrable systems like the Toda lattie are of interest.Finally in the framework of non-equilibrium statistial mehanis (f. for a surveye.g. [Spo91, Bol96℄) one is interested in highly disordered systems, where onlystatistial averages satisfy nie marosopi equations.2 The disrete modelsIn the �rst subsetion we write down the lass of systems that an be treated withthe methods surveyed below. This inludes general polyatomi latties in any spaedimension. The interations an be general and an our between several atoms,not just pair potentials, and an have arbitrary range. In the seond subsetionwe treat the linearizations, whih simplify a lot and an be treated in partiular byFourier transform methods. There, the entral struture are the di�erent dispersion2



relations, whih will be used heavily in the subsequent analysis. Finally we presenttwo simple model problems that represent most of the interesting features. Thesemodels will be addressed in most of the following results to illustrate the generalresults.2.1 General latties systemsWe model a perfetly period rystal based on a d-dimensional Bravais lattie Γembedded into Rd. This lattie is homeomorphi to the additive group Zd butmight have a di�erent metri struture. Eah lattie point γ ∈ Γ denotes a unit ellin the atual rystal and, hene, the vetors xγ ∈ Rm and ẋγ are olletions of allthe relevant positions and veloities, respetively, of the atoms inside this unit ell.By (x, ẋ) ∈ ℓ2(Γ)m × ℓ2(Γ)m we denote the state of the system, where x = (xγ)γ∈Γand ẋ = (ẋγ)γ∈Γ. By M ∈ Rm×m we denote the mass matrix for eah ell, whihis assumed to be symmetri and positive de�nite. The total kineti energy in therystal is
K(ẋ) = 1

2
〈〈M ẋ, ẋ〉〉 def

=
∑

γ∈Γ
1
2
〈Mẋγ , ẋγ〉.The potential energy V(x) is obtained by adding up all ontributions ating on oneell via a single potential Vcell : ℓ2(Γ)m → R given the fores of the state x on theell at γ = 0:

V(x) =
∑

α∈Γ Vcell(Tαx).Here Tα is the translation operator with Tαx = (xα+γ)γ∈Γ. In the ase of �nite-range interation the potential Vcell only depends on �nitely many omponents, e.g.,
Vcell(x) = V0(x0) +

∑
0<|γ|≤R Vγ(xγ−x0) for pair interations.The Newtonian equations for this lattie model are given as

Mẍγ = −DxγV(x) = −∑
α∈Γ ∇xγ−αVcell(Tαx) for γ ∈ Γ. (1)Of ourse this system is invariant under the translations Tα, α ∈ Γ, and has the totalenergy E(x, ẋ) = K(ẋ) + V(x) as �rst integral. Moreover, it is a anonial Hamilto-nian system with momenta p = M ẋ, Hamiltonian funtion H, and sympleti form

ωcan:
H(x,p) = 1

2
〈〈M−1p,p〉〉 + V(x) and

ωcan

(
(v1,q1), (v2,q2)

)
= 〈〈v1,q2〉〉 − 〈〈v2,q1〉〉.

(2)Clearly, the Newtonian equations (1) are equivalent to the Hamiltonian equations
ẋ = ∂pH(x,p), ṗ = −∂xH(x,p). Moreover, they an be obtained as the Euler-Lagrange equation for the Lagrangian

L(x, ẋ) = K(ẋ) − V(x). (3)
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2.2 Linear systems and dispersion relationsLinearization leads us to linearized systems, where the potential V is a quadratiform. The linear equation takes the form
Mẍγ = −∑

β∈Γ Aβxγ+β =
∑

α∈Γ Aγ−αxα for γ ∈ Γ, (4)where the interation matries satisfy the symmetry ondition Aβ = A⊤
−β and adeay ondition like ‖Aβ‖ ≤ Ce−b|β|. The quadrati potential energy then reads

V(x) = 1
2

∑
α,γ∈Γ〈Aγ−αxα, xγ〉.An essential feature of suh harmoni latties is the presene of many traveling wavesolutions in the form of plain waves:
xγ(t) = ei(θ·γ+ωt)Φ where θ ∈ R

d
∗ and (A(θ) − ω2M)Φ = 0. (5)The wave vetors θ are taken from the torus TΓ, whih is obtained by fatoring

Rd
∗ = Lin(Rd) with respet to the dual lattie. The symbol matrix A(θ) reads

A(θ) =
∑

β∈Γ eiθ·βAβ ∈ Cm×m for θ ∈ TΓ.Hene, A(θ) is Hermitian, and we always impose the basi assumption of stabilityin the form A(θ) ≥ 0 for all θ ∈ TΓ.Plane-wave solutions as in (5) exist if ω and θ satisfy the dispersion relation
0 = Disp(ω, θ)

def
= det

(
ω2M − A(θ)

)
.Under our stability ondition, there are always m non-negative eigenvalue urves

ω = Ωk(θ), k = 1, . . . , m,whih we order suh that 0 ≤ Ω1 ≤ Ω2 ≤ · · · ≤ Ωm. The index k is alled the bandindex. Two veloities will be important below, the phase veloity cph and the groupveloity cgr:
cph = cph,k(θ)

def
= Ωk(θ)

|θ|2 θ and cgr = cgr,k(θ)
def
= ∇Ωk(θ).The dynamis of the linear system is ompletely determined by M and the symbolmatrix A : TΓ → C

m×m
≥0 . This is easily seen by transforming (5) into wave vetorspae. For this de�ne X(θ) = Fx : TΓ → Cm via Fx

def
=

∑
γ e−iθ·γxγ , then X(t) =

Fx(t) : TΓ → Cm satis�es the equation
M∂2

t X(t, θ) = −A(θ)X(t, θ) (6)if and only if x satis�es (5). However, the latter equation is an ODE for eah �xed
θ ∈ TΓ.For studying the qualitative behavior of the solutions in the subsequent setions,this is not su�ient, and we need to understand the bak-transform for large times
t. Then, the smoothness properties of the dispersion relations will be important, seeSetions 5.3 and 6.2. 4



2.3 The hain models of FPU and KGTo illustrate our abstrat theory we will frequently refer to the simple salar andone-dimensional ase, viz., Γ = Z ⊂ R and xj ∈ R. The models have the generalform
ẍj = −V ′

0(xj) +
∑K

k=1

(
V ′

k(xj+k−xj) − V ′
k(xj−xj−k)

)
, j ∈ Z. (7)Here V0 is alled the on-site potential that ouples the atoms to a bakground �eld.The interation is assumed to be pairwise and involves K neighboring atoms.The Fermi-Pasta-Ulam hain (FPU) is obtained by omitting the on-site potentialand hoosing K = 1:̈

xj = V ′
1(xj+1−xj) − V ′

1(xj−xj−1), j ∈ Z. (8)The importane of this model is its Galilean invariane, i.e., for all ξ, c ∈ R thetransformation (x, ẋ) 7→ (xj+ξ + ct, ẋj+c)j∈Z leaves (8) invariant.Another simple lass is obtained by assuming again K = 1 with linear nearest-neighbor interation and a nonlinear bakground potential. In analogy to the Klein-Gordon equation this model is alled Klein-Gordon hain (KG):
ẍj = xj+1 − 2xj + xj−1 − V ′

0(xj), j ∈ Z. (9)In these two models the dispersion relation has the struture
0 = Disp(ω, θ) = ω2 − a − 2b(1− cos θ) with a = V ′′

0 (0) and b = V ′′
1 (0),where a, b ≥ 0 is equivalent to our stability ondition. The solution reads

ω = Ω(θ) =
(
a + 2b(1− cos θ)

)1/2
,whih is smooth for a > 0. For a = 0 we �nd Ω(θ) =

√
b 2 |sin(θ/ 2)|, whih is notdi�erentiable at θ = 0, but the two limits ±√

b of Ω′ at θ = 0 are the marosopiwave speeds.3 Formal derivation of ontinuum models3.1 General multisale approahWe disuss here the derivation of marosopi models that appear for solutionshaving a relatively small amplitude, but we refer to [DHR06℄ and Setion 3.7 forresults on large amplitude solutions.The basi ansatz relies on modulations of basi plane waves ei(ωt+θ·γ)Φ on largespatial sales and suitably hosen slow time sales. We hoose ε > 0 to be the small5



parameter that relates the mirosopi and the marosopi temporal and spatialsales, i.e., we set
τ = εst and y = εγ ∈ R

d for γ ∈ Γ ⊂ R
d.Of ourse, there are ases where di�erent salings in di�erent spatial diretions areuseful, but for simpliity we restrit ourselves to this ase.We now hoose a �nite set of wave vetors θ1, . . . , θN ∈ TΓ and assoiated bandindies k1, . . . , kN ∈ {1, . . . , m} and onsider the assoiated plane waves

xγ(t) = En(t, γ)Φn, where En(t, γ)
def
= ei(ωnt+θn·γ)with ωn = Ωkn(θn) and Φn = Φkn(θn).This may inlude the ase θ = 0 and ω = 0, whih relates to the marosopi limitof solutions without mirostruture.The two-sale method now starts from the ansatz

(xγ(t), ẋγ(t)) = Rε(A)γ(t), where A = (A1, . . . , AN) and
Rε(A)γ(t) =

∑N
n=1 εσnAn(εst, εγ)En(t, γ)Φn

+
∑N

n,k=1 εσn+σkΨn,k(ε
st, εγ)EnEk

+
∑N

n,k,l=1 εσn+σk+σlΨn,k,l(ε
st, εγ)EnEkEl + h.o.t.

(10)Here the powers s, σ1, . . . , σN ∈ R have to be hosen appropriately. We refer to thevariety of di�erent models that an be obtained in this way. To obtain real-valuedsolutions one hooses An = AN−n and similarly for the higher order terms. In aseswith θn 6= 0 the funtions An are the modulating amplitudes of the basi periodiplane wave.The aim is to derive suitable equations for A1, . . . , AN , whih make this ansatz(10) onsistent with the disrete model (1). The obtained equations are partialdi�erential equations ombined with some algebrai relations. These equations arealled the marosopi equations, beause they are posed in terms of the marosopivariables τ = εst and y = εγ. Inserting the ansatz (10) into the nonlinear system(1) we have to expand both sides in terms of the produts εeqΠN
n=1E

qn
n with q̃ =∑N

n=1 σnqn. Here we have to expand di�erene quotients xγ+α − xγ in terms ofspatial derivative of An. Moreover, the resonanes between the plane waves areimportant to allow for nontrivial nonlinear interation. They are haraterized byvetors q ∈ N
N suh that ΠN

n=1E
qn
n ≡ 1, see Setion 7.2 for a general theory.We arrive at a hierarhy of equations that an be parametrized by the multi-index

q = (q1, ..., qN ) ∈ N
N . These equations deompose into two groups. If the term

Eq = ΠN
n=1E

qn
n is nonresonant, i.e., di�erent from all the terms ei(ωt+θ·γ) that satisfythe dispersion relation, then the equation for Ψq(τ, y) is uniquely solvable. Theresonant groups assoiate with the terms Eq = ΠN

n=1E
qn
n that equal one of theterms ei(Ωj(θ)t+θ·γ), whih without loss of generality is already in our list, let us say

Em. Naturally, the oe�ient Ψq annot be determined uniquely, beause the plane6



wave EmΦm solves the linear problem. Thus, by Fredholm's alternative we obtaina solvability ondition for the terms on the left-hand side that ontains only lowerorder terms that are already determined. This gives either a PDE or an algebraiequation on the previously hosen funtions. Moreover, the general solution ontainsa new salar funtion Bq, namely Ψq = BqΦm + Ψ0
q.We refer to [Mie02, GM04, GM06℄ for a more detailed desription of this proedure.In fat, without doing any expliit alulation on the spei� disrete lattie system(1) it is possible to desribe the form of the marosopi equations as follows:If ωk 6= 0 : ∂τAk =

∑
q∈Mk(s) cqΠ

N
n=1A

qn
n ,If ωk = 0 : ∂2

τAk =
∑

q∈Mk(2s) c̃qΠ
N
n=1A

qn
n ,

(11)where Mk(s)
def
= {q | σk+s=

∑N
1 σnqn, 0=

∑N
1 ωnqn,

∑N
1 qnθn = 0 on TΓ }. Formore details see [Gia06, GMS06℄ and Setion 7.2.The following Setions 3.2 to 3.7 treat a list of examples, whih highlight the gen-erality of the approah.3.2 The quasilinear wave equationA simple but important marosopi model for FPU hains results by the followingmultisale ansatz with hyperboli saling:

xj(t) = ε−1 X(εt, εj), τ = εt, y = εj. (12)Note that here xj denotes the spatial position of atom j rather than its displaement.We insert the ansatz (12) into (8) and eliminate the relative displaements by theTaylor expansion xj±1 − xj ≈ ±ε∂yX(εt, εj). Using ∂τ = ε∂t we an identify themarosopi modulation equations as the nonlinear wave equation
∂ττX − ∂yV

′
1(∂yX) = 0. (13)Via r = ∂yX and v = ∂τX it transforms into the quasilinear �rst-order system

∂τr − ∂yv = 0, ∂τv − ∂yV
′
1(r) = 0. (14)These equations desribe the marosopi evolution of non-osillatory solutions ofFPU. However, due to the nonlinearity V ′

1 smooth solutions of (14) an form shoksin �nite times, and in this ase the quasilinear wave equation is not longer anappropriate marosopi model for FPU. This problem is addressed in [DHR06℄.3.3 The Korteweg-de Vries equationAnother example for marosopi modulation equations, see [SW00, FP99℄, relieson the KdV-ansatz
xj(t) = ε U

(
ε3t, ε(j+ct)

) (15)7



with saling τ = ε3t, y = ε(j+ct). We insert the ansatz into (8) and use Taylorexpansion up to order O(ε6). Comparing the leading order terms we �nd that c isgiven by c2 = V ′′
1 (0). Sine the next order terms all anel, the modulation equationis determined by the terms orresponding to ε5, and �nally we obtain

2 c ∂τyU − 1
12

c2 ∂yU ∂yyU − V ′′′
1 (0) ∂yyyyU = 0, (16)whih is a KdV equation for ∂yU .3.4 The nonlinear Shrödinger equationWe onsider the salar, d-dimensional lattie (1) (i.e., d ∈ N and m = 1)

ẍγ =
∑

0<|β|≤R[V ′
β(xγ+β−xγ)−V ′

β(xγ−xγ−β)] − V ′
0(xγ), γ ∈ Γ, (17)and are interested in the marosopi deformations of a modulated plane wave so-lution of the linearized system

xγ(t) = εA(τ, y)E(t, γ) + c.c. + O(ε2) with E(t, γ) = ei(ωt+θγ) (18)(..: onjugate omplex) for a �xed wave vetor θ ∈ TΓ with frequeny ω satisfyingthe dispersion relation ω2 = Ω2(θ) > 0.Sine the system is dispersive and nonlinear and the amplitude A is weakly saledby 0 < ε ≪ 1, we need a slow marosopi time sale τ = ε2t omparing to themarosopi spae sale y = ε(γ−cgrt), in order to see the evolution of A as timepasses. This is the so alled dispersive saling. The hoie of y also re�ets that weare moving with the pulse at its mirosopial group veloity cgr = ∇θΩ(θ). By thissaling it turns out that the evolution of A is given by the nonlinear Shrödingerequation
i∂τA = Divy(

1

2
D2

θΩ(θ)∇yA) + ρ|A|2A. (nlS)For the justi�ation of this equation we refer to Setion 7.1.3.5 Three-wave interationFor the lattie (17) we are now interested in a marosopi desription for the evo-lution of the amplitudes An, n = 1, 2, 3, of three nonlinearly interating modulatedplane waves with di�erent wave numbers θn and frequenies ωn, where ω2
n = Ω2(θn).Thus, ansatz (10) takes the speial form

xγ(t) = ε
∑3

n=1 An(τ, y)En(t, γ) + c.c. + O(ε2) with En(t, γ) = ei(ωnt+θn·γ)but now using the hyperboli saling τ = εt, y = εγ again. It turns out that, if thewave vetors θn and frequenies ωn are in resonane, viz.,
θ1 + θ2 + θ3 = 0 mod TΓ and ω1 + ω2 + ω3 = 0, (19)8
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ω1∂τA1 = ω1∇θΩ(θ1)·∇yA1 + cA2A3,

ω2∂τA2 = ω2∇θΩ(θ2)·∇yA2 + cA1A3,

ω3∂τA3 = ω3∇θΩ(θ3)·∇yA3 + cA1A2,

(20)with c = 2
∑

0<|β|≤R V ′′′
β (0)

∑3
n=1 sin(θn · β) + iV ′′′

0 (0). Eah equation onsists ofa transport part via the group veloity and a nonlinear oupling to the two othermodes. Figure 3.1 illustrates the behavior. Without the resonane ondition (19) be-ing ful�lled, nonlinear terms would not arise and the pulses would just pass througheah other. For the justi�ation of this equation we refer to 7.2.3.6 Coupled systemsWhile the two examples above apply to a system with or without bakground poten-tial V0, we are now looking at systems with Galilean invariane, where the anonialexample is FPU from (8). The aim is to understand the oupling between maro-sopi deformations and mirosopially osillating pulses. Sine in general themarosopi wave speeds and the mirosopi group veloity are di�erent, we usethe hyperboli time sale τ = εt. Ansatz (10) redues to
xγ(t) = εαX(τ, y) + εβA(τ, y)E + εβA(τ, y)E + h.o.t.with E = ei(ωt+θ·γ) and ω = Ω(θ). Here α and β might be di�erent and depend onthe nonlinearities as well as the saling of the initial data. We treat the ase of theFPU hain with V1(r) = a

2
r2 + b

3
r3 + c

4
r4 with a > 0 and b, c ∈ R.As a �rst example we onsider the ase α = 0, β = 1 and �nd the system

∂2
τX = c2

m∂2
ξ X, i∂τA = icgr∂yA − ρ0(∂yX) A9



with cm := Ω′(0) =
√

a, cgr := Ω′(θ) and ρ0 := 2bΩ(θ)/a. Sine the ontributions Xand A sale di�erently, the oupling of X and A takes plae only in one equation.We have the two onserved quantities
H(A) =

∫
R

ω2|A|2 dy and E(X, Xτ ) =
∫

R

1
2
X2

τ + c2m
2

X2
y dy.The seond example has α = 0 and β = 1/2, whih leads to the system

Xττ =
(
c2
mXy + ρ1|A|2

)
y
, 2iωAτ = iωcgrAy −

(
ρ1Xy + 2ρ2|A|2

)
A,where ρ1 := 2b(1− cos θ) and ρ2 := 3c(1− cos θ)2 . This system is a Lagrangian andHamiltonian system in the sense to be disussed in Setion 4. The Lagrangian reads

L(X, A, Xτ , Aτ )

=
∫

R
ω Im

(
A(2Aτ−cgrAy)

)
+ 1

2
X2

τ − c2m
2

X2
y − |A|2

(
ρ1Xy+ρ2|A|2

)
dy.There are two �rst integrals

H(A) =
∫

R
ω2|A|2 dy,

E(X, A, Xτ )=
∫

R
ωcgr Im(AAy)+

1
2
X2

τ + c2m
2

X2
y+|A|2

(
ρ1Xy+ρ2|A|2

)
dy.The sympleti struture of the assoiated Hamiltonian system for (X, A, Xτ ) isnon-anonial and an easily be dedued as in Setion 4.2.3.7 Whitham's modulation equationIn [Whi74℄ Whitham studies ertain nonlinear PDEs and relying on the hyperbolisaling he develops a theory that is apable to desribe the marosopi evolution oflarge mirosopi osillations. Here we apply Whitham's approah to three di�erenthain models. We start with KG, f. (7), and make the following multisale ansatz

xj(t) = X
(
εt, εj, ε−1 Θ(εt, εj)

)
, (21)where X is assumed to be 2π-periodi with respet to the phase variable φ = ε−1Θ. Inthis ansatz both the wave number θ and the frequeny ω depend on the marosopioordinates (τ, y) and are de�ned by the modulated phase Θ via θ = ∂yΘ and

ω = ∂τΘ. It an be shown that to leading order the funtion X must satisfy thefollowing nonlinear advane-delay-di�erential equation
ω2 ∂2

φX = ∇−θ∇+θX − V ′
0(X) (22)with (∇±θX)(φ) = ±X(φ ± θ)∓X(φ). As usual we refer to solutions of this equationas traveling waves. The existene problem for solutions of (22) with small amplitudesis investigated in [IK00℄. For onvex potentials V0 we an provide existene ofsolutions by adapting an idea from [FV99℄, ompare with the similar problem forFPU in [DHR06℄. Aording to (22), the ation L of a traveling wave is given by

L(θ, ω) = 1
2π

∫ 2π

0
ω2

2
(∂φX)2 − (∇+θX)2 − V0(X)dφ. (23)10



To identify the marosopi modulation equations it is onvenient to use the La-grangian formalism, see [Whi74℄ and Setion 4.1, beause diret expansions in pow-ers of ε turn out to be quite ompliate. With some simple averaging the totalation of the hain an be expressed by a funtional L, whih depends on (Θ, ∂τΘ)only, and we an derive the modulation equations by the priniple of least ation. Itomes out that the modulation equations are equivalent to the following nonlinearsystem of onservations laws
∂τθ − ∂yω = 0, ∂τS + ∂yg = 0, (24)where S = ∂ωL and g = ∂θL. In partiular, the system (24) is losed by the equationof state (23) and the Gibbs equation dL = Sdω+gdθ.The modulation theory for FPU, see [DHM06, DHR06℄ and the referenes therein, ismore ompliate than in the KG ase due to the nonlinearity of V1, and the Galileaninvariane of (8). In partiular, we must ombine (12) and (21) as follows

xj(t) = ε−1 X(εt, εj) + X
(
εt, εj, ε−1 Θ(εt, εj)

)
, (25)where as before the pro�le funtion X is assumed to be 2π-periodi with respet to

φ = ε−1Θ. This ansatz gives rise to four important marosopi �elds, namely thewave number θ = ∂yΘ, the frequeny ω = ∂τΘ, the spei� length r = ∂yX, andthe marosopi veloity v = ∂τX. To leading order, the pro�le funtion X mustsatisfy the traveling wave equation
ω2 ∂2

φ X = ∇−θV
′
1(∇+θ X). (26)For onvex potentials V1 the existene of solutions an be proved by an onvex opti-mization problem, see [DHR06℄, and rigorous results without onvexity assumptionsan be found in [FW94, PP00, Ioo00℄. The derivation of the modulation equationsfor (25) again relies on Lagrangian redution, see for instane [Her04, DHM06℄, andleads to the following nonlinear system

∂τr − ∂yv = 0, ∂τv + ∂yp = 0, ∂τθ − ∂yω = 0, ∂τS + ∂yg = 0. (27)These equations an be interpreted as the marosopi onservation laws of mass,momentum, wave number and entropy. As for KG, the onstitutive relations for(27) result from a areful investigation of the thermodynami properties of travelingwaves. More preisely, it an be shown, at least formally, that (26) provides anequation of state U = U(r, θ, S) as well as the universal Gibbs equation dE =
ωdS − pdr − gdθ + vdv, where U and E = 1

2
v2 + U denote the internal and totalenergy, respetively.The third example is the disrete nonlinear Shrödinger equation

−i ȧj + aj+1 − 2 aj + aj−1 + ̺ |aj |2 aj = 0, j ∈ Z, (28)with omplex valued aj and real parameter ̺. This equation has exat solutions(traveling waves) of the form aj = B ei(θj+ωt) with real amplitude B if ω obeys the11



nonlinear dispersion relation ω + cos θ − 2 + ̺ B2 = 0. The modulation theory forseveral variants of (28) was studied in [HLM94℄ and bases on the multisale ansatz
aj(t) = B(εt, εj) ei Θ(εt, εj)/ε, where as before we set θ = ∂yΘ and ω = ∂τΘ. Oneobtains the marosopi balane laws

∂τ

(
A2

)
− ∂y

(
2 A2 sin θ

)
= 0, ∂τθ + ∂y

(
̺ A2 + cos θ

)
= 0, (29)where the seond evolution equation is equivalent to ∂τθ − ∂yω = 0. We mentionthat (29) an also be derived by means of Hamiltonian or Lagrangian redutiondisussed in the next setion, see [HLM94℄ for the details.4 Hamiltonian and Lagrangian struturesThe derivation of marosopi equations for disrete models (or ontinuous modelswith mirostruture) an be seen as a kind of redution of the in�nite dimensionalsystem to a simpler sublass. If we hoose well ordered initial onditions, we hopethat the solution will stay in this order and evolve aording to a slow evolution withmarosopi e�ets only. We may interprete this as a kind of (approximate) invariantmanifold, and the marosopi equation desribes the evolution on this manifold,the funtions A1, ..., AN de�ning kind of oordinates. For suh a redution proedureit is a natural question how the original Hamiltonian and Lagrangian strutures, asdesribed in Setion 2.1, �redue� to the marosopi equation. Here we just surveythe main ideas and some examples and refer to [GHM06℄ for the full details.Before addressing this question we �rst address the exat redution of a Hamiltonianand Lagrangian systems to exatly invariant manifolds (f. e.g. [Mie91℄). First on-sider the Lagrangian setting for L de�ned on TQ. Assume that we have an invariantmanifold M ⊂ TQ given in the form

M = { (q, q̇) = S(p, ṗ) ∈ TQ | (p, ṗ) ∈ TP }.Then, we may de�ne the redued Lagrangian Lred = L◦S : TP → R. An easyalulation proves that any solution p of the redued Lagrangian system
0 = − d

dt

(
∂ṗL

red(p, ṗ)
)

+ ∂pL
red(p, ṗ)leads to a solution (q, q̇) = S(p, ṗ) of the original Lagrangian system. Vie versa,any solution of the latter system that also lies in M solves the redued Lagrangiansystem.In the Hamiltonian ase the tangent bundle struture of Z = TQ is generalized to ageneral sympleti struture ω on the state spae Z. Together with the Hamiltonian

H the Hamiltonian system reads
Ω(z)ż = DH(z) or ż = J(z)DH(z),12



where ωz(v1, v2) = 〈Ω(z)v1, v2) and J(z) = Ω(z)−1 : T∗
zZ → TzZ. For a sympleti,�ow-invariant submanifold M = { z = R(y) ∈ Z | y ∈ Y } we de�ne the reduedsympleti struture Ωred and the redued Hamiltonian Hred via

Ωred(y) = DR(y)∗Ω(R(y))DR(y) and Hred(y) = H(R(y)).Using the �ow-invariane of M it is easy to see that any solution of the reduedHamiltonian system Ωred(y)ẏ = DHred(y) solves the original system and vie versaif starting on M.Our appliations will of ourse use the ansatz Rε from (10) for the redution, whihan be seen as an approximation of an invariant manifold.4.1 Lagrangian redutionThe multisale ansatz (10) disussed above was hosen suh that it is formallyonsistent and in many ases it is possible to justify the ansatz by a rigorous erroranalysis, as surveyed in Setions 6.1 and 7. Hene, we onsider the multisale ansatzas a parametrization of an (approximate) invariant manifold. Inserting the ansatz(10) into the Lagrangian L de�ned in (3) we obtain a redued Lagrangian in theform
Lred(ε,A, ∂τA) = ερ

L(A, ∂τA) + O(ερ+1), where A = (A1, . . . , AN).Here Lred is still an in�nite sum over γ ∈ Γ. However, when expanding in powersof ε, the multisale ansatz leads to a limit that is an integral over the marosopispae variable y ∈ Rd. The in�nite sum an be onsidered as a Riemann sum forthe spatial integral.Sine Lred is independent of τ , the solutions of the redued Euler-Lagrange equationonserve the assoiated energy E obtain as
E(A,Aτ ) = 〈〈∂τA, ∂Aτ L(A,Aτ)〉〉 − L(A,Aτ).It is proved in [GHM06℄ that the Lagrangian equation for A assoiated with thelowest order term L of the redued Lagrangian Lred(ε, ·) really provides exatly themarosopi equation (11) derived in Setion 3.1.Here we illustrate this result using a simple example based on the Klein-Gordonhain (9) with the potential V0(x) = a

2
x2 + b

4
x4. We onsider a single modulatedpulse in the form

xj(t) = ε1/2A(εt, εj)E + ε1/2A(εt, εj)E with E = ei(ωt+θj), (30)where ω = Ω(θ). Inserting this ansatz into L and using ϑ = eiθ−1 we �nd
Lred(ε, A, Aτ) =

∑
Z

(
ε
2
ω2|AE−AE|2 + ε2iω(AE−AE)

(
AτE+AτE

)

− ε
2
|AϑE+A ϑE|2 − ε2

(
AϑE+A ϑE

)(
AyE+AyE

)

−εa
2
|AE+AE|2 − ε2b

4
|AE+AE|4 + O(ε3)

)

= εL(A, Aτ ) + O(ε2) with
L(A, Aτ ) =

∫
R

iω
(
AAτ−AAτ

)
−

(
ϑAAy+ϑAAy

)
− 3b

2
|A|4 dy.13



The important observation for this alulation is that the lowest order terms anel,whih an be seen as a manifestation of equipartition of kineti and potential energyin the plane waves. Moreover, the terms involving Ek with k 6= 0 also drop out byperiodiity. This averaging is a formal proedure here, but we will see in the nextsubsetion that in a two-sale setting with an extra phase variable it an be madeexat.Using ϑ−ϑ = 2i sin θ = 2iω(θ)ω′(θ) the Euler-Lagrange equation reads
0 = −∂τ

(
∂Aτ

L
)
− ∂y

(
∂Ay

L
)

+ ∂AL = −2iωAτ + 2iωω′ Ay − 3b|A|2A. (31)Of ourse, this is exatly the desired marosopi modulation equation, whih anbe obtained as in Setion 3.1. Moreover, beause of invariane in τ , there is a �rstintegral, namely the assoiated energy
E(A, ∂τA) =

∫
R

iωω′
(
AAy − AAy

)
+ 3b

2
|A|4 dy.4.2 Hamiltonian redutionIn the Hamiltonian setting we might also try the derive the redued Hamiltonianby inserting the multisale ansatz (10) into the Hamiltonian H de�ned in (2). Weobtain

H̃(ε,A, ∂τA) = ε̺
H(A, ∂τA) + O(ε̺+1).In the example of the previous subsetion we immediately �nd ̺ = 0 < ρ = 1 and

H(A, ∂τA) =
∫

R
2ω2|A|2 dy. Moreover, the sympleti form an be redued and weobtain

Ωred
ε = Ω0 + O(ε) with Ω0 = 2iω.It is easy to see that the funtion H is also a �rst integral of the marosopi system(31). However, it is not the desired energy E, and the �ow assoiated with theHamiltonian system Ω0∂τA = DH(A) is the phase translation A(0, ·) 7→ e−2iωtA(t, ·).The disrepany is easily understood, beause in H the leading terms of the kinetiand potential theory are added while they anel in L. Note that H is assoiatedwith the phase symmetry of (31) that is not present in the original disrete system.It is introdued into the problem via the multisale ansatz and it manifests itselfonly in the limit.Thus, to treat the Hamiltonian limit orretly it is suitable to embed the disreteHamiltonian system into a ontinuous one that has the orresponding symmetries.In this systems we an ompensate for drifts in the phases via the phase veloity andfor drifts with the group veloities by going into suitably moving frames. On thelevel of Hamiltonians this leads to a subtration of the orresponding �rst integrals.The terms balane in exatly the right way suh that the same anellations ouras in the Lagrangian setting. This is the ontent of the following lassial result inthe theory of Hamiltonian systems with symmetry.14



Proposition 4.1. Let (Z,H,Ω) be a Hamiltonian system, whih is equi-variant withrespet to the one-parameter symmetry group (Tα)α∈R with assoiated �rst integral
I. Then z : [0, T ] → Z solves Ωż = DH(z) if and only if z̃ : t 7→ Tctz(t) solves
Ω ˙̃z = DH̃c(z̃), where H̃c,ω = H−cI.We illustrate the idea in the pulse propagation problem treated in the previoussubsetion. The ontinuous Hamiltonian system is de�ned on the ylinder spae-phase Ξ = R × S1 and has the on�guration spae L2(Ξ). For funtions u ∈ L2(Ξ)we onsider the system

∂2
t u = ∆(1,0)u − au + bu3 with a > 0 and

∆(ε,δ)u(η, φ) = u(η+ε, φ+δ) − 2u(η, φ) + u(η−ε, φ−δ).
(32)Introduing p = ∂τu this is a anonial Hamiltonian system with

Hcont(u, p) =
∫
Ξ

1
2
p2 + 1

2

(
∇(1,0)u

)2
+ a

2
u2 + b

4
u4 dηdφ. (33)Here the important fat is that this system ontains the KG hain exatly, beausethe system deouples ompletely into an unountable family of KG hains just dis-plaed by (η, φ) ∈ [0, 1) × S1. Moreover, (32) is invariant under translations in thespatial diretion η as well as in the phase diretion φ. This leads to the two �rstintegrals

Isp(u, p) =
∫
Ξ

p ∂ηudηdφ and Iph(u, p) =
∫
Ξ

p ∂φudηdφ. (34)The �ows assoiated with the anonial sympleti struture and with one of these�rst integral leads to the transport along the orresponding diretion with onstantspeed one.Using the symmetry of Hcond we an go into a frame moving with the phase speed
cph = ω/θ. Aording to Proposition 4.1 the orresponding Hamiltonian is Hph(u, p) =
Hcont(u, p)− ωIph(u, p). Into this Hamiltonian we insert the suitably adjusted mul-tisale ansatz (30), namely

u(t, η, φ)= ε1/2A(εt, εη)Eph + ε1/2A(εt, εη)Eph,

p(t, η, φ)= ε1/2iω
(
A(εt, εη)Eph − A(εt, εη)Eph

)

+ε3/2
(
∂τA(εt, εη)Eph + ∂τA(εt, εη)Eph

)
,where Eph = ei(φ+θε) does no longer depend on time. Through the subtration ofthe properly hosen multiple of the orresponding �rst integral we exatly obtainthe anellation of the leading terms. Moreover, integration over φ ∈ S

1 makes allterms Ek
ph with k 6= 0 exatly 0. Hene, the resulting redued Hamiltonian has theexpansion

Hred
ε (A, ∂τA) = εE(A) + O(ε2)with E from above. A simple alulation shows that Ω0∂τA = DE(A) is exatly themarosopi equation (31). 15



4.3 Derivation of KdV from the FPU hainHere we apply both the Lagrangian and Hamiltonian redution from above to theFPU hain with KdV-multisale ansatz, see (15). For simpliity we restrit to thein�nite hain with V1(0) = V ′
1(0) = 0, and we always assume that all arising integralsdo exist.Following the idea in [BP06℄ we embed the disrete system into a ontinuous one.For this example we hoose the ontinuous on�guration spae Q to be L2(R) andidentify eah disrete on�guration (xj)j∈Z

with an pieewise linear funtion w =

w(η) ∈ L2(R) de�ned by xj = w(j). Sine (15), i.e. w(t, η) = εU(ε3t, ε(η+ct)),desribes slow marosopi modulations without fast osillations, there is no needfor introding phase variables. The Lagrangian L of the ontinuous system is givenby L(w, ẇ) = K(ẇ) − V(w), with
V(w) =

∫
R

V1(∇+w)dη, K(ẇ) =
∫

R
ẇ2 dη (35)with (∇+w)(η) = w(η+1) − w(η). The ontinuous system is invariant under thegroup of translations, and this gives rise to a further onserved quantity I. Exploit-ing Noether's theorem we �nd the �rst integral I(w, ẇ) =

∫
R

ẇ ∂ηw dη, whih hasno ounterpart in the disrete mirosopi FPU hain.Inserting the ansatz (15) into the energies and using ∫
R

∂yU∂yyUdy = 0, ∫
R

∂yU∂yyyUdy =

−
∫

R
(∂yyU)2dy, and c2 = V ′′

1 (0) we �nd
K(ẇ) = ε3 1

2
H(U) + ε5

I(U, ∂τU) + O(ε7),

V(w) = ε3 1
2

H(U) + ε5
E(U) + O(ε7),

I(w, ẇ) = ε3 c−1
H(U) + ε5 c−1

I(U, ∂τU) + O(ε7),where
H(U) = c2

∫
R

(∂yU)2 dy, I(U, ∂τU) = c
∫

R
∂τU ∂yUdy,

E(U) = − 1
24

c2
∫

R
(∂yyU)2dy + 1

6
V ′′′

1 (0)
∫

R
(∂yU)3dy.Consequently, with L = I − E we �nd

L(w, ẇ)= ε5 L(U, ∂τU) + O(ε7),

H(w, ẇ)= ε3 H(U) + ε5 I(U, ∂τU) + ε5 E(U) + O(ε7),

H(w, ẇ) − c I(w, ẇ)= ε5 E(U) + O(ε7),and it follows that the redued Lagrangian equation equals (16).In the next step we redue the Hamiltonian struture. For the mirosopi on-tinuous system the anonial momentum is given by p = ẇ with Hamiltonian
H(w, p) = K(p) + V(w). For (w, p) the multisale ansatz (15) means

(w, p) = Rε(U)(η) =
(
εU(εη), ε4 ∂τU(εη) + ε2 c ∂yU(εη)

)
,where the last term is due to the frame moving with speed c. Redution of theanonial sympleti form Ω with 〈Ω (w, p), (w̃, p̃)〉 =

∫
R

wp̃−w̃pdη leads to
〈ΩRε(U), Rε(Ũ)〉 = ε2〈ΩredU, Ũ〉 + O(ε4) with
〈ΩredU, Ũ〉 = c

∫
R

(
U∂yŨ−Ũ∂yU

)
dη = −2 c

∫
R

∂yU Ũ dη.16



From this we onlude Ωred = −2 c ∂y. Note that Ωred is de�ned on L2(R), whereas Ωlives on L2(R)×L2(R). This dimension redution is natural, beause the multisaleansatz (15) yields a oupling of w and p in leading order. Finally it follows imme-diately that the redued Hamiltonian equation ΩredUτ = DE(U) is again equivalentto (16).4.4 Derivation of nlS from the KG hainWe onsider the KG hain (9) with V0(x) = a
2
x2 + b

4
x4. The sum of the kineti andpotential energy gives the Hamiltonian

H(x, ẋ) =
∑

j∈Z

(
1
2
ẋ2

j+
1
2
(xj+1−xj)

2+a
2
x2

j+
b
4
x4

j

)
.Sine we are interested in modulated pulses, we proeed as in Setion 4.2 and embedthe disrete hain on Z into the ylinder Ξ = R×S1 leading to the ontinuousHamiltonian system (32) with Hamiltonian Hcont in (33).Again we have the two symmetries of spatial translations T sp and phase transla-tions T ph leading to the two �rst integrals Isp and Iph given in (34). However,we proeed di�erently, beause we are interested in a dispersive ansatz u(t, η) =

εA(ε2t, ε(η+ct))E+c.c.+h.o.t., where c = cgr, f. (18). Thus, we apply Proposition4.1 using the symmetry transformation
(ũ, p̃) = T sp

ct T ph
(ω−cθ)t(u, p), H̃ = H− cIsp − (ω−cθ)Iph.The assoiated anonial Hamiltonian system Ωcan(ũ, p̃) = DH̃(ũ, p̃) on L(Ξ)2 is stillfully equivalent to a family of unoupled KG hains.Inserting the saling exposes the marosopi behavior. For this de�ne

(u(η, φ), p(η, φ)) = (εU(εη, φ−θη), εP (εη, φ−θη)),whih keeps the anonial struture, if we move a fator the ε, whih arises from thetransformation rule dy = εdη, into a the time parametrization τ = ε2t. We obtainthe new Hamiltonian
Hε(U, P ) =

∫
Ξ

1
2ε2

([
P−ωUφ−εcUy

]2
+

(
∇(ε,θ)U

)2

+aU2 −
[
ωPUφ+εcPUy

]2
)
+ b

4
U4 dydφ,where ∇(ε,θ)U(y, φ) = U(y+ε, φ+θ) − U(y, φ). Now we see that the suitably trans-formed version of the modulational ansatz (18), viz.,

(U(y, φ), P (y, φ)) = Rε(A)(y, φ) = (Re A(y)eiφ, ω Re A(y)eiφ) + O(ε),leads to the expansion
Hε(Rε(A)) = HnlS(A) + O(ε) with HnlS(A) =

∫
R

ωω′′|Ay|2 + 3b
8
|A|4 dyand the redued sympleti struture Ωred = 2iω. Thus, we reover the one-dimensional version of nlS given in Setion 3.4.17



5 Weak onvergene methodsFor stati problems there is a rih literature onerning the Γ-onvergene of po-tential energy funtionals of disrete models to ontinuum models (f. [FJ00, FT02,BG02a, BG02b, MBL06℄). Here we want to summarize some �rst results for dynamiproblems that rely on weak onvergene.5.1 An abstrat weak onvergene resultIn [Mie06a℄ it was shown that linear elastodynamis an be derived from a generallinear lattie model as desribed in Setion 2. However, this result used exat period-iity and linearity in an essential way. The abstrat approah presented here will bedisussed in [Mie06b℄ in full details. Its main advantage lies in the �exibility, whihallows for appliations in nonlinear and marosopially heterogeneous settings.We onsider a family of Hamiltonian systems parametrized by ε ∈ [0, 1],
Ωε(z)ż = DHε(z), (36)and we are interested in the limit behavior for ε → 0. Again, ε measures the ratiobetween the mirosopi and the marosopi spatial sales, viz., y = εγ.We onsider the situation that all Hε are de�ned on one re�exive Banah spae Z,but may take the value +∞ outside the subspae Zε. It is a question of generalinterest to haraterize the further onditions on the onvergene of Hε to H0 andof Ωε to Ω0 suh that suitable limits z of solutions zε of (36) are solutions of thelimit problem (36) for ε = 0. A �rst guess would be that H0 is the Γ-limit of Hε,i.e. (G1) zε ⇀ z =⇒ H0(z) ≤ lim inf

ε→0
Hε(zε),(G2) ∀ z ∈ Z ∃(z̃ε)ε∈(0,1) : z̃ε ⇀ z and H0(z) = lim

ε→0
Hε(z̃ε).However, we will see below that it annot be expeted in general.We assume that the subspaes Zε ⊂ Z are losed and that Hε ∈ C1(Zε, R) for

ε ∈ [0, 1]. Moreover, there exist mappings Gε ∈ Lin(Z0, Zε) suh that we have
Zε ∋ zε ⇀ z ∈ Z0 =⇒ G∗

εDHε(zε) ⇀ DH0(z) in Z∗
0 . (37)Finally we assume that the sympleti operators Ωε are independent of z ∈ Z andthat there exists a larger Banah spae W suh that Z embeds ontinuously anddensely into W suh that Ωε : W → Z∗ has an inverse operator for all ε ∈ [0, 1] withthe norm bounded independently of ε. For the onvergene we ask the ondition

Zε ∋ zε ⇀ z ∈ Z0 =⇒ G∗
εΩεzε ⇀ Ω0z in Z∗. (38)Now we use the fat that solutions zε of (36) also solve the weak equation

∫ T

0
〈DHε(zε(t)), ϕε(t)〉 + 〈Ωεzε(t), ϕ̇ε(t)〉dt − 〈Ωεzε, ϕε〉

∣∣T
0

= 0 (39)18



for all ϕε ∈ C1([0, T ], Zε). Choosing ϕε(t) = Gεϕ(t) for some ϕ ∈ C1([0, T ], Z0)and using suitable a priori bounds on zε in C0([0, T ], Z) ∩ C1([0, T ], W ) it is pos-sible to extrat a weakly onvergent subsequene with zε(t) ⇀ z(t) for some z ∈
C0([0, T ], Zw)∩L∞([0, T ], W ). By the assumptions (37) and (38) we pass to the limitin (39) and obtain

∫ T

0
〈DH0(z), ϕ〉 + 〈Ω0z, ϕ̇〉dt − 〈Ω0z, ϕ〉

∣∣T
0

= 0.Under suitable assumptions it then follows that z solves (36) for ε = 0.5.2 ElastodynamisThe program desribed in the previous subsetion an be applied to polyatomiKlein�Gordon hains, whih we also allow to have large-sale variations in the sti�-ness and masses. The KG hains under onsideration are assumed to have a pe-riodiity of N on the mirosopi level, and all quantities may hange also on themarosopi sale y = εj. For k ∈ ZN = { j modN | j ∈ Z } we have given funtions
mk, ak, bk, ck ∈ L∞(R), whih are all bounded from below by a positive onstant.The KG hain is then given by the anonial Hamiltonian system on ℓ2 × ℓ2

Hdiscr
ε (x,p) =

∑
j∈Z

(
p2

j

2m[j](εj)
+

a[j](εj)

2
(xj+1−xj)

2

+
ε2b[j](εj)

2
x2

j +
ε2c[j](εj)

4
x4

j

)
,

(40)where [j] = j mod N . To derive a suitable ontinuum model we embed ℓ2 × ℓ2 into
Z = Z0 = H1(R) × L2(R) via

Zε = { (u, v) ∈ Z | u|[εj,εj+ε] a�ne, v|(εj−ε/2, εj+ε/2) onstant }and
(u, v) = Eε(x,p) with (u(εj), v(εj)) = (xj , pj) for all j ∈ Z.

(41)The assoiated Hamiltonian Hε oinides with Hdiscr
ε up to a fator ε, whih relatesto the time resaling, namely Hε(u, v) =

∫
R

v(y)2

2M(y,y/ε)
+ A(y,y/ε)

2
u′(y)2 dy +

∑
j∈Z

ε
(

B(εj,j)
2

u(εj)2 + C(εj,j)
4

u(εj)4
)
,where M(y, z) = m[k](y) for z ∈ (k−1/2, k+1/2), A(y, z) = a[k](y) for z ∈ (k, k+1)for k ∈ Z, with similar formulas for B and C.The important step in the analysis is the onstrution of the operator Gε: Z0 → Zε.We de�ne (uε, vε) = Gε(u, v) via vε(y) = M(y,y/ε)

M∗(y)
v(y) and

∫
R

A(y, y/ε)u′
ε(y)ũ′(y)+uε(y)ũ(y)dy =

∫
R

A∗(y)u′ũ′+uũdyfor all ũ with (ũ, 0) ∈ Zε, see (41). Here A∗ is the averaged sti�ness and M∗ theaveraged masses
A∗(y) =

(
1
N

∫ N

0
A(y, z)−1 dz

)−1 and M∗(y) = 1
N

∫ N

0
M(y, z)dz.It is then possible to prove the abstrat onditions 37 and 38, whih leads to thefollowing results, f. [Mie06b℄. 19



Theorem 5.1. Let Eε : ℓ2×ℓ2 → Z = H1(R) be the embedding in (41). Let (xε, pε) :
[0, T/ε] → ℓ2 × ℓ2 be solutions of the anonial Hamiltonian system assoiated with
Hdiscr

ε in (40). If for τ = 0 we have
(

I 0
0 M(·, ·/ε)

)
Eε

(
xε(τ/ε)
εpε(τ/ε)

)
⇀

(
u(τ)

M∗(·)v(τ)

) in Z,then this onvergene holds for all τ ∈ [0, T ], where (u, v) : [0, T ] → Z is a solutionof the marosopi wave equation arising from the anonial Hamiltonian systemwith
H0(u, v) =

∫
R

1
2M∗(y)

v2 + A∗(y)
2

(u′)2 + B∗(y)
2

u2 + C∗(y)
4

u4 dy,where B∗(y) = 1
N

∫ N

0
B(y, z)dz and C∗(y) = 1

N

∫ N

0
c(y, z)dz.It should be noted that H0 is not the Γ-limit of Hε when using anonial variables.However, if we use the Lagrangian oordinates (uε, u̇ε) = (uε, M(·, ·/ε)−1pε), then itis the Γ-limit.5.3 Energy transport via Wigner-Husimi measuresWaves in dispersive media travel with a speed that depends on their wave length.We now disuss this for the general linear model introdued in Setion 2.2. Wavepropagation is driven by the group veloity cgr = ∇Ωj(θ), whih depends on the wavevetor θ ∈ TΓ and the band number j ∈ {1, . . . , m}. Thus, at eah marosopi point

y ∈ Rd we need to know how muh energy is loated in whih band and in whihwave-vetor regime.The relevant mathematial tool is the Wigner measure or the Husimi measure,whih was used in [Gér91, LP93, MMP94, GMMP97, TP04℄ to study transportof osillations (relating to energy, density, or other physial quantities). The aseof disrete latties is analyzed in detail in [Ma04, Mie06a℄. For this we rewrite (6)into diagonal and resaled form
∂

∂τ
Uε(τ, θ) = B(ε, θ)Uε(τ, θ) with B(ε, θ) =

i

ε
diag(Ω1(θ), ..., Ωm(θ)). (42)The Wigner transform W ε[uε] of uε = F−1Uε is now de�ned as a matrix-valueddistribution on R × TΓ. For the diagonal entries it is possible to pass to the limit

ε → 0 and one �nds the Wigner measure µW
j = lim

ε→0
(W ε[u3])jj. More preisely, wehave the following result, see [Mie06a℄.Theorem 5.2. Let uε : [0, T ] → L2(TΓ, Cm) be a family of solutions for (42) with

‖uε(0)‖L2 ≤ C. Let j ∈ {1, ..., m} and Sj ⊂ TΓ be given suh that Ωj ∈ C1(TΓ\Sj).If for τ = 0 we have
lim
ε→0

(W ε[uε](τ))jj = µW
j (τ) in D(Rd×TΓ) and µW

j (0, Rd×Sj) = 0,20
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xxxxFigure 5.1: Right: energy distribution at t = 200 for the linear hain ẍj = xj+1 −

2xj + xj−1 with initial data xj(0) = δj and ẋj(0) = 0. Right: Energy distributionfor the square lattie Z
2 with simple nearest-neighbor interation at time t = 120.then this onvergene holds for all τ ∈ [0, T ], where µW

j : [0, T ] → M(Rd×TΓ) is asolution of the energy-transport equation
∂τµ

W
j = ∇Ωj(θ) · ∂yµ

W
j on [0, T ]×R

d×TΓ.Using this result it is possible to obtain the energy distribution by integration over
θ, namely

e(τ, y)dy =
m∑

j=1

∫
θ∈TΓ

µW
j (0, y−∇Ωj(θ)τ, dθ).The above theorem is restrited to the ase that no mass onentrates on the singularset Sj, where the dispersion relation is not smooth and, hene, the group veloityis not de�ned. However, using the Husimi measure as developed in [Mie06a℄ it ispossible to treat this ase also in some ases.6 Quantitative estimates via Gronwall estimatesAnother tehnique for the justi�ation of ontinuum models uses quantitative esti-mates to ontrol the error between the marosopi equation and the mirosopiequation. We present the abstrat idea in Setion 6.1 and apply in Setion 7. Thismethod an also be used to prove dispersive stability results as disussed Setion6.2.We work totally in the original mirosopi lattie model

ż = Lz + N (z), (43)where Z is the Banah spae for the state z(t), and L : Z → Z is the linear part,whih is assumed to generate a bounded semigroup (eLt)t≥0, i.e.
∃CL > 0 ∀ t ≥ 0 ∀ z ∈ Z : ‖eLtz‖ ≤ CL‖z‖. (44)21



We also rely on our standard assumption that the solution z = 0 is energetiallystable, as the Hamiltonian energy is onserved. Here it means
∃CE > 0 ∀ sln. z of (43) ∀ t ≥ 0 : ‖z(t)‖ ≤ CE‖z(0)‖. (45)The nonlinearity N : Z → Z is assumed to be loally Lipshitz. However, theessential features have to be addressed by using additional Banah spaes Y and Wsuh Y ⊂ Z ⊂ W with ontinuous embeddings and(i) ∀ z ∈ Z: ‖z‖W ≤ ‖z‖ (ii) ∀ z̃ ∈ Y : ‖z̃‖ ≤ ‖z̃‖Y . (46)In appliations to latties we have in mind

Y = ℓ1(Γ, Rk)2, Z = ℓ2(Γ, Rk)2, W = ℓ∞(Γ, Rk)2. (47)In Setion 6.1 the importane is that N satis�es
∃C > 0 ∃ ν > 0 ∀ z1, z2 ∈ Z with ‖z1‖W , ‖z2‖W ≤ 1 :

‖N (z1) −N (z2)‖ ≤ CN

(
‖z1‖W+‖z2‖W

)ν‖z1−z2‖.
(48)In Setion 6.2 the importane of Y is the dispersive deay estimate

∃κ ∈ (0, 1) ∃CW > 0 ∀ z ∈ Y ∀ t > 0 : ‖eLtz‖W ≤ CW

(1 + t)κ‖z‖Y . (49)of the linear semigroup. For the nonlinearity we then use
∃CN > 0 ∃α, ν > 0 ∀ z ∈ Z : ‖N (z)‖Y ≤ CN‖z‖ν

W‖z‖α. (50)With Y, Z and W as in (47) a standard nonlinearity N ((xγ)γ∈Γ) = (n(xγ))γ∈Γ with
|n(ξ1) − n(ξ2)| ≤ C(|ξ1| + |ξ2|)β|ξ1 − ξ2| will satisfy (48) with ν = β and (50) with
ν = β−1 and α = 2.6.1 Error ontrol for approximate solutionsThe basi idea is to onstrut an approximate solution zapp, whih in fat will begiven in the form zapp = Rε(A), and to derive an estimate for the assoiated error.For any z ∈ C1([0, T ], Z) we de�ne the residual via

Res(z)(t) = ż(t) − Lz(t) −N (z(t)). (51)The following result shows that the smallness of the residual together with thestability ondition (44) implies that the error between zapp and an exat solution issmall.
22



Theorem 6.1. Assume that the onditions (44), (46i) and (48) hold. Moreover,let CR, CA, τ∗, σ, α, ̺ > 0 be given as well as a family (zε
app)ε∈(0,1) of approximatesolutions zε

app ∈ C1([0, τ∗/ε
σ], Z) satisfying

‖zε
app(t)‖W ≤ CAεα and ‖Res(zε

app)(t)‖ ≤ CRε̺ (52)for all t ∈ [0, τ∗/ε
σ]. Moreover, assume

̺ > α + σ and να ≥ σ. (53)Then, for eah d > 0 there exist ε0 ∈ (0, 1) and D > 0 suh that for all ε ∈ (0, ε0]any exat solution z of (43) with ‖z(0)−zε
app(0)‖ ≤ dε̺−σ satis�es

‖z(t) − zε
app(t)‖ ≤ Dε̺−σ for t ∈ [0, τ∗/ε

σ]. (54)In (53) the ase να > σ is not really interesting, as in this regime the nonlinearityis not really ative. In the �rst inequality ̺ may be as big as we like, what improvesthe order of approximation in (54) but does not allow us to extend the length of thetime interval, i.e, to make σ bigger, beause it is restrited by the seond inequality.Proof: For the onstrution of ε and D we de�ne C1 = CL(d + CRτ∗) and C2 =
CLCN (3CA)ν and let D = 2C1e

C2τ∗ and ε0 = min{1, (CA/D)δ}, where δ = 1/(̺ −
α − σ) > 0.We write the exat solution z of (43) in the form z(t) = zε

app(t) + εβR(t) with
β = ̺−σ. Clearly ‖R(0)‖ ≤ d and we have to show ‖R(t)‖ ≤ D for all t ∈ [0, τ∗/ε

σ].Inserting this ansatz into (43) and applying the variation-of-onstants formula we�nd
R(t) = eLtR(0) +

∫ t

0
eL(t−s)

εα

(
N (zε

app(s) + εβR(s)) −N (zε
app(s)) − Res(zε

app)(s)
)
ds.De�ning r(t) = ‖R(t)‖ and using the available estimates give

r(t) ≤ CLd +
∫ t

0
CL

(
CN [CAεα + CAεα + εβD]νr(s) + CRε̺−β

)
ds,where we assumed r(s) ≤ D on [0, tD] and t ≤ tD. Note that d < D and r isontinuous, whih implies tD > 0. We will show that tD = τ∗/ε

σ.Assuming ε ∈ (0, ε0] we arrive at r(t) ≤ CLd + CLCRεσt + C2ε
αν

∫ t

0
r(s)ds. Beauseof εσt ≤ τ∗ we �nd r(t) ≤ C1 + εσC2

∫ t

0
r(s) ds and Gronwall's lemma gives r(t) ≤

C1e
C2εσt ≤ C1e

C2τ∗ = D/2 for all t ∈ [0, tD]. However, this shows that r(t) annotreah D. As a onsequene we may hoose tD = τ∗/ε
σ and we are done.6.2 Dispersive stabilityHere we present onditions whih guarantee that the dispersive deay estimate (49)for the linear semigroup an be transfered to the full nonlinear problem. We followideas from [Sh96, MSU01℄ and refer to [Pat06℄ for more satisfatory results.23



Theorem 6.2. Assume that (45), (49), and (50) hold with νκ > 1. Then, thereexist C, η > 0 suh that all solutions z of (43) with ‖z(0)‖Y ≤ η satisfy
‖z(t)‖W ≤ C

(1 + t)κ
‖z(0)‖Y for all t > 0. (55)Proof: We follow the ideas in [MSU01℄ Lemma 3 and adapt it to the more generalase. We rely on 0 < κ < 1 < νκ, whih yield the estimate

∫ t

0
ds

(1+s)κν (1+t−s)κ ≤ cν,κ

(1+t)κ with cν,κ =
(

2κ

κν−1
+ 2κν

1−κ

)
. (56)This is easily obtained by estimating ∫ t/2

0
and ∫ t

t/2
separately. Using the variation-of-onstants formula together with the available estimates we �nd

‖z(t)‖W ≤ CW

(1+t)κ ‖z(0)‖Y +
∫ t

0
CW

(1+t−s)κ CN‖z(s)‖ν
W‖z(s)‖α ds.With r(t) = max{ (1 + s)κ‖z(s)‖W | s ∈ [0, t] } and δ = ‖z(0)‖Y we obtain

(1 + t)κ‖z(t)‖ ≤ CW δ +
∫ t

0

CW CN Cα
Er(t)νδα

(1+t−s)κ(1+s)κν ds.Employing (55) and using that r is nondereasing we �nd
r(t) ≤ CW δ + C∗δ

αr(t)ν for all t ≥ 0, where C∗ = cν,κCWCNCα
E.We now hoose η suh that C∗η

α(3CWη)ν ≤ CWη and laim that r(t) remains lessthan 3CW δ if ‖z(0)‖Y = δ ≤ η, i.e., the desired assertion holds with C = 3CW . Let
tW = sup{ t ≥ 0 | ∀ s ∈ [0, t] : r(s) ≤ 3CW δ }, then for t ∈ [0, tW ] and 0 < δ ≤ η wehave

r(t) = CW δ + C∗δ
α(3CW δ)ν ≤ 2CW δ < 3CW δ.Sine r is also ontinuous, we onlude tW = ∞.The typial appliation of the above result involves the spaes Y = ℓ1 and Z = ℓ2 and

W = ℓ∞. Hene, for a nonlinearity with N (x) = (n(xj))j∈Γ and |n(xj)| ≤ Cn|xj|βwe have (50) with α = 2 and ν = β−2. Moreover, the theory in [Pat06℄ providesexpliity values of κ, whih an be determined diretly for the properties of thedispersion relations ω = Ωm(θ) disussed in Setion 2.2. For this note that eLt anbe written as a disrete onvolution
eLt(x, ẋ) =

(∑
α∈Γ Gγ−α(t)(xα, ẋα)

)
γ∈Γ

,where the Green's funtions Gγ(t) ∈ R2m×2m satisfy G0(0) = id and Gγ(0) = 0 for
γ 6= 0. Eah omponent of eah Gγ(t) an be alulated via osillatory integrals ofthe type ∫

θ∈TΓ
ei(Ωk(θ)t+θ·γ)g(θ)dθwith given smooth funtions g. Uniform deay properties in γ ∈ Γ for suh integralsstrongly depend on the non-degeneray of D2Ωk(θ). Integrating over balls in TΓ,24



where det D2Ωk(θ) is bounded away from 0, we easily obtain a deay like t−d/2.However, due to periodiity, degeneraies must our, and the uniform deay isalways worse.For instane, the one-dimensional FPU and the KG hains from Setion 2.3 lead to
κ = 1/3, beause Ω : S1 → R has turning points and the third derivatives is nonzeroin these points. As a onsequene the above method leads to the following verypreliminary dispersive deay result.Proposition 6.3. Consider the KG hain (9) with V0 of the form V ′

0(x) = ax +
O(|x|β) for |x| → 0 with a > 0 and β > 5. Then, there exists δ > 0 and C > 0 suhthat for eah initial ondition (x(0), ẋ(0)) we have

‖(x(0), ẋ(0))‖ℓ1 ≤ δ =⇒ ‖(x(t), ẋ(t))‖ℓ∞ ≤ C‖(x(0),ẋ(0))‖ℓ1

(1+t)1/3 for all t ≥ 0.This result is still very weak in terms of the restrition on β, and we refer to [Pat06℄for improved results . See also [Zua05, IZ05℄ for related dispersive deay results indisrete approximations of PDEs.7 Justi�ation of modulation equationsIn this setion we provide rigorous justi�ation results for two examples. In ontrastto Setion 5 we will use the quantitative estimates provided in Setion 6.1. The ideasare based on the justi�ation theory developed for general modulation equations,see [KSM92, Sh94, Sh98℄ and the surveys [MSU01, Mie02℄. In partiular, wemention the papers [Sh95, Sh05b℄, whih ontain examples, where the modulationequations, derived formally as in Setion 3, fail to predit the dynamis of themirosopi system orretly. Thus, the justi�ation results are needed to validatethe formally obtained marosopi equations.To explain the main ideas and still stay su�iently simple we onsider for bothsubsequent examples the d-dimensional, salar model (17). The main observationabout the multisale ansatz xA,ε
γ = εσA(εγ)E + c.c. is that it satis�es the estimates

‖(xA,ε
γ )γ∈Γ‖ℓ2 ≤ Csε

σ−d/2‖A‖Hs and ‖(xA,ε
γ )γ∈Γ‖ℓ∞ ≤ Csε

σ‖A‖Hs,for any s > d/2. Thus, our solutions z = (x, ẋ) will be small only in W = ℓ∞(Γ)2 butmay be large in Z = ℓ2(Γ)2. However, for using the abstrat approah provided inTheorem 6.1 we need to make the residual of the approximate solution zapp = Rε(A)small in Z. This means that the order of approximation of the formal ansatz Rε in(10) has to be taken su�iently high depending on the dimension d.7.1 Nonlinear Shrödinger equationWe want to justify the nonlinear Shrödinger equation
i∂τA = divy(

1

2
D2

θΩ(θ)∇yA) + ρ|A|2A (nlS)25



as a marosopi modulation equation for the mirosopi lattie system (17), forthe formal derivation see Setion 3.4. We use the dispersive saling τ = ε2t and
y = ε(t−cgrt) for the basi periodi pattern E = ei(ωt+θ·γ), where ω = Ω(θ) and cgr =
Ω′(θ). To derive an evolution equation for the marosopi modulation amplitude
A : [0,∞)×Rd → C we have to use the improved ansatz

xγ(t) = RK
ε (A)γ(t) :=

∑K
k=1 εk

∑k
n=−k Ak,n(τ, y)En,where all the oe�ient funtionsAk,n an be alulated formally if the non-resonaneondition of order K holds, namely

n2Ω(θ)2 6= Ω(nθ)2 for n = 0, 2, 3, ..., K. (57)Of ourse, we have A = A1,1, where A satis�es (nlS). The other oe�ient funtionssatisfy Ak,−n = Ak,n and are either algebrai expressions of funtions ∂r
τ∂

s
yA

q
p,n with

r+2|s|+pq = k, p ≤ k−1 or (for n = 1, where the non-resonane ondition fails)they satisfy some linear inhomogeneous Shrödinger-type equations.Sine all oe�ients of the terms εkEn with k = 1, ..., K are equated to 0, theresidual of the ansatz zapp = (RK
ε (A), d

dt
RK

ε (A)) : [0, τ∗/ε
2] → Z = ℓ(Γ)2 satis�es

‖Res(zapp)(t)‖ℓ∞ ≤ CεK+1‖A‖Hs and ‖Res(zapp)(t)‖ℓ2 ≤ CεK+1−d/2‖A‖Hsfor any suitable s > K+2+d/2. Thus, we have all the ingredients to apply Theor em6.1. However, we note that the dispersive time sale τ = ε2t needs σ = 2, while theamplitude ‖zapp(t)‖ℓ∞ ∼ εα with α = 1. Now ondition (53) only holds for ν ≥ 2.Thus, the nonlinearity N needs to be ubi (f. (48)). The following result realizesthis ondition by assuming V ′′′
β (0) = 0, see [GM04℄ for the ase d = 1.Theorem 7.1. Let K ∈ N with K > 2+d/2 and assume that the salar d-dimensionallattie model (17) has potentials Vβ ∈ CK+2(R) with Vβ(0) = V ′

β(0) = V ′′′
β (0) = 0.Choose a wave vetor θ ∈ TΓ satisfying the non-resonane onditions (57). Let

A ∈ C([0, τ∗], H
K+3(Rd, C)) ∩ C1([0, τ∗], H

K+1(Rd, C)) be an arbitrary solution of(nlS). Then, for eah d > 0 there exist ε0 ∈ (0, 1) and D > 0 suh that for all
ε ∈ (0, ε0] any exat solution x of (17) with

‖(x(0), ẋ(0)) − (RK−2
ε (A)(0), ṘK−2

ε (A)(0))‖ℓ2 ≤ dεK−1−d/2satis�es, for all t ∈ [0, τ∗/ε
2],

‖(x(t), ẋ(t)) − (RK−2
ε (A)(t), ṘK−2

ε (A)(t))‖ℓ2 ≤ DεK−1−d/2.The ondition V ′′′
β (0) = 0 allows us to apply the simple abstrat result of Setion6.1. However, this ondition is not neessary. In the ase of nonlinearities that alsohave a quadrati part it is still possible to derive a similar result if we impose morerestritive non-resonane onditions. To treat that ase one uses ideas from thetheory of normal forms to transform the system via a near identity transform into asystem that has the same linear part but no quadrati part in the nonlinearity. Werefer to [Sh98, GM06℄ for positive results and mention also [Sh05b℄ for an example,where the result fails due to fat that the more restritive non-resonane onditionis violated. 26



7.2 Interation of several modulated pulsesWe report on results in [Gia06℄ and onsider the salar d-dimensional model (17)for whih we want to show how the three-wave interation equations (20) an bejusti�ed in terms of expliit error estimates. Given are three wave vetors θn ∈ TΓand assoiated frequenies ωn with ω2
n = Ω2(θn), whih are in resonane, namely

θ1 + θ2 + θ3 = 0 in TΓ, ω1 + ω2 + ω3 = 0. (58)Following [Gia06, GMS06℄ we use the following type of non-resonane ondition forother ombinations of these wave vetors. We set θ−n := −θn and ω−n := −ωn andsay that the mode system {(θn, ωn) : n = 1, 2, 3} is losed of order K, if for all
k ∈ {1, ..., K} and all n1, ..., nk ∈ Ñ = {−3,−2,−1, 1, 2, 3} the following holds:

(∑k
1 ωnl

)2
= Ω

(∑k
1 θnl

)2 ⇐⇒
{

∃n∗ ∈ Ñ : θn∗
=

∑k
1 θnland ωn∗

=
∑k

1 ωnl
.

(59)Here we use the hyperboli saling τ = εt and y = εγ and, as explained at thebeginning of Setion 7, we need the improved multisale ansatz
x(t) = RK

ε (A)(t) =
∑K

k=1 εk
∑

n1,...,nk∈ eN Bn1,...,nk
(τ, y)En1 . . .Enk

(60)with A = (A1, A2, A3), En = ei(ωnt+θn·γ), Bn = An and Bn1,...,nk
= B−n1,...,−nk

. Thus,to leading order we have three wave pakets, whih we expet to travel with theirgroup veloities and to have interations with the other wave pakets.As explained in Setion 3.1 it is possible to determine the oe�ient funtions
Bn1,...,nk

in suh a way that the approximate solution zapp = (RK
ε (A)(t), ṘK

ε (A)(t))and the residual Res(zapp) satisfy
‖zapp(t)‖ℓ∞ ≤ Cεα with α = 1 and ‖Res(zapp)(t)‖ℓ2 ≤ CεK+1−d/2if the triple A = (A1, A2, A3) : [0, τ∗] → L2(Rd, C)3 is a su�iently smooth solutionof the three-wave interation equation (20). Sine τ = εσt with σ = 1, we may applyTheorem 6.1 with ν = 1, whih means that nonlinearities with quadrati parts areallowed.The preise statement from [Gia06℄ reads as follows.Theorem 7.2. Let K ∈ N with K > 1 + d/2 and assume that the d-dimensional,salar lattie model (17) has potentials Vβ ∈ CK+2(R) with Vβ(0) = V ′

β(0) = 0 for
|β| < R. Assume that the mode system {(θn, ωn) : n = 1, 2, 3} satis�es the resonaneondition (58) and is losed of order K (f. (59)). Let A ∈ C([0, τ∗], H

K+2(Rd; C))∩
CK+1([0, τ∗], H

1(Rd; C)) be an arbitrary solution of (20). Then, for eah d > 0 thereexist ε0 ∈ (0, 1) and D > 0 suh that for all ε ∈ (0, ε0] any exat solution x of (17)with
‖(x(0), ẋ(0)) − (RK−1

ε (A)(0), ṘK−1
ε (A)(0))‖ℓ2 ≤ dεK−d/2satis�es, for all t ∈ [0, τ∗/ε],

‖(x(t), ẋ(t)) − (RK−1
ε (A)(t), ṘK−1

ε (A)(t))‖ℓ2 ≤ DεK−d/2.27
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, ωnl
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