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1. Introduction
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We consider travelling waves in a system of two fluid layers of infinite extent which
are placed between the rigid bottom an top of a channel under the action of gravity.
Both fluids are assumed to be irrotatonal, inviscid, and of constant density ρ1 6= ρ2.
Our aim is to give a rigorous approach to the existence of solitary waves and of bores.
Both of these solutions types look at infinity like parallel flows, however the first
attains the same limits upstreams an downstreams whereas the second is a front–
like solution connecting parallel flows of different heights. These solutions are also
called bores and are observed in some rivers when waves coming from the ocean travel
upstreams.

There are several approaches to this problem. In the case of no surface tension
Turner14 obtained the two–fluid model by considering stratified fluids with smooth
density profiles converging to a piecewise constant one. The stratified fluid model
(Long–Yih equation) is a semilinear elliptic problem9 and can be treated using vari-
ational methods, and thus global results can be derived1.

Surface wave problems and interface problems are described by quasilinear equa-
tions giving rise to more delicate phenomena like surface singularities as for the Stokes
wave of extreme height. We use the spatial center manifold approach in the form of12,
which is based on the original ideas in 9. Thus, we are restricted to a local theory,
however, all difficulties arising from the quasilinearity are circumvented by this ap-
proach.

Depending on the densities ρi, upstream velocities ui∞ and the heights hi of the
fluids we define the dimensionless elevation number E = h22/h

2
1 − ρ2u

2
2∞/(ρ1u

2
1∞),

which tells us whether bifurcating solitary waves are waves of elevation (E > 0) or
waves of depression (E < 0). Here we analyze the unfolding of the case E ≈ 0
which leads to a scenario where the growing branch of solitary waves obtains waves
with larger and larger plateaus, see15 for physical observations of this effect. Suit-
able translates of these plateau–like solitary waves converge on compact intervals to
heteroclinic solutions (bores).

Here we have restricted ourselves to the case of zero surface tension, however the
method applies equally well in cases with surface tension2, 11. Also the influence of
localized perturbations travelling with the same frame speed can be analyzed, see12.
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2. The basic equations

At the inflow (x → −∞) the fluid layers have height h1 and h2 and inflow veloc-
ities u1∞ and u2∞, respectively. The interface between the layers is given by the
function y = Y (x). Taking h1 + h2, ρ1, ui∞, and ρ1u

2
1∞ as reference quantities for

length, density, velocities (ui, vi) and the pressure, we obtain the following equations
in dimensionless form:

(x, y) ∈ Si :
{
uix + viy = 0,
uiy − viy = 0,

}
for i = 1, 2;

y = 0 : v1 = 0; y = 1 : v2 = 0;

y = Y (x) :





v1
u1

= Y ′ , 1
2
(u21 + v21) + λY + p = C1 = const,

v2
u2

= Y ′ , ρ
2
(u21 + v21) +

ρ2
ρ1
λY + p = C2 = const.

(1)

The fluid layers occupy the regions S1 and S2 given by 0 < y < Y (x) and Y (x) < y <
1, respectively. The first two equations are mass conservation and irrotationality. On
the interface y = Y we have the kinematic constraint and Bernoulli’s law for both
fluids (the interface is a streamline). From the inflow conditions (ui, vi)→ (1, 0) and
Y → h for x → −∞ we find the constants C1 = 1/2 + λh and C2 = ρ/2 + ρ2λh/ρ1.
The coupling between the layers occurs through the pressure p which can be easily
eliminated. Here and further on we use the non–dimensional parameters

λ = g(h1+h2)
u2
1∞

, ρ =
ρ2u

2
2∞

ρ1u
2
1∞
, h = h1

h1+h2
, µ = ρ1−ρ2

ρ1
λ.

Often one is interested in waves travelling through fluid layers in rest at infinity.
Then, in the moving frame we have u1∞ = u2∞. In any case we have (ui, vi)→ (1, 0)
for x→ −∞.

We want to transform the system such that it can be written as an abstract
differential equation in the form

d

dx
ϕ = Lµϕ+N(ϕ), ϕ ∈ X, (2)

where N(ϕ) = O(‖ϕ‖2). Therefore we introduce the stream function ψ through
(ui, vi) = (ψy,−ψx) and ψ(x, 0) = 0, ψ(x, y) → y for x → ∞. The stream function
ψ is continuous but not differentiable across the interface, where ψ(x, Y (x)) = h.
Following12 we transform the velocities according to Ui(x, ψ(x, y)) = (u2i (x, y)

2 +
v2i (x, y)

2 − 1)/2 and Vi(x, ψ(x, y)) = vi(x, y)/ui(x, y). Using ui = Ri(Ui, Vi) =√
(1 + 2Ui)/(1 + V 2i ) we find

(x, ψ) ∈ S̃i : ∂
∂x

(
Ui
Vi

)
=

(
ViRi −R3i
1/Ri ViRi

)
∂
∂ψ

(
ui
vi

)
,

ψ = 0 : V1 = 0, ψ = 1 : V2 = 0,
ψ = h : V1 = V2 = Y ′, U1 − ρU2 + µ[Y − h] = 0,
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where S̃1 = IR× (0, h) and S̃2 = IR× (h, 1). Additionally, we have the relations

Y =
∫ h
0

1
R1
dψ = 1− ∫ 1h 1

R2
dψ (3)

which are a consequence of Y (x) =
∫ Y (x)
0 dy =

∫ ψ(x,Y (x))
0

1
U1
dψ =

∫ h
0
1
R1
dψ and the

analoguous consideration for y ∈ [Y (x), 1].
Again following12 we introduce the variable B = U1(h)−ρU2(h), and the interfacial

conditon reads
B + µ(Y − h) = 0. (4)

According to (3) this is a nonlinear condition, since Y has to be expressed through
(U, V ). We differentiate (4) and use Y ′ = V1(h) in order to obtain B ′ = dB/dx =
−µV1(h). With ϕ = (U1, V1, U2, V2, B)T the problem takes the form (2) where the
basic phase space is X = L2(0, h)2 × L2(h, 1)2 × IR,

D(Lµ) = {ϕ ∈ H1(0, h)2 ×H1(h, 1)2 × IR : V1(0) = V2(1) = 0, V1(h) = V2(h),
B = U1(h)− ρU2(h)},

Lµ




U1
V1
U2
V2
B




=




−∂ψV1
∂ψU1
−∂ψV2
∂ψU2
−µV1(h)



, and N(ϕ) =




V1R1∂ψU1 − (R31 − 1)∂ψV1
V1R1∂ψV1 − (1− 1/R1)∂ψU1
V2R2∂ψU2 − (R32 − 1)∂ψV2
V2R2∂ψV2 − (1− 1/R2)∂ψU2

0



.

Here N is a smooth (analytic) mapping from D(Lµ) into X, which vanishes quadrat-
ically for ϕ → 0. For later use we derive the following spectral properties of Lµ in
dependence of µ > 0.

Theorem 2..1 (a) The spectrum of Lµ consists of discrete eigenvalues. They are
exactly the solutions of the dispersion relation

Fµ(σ) = [µ− σ cot(σh)− ρσ cot(σ(1− h))]σ2.

(b) For all µ the operator Lµ has a two–fold eigenvalue 0. For µ < µ0 := 1/h+ρ/(1−
h), there are no further eigenvalues on the imaginary axis. For µ ≥ µ0 there is a pair of
purely imaginary eigenvalues ±iω(µ) with ω(µ0) = 0, dω

dµ
> 0, and ω(µ)/µ→ 1/(1+ρ)

for µ→∞.
(c) For all µ the estimate ‖(Lµ + is)−1‖X→X = O(1/|s|), s ∈ IR, holds.

PROOF: The eigenvalue problem reduces to an ordinary differential equation. The
homogeneous problem σϕ = Lµϕ gives σUi = −∂ψVi and σVi = ∂ψUi. With V1(0) =
V2(1) = 0 and V1(h) = V2(h) this leads to

(U1, V1, U2, V2) = c0
(
− cos σψ
sinσh

, sinσψ
sinσh

, cosσ(1−ψ)
sinσ(1−h)

, sinσ(1−ψ)
sinσ(1−h)

)
.
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From−µV1(h) = σB = σ[U1(h)−ρU2(h)], we find that c0 has to be 0 unless Fµ(σ) = 0,
and part (a) is proved. Part (b) is a simple discussion of the zeros of Fµ.

To establish the resolvent estimate, we consider a general η = (f1, g1, f2, g2, α) ∈ X
and s ∈ IR. If Fµ(is) 6= 0 the resolvent equation (Lµ + is)ϕ = η is solvable. It reads

−∂ψVj + isUj = fj, ∂ψUj + isVj = gj, j = 1, 2;
−µV1(h) + isB = α, V1(0) = V2(1) = 0, V1(h) = V2(2), B = U1(h)− ρU2(h).

Using simple integrations by part we find

∫ h
0 (|f1|2+|g1|2)dψ=

∫ h
0 (|∂ψU1|2+|∂ψV1|2+s2|U1|2+s2|V1|2)dψ + 2is Im(V1(h)U1(h) ),

∫ 1
h (|f2|2+|g2|2)dψ=

∫ 1
h (|∂ψU2|2+|∂ψV2|2+s2|U2|2+s2|V2|2)dψ − 2is Im(V2(h)U2(h) ).

Using V1(h) = V2(h) and B = U1(h)− ρU2(h) leads to

‖(f1, g1,√ρ f2,√ρg2)‖2 = ‖∂ψ(U1, V1,√ρU2,√ρ V2)‖2

+s2‖(U1, V1,√ρU2,√ρ V2)‖2 + 2is Im (V1(h)B ).
(5)

Moreover, we have |sB| = |α + µV1(h)| ≤ |α| + µ|V1(h)| and |V1(h)|2 ≤ δ‖∂ψV1‖2 +
‖V1‖2/δ for any δ > 0. This allows the estimate

s2|B|2−2isIm(V1(h)B) ≤ 2s2|B|2+|V1(h)|2 ≤ 4α2+(5µ2+1)δ‖∂ψV1‖2+(5µ2+1)‖V1‖2/δ.

Choosing δ = 1/(5µ2 + 1) and inserting the result into (5) gives

min{1, ρ}(s2−(5µ2+1)2)‖ϕ‖2 ≤ (s2−(5µ+1)2)
[
‖(U1, V1,√ρ U2√ρ V2)‖2 + |B|2

]

≤ ‖(f1, g1,√ρ f2,√ρ g2)‖2 + 4α2 ≤ max{4, ρ}‖η‖2,

which is the content of part (c). 2

3. Reduction by first integrals

As indicated in Theorem 1, the operator Lµ has a double zero eigenvalue. It corre-
sponds to the two–dimensional family of equilibria given by

ϕ = (U1, V1, U2, V2, B)T = (α, 0, γ, 0, 0)T , α, γ ∈ IR.

These are parallel flows with constant speeds R1 =
√
1 + 2α and R2 =

√
1 + 2γ in the

lower and upper layer, respectively. From this we find Y =
∫ h
0
dψ
R1

= h/
√
1 + 2α and

the height of both layers is
∫ h
0 1/R1dψ+

∫ 1
h 1/R2dψ = h/

√
1 + 2α+(1− h)/√1 + 2γ.

Since all these solutions can be rescaled to the solution α, γ = 0, we see that this
family is generated artificially. In fact, one 0 eigenvalue is due to the transformation
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from (x, y) into (x, ψ) and the other stems from differentiating (4). We have the
following two conserved quantities for (2):

J1(ϕ) = B + µ
∫ h
0
1
R1
dψ, J2(ϕ) =

∫ h
0
1
R1
dψ +

∫ 1
h
1
R2
dψ. (6)

From (4) we know J1(ϕ) = µh and J2 is the channel height y(x, 1) = J2(ϕ(x)) which
equals to 1 by our scaling (cf. (3)).

Additonally there is a third integral J3 which derives from the variational structure
of the problem and invariance with respect to translations in x–direction. In terms
of the variables (ui, vi) and Y it reads

J3(u1, v2, u2, v2, Y ) =
∫ Y
0
1
2
(u21 − v21)dy +

∫ 1
Y
ρ
2
(u22 − v22)dy + (C1 − C2)Y − µ

2
Y 2.

(Taking the x–derivative of J3 along a solutions of (1) easily shows dJ3/dx = 0.) In
terms of (Ui, Vi) and Y =

∫ h
0
1
R1
dψ the integral J3 can be expressed as

J3(ϕ) =
∫ h
0
R1

2
(1−V 21 )dψ +

∫ 1
h
ρR2

2
(1−V 22 )dψ + (C1−C2)Y − µ

2
Y 2. (7)

In6 J3 is called the flow–force per cross–section, and in13, where the case with of
capillary surface waves was treated, it was observed that functions like J3 can be
interpreted as a Hamiltonian function when a properly chosen sympletic structure is
employed, see5, 7 for surface waves and 8 for interfacial waves. In13 a general theory
for elliptic varational problems is developed which allows to reduce the Hamiltonian
structure to the center manifold of finite dimension. Although we do not emphasize
the Hamiltonian structure in this paper, the function J3 will still play a major role
in our discussion in Section 5.

We now restrict our problem (2) to cut out the artificial double zero eigenvalue.
Without loss of generality we restrict our solutions to lie in the manifoldMµ = {ϕ ∈
D(Lµ) : J1(ϕ) = µh, J2(ϕ) = 1 }, which has codimension 2 and is invariant with
respect to (2). To describe the reduced flow in Mµ we project Mµ locally onto its
tangent space at ϕ = 0. To find a suitable projection we analyze the kernel of Lµ
further. Here we restrict ourselves to one interesting case, namely µ ≈ µ0 =

1
h
+ ρ
1−h

.
For µ = µ0 we know that σ = 0 is a four–fold eigenvalue and bifurcations should
occur for µ passing through µ0. The generalized kernel of Lµ0 is spanned by

ϕ1 =




−1/h
0

1/(1−h)
0
−µ0



, ϕ2 =




0
ψ/h
0

(1−ψ)/(1−h)
0



, ϕ3 =

1
6




3ψ2/h− h
0

κ(ψ)
0
0



, ϕ4 = ϕ3 − ∆

3ρ




0
0
1
0
−ρ



,

where ∆ = h+ρ(1−h) and κ(ψ) = 2∆/ρ+1−h−3(1−ψ)2/(1−h). We have Lµ0ϕ1 = 0,
Lµ0ϕ2 = ϕ1, and Lµ0ϕ3,4 = ϕ2. Using the standard scalar product 〈·, ·〉 in X the
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adjoint L∗ of Lµ0 is given by

D(L∗) = {(U1, V1, U2, V2, B) ∈ H1(0, h)2×H1(h, 1)2×IR : V1(0) = V2(1) = 0,

V2(h) = ρV1(h), µ0B + U1(h)− ρU2(h) = 0},
L∗(U1, . . . , B)T = (−∂ψV1, ∂ψU1,−∂ψV2, ∂ψU2, V1(h))T .

The generalized kernel of L∗ is spanned by

η1 =
3
∆




−µ0
0
0
0
1



, η2 = c2




1
0
1
0
0



, η3 =

3
∆




0
ψ/h
0

κ0(ψ)
0



, η4 =

1
2∆




κ1(ψ)
0

κ2(ψ)
0
0



−c4(η1+η2),

where κ0(ψ) = ρ(1−ψ)/(1−h), κ1(ψ) = 3ψ2/h − 3∆ − ρ(1−h), κ2(ψ) = ρ(1−h) −
3ρ(1−ψ)2/(1−h), c2 = 3ρ/((1−h)∆), and c4 = (2h3 + 2ρ(1−h)3)/(3∆). We have
L∗η1,2 = 0, L∗η3 = η1 + η2, L

∗η4 = η3, and 〈ϕi, ηj〉 = 1 for i + j = 5 and 0 else.
Moreover, η1 and η2 are chosen such that

DϕJ1(0)[ϕ̃] =
∆
3
〈η1, ϕ̃〉 and DϕJ2(0)[ϕ̃] =

(1−h)∆
3ρ

〈η2, ϕ̃〉
for all ϕ̃. Thus, the tangent space X0 ofMµ0 at ϕ = 0 is the orthogonal complement
of span{η1, η2}. We define the projection Q0 : X → X0; ϕ→ ϕ−〈ϕ, η1〉ϕ4−〈ϕ, η2〉ϕ3
and decompose ϕ ∈ X into ϕ = ϕ0 + ν3 ϕ3 + ν4ϕ4, where ϕ0 = Q0ϕ ∈ X0. Then,

J1(ϕ0 + ν3ϕ3 + ν4ϕ4)− µh = 0, J2(ϕ0 + ν3ϕ3 + ν4ϕ4)− 1 = 0 (8)

can be solved locally (ϕ0, ν−ν0 small ) for νj = νj(µ, ϕ) ∈ IR by the implicit function
theorem. Thus, ϕ0 serves as coordinate in the tangent space X0 and the correction
ν3(µ, ϕ0)ϕ3 + ν4(µ, ϕ0)ϕ4 takes into account the curvature of Mµ.

To derive the differential equation for ϕ0 we simply apply Q0 to (2). Since
Q0Lµ0(ϕ0 + ν3ϕ3 + ν4ϕ4) = Q0[Lµ0ϕ0 + (ν3 + ν4)ϕ2] and Q0ϕ2 = ϕ2 we find

d

dx
ϕ0 = Lϕ0 +N (µ, ϕ0) (9)

where N (µ, ϕ) = (ν3+ν4)ϕ2 +Q0 [(Lµ−Lµ0)(ϕ0+ν3ϕ3+ν4ϕ4) +N(ϕ0+ν3ϕ3+ν4ϕ4)]
(νj = νj(µ, ϕ0)) and L = Q0Lµ0 |X0 = Lµ0 |X0 . Again N is a smooth (analytic)
mapping from a neighborhood of (µ0, 0) in IR×D(L) into X0, where D(L) = D(Lµ0)∩
X0.

4. Reduction onto the center manifold

We define the center space projection Q1 : X0 → X0;ϕ0 7→ ϕ0−〈ϕ0, η3〉ϕ2−〈ϕ0, η4〉ϕ1
and the splitting ϕ0 = aϕ1 + bϕ2 + Φ, Φ ∈ X1 = Q1X0, which transfers (9) into

d

dx

(
a

b

)
=

(
0 1
0 0

) (
a

b

)
+ f1(µ, a, b,Φ),

d

dx
Φ = L1Φ + f2(µ, a, b,Φ), (10)
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where L1 = L|X1 = Q1L|X1 and

f1 =

(
〈η4,N (µ, aϕ1 + bϕ2 + Φ)〉
〈η3,N (µ, aϕ1 + bϕ2 + Φ)〉

)
, f2 = Q1N (µ, aϕ1 + bϕ2 + Φ)

According to Theorem 2..1(c) the operator L1 has no eigenvalues on the imaginary
axis, and satisfies ‖(L1 + is)−1‖X1→X1 ≤ C/(1 + |s|), for all s ∈ IR. Hence, the
reduction theorem in12 is applicable, and there exists a local center manifold MC

which contains all small bounded solutions and can be written as graph over the
center space (here (a, b) ∈ IR2).

Theorem 4..1 For each k ∈ IN there is an ε > 0, a neighborhood O1 ⊂ D(L1) =
X1 ∩ D(Lµ0) and a reduction function H = H(µ, a, b) ∈ Ck((µ0 − ε, µ0 + ε) ×
(−ε, ε)2,O1), such that the reduced system

d

dx

(
a

b

)
=

(
0 1
0 0

)(
a

b

)
+ g(µ, a, b), Φ = H(µ, a, b), (11)

with g(µ, a, b) = f1(µ, a, b,H(µ, a, b)), is locally equivalent to (10) in the sense that
every small bounded solution of one equation is also a solution of the other equation.

We remark that the problem has a reflection symmetry x → −x. For the differ-
ential equation (2) this gives reversibility with respect to the involution

T : X → X; (U1, V1, U2, V2, B)T 7→ (U1,−V1, U2,−V2, B)T .

This means TLµ = −LµT and N(Tϕ) = −TN(ϕ). As a consequence ϕ = ϕ(x)
is a solution if and only if ϕ̃(x) = Tϕ(−x) is one. The reversibility is inherited
onto the reduced problem (10) is reversible, i.e., with T0(a, b)

T = (a,−b)T we have
g(µ, T0(a, b)) = −T0g(µ, a, b).

To calculate the coefficients of the leading nonlinear terms of g, we first expand
the functions νi with respect to ϕ0 = aϕ1 + bϕ2 + Φ and δ = µ− µ0:

ν3 =
9ρ

2∆h(1−h)2
a2 + 3ρ(5−h)

2∆h2(1−h)3
a3 + h.o.t., ν4 = − 3

∆
δa = 9µ0

2∆h
a2 − 15µ0

2∆h2a
3 + h.o.t.,

with h.o.t.= O(a4 + b2 + ‖Φ‖2D(L) + |a| ‖Φ‖D(L) + |δ|[a2 + ‖Φ‖D(L)]). This implies

f1 =



|b|O(|δ|+ |a|+ b2 + ‖Φ‖D(L))
− 3
∆
δa− E0a

2 +G0a
3 + h.o.t.


,

f2 = O(|a|3 + b2 + ‖Φ‖2 + |a| ‖Φ‖D(L) + |δ|[a2 + |b|+ ‖Φ‖D(L)]),
where E0 = 9

2∆

(
1
h2 − ρ

(1−h)2

)
, G0 = 3

2∆h2

(
ρ(5−h)
1−h)3

− 5µ0
)
.

The function f2 does not contain a term of order a2 because of

f2(µ, a, 0, 0) = Q1
{
(ν3 + ν4)ϕ2 +Q0[(Lµ − Lµ0)ϕ+N(aϕ1 + ν3ϕ3 + ν4ϕ4)]

}

= Q1Q0N(aϕ1 +O(a2)) = O(|a|3),
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and N(aϕ1) = 0 for all a. Thus, the reduction function Φ = H(µ, a, b) satisfies the
estimate ‖H(µ, a, b)‖D(L) = O[|a|3+ b2+ |δ|(a2+ |b|)], and insertion of H into (f1, f2)
yields

g(µ, a, b) =

(
|b|O(|µ−µ0|+ |a|+ b2)

3
∆
(µ0−µ)a− E0a

2 +G0a
3 +O(a4 + b2 + |µ−µ0|a2)

)
.

The reduced system (11) can be rewritten as a second–order equation by solving
a′ = b+g1(µ, a, b) with respect to b = a′+h.o.t. and inserting this into b′ = g2(µ, a, b):

a′′ − σ2(µ)a+ E(µ)a2 −G(µ)a3 +M(µ, a, a′) = 0, (12)

where M(µ, a, a′) = M(µ, a,−a′) = O(a4 + a′2) and

σ2 = 3
∆
(µ0−µ)+O(|µ−µ0|2), E = E0+O(|µ−µ0|), G = G0− c(µ0)E0+O(|µ−µ0|).

5. Homoclinic and heteroclinic solutions

It is well–known that in the case E0 6= 0 equation (12) has a bifurcation of homoclinic
solutions for µ0 − µ > 0, wich have the expansion

a(µ, x) =
σ2(µ)

E0µ

3

1 + cosh(σ(µ)x)
+O((µ0 − µ)2e−σ(µ)|x|)

for µ→ µ0, uniformly in x ∈ IR, see9, 10. Using (3), the interface Y satisfies

Y (x) = h− ∫ h0 U1dΨ+O(‖ϕ‖2D(L)) = h+ 2(µ0−µ)

( 1
h2 −

ρ

(1−h)2
)(1+cosh(σ(µ)x))

+O(. . .).

We find that E0 > 0 yields elevation waves (Y > h) and E0 < 0 yields depression
waves (Y < h), which explains the name elevation number for E0, see

3, 4.
The case of E0 very small gives rise to new phenomena, especially the existence of

heteroclinic solutions, so–called bores. We now consider σ = σ(µ) and E = E(µ) as
two independent small parameters. This can be achieved when, in additon to µ, also ρ
(or h) is taken as a control parameter. Of course, then also G andM depend on σ and
E. Note that E0 = 0 implies ρh2 = (1−h)2 and hence G(µ0, E0) = 6/[∆h3(1−h)] > 0.

We are only interested in the case µ0 − µ > 0 and define the scalings

t = σx, z =
√
G(µ,E) a/σ, α =

√
G(µ,E)E/σ. (13)

Hence, α ∈ IR measures the relative size between the elevation number E and the
closeness to criticality µ0 − µ = ∆σ2/3 ≈ 0. For z = z(t) we obtain the equation

z̈ − z + αz2 − z3 + M̃(σ, α, z, ż) = 0,

with M̃(σ, α, z, ż) = M̃(σ, α, z,−ż) = O(σ(z4 + ż2)).
(14)
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In the limit σ = 0 this equation can be discussed explicitly. It has the first integral

j̃(α, z, ż) = 1
2
ż2 − 1

2
z2 + α

3
z3 − 1

4
z4,

and all equilibria lie on the z–axis. For α ∈ [0, 3/
√
2) there is one equilibrium (z = 0),

for α > 3/
√
2 there are three (from now on we only treat the case α ≥ 0, since α < 0

can be handled by changing z to −z). Moreover, for α > 3/
√
2 there are solutions

which are homoclinic to the origin:

zhom(t) =
72

36
√
2e−t + 24α + (2α2−9)

√
2et

=
3

2α +
√
α2−9/2 cosh(t+c)

,

where c = log 6 − 1
2
log(2α2−9). We have shifted zhom such that it converges to the

heteroclinic solution zhet(t) =
√
2/(1 + e−t) for α→ 3/

√
2.

The persistence of the homoclinic and heteroclinic solution for small σ > 0 fol-
lows by considering the conserved quantity J3(ϕ) as expressed in (7). We define the
restriction of J3 to the center manifold MC ,

j3(a, b) = J3(aϕ1 + bϕ2 +H(µ, a, b) + ν3(. . .)ϕ3 + ν4(. . .)ϕ4))

where νk(. . .) = νk(µ, aϕ1 + bϕ2 +H(µ, a, b)). Obviously, j3 is constant on solutions
of the reduced problem (11) and even in b. Moreover, scaling (µ, a, b) as above shows
that j̃ is exactly the scaled limit of j3. Hence, the persistence of the phase portrait
for small σ > 0 is trivial as all solutions are level curves of j3.

Remark: It is shown in 11 that the case with surface tension leads to a similar
equation, where a′′ is be replaced by −δ1(β)a′′. Here β is the dimensionless Bond
number measuring the relative strength of the surface tension. For β > β0, δ1 is
positive and δ1(β) < 0 for β < 0. In the latter case homoclinic bifurcation occurs for
µ0−µ < 0, and for E0 small, a scaling similar to (13) yields z′′−z+αz2+z3+O(σ) = 0.
The difference to our case is the plus sign in front of the cubic term, which leads to
coexistence of elevation and depression waves for open sets in the parameter space,
see11 for details.

We discuss the above results in the original dimensionless parameter space. Re-

calling σ2(µ) = 3
∆
(µ0 − µ) + O(|µ − µ0|2) and E = ασ

√
G(µ0, 0) + O(|µ − µ0|) the

existence domain of solitray waves in a neighborhood of (µ,E) = (µ0, 0) is given by
µ ∈ (µ0, µ0 + Γ(E)), where Γ has the expansion

Γ(E) = ∆2h3(1−h)
81

E2 +O(|E|3) for E → 0.

For E > 0 the solitary waves are waves of elevations and for E < 0 waves of depression.
Moreover, we have proved, at least, locally for small elevation number E, a con-

jecture of C. Amick and R. Turner3. Taking E as small but fixed and letting µ vary
on (−∞, µ0] we find a branch of bifurcating solitary waves (homoclinic solutions).
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In3 it is shown that this branch is an unbounded connected continuum in the space
H1(IR,X)∪ C1bdd(IR,X). The conjecture is that the solutions remain bounded in C1bdd
while the H1–norm blows up due to broadening of the plateau15. Our local analysis
easily shows that the width of the plateau grows like log(Γ(E) − µ) for µ → Γ(E),
which implies the blowup of the H1 norm.
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