Homoclinic and Heteroclinic Solutions in Two-Phase Flow

Alexander Mielke
Institut für Angewandte Mathematik, Universität Hannover
mielke@ifam.uni-hannover.de

1. Introduction

We consider travelling waves in a system of two fluid layers of infinite extent which are placed between the rigid bottom an top of a channel under the action of gravity. Both fluids are assumed to be irrotatonal, inviscid, and of constant density $\rho_{1} \neq \rho_{2}$. Our aim is to give a rigorous approach to the existence of solitary waves and of bores. Both of these solutions types look at infinity like parallel flows, however the first attains the same limits upstreams an downstreams whereas the second is a frontlike solution connecting parallel flows of different heights. These solutions are also called bores and are observed in some rivers when waves coming from the ocean travel upstreams.

There are several approaches to this problem. In the case of no surface tension Turner ${ }^{14}$ obtained the two-fluid model by considering stratified fluids with smooth density profiles converging to a piecewise constant one. The stratified fluid model (Long-Yih equation) is a semilinear elliptic problem ${ }^{9}$ and can be treated using variational methods, and thus global results can be derived ${ }^{1}$.

Surface wave problems and interface problems are described by quasilinear equations giving rise to more delicate phenomena like surface singularities as for the Stokes wave of extreme height. We use the spatial center manifold approach in the form of ${ }^{12}$, which is based on the original ideas in ${ }^{9}$. Thus, we are restricted to a local theory, however, all difficulties arising from the quasilinearity are circumvented by this approach.

Depending on the densities ρ_{i}, upstream velocities $u_{i \infty}$ and the heights h_{i} of the fluids we define the dimensionless elevation number $E=h_{2}^{2} / h_{1}^{2}-\rho_{2} u_{2 \infty}^{2} /\left(\rho_{1} u_{1 \infty}^{2}\right)$, which tells us whether bifurcating solitary waves are waves of elevation $(E>0)$ or waves of depression $(E<0)$. Here we analyze the unfolding of the case $E \approx 0$ which leads to a scenario where the growing branch of solitary waves obtains waves with larger and larger plateaus, see ${ }^{15}$ for physical observations of this effect. Suitable translates of these plateau-like solitary waves converge on compact intervals to heteroclinic solutions (bores).

Here we have restricted ourselves to the case of zero surface tension, however the method applies equally well in cases with surface tension ${ }^{2,11}$. Also the influence of localized perturbations travelling with the same frame speed can be analyzed, see ${ }^{12}$.

2. The basic equations

At the inflow $(x \rightarrow-\infty)$ the fluid layers have height h_{1} and h_{2} and inflow velocities $u_{1 \infty}$ and $u_{2 \infty}$, respectively. The interface between the layers is given by the function $y=Y(x)$. Taking $h_{1}+h_{2}, \rho_{1}, u_{i \infty}$, and $\rho_{1} u_{1 \infty}^{2}$ as reference quantities for length, density, velocities $\left(u_{i}, v_{i}\right)$ and the pressure, we obtain the following equations in dimensionless form:

$$
\left.\left.\begin{array}{rl}
(x, y) \in S_{i}: & \left\{\begin{array}{l}
u_{i x}+v_{i y}=0, \\
u_{i y}-v_{i y}=0,
\end{array}\right\} \quad \text { for } i=1,2
\end{array}\right\} \begin{array}{rl}
y=0: & v_{1}=0 ; \quad y=1: v_{2}=0
\end{array}\right\} \begin{array}{ll}
\frac{v_{1}}{u_{1}}=Y^{\prime}, & \frac{1}{2}\left(u_{1}^{2}+v_{1}^{2}\right)+\lambda Y+p=C_{1}=\mathrm{const} \\
\frac{v_{2}}{u_{2}}=Y^{\prime}, & \frac{\rho}{2}\left(u_{1}^{2}+v_{1}^{2}\right)+\frac{\rho_{2}}{\rho_{1}} \lambda Y+p=C_{2}=\mathrm{const} \tag{1}
\end{array}
$$

The fluid layers occupy the regions S_{1} and S_{2} given by $0<y<Y(x)$ and $Y(x)<y<$ 1 , respectively. The first two equations are mass conservation and irrotationality. On the interface $y=Y$ we have the kinematic constraint and Bernoulli's law for both fluids (the interface is a streamline). From the inflow conditions $\left(u_{i}, v_{i}\right) \rightarrow(1,0)$ and $Y \rightarrow h$ for $x \rightarrow-\infty$ we find the constants $C_{1}=1 / 2+\lambda h$ and $C_{2}=\rho / 2+\rho_{2} \lambda h / \rho_{1}$. The coupling between the layers occurs through the pressure p which can be easily eliminated. Here and further on we use the non-dimensional parameters

$$
\lambda=\frac{g\left(h_{1}+h_{2}\right)}{u_{1 \infty}^{2}}, \rho=\frac{\rho_{2} u_{2 \infty}^{2}}{\rho_{1} u_{1 \infty}^{2}}, h=\frac{h_{1}}{h_{1}+h_{2}}, \mu=\frac{\rho_{1}-\rho_{2}}{\rho_{1}} \lambda .
$$

Often one is interested in waves travelling through fluid layers in rest at infinity. Then, in the moving frame we have $u_{1 \infty}=u_{2 \infty}$. In any case we have $\left(u_{i}, v_{i}\right) \rightarrow(1,0)$ for $x \rightarrow-\infty$.

We want to transform the system such that it can be written as an abstract differential equation in the form

$$
\begin{equation*}
\frac{d}{d x} \varphi=L_{\mu} \varphi+N(\varphi), \quad \varphi \in X \tag{2}
\end{equation*}
$$

where $N(\varphi)=\mathcal{O}\left(\|\varphi\|^{2}\right)$. Therefore we introduce the stream function ψ through $\left(u_{i}, v_{i}\right)=\left(\psi_{y},-\psi_{x}\right)$ and $\psi(x, 0)=0, \psi(x, y) \rightarrow y$ for $x \rightarrow \infty$. The stream function ψ is continuous but not differentiable across the interface, where $\psi(x, Y(x))=h$. Following ${ }^{12}$ we transform the velocities according to $U_{i}(x, \psi(x, y))=\left(u_{i}^{2}(x, y)^{2}+\right.$ $\left.v_{i}^{2}(x, y)^{2}-1\right) / 2$ and $V_{i}(x, \psi(x, y))=v_{i}(x, y) / u_{i}(x, y)$. Using $u_{i}=R_{i}\left(U_{i}, V_{i}\right)=$ $\sqrt{\left(1+2 U_{i}\right) /\left(1+V_{i}^{2}\right)}$ we find

$$
\begin{aligned}
(x, \psi) \in \widetilde{S}_{i}: & \frac{\partial}{\partial x}\binom{U_{i}}{V_{i}}=\left(\begin{array}{cc}
V_{i} R_{i} & -R_{i}^{3} \\
1 / R_{i} & V_{i} R_{i}
\end{array}\right) \frac{\partial}{\partial \psi}\binom{u_{i}}{v_{i}} \\
\psi=0: & V_{1}=0, \quad \psi=1: V_{2}=0 \\
\psi=h: & V_{1}=V_{2}=Y^{\prime}, \quad U_{1}-\rho U_{2}+\mu[Y-h]=0
\end{aligned}
$$

where $\widetilde{S}_{1}=\mathbb{R} \times(0, h)$ and $\widetilde{S}_{2}=\mathbb{R} \times(h, 1)$. Additionally, we have the relations

$$
\begin{equation*}
Y=\int_{0}^{h} \frac{1}{R_{1}} d \psi=1-\int_{h}^{1} \frac{1}{R_{2}} d \psi \tag{3}
\end{equation*}
$$

which are a consequence of $Y(x)=\int_{0}^{Y(x)} d y=\int_{0}^{\psi(x, Y(x))} \frac{1}{U_{1}} d \psi=\int_{0}^{h} \frac{1}{R_{1}} d \psi$ and the analoguous consideration for $y \in[Y(x), 1]$.

Again following ${ }^{12}$ we introduce the variable $B=U_{1}(h)-\rho U_{2}(h)$, and the interfacial conditon reads

$$
\begin{equation*}
B+\mu(Y-h)=0 \tag{4}
\end{equation*}
$$

According to (3) this is a nonlinear condition, since Y has to be expressed through (U, V). We differentiate (4) and use $Y^{\prime}=V_{1}(h)$ in order to obtain $B^{\prime}=d B / d x=$ $-\mu V_{1}(h)$. With $\varphi=\left(U_{1}, V_{1}, U_{2}, V_{2}, B\right)^{T}$ the problem takes the form (2) where the basic phase space is $X=L^{2}(0, h)^{2} \times L^{2}(h, 1)^{2} \times \mathbb{R}$,

$$
\begin{aligned}
& D\left(L_{\mu}\right)=\left\{\varphi \in H^{1}(0, h)^{2} \times H^{1}(h, 1)^{2} \times \mathbb{R}:\right. V_{1}(0)=V_{2}(1)=0, V_{1}(h)=V_{2}(h), \\
&\left.B=U_{1}(h)-\rho U_{2}(h)\right\}, \\
& L_{\mu}\left(\begin{array}{c}
U_{1} \\
V_{1} \\
U_{2} \\
V_{2} \\
B
\end{array}\right)=\left(\begin{array}{c}
-\partial_{\psi} V_{1} \\
\partial_{\psi} U_{1} \\
-\partial_{\psi} V_{2} \\
\partial_{\psi} U_{2} \\
-\mu V_{1}(h)
\end{array}\right), \quad \text { and } N(\varphi)=\left(\begin{array}{c}
V_{1} R_{1} \partial_{\psi} U_{1}-\left(R_{1}^{3}-1\right) \partial_{\psi} V_{1} \\
V_{1} R_{1} \partial_{\psi} V_{1}-\left(1-1 / R_{1} \partial_{\psi} U_{1}\right. \\
V_{2} R_{2} \partial_{\psi} U_{2}-\left(R_{2}^{3}-1\right) \partial_{\psi} V_{2} \\
V_{2} R_{2} \partial_{\psi} V_{2}-\left(1-1 / R_{2}\right) \partial_{\psi} U_{2} \\
0
\end{array}\right) .
\end{aligned}
$$

Here N is a smooth (analytic) mapping from $D\left(L_{\mu}\right)$ into X, which vanishes quadratically for $\varphi \rightarrow 0$. For later use we derive the following spectral properties of L_{μ} in dependence of $\mu>0$.

Theorem $2 . .1$ (a) The spectrum of L_{μ} consists of discrete eigenvalues. They are exactly the solutions of the dispersion relation

$$
F_{\mu}(\sigma)=[\mu-\sigma \cot (\sigma h)-\rho \sigma \cot (\sigma(1-h))] \sigma^{2}
$$

(b) For all μ the operator L_{μ} has a two-fold eigenvalue 0 . For $\mu<\mu_{0}:=1 / h+\rho /(1-$ h), there are no further eigenvalues on the imaginary axis. For $\mu \geq \mu_{0}$ there is a pair of purely imaginary eigenvalues $\pm i \omega(\mu)$ with $\omega\left(\mu_{0}\right)=0, \frac{d \omega}{d \mu}>0$, and $\omega(\mu) / \mu \rightarrow 1 /(1+\rho)$ for $\mu \rightarrow \infty$.
(c) For all μ the estimate $\left\|\left(L_{\mu}+i s\right)^{-1}\right\|_{X \rightarrow X}=\mathcal{O}(1 /|s|), s \in \mathbb{R}$, holds.

PROOF: The eigenvalue problem reduces to an ordinary differential equation. The homogeneous problem $\sigma \varphi=L_{\mu} \varphi$ gives $\sigma U_{i}=-\partial_{\psi} V_{i}$ and $\sigma V_{i}=\partial_{\psi} U_{i}$. With $V_{1}(0)=$ $V_{2}(1)=0$ and $V_{1}(h)=V_{2}(h)$ this leads to

$$
\left(U_{1}, V_{1}, U_{2}, V_{2}\right)=c_{0}\left(-\frac{\cos \sigma \psi}{\sin \sigma h}, \frac{\sin \sigma \psi}{\sin \sigma h}, \frac{\cos \sigma(1-\psi)}{\sin \sigma(1-h)}, \frac{\sin \sigma(1-\psi)}{\sin \sigma(1-h)}\right) .
$$

From $-\mu V_{1}(h)=\sigma B=\sigma\left[U_{1}(h)-\rho U_{2}(h)\right]$, we find that c_{0} has to be 0 unless $F_{\mu}(\sigma)=0$, and part (a) is proved. Part (b) is a simple discussion of the zeros of F_{μ}.

To establish the resolvent estimate, we consider a general $\eta=\left(f_{1}, g_{1}, f_{2}, g_{2}, \alpha\right) \in X$ and $s \in \mathbb{R}$. If $F_{\mu}(i s) \neq 0$ the resolvent equation $\left(L_{\mu}+i s\right) \varphi=\eta$ is solvable. It reads

$$
\begin{aligned}
& -\partial_{\psi} V_{j}+i s U_{j}=f_{j}, \partial_{\psi} U_{j}+i s V_{j}=g_{j}, \quad j=1,2 \\
& -\mu V_{1}(h)+i s B=\alpha, V_{1}(0)=V_{2}(1)=0, \quad V_{1}(h)=V_{2}(2), B=U_{1}(h)-\rho U_{2}(h) .
\end{aligned}
$$

Using simple integrations by part we find

$$
\begin{aligned}
& \int_{0}^{h}\left(\left|f_{1}\right|^{2}+\left|g_{1}\right|^{2}\right) d \psi=\int_{0}^{h}\left(\left|\partial_{\psi} U_{1}\right|^{2}+\left|\partial_{\psi} V_{1}\right|^{2}+s^{2}\left|U_{1}\right|^{2}+s^{2}\left|V_{1}\right|^{2}\right) d \psi+2 i s \operatorname{Im}\left(V_{1}(h) \overline{U_{1}(h)}\right), \\
& \int_{h}^{1}\left(\left|f_{2}\right|^{2}+\left|g_{2}\right|^{2}\right) d \psi=\int_{h}^{1}\left(\left|\partial_{\psi} U_{2}\right|^{2}+\left|\partial_{\psi} V_{2}\right|^{2}+s^{2}\left|U_{2}\right|^{2}+s^{2}\left|V_{2}\right|^{2}\right) d \psi-2 i s \operatorname{Im}\left(V_{2}(h) \overline{U_{2}(h)}\right) .
\end{aligned}
$$

Using $V_{1}(h)=V_{2}(h)$ and $B=U_{1}(h)-\rho U_{2}(h)$ leads to

$$
\begin{align*}
\left\|\left(f_{1}, g_{1}, \sqrt{\rho} f_{2}, \sqrt{\rho} g_{2}\right)\right\|^{2}= & \left\|\partial_{\psi}\left(U_{1}, V_{1}, \sqrt{\rho} U_{2}, \sqrt{\rho} V_{2}\right)\right\|^{2} \\
& +s^{2}\left\|\left(U_{1}, V_{1}, \sqrt{\rho} U_{2}, \sqrt{\rho} V_{2}\right)\right\|^{2}+2 i s \operatorname{Im}\left(V_{1}(h) \bar{B}\right) \tag{5}
\end{align*}
$$

Moreover, we have $|s B|=\left|\alpha+\mu V_{1}(h)\right| \leq|\alpha|+\mu\left|V_{1}(h)\right|$ and $\left|V_{1}(h)\right|^{2} \leq \delta\left\|\partial_{\psi} V_{1}\right\|^{2}+$ $\left\|V_{1}\right\|^{2} / \delta$ for any $\delta>0$. This allows the estimate
$s^{2}|B|^{2}-2 i s \operatorname{Im}\left(V_{1}(h) \bar{B}\right) \leq 2 s^{2}|B|^{2}+\left|V_{1}(h)\right|^{2} \leq 4 \alpha^{2}+\left(5 \mu^{2}+1\right) \delta\left\|\partial_{\psi} V_{1}\right\|^{2}+\left(5 \mu^{2}+1\right)\left\|V_{1}\right\|^{2} / \delta$.
Choosing $\delta=1 /\left(5 \mu^{2}+1\right)$ and inserting the result into (5) gives

$$
\begin{aligned}
\min \{1, \rho\}\left(s^{2}-\left(5 \mu^{2}+1\right)^{2}\right)\|\varphi\|^{2} & \leq\left(s^{2}-(5 \mu+1)^{2}\right)\left[\left\|\left(U_{1}, V_{1}, \sqrt{\rho} U_{2} \sqrt{\rho} V_{2}\right)\right\|^{2}+|B|^{2}\right] \\
& \leq\left\|\left(f_{1}, g_{1}, \sqrt{\rho} f_{2}, \sqrt{\rho} g_{2}\right)\right\|^{2}+4 \alpha^{2} \leq \max \{4, \rho\}\|\eta\|^{2}
\end{aligned}
$$

which is the content of part (c).

3. Reduction by first integrals

As indicated in Theorem 1, the operator L_{μ} has a double zero eigenvalue. It corresponds to the two-dimensional family of equilibria given by

$$
\varphi=\left(U_{1}, V_{1}, U_{2}, V_{2}, B\right)^{T}=(\alpha, 0, \gamma, 0,0)^{T}, \alpha, \gamma \in \mathbb{R} .
$$

These are parallel flows with constant speeds $R_{1}=\sqrt{1+2 \alpha}$ and $R_{2}=\sqrt{1+2 \gamma}$ in the lower and upper layer, respectively. From this we find $Y=\int_{0}^{h} \frac{d \psi}{R_{1}}=h / \sqrt{1+2 \alpha}$ and the height of both layers is $\int_{0}^{h} 1 / R_{1} d \psi+\int_{h}^{1} 1 / R_{2} d \psi=h / \sqrt{1+2 \alpha}+(1-h) / \sqrt{1+2 \gamma}$.

Since all these solutions can be rescaled to the solution $\alpha, \gamma=0$, we see that this family is generated artificially. In fact, one 0 eigenvalue is due to the transformation
from (x, y) into (x, ψ) and the other stems from differentiating (4). We have the following two conserved quantities for (2):

$$
\begin{equation*}
J_{1}(\varphi)=B+\mu \int_{0}^{h} \frac{1}{R_{1}} d \psi, \quad J_{2}(\varphi)=\int_{0}^{h} \frac{1}{R_{1}} d \psi+\int_{h}^{1} \frac{1}{R_{2}} d \psi \tag{6}
\end{equation*}
$$

From (4) we know $J_{1}(\varphi)=\mu h$ and J_{2} is the channel height $y(x, 1)=J_{2}(\varphi(x))$ which equals to 1 by our scaling (cf. (3)).

Additonally there is a third integral J_{3} which derives from the variational structure of the problem and invariance with respect to translations in x-direction. In terms of the variables $\left(u_{i}, v_{i}\right)$ and Y it reads

$$
J_{3}\left(u_{1}, v_{2}, u_{2}, v_{2}, Y\right)=\int_{0}^{Y} \frac{1}{2}\left(u_{1}^{2}-v_{1}^{2}\right) d y+\int_{Y}^{1} \frac{\rho}{2}\left(u_{2}^{2}-v_{2}^{2}\right) d y+\left(C_{1}-C_{2}\right) Y-\frac{\mu}{2} Y^{2}
$$

(Taking the x-derivative of J_{3} along a solutions of (1) easily shows $d J_{3} / d x=0$.) In terms of $\left(U_{i}, V_{i}\right)$ and $Y=\int_{0}^{h} \frac{1}{R_{1}} d \psi$ the integral J_{3} can be expressed as

$$
\begin{equation*}
J_{3}(\varphi)=\int_{0}^{h} \frac{R_{1}}{2}\left(1-V_{1}^{2}\right) d \psi+\int_{h}^{1} \frac{\rho R_{2}}{2}\left(1-V_{2}^{2}\right) d \psi+\left(C_{1}-C_{2}\right) Y-\frac{\mu}{2} Y^{2} . \tag{7}
\end{equation*}
$$

$\operatorname{In}^{6} J_{3}$ is called the flow-force per cross-section, and in ${ }^{13}$, where the case with of capillary surface waves was treated, it was observed that functions like J_{3} can be interpreted as a Hamiltonian function when a properly chosen sympletic structure is employed, see ${ }^{5,7}$ for surface waves and ${ }^{8}$ for interfacial waves. In^{13} a general theory for elliptic varational problems is developed which allows to reduce the Hamiltonian structure to the center manifold of finite dimension. Although we do not emphasize the Hamiltonian structure in this paper, the function J_{3} will still play a major role in our discussion in Section 5.

We now restrict our problem (2) to cut out the artificial double zero eigenvalue. Without loss of generality we restrict our solutions to lie in the manifold $\mathcal{M}_{\mu}=\{\varphi \in$ $\left.D\left(L_{\mu}\right): J_{1}(\varphi)=\mu h, J_{2}(\varphi)=1\right\}$, which has codimension 2 and is invariant with respect to (2). To describe the reduced flow in \mathcal{M}_{μ} we project \mathcal{M}_{μ} locally onto its tangent space at $\varphi=0$. To find a suitable projection we analyze the kernel of L_{μ} further. Here we restrict ourselves to one interesting case, namely $\mu \approx \mu_{0}=\frac{1}{h}+\frac{\rho}{1-h}$. For $\mu=\mu_{0}$ we know that $\sigma=0$ is a four-fold eigenvalue and bifurcations should occur for μ passing through μ_{0}. The generalized kernel of $L_{\mu_{0}}$ is spanned by

$$
\varphi_{1}=\left(\begin{array}{c}
-1 / h \\
0 \\
1 /(1-h) \\
0 \\
-\mu_{0}
\end{array}\right), \varphi_{2}=\left(\begin{array}{c}
0 \\
\psi / h \\
0 \\
(1-\psi) /(1-h) \\
0
\end{array}\right), \varphi_{3}=\frac{1}{6}\left(\begin{array}{c}
3 \psi^{2} / h-h \\
0 \\
\kappa(\psi) \\
0 \\
0
\end{array}\right), \varphi_{4}=\varphi_{3}-\frac{\Delta}{3 \rho}\left(\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
-\rho
\end{array}\right)
$$

where $\Delta=h+\rho(1-h)$ and $\kappa(\psi)=2 \Delta / \rho+1-h-3(1-\psi)^{2} /(1-h)$. We have $L_{\mu_{0}} \varphi_{1}=0$, $L_{\mu_{0}} \varphi_{2}=\varphi_{1}$, and $L_{\mu_{0}} \varphi_{3,4}=\varphi_{2}$. Using the standard scalar product $\langle\cdot, \cdot\rangle$ in X the
adjoint L^{*} of $L_{\mu_{0}}$ is given by

$$
\begin{gathered}
D\left(L^{*}\right)=\left\{\left(U_{1}, V_{1}, U_{2}, V_{2}, B\right) \in H^{1}(0, h)^{2} \times H^{1}(h, 1)^{2} \times \mathbb{R}: V_{1}(0)=V_{2}(1)=0\right. \\
\left.V_{2}(h)=\rho V_{1}(h), \mu_{0} B+U_{1}(h)-\rho U_{2}(h)=0\right\} \\
L^{*}\left(U_{1}, \ldots, B\right)^{T}=\left(-\partial_{\psi} V_{1}, \partial_{\psi} U_{1},-\partial_{\psi} V_{2}, \partial_{\psi} U_{2}, V_{1}(h)\right)^{T}
\end{gathered}
$$

The generalized kernel of L^{*} is spanned by

$$
\eta_{1}=\frac{3}{\Delta}\left(\begin{array}{c}
-\mu_{0} \\
0 \\
0 \\
0 \\
1
\end{array}\right), \eta_{2}=c_{2}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right), \eta_{3}=\frac{3}{\Delta}\left(\begin{array}{c}
0 \\
\psi / h \\
0 \\
\kappa_{0}(\psi) \\
0
\end{array}\right), \eta_{4}=\frac{1}{2 \Delta}\left(\begin{array}{c}
\kappa_{1}(\psi) \\
0 \\
\kappa_{2}(\psi) \\
0 \\
0
\end{array}\right)-c_{4}\left(\eta_{1}+\eta_{2}\right),
$$

where $\kappa_{0}(\psi)=\rho(1-\psi) /(1-h), \kappa_{1}(\psi)=3 \psi^{2} / h-3 \Delta-\rho(1-h), \kappa_{2}(\psi)=\rho(1-h)-$ $3 \rho(1-\psi)^{2} /(1-h), c_{2}=3 \rho /((1-h) \Delta)$, and $c_{4}=\left(2 h^{3}+2 \rho(1-h)^{3}\right) /(3 \Delta)$. We have $L^{*} \eta_{1,2}=0, L^{*} \eta_{3}=\eta_{1}+\eta_{2}, L^{*} \eta_{4}=\eta_{3}$, and $\left\langle\varphi_{i}, \eta_{j}\right\rangle=1$ for $i+j=5$ and 0 else. Moreover, η_{1} and η_{2} are chosen such that

$$
D_{\varphi} J_{1}(0)[\widetilde{\varphi}]=\frac{\Delta}{3}\left\langle\eta_{1}, \widetilde{\varphi}\right\rangle \quad \text { and } D_{\varphi} J_{2}(0)[\widetilde{\varphi}]=\frac{(1-h) \Delta}{3 \rho}\left\langle\eta_{2}, \widetilde{\varphi}\right\rangle
$$

for all $\widetilde{\varphi}$. Thus, the tangent space X_{0} of $\mathcal{M}_{\mu_{0}}$ at $\varphi=0$ is the orthogonal complement of $\operatorname{span}\left\{\eta_{1}, \eta_{2}\right\}$. We define the projection $Q_{0}: X \rightarrow X_{0} ; \varphi \rightarrow \varphi-\left\langle\varphi, \eta_{1}\right\rangle \varphi_{4}-\left\langle\varphi, \eta_{2}\right\rangle \varphi_{3}$ and decompose $\varphi \in X$ into $\varphi=\varphi_{0}+\nu_{3} \varphi_{3}+\nu_{4} \varphi_{4}$, where $\varphi_{0}=Q_{0} \varphi \in X_{0}$. Then,

$$
\begin{equation*}
J_{1}\left(\varphi_{0}+\nu_{3} \varphi_{3}+\nu_{4} \varphi_{4}\right)-\mu h=0, \quad J_{2}\left(\varphi_{0}+\nu_{3} \varphi_{3}+\nu_{4} \varphi_{4}\right)-1=0 \tag{8}
\end{equation*}
$$

can be solved locally $\left(\varphi_{0}, \nu-\nu_{0}\right.$ small $)$ for $\nu_{j}=\nu_{j}(\mu, \varphi) \in \mathbb{R}$ by the implicit function theorem. Thus, φ_{0} serves as coordinate in the tangent space X_{0} and the correction $\nu_{3}\left(\mu, \varphi_{0}\right) \varphi_{3}+\nu_{4}\left(\mu, \varphi_{0}\right) \varphi_{4}$ takes into account the curvature of \mathcal{M}_{μ}.

To derive the differential equation for φ_{0} we simply apply Q_{0} to (2). Since $Q_{0} L_{\mu_{0}}\left(\varphi_{0}+\nu_{3} \varphi_{3}+\nu_{4} \varphi_{4}\right)=Q_{0}\left[L_{\mu_{0}} \varphi_{0}+\left(\nu_{3}+\nu_{4}\right) \varphi_{2}\right]$ and $Q_{0} \varphi_{2}=\varphi_{2}$ we find

$$
\begin{equation*}
\frac{d}{d x} \varphi_{0}=\mathcal{L} \varphi_{0}+\mathcal{N}\left(\mu, \varphi_{0}\right) \tag{9}
\end{equation*}
$$

where $\mathcal{N}(\mu, \varphi)=\left(\nu_{3}+\nu_{4}\right) \varphi_{2}+Q_{0}\left[\left(L_{\mu}-L_{\mu_{0}}\right)\left(\varphi_{0}+\nu_{3} \varphi_{3}+\nu_{4} \varphi_{4}\right)+N\left(\varphi_{0}+\nu_{3} \varphi_{3}+\nu_{4} \varphi_{4}\right)\right]$ ($\nu_{j}=\nu_{j}\left(\mu, \varphi_{0}\right)$) and $\mathcal{L}=Q_{0} L_{\mu_{0}}\left|x_{0}=L_{\mu_{0}}\right| x_{0}$. Again \mathcal{N} is a smooth (analytic) mapping from a neighborhood of $\left(\mu_{0}, 0\right)$ in $\mathbb{R} \times D(\mathcal{L})$ into X_{0}, where $D(\mathcal{L})=D\left(L_{\mu_{0}}\right) \cap$ X_{0}.

4. Reduction onto the center manifold

We define the center space projection $Q_{1}: X_{0} \rightarrow X_{0} ; \varphi_{0} \mapsto \varphi_{0}-\left\langle\varphi_{0}, \eta_{3}\right\rangle \varphi_{2}-\left\langle\varphi_{0}, \eta_{4}\right\rangle \varphi_{1}$ and the splitting $\varphi_{0}=a \varphi_{1}+b \varphi_{2}+\Phi, \Phi \in X_{1}=Q_{1} X_{0}$, which transfers (9) into

$$
\frac{d}{d x}\binom{a}{b}=\left(\begin{array}{ll}
0 & 1 \tag{10}\\
0 & 0
\end{array}\right)\binom{a}{b}+f_{1}(\mu, a, b, \Phi), \quad \frac{d}{d x} \Phi=\mathcal{L}_{1} \Phi+f_{2}(\mu, a, b, \Phi)
$$

where $\mathcal{L}_{1}=\left.\mathcal{L}\right|_{X_{1}}=\left.Q_{1} \mathcal{L}\right|_{X_{1}}$ and

$$
f_{1}=\binom{\left\langle\eta_{4}, \mathcal{N}\left(\mu, a \varphi_{1}+b \varphi_{2}+\Phi\right)\right\rangle}{\left\langle\eta_{3}, \mathcal{N}\left(\mu, a \varphi_{1}+b \varphi_{2}+\Phi\right)\right\rangle}, \quad f_{2}=Q_{1} \mathcal{N}\left(\mu, a \varphi_{1}+b \varphi_{2}+\Phi\right)
$$

According to Theorem 2..1(c) the operator \mathcal{L}_{1} has no eigenvalues on the imaginary axis, and satisfies $\left\|\left(\mathcal{L}_{1}+i s\right)^{-1}\right\|_{X_{1} \rightarrow X_{1}} \leq C /(1+|s|)$, for all $s \in \mathbb{R}$. Hence, the reduction theorem in^{12} is applicable, and there exists a local center manifold M_{C} which contains all small bounded solutions and can be written as graph over the center space (here $\left.(a, b) \in \mathbb{R}^{2}\right)$.

Theorem 4..1 For each $k \in \mathbb{N}$ there is an $\varepsilon>0$, a neighborhood $\mathcal{O}_{1} \subset D\left(\mathcal{L}_{1}\right)=$ $X_{1} \cap D\left(L_{\mu_{0}}\right)$ and a reduction function $\mathcal{H}=\mathcal{H}(\mu, a, b) \in \mathcal{C}^{k}\left(\left(\mu_{0}-\varepsilon, \mu_{0}+\varepsilon\right) \times\right.$ $\left.(-\varepsilon, \varepsilon)^{2}, \mathcal{O}_{1}\right)$, such that the reduced system

$$
\frac{d}{d x}\binom{a}{b}=\left(\begin{array}{ll}
0 & 1 \tag{11}\\
0 & 0
\end{array}\right)\binom{a}{b}+g(\mu, a, b), \quad \Phi=\mathcal{H}(\mu, a, b),
$$

with $g(\mu, a, b)=f_{1}(\mu, a, b, \mathcal{H}(\mu, a, b))$, is locally equivalent to (10) in the sense that every small bounded solution of one equation is also a solution of the other equation.

We remark that the problem has a reflection symmetry $x \rightarrow-x$. For the differential equation (2) this gives reversibility with respect to the involution

$$
T: X \rightarrow X ;\left(U_{1}, V_{1}, U_{2}, V_{2}, B\right)^{T} \mapsto\left(U_{1},-V_{1}, U_{2},-V_{2}, B\right)^{T} .
$$

This means $T L_{\mu}=-L_{\mu} T$ and $N(T \varphi)=-T N(\varphi)$. As a consequence $\varphi=\varphi(x)$ is a solution if and only if $\widetilde{\varphi}(x)=T \varphi(-x)$ is one. The reversibility is inherited onto the reduced problem (10) is reversible, i.e., with $T_{0}(a, b)^{T}=(a,-b)^{T}$ we have $g\left(\mu, T_{0}(a, b)\right)=-T_{0} g(\mu, a, b)$.

To calculate the coefficients of the leading nonlinear terms of g, we first expand the functions ν_{i} with respect to $\varphi_{0}=a \varphi_{1}+b \varphi_{2}+\Phi$ and $\delta=\mu-\mu_{0}$:

$$
\nu_{3}=\frac{9 \rho}{2 \Delta h(1-h)^{2}} a^{2}+\frac{3 \rho(5-h)}{2 \Delta h^{2}(1-h)^{3}} a^{3}+\text { h.o.t., } \nu_{4}=-\frac{3}{\Delta} \delta a=\frac{9 \mu_{0}}{2 \Delta h} a^{2}-\frac{15 \mu_{0}}{2 \Delta h^{2}} a^{3}+\text { h.o.t., }
$$

with h.o.t. $=\mathcal{O}\left(a^{4}+b^{2}+\|\Phi\|_{D(L)}^{2}+|a|\|\Phi\|_{D(L)}+|\delta|\left[a^{2}+\|\Phi\|_{D(L)}\right]\right)$. This implies

$$
\begin{aligned}
f_{1} & =\binom{|b| \mathcal{O}\left(|\delta|+|a|+b^{2}+\|\Phi\|_{D(L)}\right)}{-\frac{3}{\Delta} \delta a-E_{0} a^{2}+G_{0} a^{3}+\text { h.o.t. }} \\
f_{2} & =\mathcal{O}\left(|a|^{3}+b^{2}+\|\Phi\|^{2}+|a|\|\Phi\|_{D(L)}+|\delta|\left[a^{2}+|b|+\|\Phi\|_{D(L)}\right]\right)
\end{aligned}
$$

where $E_{0}=\frac{9}{2 \Delta}\left(\frac{1}{h^{2}}-\frac{\rho}{(1-h)^{2}}\right), \quad G_{0}=\frac{3}{2 \Delta h^{2}}\left(\frac{\rho(5-h)}{1-h)^{3}}-5 \mu_{0}\right)$.
The function f_{2} does not contain a term of order a^{2} because of

$$
\begin{aligned}
f_{2}(\mu, a, 0,0) & =Q_{1}\left\{\left(\nu_{3}+\nu_{4}\right) \varphi_{2}+Q_{0}\left[\left(L_{\mu}-L_{\mu_{0}}\right) \varphi+N\left(a \varphi_{1}+\nu_{3} \varphi_{3}+\nu_{4} \varphi_{4}\right)\right]\right\} \\
& =Q_{1} Q_{0} N\left(a \varphi_{1}+\mathcal{O}\left(a^{2}\right)\right)=\mathcal{O}\left(|a|^{3}\right)
\end{aligned}
$$

and $N\left(a \varphi_{1}\right)=0$ for all a. Thus, the reduction function $\Phi=\mathcal{H}(\mu, a, b)$ satisfies the estimate $\|\mathcal{H}(\mu, a, b)\|_{D(L)}=\mathcal{O}\left[|a|^{3}+b^{2}+|\delta|\left(a^{2}+|b|\right)\right]$, and insertion of \mathcal{H} into $\left(f_{1}, f_{2}\right)$ yields

$$
g(\mu, a, b)=\binom{|b| \mathcal{O}\left(\left|\mu-\mu_{0}\right|+|a|+b^{2}\right)}{\frac{3}{\Delta}\left(\mu_{0}-\mu\right) a-E_{0} a^{2}+G_{0} a^{3}+\mathcal{O}\left(a^{4}+b^{2}+\left|\mu-\mu_{0}\right| a^{2}\right)}
$$

The reduced system (11) can be rewritten as a second-order equation by solving $a^{\prime}=b+g_{1}(\mu, a, b)$ with respect to $b=a^{\prime}+$ h.o.t. and inserting this into $b^{\prime}=g_{2}(\mu, a, b)$:

$$
\begin{equation*}
a^{\prime \prime}-\sigma^{2}(\mu) a+E(\mu) a^{2}-G(\mu) a^{3}+M\left(\mu, a, a^{\prime}\right)=0 \tag{12}
\end{equation*}
$$

where $M\left(\mu, a, a^{\prime}\right)=M\left(\mu, a,-a^{\prime}\right)=\mathcal{O}\left(a^{4}+a^{\prime 2}\right)$ and

$$
\sigma^{2}=\frac{3}{\Delta}\left(\mu_{0}-\mu\right)+\mathcal{O}\left(\left|\mu-\mu_{0}\right|^{2}\right), E=E_{0}+\mathcal{O}\left(\left|\mu-\mu_{0}\right|\right), G=G_{0}-c\left(\mu_{0}\right) E_{0}+\mathcal{O}\left(\left|\mu-\mu_{0}\right|\right)
$$

5. Homoclinic and heteroclinic solutions

It is well-known that in the case $E_{0} \neq 0$ equation (12) has a bifurcation of homoclinic solutions for $\mu_{0}-\mu>0$, wich have the expansion

$$
a(\mu, x)=\frac{\sigma^{2}(\mu)}{E_{0} \mu} \frac{3}{1+\cosh (\sigma(\mu) x)}+\mathcal{O}\left(\left(\mu_{0}-\mu\right)^{2} e^{-\sigma(\mu)|x|}\right)
$$

for $\mu \rightarrow \mu_{0}$, uniformly in $x \in \mathbb{R}$, see ${ }^{9,10}$. Using (3), the interface Y satisfies

$$
Y(x)=h-\int_{0}^{h} U_{1} d \Psi+\mathcal{O}\left(\|\varphi\|_{D(L)}^{2}\right)=h+\frac{2\left(\mu_{0}-\mu\right)}{\left(\frac{1}{\left.h^{2}-\frac{\rho}{(1-h)^{2}}\right)(1+\cosh (\sigma(\mu) x))}\right.}+\mathcal{O}(\ldots)
$$

We find that $E_{0}>0$ yields elevation waves $(Y>h)$ and $E_{0}<0$ yields depression waves $(Y<h)$, which explains the name elevation number for E_{0}, see ${ }^{3,4}$.

The case of E_{0} very small gives rise to new phenomena, especially the existence of heteroclinic solutions, so-called bores. We now consider $\sigma=\sigma(\mu)$ and $E=E(\mu)$ as two independent small parameters. This can be achieved when, in additon to μ, also ρ (or h) is taken as a control parameter. Of course, then also G and M depend on σ and E. Note that $E_{0}=0$ implies $\rho h^{2}=(1-h)^{2}$ and hence $G\left(\mu_{0}, E_{0}\right)=6 /\left[\Delta h^{3}(1-h)\right]>0$.

We are only interested in the case $\mu_{0}-\mu>0$ and define the scalings

$$
\begin{equation*}
t=\sigma x, \quad z=\sqrt{G(\mu, E)} a / \sigma, \quad \alpha=\sqrt{G(\mu, E)} E / \sigma \tag{13}
\end{equation*}
$$

Hence, $\alpha \in \mathbb{R}$ measures the relative size between the elevation number E and the closeness to criticality $\mu_{0}-\mu=\Delta \sigma^{2} / 3 \approx 0$. For $z=z(t)$ we obtain the equation

$$
\begin{align*}
& \ddot{z}-z+\alpha z^{2}-z^{3}+\widetilde{M}(\sigma, \alpha, z, \dot{z})=0 \\
& \text { with } \widetilde{M}(\sigma, \alpha, z, \dot{z})=\widetilde{M}(\sigma, \alpha, z,-\dot{z})=\mathcal{O}\left(\sigma\left(z^{4}+\dot{z}^{2}\right)\right) . \tag{14}
\end{align*}
$$

In the limit $\sigma=0$ this equation can be discussed explicitly. It has the first integral

$$
\widetilde{j}(\alpha, z, \dot{z})=\frac{1}{2} \dot{z}^{2}-\frac{1}{2} z^{2}+\frac{\alpha}{3} z^{3}-\frac{1}{4} z^{4}
$$

and all equilibria lie on the z-axis. For $\alpha \in[0,3 / \sqrt{2})$ there is one equilibrium $(z=0)$, for $\alpha>3 / \sqrt{2}$ there are three (from now on we only treat the case $\alpha \geq 0$, since $\alpha<0$ can be handled by changing z to $-z$). Moreover, for $\alpha>3 / \sqrt{2}$ there are solutions which are homoclinic to the origin:

$$
z_{\mathrm{hom}}(t)=\frac{72}{36 \sqrt{2} e^{-t}+24 \alpha+\left(2 \alpha^{2}-9\right) \sqrt{2} e^{t}}=\frac{3}{2 \alpha+\sqrt{\alpha^{2}-9 / 2} \cosh (t+c)},
$$

where $c=\log 6-\frac{1}{2} \log \left(2 \alpha^{2}-9\right)$. We have shifted $z_{\text {hom }}$ such that it converges to the heteroclinic solution $z_{\text {het }}(t)=\sqrt{2} /\left(1+e^{-t}\right)$ for $\alpha \rightarrow 3 / \sqrt{2}$.

The persistence of the homoclinic and heteroclinic solution for small $\sigma>0$ follows by considering the conserved quantity $J_{3}(\varphi)$ as expressed in (7). We define the restriction of J_{3} to the center manifold M_{C},

$$
\left.j_{3}(a, b)=J_{3}\left(a \varphi_{1}+b \varphi_{2}+\mathcal{H}(\mu, a, b)+\nu_{3}(\ldots) \varphi_{3}+\nu_{4}(\ldots) \varphi_{4}\right)\right)
$$

where $\nu_{k}(\ldots)=\nu_{k}\left(\mu, a \varphi_{1}+b \varphi_{2}+\mathcal{H}(\mu, a, b)\right)$. Obviously, j_{3} is constant on solutions of the reduced problem (11) and even in b. Moreover, scaling (μ, a, b) as above shows that \widetilde{j} is exactly the scaled limit of j_{3}. Hence, the persistence of the phase portrait for small $\sigma>0$ is trivial as all solutions are level curves of j_{3}.

Remark: It is shown in ${ }^{11}$ that the case with surface tension leads to a similar equation, where $a^{\prime \prime}$ is be replaced by $-\delta_{1}(\beta) a^{\prime \prime}$. Here β is the dimensionless Bond number measuring the relative strength of the surface tension. For $\beta>\beta_{0}, \delta_{1}$ is positive and $\delta_{1}(\beta)<0$ for $\beta<0$. In the latter case homoclinic bifurcation occurs for $\mu_{0}-\mu<0$, and for E_{0} small, a scaling similar to (13) yields $z^{\prime \prime}-z+\alpha z^{2}+z^{3}+\mathcal{O}(\sigma)=0$. The difference to our case is the plus sign in front of the cubic term, which leads to coexistence of elevation and depression waves for open sets in the parameter space, see ${ }^{11}$ for details.

We discuss the above results in the original dimensionless parameter space. Recalling $\sigma^{2}(\mu)=\frac{3}{\Delta}\left(\mu_{0}-\mu\right)+\mathcal{O}\left(\left|\mu-\mu_{0}\right|^{2}\right)$ and $E=\alpha \sigma \sqrt{G\left(\mu_{0}, 0\right)}+\mathcal{O}\left(\left|\mu-\mu_{0}\right|\right)$ the existence domain of solitray waves in a neighborhood of $(\mu, E)=\left(\mu_{0}, 0\right)$ is given by $\mu \in\left(\mu_{0}, \mu_{0}+\Gamma(E)\right)$, where Γ has the expansion

$$
\Gamma(E)=\frac{\Delta^{2} h^{3}(1-h)}{81} E^{2}+\mathcal{O}\left(|E|^{3}\right) \quad \text { for } E \rightarrow 0
$$

For $E>0$ the solitary waves are waves of elevations and for $E<0$ waves of depression.
Moreover, we have proved, at least, locally for small elevation number E, a conjecture of C. Amick and R. Turner ${ }^{3}$. Taking E as small but fixed and letting μ vary on $\left(-\infty, \mu_{0}\right.$] we find a branch of bifurcating solitary waves (homoclinic solutions).
In^{3} it is shown that this branch is an unbounded connected continuum in the space $H^{1}(\mathbb{R}, X) \cup \mathcal{C}_{b d d}^{1}(\mathbb{R}, X)$. The conjecture is that the solutions remain bounded in $\mathcal{C}_{b d d}^{1}$ while the H^{1}-norm blows up due to broadening of the plateau ${ }^{15}$. Our local analysis easily shows that the width of the plateau grows like $\log (\Gamma(E)-\mu)$ for $\mu \rightarrow \Gamma(E)$, which implies the blowup of the H^{1} norm.

References

1. C.J. Амick. Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids. Ann. Scuola Norm. Sup. Pisa (4), 11, 441-499, 1984.
2. C.J. Amick, K. Kirchgässner. A theory of solitary water-waves in the presence of surface tension. Arch. Rational Mech. Analysis, 105, 1-49, 1989.
3. C.J. Amick, R.E.L. Turner. A global theory of internal solitary waves in two-fluid systems. Trans. Amer. Math. Soc., 298, 431-484, 1986.
4. C.J. Amick, R.E.L. Turner. Small internal waves in two-fluid systems. Arch. Rational Mech. Analysis, 108, 111-139, 1989.
5. C. Baesens, R.S. MacKay. Uniformly travelling water waves from a dynamical systems viewpoint: some insight into bifurcations from the Stokes family. J. Fluid Mechanics 241, 333-347, 1992.
6. T.B. Benjamin. Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25, 241-270, 1966.
7. T.J. Bridges. Spatial Hamiltonian structure, energy flux and the water-wave problem. Proc. Royal Soc. London A439, 297-315, 1992.
8. T.J. Bridges, P. Christodoulides, F. Dias. Spatial bifurcations of interfacial waves when the phase and group velocities are nearly equal. Preprint: Institut NonLinéaire de Nice. 1994.
9. K. Kirchgässner. Wave solutions of reversible systems and applications. J. Diff. Eqns., 45, 113-127, 1982.
10. K. Kirchgässner. Nonlinearly resonant surface waves and homoclinic bifurcation. Advances Appl. Mechanics, 26, 135-181, 1988.
11. P. Kirrmann. Reduktion nichtlinearer elliptischer Systeme in Zylindergebieten unter Verwendung von optimaler Regularität in Hölder-Räumen. Thesis Stuttgart, 1991.
12. A. Mielke. Reduction of quasilinear elliptic equations in cylindrical domains with applications. Math. Meth. Appl. Sci., 10, 51-66, 1988.
13. A. Mielke. Hamiltonian and Lagrangian Flows on Center Manifolds with Applications to Elliptic Variational Problems. Springer-Verlag, 1991. Lect. Notes in Math. Vol. 1489.
14. R.E.L. Turner. Internal waves in fluids with rapidly varying density. Ann. Scuola Norm. Sup. Pisa (4), 8, 513-573, 1981.
15. R.E.L. Turner, J.-M. Vanden-Broeck. Braodening of interfacial solitary waves. Physics of Fluids 13, 2486-2490.
