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Abstract

We study incremental problems in geometrically nonlinear elastoplasticity. Using

the multiplicative decomposition Dϕ = FelFpl we consider general energy functionals

of the form

I(ϕ, Fpl) =

∫

Ω
U(x,DϕF−1

pl , Fpl,G(Fpl))dx − 〈`, ϕ〉,

which occur as the sum of the stored energy and the dissipation in one time step.

Here G(Fpl) is the dislocation tensor which takes the form 1
detFpl

curl3(Fpl)FT

pl in

dimension d = 3.

Imposing the usual constraint detFpl ≡ 1 and suitable growth and polyconvexity

conditions on U we show that the minimum of I is attained in the natural Sobolev

spaces. Moreover, we are able to treat multiple time steps by controlling the stored

and dissipated energies. We also address the relation of the incremental problem to

the time-continuous energetic formulation of elastoplasticity.

1 Introduction

1.1 From infinitesimal to finite-strain elastoplasticity

Elastoplastic processes play an important role in many engineering applications. Despite

the fact that many models are successfully used for numerical simulations, a satisfactory

mathematical theory was only developed for the linearized case in the 1970s by J.J.
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Moreau [Mor76]. For further developments including efficient numerical implementations

see, e.g., [HR99]. This theory relies on the additive decomposition

ε = 1
2
(Du+ DuT) = εel + εpl (1.1)

of the linearized strain tensor ε, where u : Ω ⊂ R
d → R

d denotes the displacement.

Moreover, the energy is assumed to be a quadratic functional such that the problem takes

the form of a quasi-variational inequality. However, within the last decades it became

desirable to predict plastic behavior also under large deformations and corresponding

models were developed in the engineering literature [Lee69, SO85, MS92]. These theories

are usually based on the multiplicative decomposition

F = Dϕ = FelFpl. (1.2)

A fundamental difficulty concerning models involving large deformations is that frame-

indifference, i.e., invariance under rigid motions, is inconsistent with the convexity as-

sumptions which are in the heart of the infinitesimal theory.

In nonlinear elastostatics, which is governed by the energy functional
∫

Ω

W (Dϕ)dx, (1.3)

Ball [Bal77] achieved a breakthrough by identifying polyconvexity as a condition on W

which is both physically realistic and mathematically tractable. He showed that if W

is polyconvex and satisfies certain coercivity conditions, i.e., lower growth bounds, then

the minimum of the energy functionals is always attained when subjected to suitable

boundary conditions. Here a function F 7→ W (F ) is called polyconvex if it can be written

as a convex function of the minors (subdeterminants) of F ; typical examples include

Moonley-Rivlin and Ogden materials. The crucial functional analytic property of minors

is that they commute with weak convergence, i.e., if Ms(F ) is a minor of order s, if q > s,

and if

Dϕ(k) ⇀ Dϕ in Lq(Ω; Rd×d) (weakly) (1.4)

then

Ms(Dϕ
(k)) ⇀Ms(Dϕ) in Lq/s(Ω) (weakly), (1.5)

see also [Mor52, Res67]. Here and in the following we use the half-arrow ⇀ to denote

weak convergence.

1.2 Time-discrete evolution models

The goal of this paper is to establish similar existence results in the context of elastoplastic

evolution problems. More precisely, we consider a time-discretized version which leads

to a sequence of minimization problems (one for each time step). Such formulations

have recently attracted a lot of attention in the engineering literature [OR99, OS99,

CHM02, LMD03, Mie03a, NW03]. In the simplest version one considers a multiplicative
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decomposition of the deformation gradient Dϕ = FelFpl and assumes that the elastic

energy depends only on Fel and on suitable hardening parameters p ∈ R
m. This leads to

the energy functional

Ẽ(t, ϕ, Fpl, p) =
∫
Ω
W (x,Dϕ(x)Fpl(x)

−1, p(x))dx− 〈`(t), ϕ〉

where the time-dependent, external loading ` is given via

〈`(t), ϕ〉 =
∫
Ω
fvol(t, x) · ϕ(x)dx +

∫
∂Ω
fsurf(t, x) · ϕ(x)da.

At the j-th time step one has to solve the problem

Ẽ(tj, ϕ, Fpl, p) + D((Fpl, p), (F
(j−1)
pl , pj−1))  min, (1.6)

where F
(j−1)
pl and pj−1 are the values of the plastic strain and the hardening parameter

at time step j−1 and where D denotes the dissipation distance, which measures the

energy dissipated by passing from the state (F
(j−1)
pl , pj−1) to (Fpl, p). For the precise

definition of D see (3.2) and (3.5) below. An important observation is that in general the

minimum in (1.6) is not achieved. Minimizing sequences develop fine scale oscillations

(microstructures) or concentrations (localization), see [OR99, CHM02, LMD03, Mie03a,

BCHH04, Mie04a]. This is due to the fact that the theory involves no intrinsic length

scale. Note that Ball’s theory no longer applies since the elastic part Fel = DϕF−1
pl is in

general not compatible, i.e., cannot be expressed as the gradient of a deformation field ψ.

To introduce a length scale we consider the geometric dislocation tensor G = G(Fpl),

which represents the incompatibility of the so-called intermediate configuration Fpl rela-

tive to the associated surface elements. In Sections 2 and 5 we discuss the general form of

the operator G, which is a vector-valued two-form (viz., a tensor of order 3). In dimension

d = 3 the tensor G = G(Fpl) can be identified with

Ĝ = Ĝ3(Fpl) :=
1

detFpl
(curl3 Fpl)F

T

pl ∈ R
3×3. (1.7)

We refer to [Sve02, Eqn. (154)] and [CG01, Gur02] and to Sections 2 and 5 for further

discussions and note that G in the two latter references means our GT, since our curl3 acts

row by row on 3×3 matrices like in [Sve02], We now include the so-called stored defect

energy
∫
Ω
V (x,G(x))dx and are thus lead to the functional of the total stored energy:

E(t, ϕ, Fpl, p) =
∫
Ω
W (x,Dϕ(x)Fpl(x)

−1, p(x)) + V (x,G(Fpl)(x))dx− 〈`(t), ϕ〉. (1.8)

The expression for the stored defect energy is the most general local expression which is

invariant under compatible changes in the reference configuration, cf. [Par95, PŠ99].

Going back to (1.6) we see that at each time step we have to minimize a functional of

the form

Ij(ϕ, Fpl) =

∫

Ω

Uj(x,Dϕ(x)F−1
pl (x), Fpl(x),G(Fpl)(x))dx− 〈`(tj), ϕ〉,
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where Uj(x, Fel, Fpl, G) = minp∈Rm Ûj(x, Fel, p, Fpl, G) and where Uj depends on j through

(F
(j−1)
pl , pj−1). In the following we also make strong use of the standard assumption that

the plastic part Fpl is volume-preserving, i.e.,

detFpl = 1.

1.3 Main results

Our first main result states that a minimizer of the above one-step problem exists if

Uj(x, Fel, Fpl, G) is polyconvex in (Fel, Fpl), convex in G and satisfies suitable growth

conditions from below, see Theorem 2.7 for a precise statement.

Note that the control of G does not give us control of the full derivative of Fpl or

Fel; in that case lower semicontinuity and existence would be easy. Instead we control

only certain special combinations of derivatives and our goal is to show that together

with polyconvexity, and the constraint detFpl = 1, this is just enough to obtain lower

semicontinuity. This is exactly in the spirit of the Murat-Tartar theory of compensated

compactness ([Tar79, Mur78, Mur81], see also [Tar90]) that develops conditions for weak

semicontinuity of bilinear expressions if one has control on certain differential expressions

of the sequences. In the context of variational problems this is closely related to the notions

of quasiconvexity [Mor52] and more generally of A-quasiconvexity [Dac82, FM99, DF02]

which define essentially necessary and sufficient conditions for weak lower semicontinuity.

The sufficiency statement, however, requires growth conditions which are undesirable in

nonlinear elasticity (since they force the energy to remain finite even at infinite elastic

compression). We therefore work directly with polyconvexity, and Lemma 2.4 contains

the crucial linear algebra calculation.

The functions Uj are defined implicitly and it is therefore not obvious how to translate

the hypotheses on U into those on W and those on the dissipation distance D. We thus

show by means of an example that the conditions imposed on U in Theorem 2.7 can be

satisfied for realistic choices of W and D, see Theorem 3.1 and Section 4.

So far we have only discussed one time step. Let us now address the full incremental

problem (IP):

(IP)

For a given partition t0 = 0 < t1 < . . . < tN = T and given initial values

(F
(0)
pl , p0) find incrementally, for j = 1, . . . , N ,

(ϕj, F
(j)
pl , pj) ∈ Arg min

(ϕ,Fpl,p)

(
E(tj, ϕ, Fpl, p) + D((F

(j−1)
pl , pj−1), (Fpl, p))

)
.

Here “Arg min” denotes the set of all minimizers. Hence, (IP) consists of N minimization

problems which are coupled via the dissipation distance D.

Our second main result, Theorem 3.1, states that under the hypotheses discussed above

(and some mild conditions on the loading) the problem (IP) has a solution for arbitrary

partitions of [0, T ]. In addition, we obtain a priori estimates which are independent of the

partition. This represents an important first step to address the time-continuous evolution

problem.
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1.4 The time-continuous evolution problem

Following [MT99, MTL02, Mie02, Mie03b, MR03] the time-continuous, rate-independent

evolution for elastic materials with internal variables (“standard generalized materials”)

can be formulated by energy principles as follows: A triple (ϕ, Fpl, p) : [0, T ] × Ω →
R
d × SL(Rd) × R

m is called an energetic solution of the elastoplastic problem associated

with E(t, ·, ·) and D, if for all t ∈ [0, T ] stability (S) and energy balance (E) holds:

(S) E(t, ϕ(t), Fpl(t), p(t)) ≤ E(t, ϕ̃, F̃pl, p̃) + D((Fpl(t), p(t)), (F̃pl, p̃)) for all (ϕ̃, F̃pl, p̃).

(E) E(t, ϕ(t), Fpl(t), p(t)) + Diss((Fpl, p); [0, t])

= E(0, ϕ(0), Fpl(0), p(0)) −
∫ t
0
〈 ˙̀(τ), ϕ(τ)〉dτ .

The dissipation Diss((Fpl, p); [0, t]) of an internal process (Fpl, p) : [0, T ]× Ω → SL(Rd)×
R
m is defined for smooth processes via

∫ t
0

∫
Ω
δ(x, Fpl, p, Ḟpl, ṗ) dxdτ and for general pro-

cesses via sup
(∑k

j=1 D((Fpl(τj−1), p(τj−1)), (Fpl(τj), p(τj)))
)
, where the supremum runs

over all partitions of [0, t].

So far, we are not able to provide existence results for (S) & (E) in the present elasto-

plastic setting for finite strains. The case of infinitesimal-strain elastoplasticity can

be formulated and solved via (S) & (E) in a natural way, see [Mie03b, MT04, MM04,

Mie04c]. Moreover, for models in phase transformations [MTL02, MR03], in delamination

[KMR04], in micromagnetism [Kru02, RK04], and in fracture [FM98, DT02, DFT04] this

approach leads to quite general existence results. First positive results for the finite-strain

case are given in [FM04]; however, the assumptions there do not cover elastoplasticity.

1.5 Related mathematical work

Existence results in elastoplasticity are mainly restricted to the case of infinitesimal strains

which leads to the additive decomposition (1.1). Starting with [Mor74, Mor76, Joh76,

Suq81] a full theory was developed for linearized elastoplasticity with and without hard-

ening. Subsequently, a systematic mathematical analysis of the numerical approximations

of the solutions was developed, see the monograph [HR99] and for some recent improve-

ments also [AC00, CA03].

More general material models including viscoplasticity and quite general hardening

laws are treated in [Alb98, ACZ99, Che01a, Che01b] via the theory of monotone operators.

Here again the elastic part is assumed to be linear, i.e., uses infinitesimal strains.

The mathematical theory for the finite-strain case is much less developed. Even for

static problems there are only partial results. In fact, a major open problem is still the

question which global properties the constitutive laws have to satisfy for local or global

existence. First investigations of the relevant convexity and coercivity conditions are done

in [Šil01b, Šil01a, Mie03b, Mie04b]. These works show some similarities to the present

one, but here we use the regularizing term through G(Fpl) and thus we are able to allow

for more general constitutive functions.
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As was observed in [OR99], one has to expect the formation of microstructures if no

regularizing terms are present. For such models the incremental problem (IP) has in

general no solution (cf. [CHM02]) and one is forced to study suitably relaxed problems.

A general strategy for relaxations of rate-independent evolutionary problems is not yet

available, but first approaches are presented in [MR03, BCHH04, Mie04a]. In [CT03] a

rigorous relaxation for a model in rigid plasticity with a single-slip system is performed.

Local existence and uniqueness results for smooth solutions of a viscoplastic model

with finite-strains is developed in [Nef03a, Nef03b]. This model uses a rotation matrix

as an additional internal variable which is interpreted as a grain boundary relaxation.

A numerical comparison of different models in finite-strain elastoplasticity is given in

[NW03].

2 A lower semi-continuity result

To simplify the notation we write from now on P = Fpl. We will usually assume that P

takes values in the special linear group

SL(d) = {F ∈ R
d×d | detF = 1 }.

Throughout we are interested in the cases d = 2 and d = 3, but we use a general tensor

notation to avoid the separate discussion of the two cases. For a general treatment using

differential forms we refer to Section 5.

We consider the functional

I(ϕ, P ) =
∫
Ω
U(x,Dϕ(x)P (x)−1, P (x),G(P )(x))dx, (2.1)

where U : Ω × R
d×d × SL(d) × R

d×d×d → R ∪ {∞} is assumed to be a normal integrand

in the sense of [ET76], i.e., there exists a Borel measurable function Ũ such that U(x, ·)
coincides with Ũ(x, ·) and that (Fel, P, G) 7→ Ũ(x, Fel, P, G) is lower semi-continuous for

all x ∈ Ω except on a null set.

The geometric dislocation tensor G(P ) is best considered as a vector-valued two-form,

and thus is a tensor of order 3. Using the directional derivatives DP (x)[v] it is defined by

its antisymmetric action on a pair of vectors [a, b] ∈ R
d × R

d via

G(P )(x)[a, b] := DP (x)[P−1a]P−1b− DP (x)[P−1b]P−1a ∈ R
d.

In this section we concentrate on the cases d = 2 and 3, where the tensor G(P ) can be

identified with Ĝ2(P ) ∈ R
2 and Ĝ3(P ) ∈ R

3×3 given in the form

Ĝ2(P ) =
1

detP

(
∂1P12 − ∂2P11

∂1P22 − ∂2P21

)
∈ R

2. (2.2)

Ĝ3(P ) =
1

detP
(curl3 P )PT ∈ R

3×3. (2.3)
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In the latter case “curl3” acts on a matrix in R
3×3 by applying the vectorial curl3 to each

row separately and thus generates a matrix in R
3×3 again. For the derivation of these

identifications we refer to Section 5 where the case of general dimension d is treated more

elegantly in terms of differential forms.

In general dimensions we define curlP row by row via

(curlP )ijk = ∂jPik − ∂kPij.

Thus A = curlP is a tensor of order 3 which is antisymmetric in the following sense:

A ∈ R
d×d×d
anti = { (Bijk)i,j,k=1,...,d |Bijk = −Bikj }.

In particular, curl Dψ ≡ 0 for all ψ ∈ C2(Ω; Rd). As seen above we can identify curlP

with a matrix in R
3×3 and with a vector in R

2 for d = 3 and d = 2, respectively. We also

consider curlP as a vector-valued two-form such that G(P )[a, b] = (curlP )[P −1a, P−1b].

By |F | we denote the Euclidean norm of a matrix, i.e., |F |2 =
∑

i,j F
2
ij, and we recall

that this norm bounds the Euclidean operator norm, i.e., |Fa| ≤ |F ||a| for all a ∈ R
d,

and that it is submultiplicative, i.e., |FH| ≤ |F ||H| and |FP−1| ≤ |F |/|P |.
We will frequently use the following two estimates. First, for all A,B > 0 and all

ε > 0 and r > 1 we have

A/B ≥ rεr/(r−1)A1/r − (r−1)εB1/(r−1). (2.4)

Second, let q, q1, q2 ≥ 1 be such that 1
q1

+ 1
q2

= 1
q
. Then, for F,H : Ω → R

d×d with

H ∈ Lq2(Ω) and FH−1 ∈ Lq1(Ω) we have F ∈ Lq(Ω) and

‖F H−1‖q1 ≥ ‖F‖q/‖H‖q2. (2.5)

The first estimate follows from Young’s inequality ab ≤ 1
r
ar + r−1

r
br/(r−1) by taking a =

(εr−1A)1/r and b = εr−1B and dividing by εr−1B/r. The second estimate follows by

applying Hölder’s inequality to |F | = |(F H−1)H| ≤ |F H−1| |H|.
Similarly, for tensors A in R

d×d×d
anti we let |A| := (

∑
i,j,kA

2
ijk)

1/2 and obtain the following

estimate between G(P ) and curlP .

Lemma 2.1 For d ≥ 2 there exists cd > 0 such that

|G(P )| ≥ cd |curlP | /|P |2. (2.6)

Moreover, for d = 2 and d = 3 we have the estimates

|Ĝ2(P )| ≥ |curlP |
|detP | and |Ĝ3(P )| ≥ |curlP |

|detP | |P−1| . (2.7)

For a clearer geometric estimate of G(P ) in terms of curlP and P we refer to Remark 2.5.

Proof: By the definition of G and curlP as bilinear forms we obtain, for all a, b ∈ R
d,

|curlP [a, b]| = |G(P )[Pa, Pb]| ≤ Cd|G(P )||Pa||Pb| ≤ Cd|G(P )||P |2|a||b|.
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This implies the first estimate with cd = 1/Cd.

The additional estimates for d = 2 and 3 follow immediately from the special form of

Ĝ2 and Ĝ3, respectively, see (2.2) and (2.3).

With these preparations we are able to derive our coercivity result, which is based on

the following growth conditions on the density U . There exist c > 0 and h ∈ L1(Ω) such

that for all x, Fel, P, G we have

U(x, Fel, P, G) ≥ c(|Fel|qF + |P |qP + |P−1|qP + |G|qG) − h(x), (2.8)

where qF , qP , qG > 1.

Proposition 2.2 Assume that (2.8) holds with exponents qF , qP and qG satisfying

1

qϕ
:=

1

qF
+

1

qP
≤ 1 and

1

qC
:=

min{d− 2, 2}
qP

+
1

qG
≤ 1.

Then for any CI ∈ R there exists C > 0 such that I(ϕ, P ) ≤ CI and detP ≡ 1 implies

‖Dϕ‖qϕ + ‖P‖qP + ‖P−1‖qP + ‖curlP‖qC ≤ C.

Proof: Using (2.8) and Lemma 2.1 with detP ≡ 1 we obtain

CI ≥ I(ϕ, P ) ≥ c(‖DϕP−1‖qFqF + ‖P‖qPqP + ‖P−1‖qPqP + +‖G(P )‖qGqG) −
∫
Ω
hdx

≥ c
[
‖DϕP−1‖qFqF + ‖P‖qPqP + ‖P−1‖qPqP + ‖ |curlP | /|P σd|νd‖qGqG

]
− Ch

where νd = min{d−2, 2} and σd = sign(d−5
2
). Applying (2.5) to the first and the fourth

term on the right-hand side gives

CI ≥ c
[
‖Dϕ‖qFqϕ/‖P‖qFqP + ‖P‖qPqP + ‖P−1‖qPqP + ‖curlP‖qGqC /‖P

σd‖νdqG
qP

]
− Ch.

Finally, we apply (2.4) to the first and fourth term with r equal to qF/qϕ and qG/qC,

respectively, and choose ε sufficiently small in both cases to arrive at

CI ≥ c
[
c1‖Dϕ‖qϕqϕ + 1

2
‖P‖qPqP + 1

2
‖P−1‖qPqP + c4 ‖curlP‖qCqC

]
− Ch,

with c1, c4 > 0. This is the desired result.

To discuss polyconvexity we denote by Ms(P ) the
(
d
s

)
×
(
d
s

)
matrix of minors of order

s of P ∈ R
d×d, in particular M0(P ) = 1, M1(P ) = P and Md(P ) = detP .

Lemma 2.3 Assume that qP > d and 1
qC
< 1

d
+ 1

qP
. Then, for any sequence P (k) : Ω →

SL(d) with

curlP (k) ⇀ Ã in LqC(Ω) and P (k) ⇀ P̃ in LqP (Ω), (2.9)

we have Ã = curl P̃ and

(a) Ms(P
(k)) ⇀ Ms(P̃ ) in Lqs(Ω; R(d

s)×(d
s)) with qs = qP/s.
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If in addition 1
q∗

:= 1
qC

+ d−2
qP

< 1, then

(b) G(P (k)) ⇀ (GP̃ ) in Lq∗(Ω; Rd×d×d
anti ).

Proof: The relation Ã = curl P̃ follows from the theory of distributions.

ad (a). This is a variation of the classical result (1.4), (1.5). The assertion follows

from Theorem B.2 in Appendix B (applied with pj = qP , f
(k)
j = P (k)Tej) and the compact

embedding LqC(Ω) ⊂ W−1,qP (Ω).

ad (b). Here we only proof the case d ≤ 3 and refer to Proposition 5.1 for the case

d ≥ 4. In the case d = 2 there is nothing to be proved, since the constraint detP ≡ 1

and the explicit form of G via Ĝ2 in (2.2) shows that G(P ) is equal to curlP whose weak

convergence has already been shown.

For the case d = 3 we use the special form of Ĝ3 given in (2.3) and detP = 1, i.e., we

identify G(P ) with (curlP )P T.

We apply the LqP -version of the Helmholtz decomposition to each row of P (k):

P (k) = Dψ(k) +Q(k) with divQ(k) = 0,

see Proposition A.1. From (2.9) we conclude that ψ(k) ⇀ ψ̃ in W1,qP (Ω) and that

Q(k) ⇀ Q̃ in LqP (Ω), where P̃ = Dψ̃ + Q̃ with div Q̃ = 0. We can apply the third part

of Proposition A.1 with p = min{qC, qP} > 1 and conclude that Q(k) → Q̃ (strongly) in

L1(Ω). Since Q(k) is bounded in LqP (Ω) we obtain (by Hölder’s inequality) Q(k) → Q̃ in

Lq(Ω) for all q ∈ [1, qP ). Since curlQ(k) = curlP (k) we deduce that curlQ(k) ⇀ curl Q̃ in

LqC(Ω). Thus (curlQ(k))(Q(k))T ⇀ (curl Q̃)Q̃T in Lq∗(Ω).

Moreover, the div-curl lemma (see Theorem B.1) gives

(curlQ(k))(Dψ(k))T ⇀ (curl Q̃)(Dψ̃)T in Lq
∗

(Ω),

since div curlQ(k) = 0 and curl Dψ(k) = 0. Hence, we conclude that

G(P (k)) = (curlP (k))P (k)T = (curlQ(k))(Dψ(k))T + (curlQ(k))Q(k)T

Lq∗

⇀ (curl Q̃)(Dϕ̃)T + (curl Q̃)Q̃T = (curl P̃ )P̃T = G(P̃ ).

This proves assertion (b).

The final result uses the special structure Fel = DϕP−1 of the multiplicative decom-

position. Later we will use the important condition detP ≡ 1. For the moment, however,

we only assume that detP > 0 for clarity.

Lemma 2.4 Assume that F, P ∈ R
d×d with detP 6= 0. Then, for 1 ≤ s ≤ d all minors of

order s of the matrix FP−1 can be written in the form detH/ detP where H is a matrix

obtained from P by replacing s rows of P by s rows of F .

Proof: For the reader’s convenience we give a separate proof for the most common cases

d = 2 and d = 3, since this can be done without using the powerful, but perhaps not so

familiar, notation of multilinear algebra.
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Proof for d = 2. For full 2 × 2 determinants we use the formula det(FP−1) =

detF/ detP . The assertion for the 1 × 1 minors follows immediately from the explicit

formula for the inverse

P−1 =
1

detP

(
P22 −P11

−P21 P11

)
.

Proof for d = 3. We consider the cofactor matrix cof F and recall that cof Fij is

(−1)i+j times the determinant of the submatrix obtained by deleting row i and column

j. We have the identities

cof(FG) = (cof F )(cofG) and F cof F T = detF 1. (2.10)

Fix i, j ∈ {1, 2, 3} and let H be the matrix obtained by replacing the j-th row of P by

the i-th row of F . Applying (2.10) to H instead of F we get

detH =
∑

k

Hjk(cofH)jk =
∑

k

Fik(cof P )jk. (2.11)

This yields

(FP−1)ij =

(
F

1

detP
(cof F )T

)

ij

=
1

detP

∑

k

Fik(cof P )jk =
detH

detP

and thus the assertion for the 1×1 minors. For the 3×3 minor one uses again the identity

det(FP−1) = detF/ detP . Finally, to study the 2 × 2 minor we note that

cof(FP−1) = (cof F )(cof P−1) = (cof F )(cof P )−1 =
1

detP
(cof F )PT.

Thus

cof(FP−1)ij =
1

detP

∑

k

(cof F )ikPjk.

Exchanging the roles of F and P (and of i and j) in (2.11) we see that cof(FP −1)ij =

detH/ detP where H is obtained by replacing the rows {1, 2, 3} \ j of P by the rows

{1, 2, 3} \ i of F . This concludes the proof for case d = 3.

Proof for the general case. We first introduce some notations. As before, for a matrix

P ∈ R
d×d we denote by Ms(P ) the

(
d
s

)
×
(
d
s

)
matrix of s×s minors. As indices of the

rows and the columns of Ms(P ) we use the (ordered) multi-indices I = (ik1, . . . , iks) with

1 ≤ ik1 < · · · < iks ≤ d, i.e. Ms(P )IJ = detPi1,...,is;j1,...,js. The formula of Cauchy-

Binet gives the product rule Ms(PQ) = Ms(P )Ms(Q). To each multi-index I there is a

unique (ordered) complementary index I∗ such that I ∩ I∗ = ∅ and I ∪ I∗ = {1, . . . , d}.
The signature of I is the signature of the permutation (I, I∗) ∈ Perm({1, . . . , d}). The

cofactor matrix Ks(P ) is defined by Ks(P )I∗J∗ = sgn I sgn J Ms(P )IJ . Thus Kd−1(P )ij =

(−1)i+jMd−1(P )i∗j∗ = cof P where cof P is the usual cofactor matrix defined above. Again

we have Ks(PQ) = Ks(P )Ks(Q). The general version of (2.10) is (see e.g. [Šil02, App.A])

Ms(P ) Kd−s(P )T = detP 1 ∈ R(d
s)×(d

s). (2.12)
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To prove Lemma 2.4 for general d and s we fix two multiindices I and J of length s

and consider the matrix

H = QI
J

which is obtained from P by replacing the rows j1, . . . , js of P by the rows i1, . . . , is of

F . Applying the above formula (2.12) to H instead of P we get (by considering the JJ

component)

detH =
∑

K

Ms(H)JKKd−s(H)JK =
∑

K

Ms(F )IKKd−s(P )JK,

where the sum runs over all multi-indices K of length s. On the other hand, we have

Ms(FP
−1) = Ms(F )Ms(P

−1) = Ms(F )(Ms(P ))−1 = Ms(F )
1

detP
Kd−s(P )T.

Evaluating the IJ component of this identity we get

Ms(FP
−1)IJ =

1

detP

∑

K

Ms(F )IKKd−s(P )JK =
detH

detP
. (2.13)

This concludes the proof of Lemma 2.4.

Remark 2.5 Using the notations of the previous proof, we may formulate the estimate

in Lemma 2.1 in a clearer and stronger way. In fact, G(P ) is a composition of curlP

and of the mapping M2(P
−1) which acts on bilinear forms on R

d. Using M2(P
−1)−1 =

M2(P ) = detP Kd−2(P
−1)T, we obtain the estimates

|G(P )| ≥ cd
|curlP |

|M2(P−1)−1| = cd
|curlP |
|M2(P )| = cd

|curlP |
|detP | |Kd−2(P−1)| .

Since |M2(P )| ≤ C|P |2 we obtain (2.6). For d = 2 we have Kd−2(P ) = K0(P ) = 1 and

for d = 3 we have Kd−2(P ) = K1(P ) = SPS with S = diag(1,−1, 1). This gives (2.7).

We are now able to formulate the main lower semicontinuity result.

Proposition 2.6 Assume that there exists a normal integrand g : Ω × R
ν → R ∪ {∞}

such that g(x, ·) : R
ν → R∪{∞} is convex and lower semicontinuous and that the density

U of I takes the form

U(x, Fel, P, G) = g(x,M1,...,d(Fel),M1,...,d(P ), G).

Assume that qϕ, qP , qC satisfy

d− 2

qP
+

1

qC
< 1,

1

qC
<

1

d
+

1

qP
, qP > d and qϕ > d. (2.14)

Then, the functional I defined in (2.1) is weakly lower semi-continuous on W1,qϕ(Ω; Rd)×
AqP ,qC

det (Ω), where AqP ,qC
det (Ω) := {P ∈ AqP ,qC(Ω) | detP = 1 a.e. in Ω } with the Banach

space

AqP ,qC(Ω) = {P ∈ LqP (Ω; Rd×d) | curlP ∈ LqC(Ω) }.

11



Proof: Consider a sequence (ϕ(k), P (k)) with

ϕ(k) ⇀ ϕ̃ in W1,qϕ(Ω; Rd),

P (k) ⇀ P̃ in LqP (Ω; Rd×d),

and curlP (k) ⇀ curl P̃ in LqC(Ω; Rd×d×d
anti ).

Lemma 2.3 guarantees

M1,...,d(P
(k)) ⇀ M1,...,d(P̃ ) in LqP /d(Ω),

G(k) = G(P (k)) ⇀ G(P̃ ) in Lq∗(Ω) for some q∗ > 1.

From Lemma 2.4 and the constraint detP (k) ≡ 1 we deduce that each component of

Ms(Dϕ
(k)(P (k))−1) is the determinant of a d × d matrix QI

J containing s rows of Dϕ(k)

and d − s rows of P (k). In particular, each row of QI
J is either curl-free or its curl is

bounded in LqC(Ω). Thus, we can apply Theorem B.2 with pj = min{qϕ, qP} and obtain

that Ms(Dϕ
(k)(P (k))−1) ⇀ Ms(Dϕ̃(P̃ )−1) in Lσs(Ω). Using the weak convergence of G(k)

and of the minors, we obtain the desired assertion from the convexity of g(x, ·).
Combining the coercivity result of Proposition 2.2 and the result on lower semiconti-

nuity of Proposition 2.6, the standard arguments for the direct method in the calculus of

variations (cf. [Dac89]) provides the following existence result.

Theorem 2.7 Let I be defined as in (2.1) and let U be given as in Proposition 2.6.

Moreover, let U satisfy the coercivity estimate (2.8) with

1

qF
+

1

qP
<

1

d
,

1

qG
+

min{2d−4, d}
qP

< 1 and
1

qG
+

min{d−3, 1}
qP

<
1

d
.

Let qC and qϕ be defined via 1
qC

= 1
qG

+ min{d−2,2}
qP

and 1
qϕ

= 1
qF

+ 1
qP

and let ` be any

continuous linear functional on W 1,qϕ(Ω; Rd), then the minimization problem

I(ϕ, P ) − 〈`, ϕ〉 → min
(ϕ,P )

(2.15)

has a solution (ϕ, P ) ∈ W1,qϕ(Ω; Rd) × AqP ,qC
det (Ω).

Proof: It remains to check that all the corresponding conditions on the exponents

qF , qP , qG, qϕ and qC are satisfied. The two conditions of Proposition 2.2 follow directly

from (2.15)1 and from (2.15)2 using d ≥ 2.

Using the definition of qC the first two conditions in (2.14) are equivalent to (2.15)2

and (2.15)3. The third condition qP > d follows from (2.15)1 and the fourth condition qϕ
is by definition equivalent to (2.15)1.

In the case d = 2 the conditions (2.15) take the simple form

d = 2 :
1

qF
+

1

qP
<

1

2
,

1

qG
< 1 and

1

qG
<

1

d
+

1

qP
.

By choosing qP larger but close to 2 and qF sufficiently large, it is possible to allow for

qG being as close to 1 as we like. For d = 3 the conditions take the form

d = 3 :
1

qF
+

1

qP
<

1

3
,

1

qG
+

2

qP
<

1

d
and

1

qG
<

1

3
.
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3 The incremental problems in

finite-strain elastoplasticity

In this section we want to show that the theory is general enough to allow for the solution

of incremental problems with an arbitrary number of time steps. Each time step consists

of a minimization problem as discussed above, however, it will depend on the solution of

the previous time level and we have to control all quantities such that there are no growth

terms with respect to the number of time steps.

We closely follow the approach described in [Mie04b] but the additional regularizing

term G(P ) allows us to treat much more general stored-energy densities W . For simplicity,

we use the additive form

W̃ (x, Fel, p, G) = Wel(x, Fel) +Whard(x, p) + V (x,G). (3.1)

As in [Mie03b, Mie04b] we use the dissipation distance on SL(d) × R
m in the form

D(x, (P0, p0), (P1, p0)) :=

inf{
∫ 1

0
δ(x, (P, p), (Ṗ , ṗ))dt | (P, p) ∈ C1([0, 1], SL(d) × R

m),

(P (j), p(j)) = (Pj, pj) for j = 0, 1 },
(3.2)

where δ : Ω × T(SL(d)×R
m) → [0,∞] is the dissipation potential. The basic properties

of D are the triangle inequality

D(x, (P1, p1), (P3, p3)) ≤ D(x, (P1, p1), (P2, p2)) +D(x, (P2, p2), (P3, p3))

and the plastic indifference

D(x, (P1P∗, p1), (P2P∗, p2)) = D(x, (P1, p1), (P2, p2)),

for all p1, p2, p3 ∈ R
m and P∗, P1, P2, P3 ∈ SL(d).

As an auxiliary object we will need the function H which shows the combined effect

of dissipation and energy storage due to hardening:

H(x, P ; pold) := min
p∈Rm

Whard(x, p) +D(x, (1, pold), (P, p)). (3.3)

Here we assume that p 7→ Whard(x, p) + D(x, (1, pold), (P, p)) is coercive such that the

minimum H is attained for some p ∈ R
m.

Our assumptions concern measurability, coercivity and convexity of the functions

Wel, V and H only.

(A1) Wel, V and H are normal integrands.

(A2) There exist exponents qF , qG and qP > 1 and constants C, c > 0 such that

Wel(x, Fel) ≥ c|Fel|qF−C, V (x,G) ≥ c|G|qG−C, H(x, P ; p) ≥ c(|P |qP +|P−1|qP )−C
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for all x, Fel, G, P and p.

(A3) EachWel(x, ·) is polyconvex, each V (x, ·) is convex, and eachH(x, ·; p) is polyconvex.

In addition to these constitutive assumptions we impose time-independent Dirichlet

data ϕDir on ΓDir ⊂ ∂Ω where ΓDir 6= ∅ and we impose a time-dependent loading via a

volume force fvol and a surface force fsurf on ΓNeu = ∂Ω\ΓDir, i.e.,

〈`(t), ϕ〉 :=
∫
Ω
fvol(t, x) · ϕ(x)dx +

∫
ΓNeu

fsurf(t, x) · ϕ(x)dx. (3.4)

The space F of admissible deformations ϕ is given via

F = {ϕ ∈ W1,qϕ(Ω) | ϕ = ϕDir on ΓDir },

where ϕDir ∈ W1,qϕ(Ω) is given and qϕ ∈ (d,∞) will be chosen later. The space Z of

internal states is defined via

Z := { (P, p) : Ω → SL(d) × R
m | p measurable, P ∈ LqP (Ω), curlP ∈ L1(Ω) }.

The energy functional E : [0, T ] ×F ×Z → R ∪ {∞} is defined via

E(t, ϕ, P, p) :=
∫

Ω
Wel(x,DϕP

−1) +Whard(x, p) + V (x,G(P ))dx− 〈`(t), ϕ〉

and the dissipation distance D : Z × Z → [0,∞] reads

D((P0, p0), (P1, p1)) :=
∫
Ω
D(x, (P0, p0), (P1, p1))dx. (3.5)

The elastoplastic incremental problem (IP) reads as follows:

(IP)

For a given partition 0 = t0 < t1 < . . . < tN−1 < tN = T and given initial

data (ϕ0, P0, p0) ∈ F × Z with E(t0, ϕ0, P0, p0) < ∞ find (ϕj, Pj, pj) ∈
F × Z incrementally for j = 1, 2, . . . , N as minimizer of the functional

Kj :

{
F × Z → R ∪ {∞},
(ϕ, P, p) 7→ E(tj, ϕ, P, p) + D((Pj−1, pj−1), (P, p)).

Theorem 3.1 Let d ≥ 2 and let the assumptions (A1), (A2) and (A3) hold with

1

qϕ
:=

1

qF
+

1

qP
<

1

d
,

1

qG
+

min{2d−4, d}
qP

< 1 and
1

qG
+

min{d−3, 1}
qP

<
1

d
. (3.6)

Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary, ` ∈ C1([0, T ], (W

1,qϕ
ΓDir

(Ω))∗),

(ϕ0, P0, p0) ∈ F × Z with E(0, ϕ0, P0, p0) < ∞ and P0 ∈ L∞(Ω; Rd×d). Then, there

exists a constant C∗ > 0, (IP) is solvable for all partitions of [0, T ] and all solutions

(ϕj, Pj, pj)j=1,...,N ∈ (F × Z)N satisfy the bound

‖ϕj‖1,qϕ + ‖Pj‖qP + ‖P−1
j ‖qP ≤ C∗ for j = 0, 1, . . . , N,

∑N
j=1 D((Pj−1, pj−1), (Pj, pj)) ≤ C∗.

(3.7)

14



Before going into the proof of this result we use the major advantage of the energetic

formulation that the associated incremental problem immediately supplies useful energy

estimates, see [Mie04c, Thm. 3.2]. In fact, if a solution (ϕj, Pj, pj) exists in the j-th step,

we may compare its minimization property with the competitor (ϕj−1, Pj−1, pj−1), which

leads to

E(tj, ϕj, Pj, pj) + D((Pj−1, pj−1), (Pj, pj)) ≤ E(tj, ϕj−1, Pj−1, pj−1)

= E(tj−1, ϕj−1, Pj−1, pj−1) −
∫ tj
tj−1

〈 ˙̀(s), ϕj−1〉ds.
(3.8)

Summing these estimates over j = 1, . . . , n ≤ N gives

D((P0, p0), (Pn, pn)) ≤
∑n

j=1 D((Pj−1, pj−1), (Pj, pj))

≤ E(0, ϕ0, P0, p0) − E(tn, ϕn, Pn, pn) −
∑n

j=1

∫ tj
tj−1

〈 ˙̀(s), ϕj−1〉ds.
(3.9)

We will use these general estimates to derive a priori estimates for the solutions of (IP).

Proof: We first show by induction that (ϕj, Pj, pj) ∈ F ×Z with D((P0, p0), (Pj, pj)) <

∞ exists. This holds for j = 0 by the assumptions. In each step j = 1, . . . , N we have to

minimize the functional Kj : F × Z → R ∪ {∞} with

Kj(ϕ, P, p) =
∫
Ω
fj(x,Dϕ, P, p, curlP )dx− 〈`(tj), ϕ〉.

Since p appears only locally in the integral (i.e., the integrand at x depends on p only

through p(x)) we may minimize with respect to p under the integral, i.e. inf Kj(ϕ, P, p) =

inf Ij(ϕ, P ) where

Ij(ϕ, P ) =
∫
Ω
Uj(x,Dϕ, P,G(P ))dx− 〈`(tj), ϕ〉

with

Uj(x, F, P,G) = Wel(x, FP
−1) +H(x, PP−1

j−1(x); pj−1(x)) + V (x,G).

Our assumption (A1) shows that Uj is a normal integrand. Moreover, by (A3) it has the

form of U imposed in Proposition 2.6 (polyconvexity in Fel and P and convexity in G).

Note that P 7→ H(x, PP−1
∗ ; p) is still polyconvex since Ms(PP

−1
∗ ) = Ms(P )Ms(P

−1
∗ ) and

since P∗ is fixed.

Finally, (A2) provides the necessary coercivity via

Uj(x, Fel, P, G) = Wel(x, Fel) +H(x, PP−1
j−1(x); pj−1(x)) + V (x,G)

≥ c|Fel|qF−C +H(x, PP−1
0 (x); p0(x)) −D(x, (P0, p0), (Pj−1, pj−1)) + c|G|qG−C

≥ c(|Fel|qF +|P |qP +|P−1|qP +|G|qG) − gj(x),

(3.10)

where gj ∈ L1(Ω) because of P0 ∈ L∞(Ω) and D((P0, p0), (Pj−1, pj−1)) < ∞ by the

induction hypothesis.

Thus, our existence result in Theorem 2.7 can be applied and the existence of solutions

for (IP) is established. To derive the a priori estimates let ej = E(tj, ϕj, Pj, pj), fj =

‖ϕj‖1,qϕ, δj = D((P0, p0), (Pj, pj)) and

Λ(0) = max{ ‖`(t)‖(W1,qϕ )∗ | t ∈ [0, T ] }, Λ(1) = max{ ‖ d
dt
`(t)‖(W1,qϕ )∗ | t ∈ [0, T ] }.
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Thus, eqn. (3.9) takes the form

en + δn ≤ e0 +
∑n

j=1(tj−tj−1)Λ
(1)fj−1. (3.11)

On the other hand, from (2.4), (2.5), and (3.10) we obtain

en + δn ≥ c
(
‖DϕnP−1

n ‖qFqF +‖Pn‖qPqP
)
− C|Ω| − 〈`(tn), ϕn〉

≥ c̃‖Dϕn‖qϕqϕ − C̃ − Λ(0)‖ϕn‖1,qϕ.
(3.12)

Since qϕ > d and ΓDir 6= ∅ the Poincaré inequality ‖φ‖qϕ ≤ C‖Dφ‖qϕ and (3.12) imply

fn ≤ C0 + C1(en+δn). Inserting this into (3.11) we arrive at

en + δn ≤ e0 + Λ(1)TC0 + Λ(1)C1

∑n−1
j=0 (tj+1−tj)(ej+δj).

Now, the discrete Gronwall estimate provides the a priori bound en + δn ≤ C∗ where C∗

is independent of n and of the partition. Using this fact together with (3.10) we easily

obtain the first line of (3.7) (proceed as in Proposition 2.2). Using (3.9) again together

with fj ≤ C0 +C1(ej+δj) ≤ C0 +C1C∗ and eN ≤ C∗ we obtain the second line of (3.7).

4 Examples

It remains to provide realistic examples which satisfy all the assumptions of the theorem.

For the elastic stored-energy density Wel we may take any polyconvex function which

grows sufficiently fast. For instance, we may choose

Wel(Fel) =

{
c1|Fel|α + c2

(det Fel)β for detFel > 0,

∞ else.
(4.1)

However, every polyconvex function may be used, as long as the coercivity estimate

Wel(x, Fel) ≥ c|Fel|α−C holds.

The construction of a suitable dissipation mechanism is more difficult, since there are

not many cases where D can be calculated from the dissipation potential δ, see [Mie03b].

One good case is that of isotropic hardening with a scalar hardening parameter p ∈ [0,∞).

We let

δ(x, (P, p), (Ṗ , ṗ)) =

{
|1
2

[
ṖP−1+(ṖP−1)T

]
| for ṗ ≥ |1

2

[
ṖP−1+(ṖP−1)T

]
|,

∞ else,

which leads to the dissipation distance

D(x, (P0, p0), (P1, p1)) = D̂(P1P
−1
0 , p1−p0) with

D̂(P, p) =

{ ∣∣log(PTP )1/2
∣∣ for p ≥

∣∣log(PTP )1/2
∣∣ ,

∞ else.

(4.2)
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This formula was established in Corollary 6.2 of [Mie02].

Choosing an arbitrary monotone hardening potential Whard : [0,∞) → [0,∞), we find

H(P ; p0) = Φ(p0 +
∣∣log(PTP )1/2

∣∣) − p0 with Φ(ρ) = Whard(ρ) + ρ.

Note that H(·; p0) : SL(d) → R is an isotropic tensor function which can be expressed in

terms of the singular values ν ∈ (0,∞)d of P , i.e., P = Q1diag(ν)Q2 with Q1, Q2 ∈ SO(d).

In particular, we have

|P | = (trPTP )1/2 = |ν|, |P−1| = | 1
ν
| := |( 1

ν1
, . . . , 1

νd
)|,∣∣log(PTP )1/2

∣∣ = |log ν| = |(log ν1, . . . , log νd)|.
(4.3)

Because of the constraint detP =
∏d

j=1 νj = 1 we may parametrize the singular values

with d− 1 parameters:

d = 2 : ν = (µ, 1/µ) with µ ∈ [1,∞),

d = 3 : ν = (µ1, µ2/µ1, 1/µ2) with 1 ≤ √
µ1 ≤ µ2 ≤ µ2

1.

Proposition 4.1 Let d ≥ 2. Then, the function H(·; p0) satisfies the coercivity estimate

H(P ; p0) ≥ c|P |qP + c|P−1|qP − C if and only if Φ satisfies

Φ(ρ) ≥ ĉ eρ qP /βd − Ĉ where βd = (d/(d−1))1/2

for some ĉ, Ĉ > 0.

For d = 2, the function H(·, p0) is polyconvex for all p0 ≥ 0 if and only if Φ′(ρ) ≥ 0

and Φ′′(ρ) ≥ eρ−1
2(eρ+1)

Φ′(ρ) for all ρ ≥ 0.

Remark 4.2 For d = 2 it suffices to choose Φ such that Φ′′ ≥ 1
2
Φ′ ≥ 0, for instance

Φ(ρ) = eγρ with γ ≥ 1/2. We conjecture that polyconvexity also holds for d = 3 when

using the function Φ(ρ) = eκρ with κ ≥ 1. The function
{

V̂3 → R,

µ 7→ eκ((log µ1)2+(log(µ2/µ1))2+(log µ2)2)1/2

,

where V̂3 = {µ ∈ (0,∞) | 1 ≤ √
µ1 ≤ µ2 ≤ µ2

1 }, is monotone in each µj but it is not

convex. Thus, the necessary conditions of Proposition 6.3 in [Mie03c] are satisfied. There

it is also shown that convexity is not necessary.

Proof: For σ ∈ R
d−1 we have the estimate

∑d−1
j=1 σj ≤

√
d−1|σ|. Thus, each s ∈ R

d with∑d
j=1 sj = 0 satisfies βdsmax = max{ sj | j = 1, . . . , d } ≤ |s| with βd = (d/(d−1))1/2. This

implies

log
(∑d

j=1 esj

)
≤ log (desmax) = smax + log d ≤ 1

βd
|s| + log d.

Now consider ν ∈ (0,∞)d with
∏d

j=1 νj = 1 in the form νj = esj/2 such that
∑d

j=1 sj = 0.

Hence, we can estimate

∣∣log 1
ν

∣∣ = |log ν| = 1
2
|s| ≥ βd

2
log
(∑d

j=1 esj

)
− βd

2
log d = βd

(
log |ν| − 1

2
log d

)
.
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Together with (4.3) we conclude that exponential growth of Φ implies the desired polyno-

mial growth of H(·; p0). The necessity follows by testing with P = diag(µ1, µ2, µ2, . . . , µ2)

where µ2 = µ
−1/(d−1)
1 .

For the case d = 2 we can use the necessary and sufficient condition for polyconvexity

in the incompressible case which is given in Theorem 6.1 in [Mie03c]. With the above

notation for µ ∈ [1,∞) a smooth function ψ : [1,∞) → R generates a polyconvex function

P 7→
{
ψ(µ) if P = Q1diag(µ, 1/µ)Q2

∞ else,

if and only if ψ is nondecreasing and satisfies µ(µ2+1)ψ′′(µ) + 2ψ′(µ) ≥ 0 for µ ≥ 1.

Inserting ψ(µ) = Φ(p0+2 logµ) and imposing the conditions for all p0 ≥ 0 and µ ≥ 1

gives the desired result.

For d = 2 we are now able to choose Wel, V and Whard such that Theorem 3.1 is

applicable. Choose Wel as in (4.1) and D as in (4.2). Moreover, let Whard(p) = eγp − p,

then we have

qF = α and qP = γβd.

The exponent qG can be chosen independently. Thus, it is easy to satisfy the conditions

(3.6) which reduce to

1

α
+

1

γ
√

2
<

1

2
and

1

qG
<

1

2
+

1

γ
√

2
.

For d = 2 this implies the desired existence result. For the case d = 3 a similar result will

hold, if the conjectured polyconvexity in Remark 4.2 can be established.

5 General dimensions

To emphasize the underlying structure we show that the results in Section 2 can be

easily extended to arbitrary dimensions. We first review the definition of the geometric

dislocation tensor G. As in [CG01] we distinguish between a material point x ∈ R
d and the

tangent space at x, in order to capture the incompatibility of Fpl = P . In other words, we

work with the tangent bundle TR
d = R

d×R
d rather than with R

d. Still following [CG01]

we consider three configurations: the reference configuration, the lattice configuration and

the deformed configuration. The mapping from the reference configuration to the lattice

configuration is given by

π : TR
d → TR

d; π(x, v) = (x, Pv),

while the mapping from the lattice configuration to the deformed configuration is given

by

ε : TR
d → TR

d; ε(x, w) = (x, Felw).
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Their composition gives the usual map from the reference to the deformed configuration

(now extended to the tangent bundle), i.e.,

ε ◦ ψ = dy, where dy(x, v) = (y(x),Dy(x)v).

We now consider the vector-valued one-form α in the reference configuration defined by

α(x)(v) = P (x)v.

If Γ is a closed curve which is the boundary of a surface S, the incompatibility of F is

measured by the continuous analogue of Burger’s vector, namely

∫

Γ

α =

∫

S

dα,

where we used Stokes’ theorem. Hence dα measures the incompatibility per unit reference

area. To obtain a measure per unit area in the lattice configuration we simply consider

the pull-back γ of dα under the map π−1, i.e.,

γ(x)(w1, w2) = (π−1)#dα(x)(w1, w2) := dα(x)(F−1
pl w1, F

−1
pl w2).

This definition corresponds to the definition of G(P ) in Section 2, since dα is curlP :

γ(x)(w1, w2) = G(P )[w1, w2] = curlP [P−1w1, P
−1w2].

However, the abstract formulation using γ shows more easily that γ is invariant under

a change of reference configuration and under composition of y with a compatible map

from the left, cf. [Par95, PŠ99].

The advantage of the abstract form is even clearer for our main result which establishes

weak continuity of γ = G(P ) as a function of P = Fpl. With the following result we

complete the proof of Lemma 2.3(b) for the case d ≥ 4.

Proposition 5.1 Suppose that 1
q∗

:= 1
qC

+ d−2
qP

< 1 and that

P (k) ⇀ P̃ in LqP (Ω) and curlP (k) ⇀ Ã in L1(Ω). (5.1)

Then,

γ(k) = G(P (k)) ⇀ γ = G(P̃ ) in Lq∗(Ω). (5.2)

Proof: Let I be a multi-index of length d − 2 and let dxI = dxi1 ∧ . . . ∧ dxid−2 . It

suffices to study γ(k) ∧ dxI for all multi-indices I. We fix one such index and denote by

γ(k), α(k) = curlP (k) and π(k) the mappings associated with P (k) as defined above. Since

detP (k) = 1 we have

γ(k) ∧ dxI = π
(k)
# γ(k) ∧ π(k)

# dxI = dα(k) ∧ π(k)
# dxI .
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Using the Helmholtz decomposition P (k) = Dψ(k) + Q(k), where Q(k) converges strongly

in Lq(Ω) for all q < qP , we get

γ(k) ∧ dxI = dαk ∧ (Dψ(k) +Q(k))#dx
I .

Expanding the pull-back and using dxi(Dψ(k)v) = dψ
(k)
i (v) we see that the above expres-

sion is a sum of terms of the form

dα(k) ∧ dψ(k)
j1

∧ . . .∧ dψ(k)
jd−2

or dα(k) ∧ dψ(k)
j1

∧ . . . ∧ dψ(k)
js ∧ (conv. seq. in Lq/(d−2−s)(Ω)),

where s < d−2 and where j1, . . . , js is a subset of the multi-index I. Now, a wedge product

of differentials is a sum of determinants and thus weakly continuous in the natural spaces

(for a statement in the language of differential forms see e.g. [Iwa98, Thm. 6.1]). This

concludes the proof.

Finally we show how the special forms (2.2) and (2.3) for G(P ) in dimensions d = 2

and 3 are obtained by the usual identifications. Here we return to the notations used in

Section 2.

In R
3 we denote by { ei | i = 1, 2, 3 } the standard Euclidean basis and by 〈·, ·〉 the

scalar product. Then for G = G(P ) the three two-forms g(i) = 〈ei, G[·, ·]〉 can be expressed

through vector products via suitable vectors ĝ(i) ∈ R
3. Moreover, curl3 acts as “∇×” on

vector fields h : Ω ⊂ R
3 → R

3. This gives

〈ei, G[a, b]〉 = 〈ĝ(i), a×b〉 and 〈curl3 h, a×b〉 = Dh[a]b− Dh[b]a for all a, b ∈ R
3.

Thus, we obtain

〈ei, G[a, b]〉 = 〈curl3(P
Tei), (P

−1a)×(P−1b)〉 = 〈curl3(P
Tei),

1
detP

PT(a×b)〉
= 〈 1

detP
P curl3(P

Tei), a×b〉 = 〈ĝ(i), a×b〉,

where we used the identities (P−1a) × (P−1b) = cof P−1(a× b) and cof(P−1) = 1
detP

PT.

Recall that curl3 also acts on matrices row by row, such that

curl3 P = (curl3(P
Te1)| curl3(P

Te2)| curl3(P
Te3))

T ∈ R
3×3.

Thus, Ĝ = Ĝ3(P ) ∈ R
3×3 defined in (2.3) consists exactly of the rows ĝT

(i), and the

identification is done.

The case d = 2 is even easier. Each two-form on R
2 is a scalar multiple of the

determinant, i.e., [a, b] 7→ det(a|b). A simple calculation gives

eTi G[a, b] = curl2(P
Tei) det(P−1a|P−1b) =

1

detP
curl2(P

Tei) det(a|b),

where curl2 h = ∂1h2 − ∂2h1 denotes the two-dimensional curl. Identifying the two-form

with the multiple of det(a|b), we find (2.2).
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A Helmholtz decomposition

Proposition A.1 Assume that Ω ⊂ R
d is a bounded domain with Lipschitz boundary.

For all p ∈ (1,∞) the Helmholtz decomposition

u = gradψ + v, with div v = 0, ψ ∈ W1,p(Ω) and ∂ψ
∂ν

= 0 on ∂Ω,

defines bounded linear operators H1 : Lp(Ω; Rd) → W1,p(Ω); u 7→ ψ and H2 : Lp(Ω; Rd) →
Lp(Ω; Rd); u 7→ v.

Moreover, for each domain Ω̃ compactly contained in Ω there exists a positive constant

C (depending only on p,Ω and Ω̃), such that for all u with curl u ∈ Lp(Ω; Rd×d
anti ) we have

‖H2u‖1,p,eΩ ≤ C
(
‖u‖p,Ω + ‖curl u‖p,Ω

)
. (A.1)

Furthermore, for a sequence uk with uk ⇀ u in Lp(Ω; Rd) and curl uk bounded in

L1(Ω; Rd×d
anti ) we have H2uk → H2u (strongly) in Lq(Ω; Rd) for each q ∈ [1, p).

Proof: The first part of the result is standard, see e.g. [vW90, SS92].

For the second part we use a localization technique. Choose a function χ ∈ C∞
c (Ω) with

χ|eΩ ≡ 1 and define the multiplication-extension operatorMχ : Lp(Ω; Rd) → Lp(Rd,Rd); v 7→
χv. Using that v = H2u satisfies div v ≡ 0 we have

curl(Mχv) = w, div(Mχv) = ρ (A.2)

with ‖w‖p,Rd + ‖ρ‖p,Rd ≤ (1+‖Dχ‖∞)
[
‖v‖p,Ω + ‖ curl v‖p,Ω

]
. Employing the Lp multiplier

theory on the full space R
d, the solution Mχv of (A.2) satisfies the a priori estimate

‖D(Mχv)‖p,Rd ≤ cd
[
‖w‖p,Rd + ‖ρ‖p,Rd

]
,

where cd depends only on the dimension. Combining these estimates and using Mχv|eΩ =

v|eΩ, estimate (A.1) is established with C = 1 + (1+‖Dχ‖∞)cd.

To prove the last assertion we use again (A.2). From this we deduce that there

exist matrix-valued kernels K(z) and L(z) which are homogeneous of degree −(d−1) in

z ∈ R
d\{0} and smooth on the unit sphere such that

Mχv
(k)(x) =

∫

Rd

(
K(x−y)w(k)(y) + L(x−y)ρ(k)(y)

)
dy.

Since w(k) and ρ(k) are bounded in L1(Ω) it follows that Mχv
(k) is compact in L1(Ω). Since

vk ⇀ v in Lp(Ω) by linearity and continuity of H2, we deduce that vk → v in L1(Ω̃) for

each compactly contained subset Ω̃. Now we choose q ∈ [1, p) and let r = qp
p−q

> 1 and

θ = p−q
q(p−1)

∈ (0, 1]. Using ‖vk − v‖p ≤ C∗ and Hölder’s inequality we find

‖vk − v‖q,Ω ≤ ‖vk − v‖q,eΩ + ‖vk − v‖q,Ω\eΩ

≤ ‖vk − v‖θ
1,eΩ

‖vk − v‖1−θ

p,eΩ
+ ‖1‖r,Ω\eΩ‖vk − v‖p,Ω\eΩ

≤ ‖vk − v‖θ
1,eΩ

C1−θ
∗ + vol(Ω\Ω̃)1/r C∗.

Making vol(Ω\Ω̃) small first and making k large second, the strong convergence vk → v

in Lq(Ω) follows.
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B Weak convergence results

We assume that Ω ⊂ R
d is a bounded domain with Lipschitz boundary.

Theorem B.1 ([Mur78, Thm. 2] div–curl lemma) Let p, q, σ satisfy 1
σ

= 1
p

+ 1
q
< 1.

If the sequences (fk)k∈N and (gk)k∈N satisfy

fk ⇀ f ∗ in Lp(Ω; Rd) and gk ⇀ g∗ in Lq(Ω; Rd) for k → ∞,

{ curl fk | k ∈ N } is bounded in Lp(Ω; Rd×d
anti ) and

{ div gk | k ∈ N } is bounded in Lq(Ω),

then fk · gk ⇀ f ∗ · g∗ in Lσ(Ω).

Murat shows convergence in the sense of distributions. Together with the Lσ bound this

yields weak convergence in Lσ.

Theorem B.2 (Weak convergence of subdeterminants) Assume 1 ≤ s ≤ d, pj > 1

for j = 1, . . . , s such that 1
σ

= 1
p1

+ · · ·+ 1
ps
< 1. Assume that the vector-valued functions

f
(k)
j : Ω → R

d satisfy, for each j = 1, . . . , s,

(1) f
(k)
j ⇀ f ∗

j in Lpj (Ω; Rd) for k → ∞,

(2) { curl f
(k)
j | k ∈ N } is bounded in Lqj(Ω; Rd×d

anti ), where 1
qj

≤ min{ 1
pj

+ 1
d
, 1}.

By F (k) and F ∗ denote the (d × s) matrix with columns (f
(k)
j )j=1,...,s and (f ∗

j )j=1,...,s,

respectively. Then, for the minors of order s we have

Ms(F
(k)) ⇀ Ms(F

∗) in Lσ(Ω) for k → ∞.

Proof: See for example [Iwa98, Thm. 6.1]. Iwaniec states the result in terms of differen-

tial forms. To make the connection it suffices to identify each of the Rd-valued functions

a(x) = f
(k)
j (x) with the one-form α =

∑d
i=1 aidx

i. Then the components of the exterior

derivative dα are exactly given by curl a. Iwaniec also considers only the case σ = 1 and

shows distributional convergence.

Alternatively one can reduce the above Theorem first to the standard situation involv-

ing minors of gradients by using the Helmholtz decomposition (see above) and expanding

the minors into the gradient part and the compact, divergence-free part. Then the theo-

rem follows by induction over the order of minors from the div-curl lemma, since minors

are divergence free (see e.g. [Dac89], Chapter 4, Thm. 2.6).
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