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1 Introduction

Rate-independent evolution models originate as limits of systems with strongly separated
time scales. Typically a system with fast internal time scales is driven by an external
loading on a much slower time scale. We want to describe the model on the latter slow
time scale, in which viscous transitions are seen as instantaneous jumps. However, effects
of dry friction, which are rate-independent, will lead to nontrivial continuous solution
behavior. The purpose of this work is to present a model which is able to account for
viscous as well as for dry-friction effects and is still rate-independent. We do this by
reparametrization of the slow time variable and thus blowing up the time scale in viscous
regimes.

Our theory is based on a purely energetic approach as introduced in [CoV90, MiT04,
MTL02]. This theory is rather flexible and allows us to deal with fully nonlinear, non-
smooth systems in the infinite dimensional setting, see [Mie05] for a recent survey. How-
ever for simplicity and clarity of this work, we restrict ourselves to the case that X is
a finite-dimensional Banach space. The evolution is defined via an energy functional
I : [0, T ]×X → R; (t, z) 7→ I(t, z), where t ∈ [0, T ] is the slow process time and z ∈ X is
the state of the system. Moreover, on the tangent space TX of X (which equals X×X in
our case) there is given a dissipation functional ∆ : TX → R, such that ∆

(
z(t), ż(t)

)
> 0

describes the dissipation (rate of dissipated energy). The energetic evolution law takes
the form

0 ∈ ∂ż∆
(
z(t), ż(t)

)
+ DzI

(
t, z(t)

)
a.e. on [0, T ] . (1.1)

Here we assume that ∆(z, ·) : X → [0,∞) is convex and

∂ż∆(z, v) =
{
σ ∈ X∗

∣∣∀w ∈ X : ∆(z, w) > ∆(z, v) + 〈σ, w − v〉
}
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is the subdifferential with respect to the second argument. Throughout this work we as-
sume that ∆(z, v) = ∆(v) which simplifies the presentation considerably. For a treatment
of the case that ∆ depends on the state z ∈ X and X is infinite dimensional but I(t, ·) is
convex, we refer to [MiR05].

Note that (1.1) contains gradient flows (viscous case) if we set ∆(v) = 1
2
〈Gv, v〉 for

some symmetric and positive definite G (Riemannian case). The rate independent case is
obtained if ∆ is homogenous of degree one, i.e. ∆(αv) = α∆(v) for all α > 0. In fact, many
of the existing rate-independent hysteresis models can be written in the form of (1.1), e.g.
Moreau’s sweeping processes [Mor77] or linearized elastoplasticity [Mor76, HaR95]. See
[KrP89, BrS96, Vis94] for the general theory on hysteresis. In most of these models
the energy functional I(t, ·) : X → R is quadratic and coercive or at least uniformly
convex. In that case (1.1) is in fact equivalent to the weaker energetic form introduced in
[MiT99, MiT04, MTL02]:

(S) Stability: For all t ∈ [0, T ] and all ẑ ∈ X we have

I
(
t, z(t)

)
6 I
(
t, ẑ
)

+ ∆
(
ẑ − z(t)

)
.

(E) Energy inequality: For t1 6 t2 we have

I
(
t2, z(t2)

)
+

∫ t2

t1

∆
(
ż(t)

)
dt 6 I

(
t1, z(t1)

)
+

∫ t2

t1

∂tI
(
t, z(t)

)
dt.

(1.2)

This energetic formulation consists of the standard energy inequality (E) and a purely
static stability condition (S): the gain in stored energy I

(
t, z(t)

)
− I
(
t, ẑ
)

is not allowed
to be larger than the energy ∆

(
ẑ − z(t)

)
lost by dissipation. In fact, if (S) and (E) hold,

then (E) holds in fact with equality, see Lemma 3.7 in [MiT04].
Of course, the energetic formulation (1.2) can also be used in cases where I(t, ·) is

nonconvex (see for example [Efe03, MiT04, Mie05, FrM05]), however this will lead to
solutions having jumps which may not correspond to the physically desired jumps. Instead
of jumps the real system would switch to viscous, rate-dependent behavior until it finds
a suitable nearby stable state again. Here we want to modify (1.1) and (1.2) in such a
way that the viscous transition path between two stable states is still captured. However,
we will not resolve the temporal behavior along this path and thus are able to obtain a
rate-independent model.

One way to obtain such a limit problem is by viscous regularization. We will deal
with viscous regularizations in Section 3. Indeed, assume that ∆ is homogenous of degree
one. Then, consider (1.1) with ∆ replaced by ∆ε : v 7→ ∆(v) + ε

2
‖v‖2, where ‖ · ‖ is any

norm on X. Standard theory provides solutions zε ∈W1,2
(
[0, T ], X

)
, and the question is

whether the limit z0(t) = limε→0 z
ε(t) exists and, if so, what limit equation z0 satisfies.

Since the limit will develop jumps in general, the model remains incomplete. Instead one
can ask for convergence of the graph

{(
t, zε(t)

) ∣∣ t ∈ [0, T ]
}

in the extended phase space
[0, T ]×X. An even stronger convergence is obtained by parametrizing this graph by arc
length

τ ε(t) = t +

∫ t

0

∥∥żε(s)
∥∥ds

and considering the rescaled functions

t̂ε(τ) =
(
τ ε
)−1

(τ) and ẑε(τ) = zε
(
t̂ε(τ)

)
.
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By construction we now have ˙̂tε(τ)+
∥∥ ˙̂z

ε
(τ)
∥∥ ≡ 1 and, after choosing a subsequence, limit

functions t̂ = t̂0 and ẑ = ẑ0 exists, which are again Lipschitz continuous. In Section 3 we
show that these limits satisfy the following limit equation: for a.a. τ ∈ [0, T̂ ] holds

0 ∈ ∂∆‖·‖
(

˙̂z(τ)
)

+ DzI
(
t̂(τ), ẑ(τ)

)
,

1 = ˙̂t(τ) +
∥∥ ˙̂z(τ)

∥∥,
t̂(0) = 0, t̂

(
T̂
)

= T, ẑ(0) = z0;

(1.3)

where T̂ = limε→0 τ
ε(T ) and

∆‖·‖(v) =

{
∆(v) for ‖v‖ 6 1,

∞ for ‖v‖ > 1.
(1.4)

Here regions with ˙̂t(τ) ≡ 0 correspond to viscous slip while ˙̂t(τ) ∈ (0, 1) means motion

under dry friction and ˙̂t(τ) ≡ 1 corresponds to sticking
(

˙̂z(τ) ≡ 0
)
. In Section 2 we will

derive our model (1.3) as a weak form of (1.1). We argue that (1.3) is equivalent to (1.1)

under the assumption that
∥∥ ˙̂z(τ)

∥∥ < 1 for almost all τ ∈ [0, T̂ ] (that means no viscous
slips occur).

In the series of papers [MMG94, MSGM95, GMM98, PiM03, MMP05] similar ap-
proaches were developed to resolve discontinuities in rate-independent systems. In par-
ticular, a similar time reparametrization was introduced and our limit problem, which is
formulated in the arc-length parametrization, has close relations to the dissipative graph
solutions in [MSGM95]. However, the regularization there does not use viscous friction
but rather kinetic terms giving rise to forces via inertia. In [MMP05] a situation with
quadratic and convex energy was considered and convergence of the regularized solutions
to the rate-independent limit solution, which is Lipschitz continuous in time, is estab-
lished.

Additionally we will show that a time-incremental problem can be used to find solu-
tions of (1.3). The time discretization replaces the need of the regularization via ε

2
‖v‖2.

Choosing N ∈ N and h = T̂ /N we define τj = jh. The time-incremental problem reads:

Problem 1.1 Let t̂0 = 0 and ẑ0 = z0. For j = 1, . . . , N find ẑj with

ẑj ∈ argmin
{
I
(
t̂j−1, ẑ

)
+ ∆

(
ẑ − zj−1

) ∣∣ ∥∥ẑ−zj−1

∥∥ < h
}

(1.5)

and then let t̂j = t̂j−1 + h−
∥∥ẑj−ẑj−1

∥∥.

In Section 4 we will show that a subsequence of the linear interpolants associated with
the solutions of (1.5) also converges to a solution of (1.3). We cannot expect convergence
of the full sequence, since problem (1.3) may have several solutions. Hence, different
subsequences may have different limits.

One special problem in establishing (1.3) is that from the weak convergence of the
approximate solutions, obtained by viscous regularization or time discretization, we only
obtain the inequality

1 > ˙̂t(τ) + ‖ ˙̂z(τ)‖ =: λ(τ) for a.a. τ ∈ [0, T̂ ] (1.6)
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for the limit function (t̂, ẑ). In Example 4.4 we show that strict inequality can occur.
For obtaining solutions to (1.3) there are two ways. First, we establish under rather

mild assumptions (see Condition 2.5), that λ(τ) > c∗ > 0 a.e. in [0, T̂ ]. By a suitable
reparametrization it is then possible to find a solution to (1.3). Second, we provide a re-
strictive compatibility condition between ∆ and ‖·‖ (see Condition 3.4) which guarantees
that any limit function (t̂, ẑ) automatically satisfies (1.6) with equality, i.e., reparametriza-
tion is not necessary.

Acknowledgments: This research was supported by the German Research Foundation
DFG within the Collaborative Research Center SFB 404 “Mehrfeldprobleme in der Kon-
tinuumsmechanik”, subproject C7, at Universität Stuttgart and by the European Union
under HPRN-CT-2002-00284 “Smart Systems”. AM is grateful to Florian Schmid and
João Martins for fruitful discussions.

2 Formulation of the problem

Let X be a finite-dimensional Banach space. We denote by X∗ its dual space. Be-
fore formulating our basic task we start with some motivations. First, assuming I ∈
C1
(
[0, T ]×X,R

)
and that ∆ is convex and homogenous of degree 1, we aim at solving the

following problem:

Find z ∈W1,1([0, T ], X) such that

0 ∈ ∂∆(ż) + DzI(t, z) ⊂ X∗ and z(0) = z0 ∈ X .
(2.1)

Proposition 2.1 Let z ∈W1,1
(
[0, T ], X

)
be a solution of (2.1) and T̂ = T+

∫ T
0

∥∥ż(s)
∥∥ ds.

Then there exists a pair
(
t̂, ẑ
)
∈W1,∞([0, T̂ ],R×X

)
, such that for almost all (shortly a.a.)

τ ∈ [0, T̂ ] we have

0 ∈ ∂∆‖·‖
(

˙̂z(τ)
)

+ DzI
(
t̂(τ), ẑ(τ)

)
, (2.2)

1 = ˙̂t(τ) +
∥∥ ˙̂z(τ)

∥∥ , (2.3)

ẑ(0) = z0 , t̂(0) = 0 , t̂
(
T̂
)

= T , (2.4)

with
∥∥ ˙̂z(τ)

∥∥ < 1. Conversely, let a pair (t̂, ẑ) ∈W1,∞([0, T̂ ],R×X
)

be a solution of (2.2)–

(2.4) with
∥∥ ˙̂z(τ)

∥∥ < 1 for a.a. τ ∈ [0, T̂ ], then (2.3) guarantees that t̂ : [0, T̂ ]→ [0, T ] has

a continuous inverse τ : [0, T ] → [0, T̂ ] and that z : t 7→ ẑ
(
τ(t)

)
lies in W1,1

(
[0, T ], X

)

and solves (2.1).

Proof: Indeed, let z ∈W1,1
(
[0, T ], X

)
solve (2.1). For this z we define τ : [0, T ]→ [0, T̂ ]

via

τ(t) := t+

∫ t

0

‖ż(s)‖ ds and T̂ = τ(T ) .

We denote the inverse of τ by t̂ : [0, T̂ ]→ [0, T ] and define ẑ : [0, T̂ ]→ X via

ẑ(τ) := z
(
t̂(τ)

)
.
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Obviously t̂ ∈W1,∞([0, T̂ ],R
)
, ẑ ∈W1,∞([0, T̂ ], X

)
with

∥∥ ˙̂z(τ)
∥∥ < 1 and ˙̂t(τ)+

∥∥ ˙̂z(τ)
∥∥ = 1

for a.a. τ ∈ [0, T̂ ]. Moreover (t̂, ẑ) satisfies

0 ∈ ∂∆

(
1

˙̂t(τ)

˙̂z(τ)

)
+ DzI

(
t̂(τ), ẑ(τ)

)
,

with t̂(0) = 0 and ẑ(0) = z0. Taking into account that ∂∆ : X → X∗ is homogenous of
order 0 and that

∥∥ ˙̂z(τ)
∥∥ < 1 for a.a. τ , we obtain

0 ∈ ∂∆‖·‖
(

˙̂z
)

+ DzI
(
t̂(τ), ẑ(τ)

)
for a.a. τ ,

where ∆‖·‖ : X → [0,∞) is defined via (1.4).

Conversely let a pair (t̂, ẑ) be any solution of (2.2)–(2.4) with
∥∥ ˙̂z(τ)

∥∥ < 1 for a.a. τ .

We set T = t̂(T̂ ) and define τ(t) as the inverse of t̂ : [0, T̂ ] → [0, T ], which exists due to
(2.3). Then it is not difficult to see that z ∈ W 1,1

(
[0, T ], X

)
, defined via z(t) := ẑ

(
τ(t)

)
,

satisfies (2.1). This proves Proposition 2.1.

Obviously, (2.2)–(2.4) is a more general problem than (2.1), since equivalence (due
to Proposition 2.1) is only obtained in regions where

∥∥ ˙̂z(τ)
∥∥ < 1 for a.a. τ . Further on

we will consider a new model, namely (2.2)–(2.4) without the restriction
∥∥ ˙̂z(τ)

∥∥ < 1. In

particular, regions with
∥∥ ˙̂z(τ)

∥∥ = 1 correspond to fast motion which is much faster than

the process time which is encoded in ˙̂t(τ) = 1 −
∥∥ ˙̂z(τ)

∥∥ = 0. Note that this situation
corresponds to the rescaled gradient flow at fixed process time. Indeed, to illustrate this,
let us consider the following example:

Example 2.2 Assume that X = Rn and that ‖ · ‖ is the Euclidean norm. Moreover for
some δ > 0 we choose ∆(w) = δ‖w‖. Then, we have

∂∆‖·‖(w) =





{ η | ‖η‖ 6 δ } for w = 0 ,
δ
‖w‖ w for 0 < ‖w‖ < 1 ,

{αw | α > δ } for ‖w‖ = 1

∅ for ‖w‖ > 1 .

For a solution ẑ of (2.2) assume that
∥∥ ˙̂z(τ)

∥∥ = 1 for τ ∈ [τ1, τ2]. Then ˙̂t(τ) = 1−
∥∥ ˙̂z(τ)

∥∥ ≡
0 for τ ∈ [τ1, τ2], hence t̂(τ) ≡ t̂(τ1) =: t̂1, where t̂1 is a fixed value of the process time.
Hence, in this case (2.2) leads, for a.a. τ ∈ [τ1, τ2], to

0 = α(τ) ˙̂z(τ) + DzI
(
t̂1, ẑ(τ)

)

for some α(τ) ≥ δ, or equivalently to

˙̂z(τ) = β(τ) DzI
(
t1, ẑ(τ)

)
∈ Sn−1 = { z ∈ Rn | ‖z‖ = 1 } ,

with β(τ) = −1/α(τ). The latter is exactly the rescaled gradient flow at fixed process
time t̂1.
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Remark 2.3 The problem (2.2) is rate-independent in the following sense. If the original
functional I : [0, T ]×X → R is replaced by a time rescaled one J : [0, S]×X → R, i.e.
I(t, y) = J

(
s̃(t), y

)
for some strictly monotone function s̃ : [0, T ]→ [0, S] with s̃(T ) = S,

then the rescaled problem (2.2)–(2.4) with I(t, z) replaced by J(s, y) has a solution
(
ŝ, ŷ
)

:

[0, Ŝ]→ [0, S]×X which is obtained from (t̂, ẑ) by rescaling as follows:

ŝ(σ) = s̃
(
t̂
(
τ̃ (σ)

))
and ŷ(σ) = ẑ

(
τ̃ (σ)

)
,

where τ̃ : [0, Ŝ]→ [0, T̂ ] is the rescaling of the arc length defined via

d

dσ
τ̃(σ) =

1

˙̃s
(
t̂(τ)

) ˙̂t(τ) +
∥∥ ˙̂z(τ)

∥∥

∣∣∣∣∣
τ = τ̃(σ)

.

Remark 2.4 We consider two solutions
(
t̂1, ẑ1

)
∈ W1,∞([0, T̂1

]
,R×X

)
and

(
t̂2, ẑ2

)
∈

W1,∞([T̂1, T̂
]
,R×X

)
of (2.2)–(2.4) on the intervals

[
0, T̂1

]
and

[
T̂1, T̂

]
, respectively. If

additionally t̂1
(
T̂1

)
= t̂2

(
T̂1

)
and ẑ1

(
T̂1

)
= ẑ2

(
T̂1

)
, then it is easy to see that the pair

(t̂, ẑ) : [0, T̂ ]→ R×X defined by

(
t̂(τ), ẑ(τ)

)
=

{(
t̂1(τ), ẑ1(τ)

)
for τ ∈

[
0, T̂1

]
,(

t̂2(τ), ẑ2(τ)
)

for τ ∈
[
T̂1, T̂

]
,

is a solution of (2.2)–(2.4) belonging to W1,∞([0, T̂ ],R×X
)
.

In the sequel we make the following assumptions on ∆(·) and I(t, ·).

Condition 2.5 Assume that ∆ : X → [0,∞) is convex, homogenous of degree 1 and
satisfies

C∆‖v‖X 6 ∆(v) 6 C−1
∆ ‖v‖X , (2.5)

for all v ∈ X. Moreover, we assume that I ∈ C1
(
[0, T ]×X,R

)
with I(t, z) > 0.

Subsequently, we assume that all our solutions are contained in a suitable large ball
BR(0) =

{
z ∈ X

∣∣ ‖z‖ 6 R
}

. We assume that the estimate
∣∣∂tI(t, z)

∣∣ 6 CI,
∥∥DzI(t, z)

∥∥ 6M, for all z ∈ BR(0). (2.6)

This will enable us to make most estimates more explicit.

Condition (2.6) is chosen here for convenience only. In light of the more geometric
formulation in [Mie05] it could be replaced by the more general condition

|∂tI(t, z)| + ‖DzI(t, z)‖ ≤M1

(
I(t, z) +M0

)
, for all (t, z) ∈ [0, T ]×X.

After these preliminaries we state our main existence result, which is proved in two
different ways in the subsequent sections.

Theorem 2.6 Let Condition 2.5 be satisfied. Then there exists T̂ > 0, such that problem
(2.2)–(2.4) admits at least one solution

(
t̂, ẑ
)
∈W1,∞([0, T̂

]
, R×X

)
.
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3 Convergence for the regularized problem

Here we study the limit passage for the viscously regularized problem. We define ∆ε(v) =
∆(v) + ε

2
‖v‖2 where ε > 0 is a small viscosity and ‖ · ‖ is again an arbitrary norm on X.

The regularized problem reads

z(0) = z0, 0 ∈ ∂∆ε
(
ż(t)

)
+ DzI

(
t, z(t)

)
, a.e. on [0, T ]. (3.1)

Since ∆ε(v) > ε
2
‖v‖2, we know from [CoV90] that (3.1) has a solution zε ∈W1,2

(
(0, T ), X

)

and it satisfies, for 0 6 s < t 6 T , the energy estimate

I
(
t, zε(t)

)
+

∫ t

s

∆ε
(
żε(r)

)
dr 6 I(s, zε(s)) +

∫ t

s

∂rI
(
r, zε(r)

)
dr. (3.2)

In fact, by convexity and ∆ε(0) = 0 we have ∆ε(v) 6 〈η, v〉 for each η ∈ ∂∆ε(v). Hence,
(3.1) implies ∆ε(żε(t)) + 〈DzI(t, zε(t)), żε(t)〉 6 0 and integration over [s, t] gives (3.2).

With (2.6) we find
∫ T

0
∆ε
(
żε(t)

)
dt 6 C, where C is independent of ε. Using ∆ε(v) >

∆(v) and (2.5) we conclude that

T̂ ε = T +
∫ T

0

∥∥żε(t)
∥∥dt

is bounded by T + C/C∆. Choosing a subsequence, we have T̂ ε → T̂ . We define the arc
length

τ ε(t) = t +

∫ t

0

∥∥żε(s)
∥∥ds

and the rescalings

t̂ε =
(
τ ε
)−1

, ẑε(τ) = zε
(
t̂ε(τ)

)
.

By definition
( ˙̂tε
)
(τ) +

∥∥ ˙̂z
ε
(τ)
∥∥ ≡ 1 which implies

(
t̂ε, ẑε

)
∈ CLip

(
[0, T̂ ε],R×X

)
with the

uniform Lipschitz constant 1. For notational convenience, we extend
(
t̂ε, ẑε

)
in the case

T̂ ε < T̂ on the interval [T̂ ε, T̂ ] with the constant value
(
t̂ε(T̂ ε), ẑε(T̂ ε)

)
, such that all

functions are defined on [0, T̂ ]. By the Arzela-Ascoli theorem (use dimX <∞), choosing

a further subsequence, we have uniform convergence on [0, T̂ ], i.e.

(
t̂ε, ẑε

)
−→

(
t̂, ẑ
)

in C0
(
[0, T̂ ],R×X

)
as ε→ 0. (3.3)

Theorem 3.1 Any limit function
(
t̂, ẑ
)

constructed above satisfies for a.a. τ ∈ [0, T̂ ] the
limit problem

0 ∈ ∂∆‖·‖
(

˙̂z(τ)
)

+ DzI
(
t̂(τ), ẑ(τ)

)
⊂ X∗ ,

1 > ˙̂t(τ) +
∥∥ ˙̂z(τ)

∥∥ , (3.4)

ẑ(0) = z0 , t̂(0) = 0 , t̂
(
T̂
)

= T .
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Proof: We note that
∥∥żε(t)

∥∥ is finite for a.e. t ∈ [0, T ]. For these t consider τ = τ ε(t),

then żε(t) =
1

1−
∥∥ ˙̂z

ε
(τ)
∥∥
(

˙̂z
ε)

(τ). Moreover, with

g(ρ) =

{
−ρ− log(1−ρ) for ρ ∈ [0, 1),

∞ for ρ > 1,

and ∆̂ε(v) = ∆(v) + εg
(
‖v‖
)

we find

∂∆ε
(
żε(t)

)
= ∂∆̂ε

(
˙̂z
ε
(τ)
)
.

Hence, the rescaled functions t̂ε, ẑε satisfy

0 ∈ ∂∆̂ε
(

˙̂z
ε
(τ)
)

+ DzI
(
t̂ε(τ), ẑε(τ)

)
, 1 = ˙̂tε(τ) +

∥∥ ˙̂z
ε
(τ)
∥∥.

Since
(
t̂ε, ẑε

)
converges uniformly on [0, T̂ ] and DzI is continuous, we know that

σε(τ) := −DzI
(
t̂ε(τ), ẑε(τ)

)

converges uniformly as well. Moreover, since dimX <∞, we have

(
˙̂z
ε) ∗
⇀ ˙̂z in L∞

(
[0, T̂ ], X

)
.

Using part (i) of the subsequent Lemma 3.5 we conclude that σ0 = limε→0 σ
ε = −DzI

(
t̂, ẑ
)

satisfies σ0 ∈ ∂∆‖·‖
(

˙̂z
)

which is the inclusion in first line of (3.4). The inequality on the

second line of (3.4) is an easy consequence of the weak–∗ convergence of
(
t̂ε, ẑε

)
.

As we will see in Section 4 the equality ˙̂t(τ) +
∥∥ ˙̂z(τ)

∥∥ = 1 for a.a. τ ∈ [0, T̂ ] does not
hold automatically. However, since our problem is rate-independent, we will show through
reparametrization of time, that

(
t̂, ẑ
)

can be transformed into a true solution
(
t̃, z̃
)
. In-

deed, for a solution
(
t̂, ẑ
)

of (3.4) define L(τ) :=
∫ τ

0

(
˙̂t(σ) +

∥∥ ˙̂z(σ)
∥∥
)

dσ. Reparametriza-

tion is possible if L is strictly increasing, which is a consequence of our assumptions.

Lemma 3.2 If Condition 2.5 holds, then there is c∗ > 0 such that for all limit functions

(t̂, ẑ) we have L̇(τ) = ˙̂t(τ) +
∥∥ ˙̂z(τ)

∥∥ ≥ c∗ a.e. on [0, T̂ ].

Proof: Using (2.5) and the energy inequality (3.2) we find

C∆

∫ t

s

‖żε(r)‖dr 6
∫ t

s

∆ε(żε(r))dr

6 I(s, zε(s))− I(t, zε(t)) +

∫ t

s

∂rI(r, zε(r))dr

6M‖zε(t)− zε(s)‖+ 2CI |t− s|
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Using the rescaling together with rate-independence of the left-hand side we find, for
0 6 τ1 < τ2 6 T̂ ,

∫ τ2

τ1

‖ ˙̂z
ε
(σ)‖dσ ≤ M

C∆
‖ẑε(τ2)− ẑε(τ1)‖+

2CI
C∆

∣∣∣t̂ε(τ2)− t̂ε(τ1)
∣∣∣.

Since by construction τ2 − τ1 = t̂ε(τ2)− t̂ε(τ1) +
∫ τ2
τ1
‖ ˙̂z

ε
(σ)‖dσ, we conclude

τ2 − τ1 6 C∗
(
t̂ε(τ2)−t̂ε(τ1) + ‖ẑε(τ2)−ẑε(τ1)‖

)
with C∗ = max{1+2CI/C∆,M/C∆}.

Using uniform convergence of (t̂ε, ẑε) to (t̂, ẑ) we pass to the limit ε→ 0 and find

τ2 − τ1 6 C∗
(
t̂ε(τ2)− t̂ε(τ1) + ‖ẑ(τ2)− ẑ(τ1)‖

)
for all 0 6 τ1 < τ2 6 T̂ .

This implies the desired result L̇(τ) = ˙̂t(τ) + ‖ ˙̂z(τ)‖ ≥ 1/C∗ =: c∗ a.e. on [0, T̂ ].

Denoting the inverse of L(τ) by L∨(θ), θ ∈ [0, L(T̂ )], we set t̃∗(θ) = t̂∗
(
L∨(θ)

)
, z̃∗(θ) =

ẑ∗ (L∨(θ)). Using L̇(τ) > 0 a.e., it is not difficult to see that

0 ∈ ∂∆‖·‖
(
L̇
(
L∨(θ)

)
˙̃z∗(θ)

)
+ DzI

(
t̃∗(θ), z̃∗(θ)

)
,

˙̃t∗(θ) +
∥∥ ˙̃z∗(θ)

∥∥ = 1 .
(3.5)

Simple analysis together with homogeneity of order zero of ∂∆ : X → X∗ and the fact
that ∂∆‖·‖(ξ) = ∂∆(ξ), for ‖ξ‖ < 1, yield

0 ∈ ∂∆‖·‖
(

˙̃z∗(θ)
)

+ DzI
(
t̃∗(θ), z̃∗(θ)

)
,

˙̃t∗(θ) +
∥∥ ˙̃z∗(θ)

∥∥ = 1 ,
(3.6)

for θ ∈
[
0, L

(
T̂
)]

. Using L̇(τ) > c∗ we have L(T̂ ) ≥ c∗T̂ , where c∗ does not depend on
initial data and Remark 2.4. Hence, we can extend

(
t̃∗, z̃∗

)
, which is a solution of (3.6)

on
[
0, L

(
T̂
)]

, to all of [0, T̂ ].

Corollary 3.3 Problem (2.2)–(2.4) admits at least one solution.

Using the following structural compatibility condition between ∆ and ‖ · ‖ we will
show that reparametrization is not necessary.

Condition 3.4 For all σ ∈ X∗ the norm ‖ · ‖ is affine when restricted to the set

M(σ) :=
{
v ∈ X | σ ∈ ∂∆‖·‖(v)

}
.

(It is easy to see that this assumption always holds when ∆ = δ‖ · ‖ for some δ > 0.)

To establish the following results we recall that the subgradients ∂∆‖·‖, ∂∆̂ε : X → 2X
∗

define (multi-valued) maximal monotone operators, see [EkT76, Zei90]. On the Hilbert

space H = L2
(
[0, T̂ ], X

)
the mapping ∂∆̂ε induces a maximal monotone operator Aε via

σ ∈ Aεv ⇔ σ(τ) ∈ ∂∆̂ε
(
v(τ)

)
for a.a. τ ∈ [0, T̂ ].

Similarly, define A0 using ∆‖·‖.
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Lemma 3.5 Let vε, σε ∈ H = L2
(
[0, T̂ ], X

)
with σε ∈ Aεvε. Moreover, assume σε → σ0

in C0
(
[0, T̂ ], X

)
and ‖vε‖L∞ 6 1 and vε ⇀ v0 in H. Then,

σ0 ∈ A0v0, (i)∥∥vε(·)
∥∥
X
⇀ n̂ in L2

(
[0, T ],R

)
with n̂ >

∥∥v0(·)
∥∥
X

. (ii)

If Condition 3.4 holds, then n̂ =
∥∥v0(·)

∥∥
X

. (iii)

Proof: In fact part (i) follows from the standard Browder-Minty theory together with
the convergence of Aε to A0 (see [Bre73, EkT76, Zei90]). However, since we also want
to establish (iii) we prove (i) also using Young measures. We consider the sequence

aε =
(
vε, σε

)
ε>0

in L2
(
[0, T̂ ], X×X∗

)
. With Gε =

{
(v, σ) ∈ X×X∗ | σ ∈ ∂∆̂ε(v)

}
we have

aε(τ) ∈ Gε ∩K for a.e. τ ∈ [0, T̂ ],

where K is a compact set in X×X∗. Hence, after choosing a subsequence aε gener-
ates an L∞-Young measure µ ∈ YM

((
0, T̂

)
, X×X∗

)
where µ(τ) ∈ Prob

(
X×X∗

)
(see

[Dac82, Rou97, Mie99, Mie04]). Because of distHausdorff

(
Gε, G0

)
→ 0 for ε → 0, we con-

clude µ(τ) ∈ Prob(G0). Moreover, ‖σε − σ0‖C0 → 0 implies that a.e. µ(τ) has the form
µ(τ) = ν(τ) ⊗ δσ0(τ), with ν(τ) ∈ Prob(X). Together with µ(τ) ∈ Prob(G0) this implies
ν(τ) ∈ Prob

(
M(σ0(τ))

)
where M(σ) is defined in Condition 3.4, i.e. M(σ) is the natural

projection of G0 ∩
(
X×{σ}

)
onto X.

Since A0 is maximal monotone, the sets M(σ) are closed and convex in X. By the
Young measure theory we have for vε ⇀ v0 and

∥∥vε(·)
∥∥⇀ n̂ the identities

v0(τ) =

∫

v̂∈X
v̂ ν(τ, dv̂) and n̂(τ) =

∫

v̂∈X
‖v̂‖ ν(τ, dv̂). (3.7)

Convexity of M(σ0) and ν(τ) ∈ Prob
(
M(σ0(τ))

)
imply v0(τ) ∈M(σ0) and hence σ0(τ) ∈

∂∆‖·‖
(
v0(τ)

)
. This proves part (i).

Part (ii) follows from (3.7) by Jensen’s inequality since ‖ · ‖X is convex.
To obtain part (iii) we note that on each set M(σ) the function ‖ · ‖X is affine, namely

we have
‖v‖ =

∥∥v0(τ)
∥∥ +

〈
σ0(τ), v − v̂0(τ)

〉
for all v ∈M

(
σ0(τ)

)
.

Integration with respect to the measure ν(τ) then gives

n̂(τ) =

∫

v∈X
‖v‖ν(τ, dv) =

∫

v∈X

(∥∥v0(τ)
∥∥+
〈
σ0(τ), v−v0(τ)

〉)
ν(τ, dv) =

∥∥v0(τ)
∥∥.

This proves Lemma 3.5.

Corollary 3.6 Let Condition 3.4 hold. Then any limit function
(
t̂, ẑ
)

constructed above
is a solution of (2.2)–(2.4) (i.e., reparametrization is not necessary).

Indeed, for this purpose we apply Lemma 3.5. In our case, Aε = ∂∆̂ε, A0 = ∂∆‖·‖, vε = żε

and the compatibility condition 3.4 allow us to pass to the limit in ṫε +
∥∥żε
∥∥ = 1.
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4 Time discretization

Here we provide a second alternative to obtain an approximate solution whose limit will
provide solutions for (2.2)–(2.4). This approach is close to the numerical treatment of the

rate-independent problem. Indeed, let 0 = τ0 < τ1 < . . . < τN = T̂ be any partition, with
τj − τj−1 = h, j = 1, . . . , N . Consider the following minimization problem:

Problem 4.1 For given t̂0 = 0, ẑ0 = z0 find pairs
(
t̂j, ẑj

)
∈ [0, T̂ ]×X, for j = 1, . . . , N ,

such that for all w ∈ X and with ‖w − ẑj−1‖ 6 h

I
(
t̂j−1, ẑj

)
+ ∆(ẑj − ẑj−1) 6 I(t̂j−1, w) + ∆(w − ẑj−1) (IP)

and t̂j := t̂j−1 + h−
∥∥ẑj − ẑj−1

∥∥, for j = 1, . . . , N .

For notational convenience, we use the following shorthand of (IP):

ẑj ∈ argmin
{
I
(
t̂j−1, w

)
+ ∆

(
w − ẑj−1

) ∣∣ ∥∥w − ẑj−1

∥∥ 6 h
}

= argmin

{
I
(
t̂j−1, w

)
+ h∆‖·‖

(
w − ẑj−1

h

) ∣∣∣∣ w ∈ X
}
,

where “argmin” denotes the set of minimizers.

Proposition 4.2 The problem (IP) always has a solution
(
t̂j, ẑj

)
j=1,...N

. Any solution

satisfies

(a) I
(
t̂j, ẑj

)
− I
(
t̂j−1, ẑj−1

)
+ ∆

(
ẑj − ẑj−1

)
6
∫ t̂j

t̂j−1

∂tI
(
σ, ẑj

)
ds ,

(b) 0 ∈ ∂∆‖·‖

(
ẑj − ẑj−1

h

)
+ DzI

(
t̂j−1, ẑj

)
,

(c)
t̂j − t̂j−1

h
+

∥∥ẑj − ẑj−1

∥∥
h

= 1 .

Proof: From I(t, z) > 0 it follows that

I
(
t̂j−1, w

)
+ ∆

(
w − ẑj−1

)
> C∆

∥∥w − ẑj−1

∥∥ .

Since the balls
{
w ∈ X

∣∣ ∥∥w− ẑj−1

∥∥ 6 h
}

are compact in X, and I and ∆ are continuous,
the existence of minimizers ẑj is classical. Next we prove part (a). Indeed, by construction,
for all

∥∥w − ẑj−1

∥∥ 6 h, we have

I
(
t̂j−1, ẑj

)
+ ∆

(
ẑj − ẑj−1

)
6 I
(
t̂j−1, w

)
+ ∆

(
w − ẑj−1

)
. (4.1)

Taking in (4.1) w = ẑj−1 we obtain

I
(
t̂j−1, ẑj

)
+ ∆

(
ẑj − ẑj−1

)
6 I
(
t̂j−1, ẑj−1

)
, (4.2)

or

I
(
t̂j, ẑj

)
− I
(
t̂j−1, ẑj−1

)
+ ∆

(
ẑj − ẑj−1

)
6 I
(
t̂j, ẑj

)
− I
(
t̂j−1, ẑj

)
, (4.3)
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which is estimate (a).
Part (b) is in fact a standard consequence of the fact that ẑj is a minimizer. Hence,

0 is in the subdifferential of any suitable version of the multivalued differentials, e.g. the
Clarke differential or the Mordukhovich differential, see e.g., Thm. 4.3 in [MoS95]. For
this purpose note that we minimize w 7→ ψ(w) + φ(w) where ψ : w 7→ I(t̂j−1, w) is a

C1 function and φ : w 7→ 1
h
∆‖·‖

(
w−bzj−1

h

)
is convex and lower semicontinuous. For the

readers convenience we give a short self-contained proof.
With ψ and φ defined as before, we use that ẑj minimizes the sum ψ + φ, i.e.,

0 6 A(v) = ψ(v)− ψ(ẑj) + φ(v + ẑj)− φ(ẑj) for all v ∈ X.

Since ψ is differentiable we may also consider

B(v) = 〈Dψ(ẑj), v〉+ φ(ẑj + v)− φ(ẑj).

Clearly, B(v) > 0 for all v ∈ X is equivalent to the desired relation (b). Now assume that
B attains a negative value, namely B(v0) < 0. By convexity we conclude B(θv0) ≤ θB(v0)
for θ ∈ [0, 1]. Using ψ ∈ C1(X,R) we easily find A(θv0) = B(θv0) + o(|θ|) for θ → 0. This
implies A(θv0) < 0 for 0 < θ � 1, which is a contradiction to A(v) > 0 for all v ∈ X.
Hence, we conclude B > 0 and (b) is proved.

The assertion (c) is an immediate consequence of the definition of
(
t̂j, ẑj

)
. This proves

Proposition 4.2.

Based on Proposition 4.2 we are in the position to construct an approximate solution
for (2.2)–(2.4). To this end, for τ ∈

(
τj−1, τj

]
, we define piecewise linear (“pl”) and

piecewise constant (“pc”) interpolants via

t̂ pl
h (τ) := t̂j−1 + (τ − τj−1)

t̂j − t̂j−1

τj − τj−1
, (4.4)

ẑ pl
h (τ) := ẑj−1 + (τ − τj−1)

ẑj − ẑj−1

τj − τj−1

, (4.5)

t̂ pc
h (τ) := t̂j , ẑ

pc
h (τ) := ẑj . (4.6)

Lemma 4.3 A pair
(
t̂ pl
h (τ), ẑ pl

h (τ)
)

satisfies

0 ∈ ∂∆·‖
(

˙̂z
pl

h (τ)
)

+ DzI
(
t̂ pc
h (τ), ẑ pc

h (τ)
)
, (4.7)

˙̂t pl
h (τ) +

∥∥ ˙̂z
pl

h (τ)
∥∥ = 1 (4.8)

on each τ ∈
(
τj−1, τj

)
, j = 1, . . . , N . Moreover we have

I
(
τk, ẑ

pl
h (τk)

)
+

∫ τk

τj

∆
(

˙̂z
pl

h (s)
)

ds

6 I
(
τj, ẑ

pl
h (τj)

)
+

∫ τk

τj

∂tI
(
t̂ pl
h (s), ẑ pc

h (s)
) ˙̂t pl
h (s) ds .

(4.9)
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Assertions (4.7) and (4.8) are the best discrete replacements of (2.2)–(2.4) for the time
continuous case.
Proof: Is is easy to see that (4.7) and (4.8) are an immediate consequence of Proposition
4.2(b) and (c). As to inequality (4.9) it is a consequence of the discrete energy inequality
4.2(a). Indeed, for 1 6 j < k 6 N it follows from (a) that

I
(
t̂k, ẑk

)
− I
(
t̂j, ẑj

)
+

k∑

m=j+1

∆
(
ẑm − ẑm−1

)
6

k∑

m=j+1

∫ t̂j

t̂j−1

∂tI
(
s, ẑj

)
ds . (4.10)

This can be rewritten as

I
(
t̂ pl
h (τk), ẑ

pl
h (τk)

)
− I
(
t̂ pl
h (τj), ẑ

pl
h (τj)

)
+
∑k

m=j+1 ∆
(
ẑ pl
h (τm)− ẑ pl

h (τm−1)
)

6
∫ τk
τj

∂
∂t
I
(
t̂ pl
h (σ), ẑ pc

h (σ)
) ˙̂t pl
h (σ) ds ,

which in turn leads to (4.9). This proves Lemma 4.3.

For notational convenience we write
(
t̂h, ẑh

)
instead of

(
t̂ pl
h , ẑ

pl
h

)
further on. Taking

into account that ẑh ∈ W1,∞([0, T̂ ], X
)
, t̂h ∈ W1,∞([0, T̂ ],R

)
are uniformly bounded for

all time increments h = 1
N

, N ∈ N, and using the Arzela–Ascoli theorem, we can extract

a subsequence from t̂h, ẑh (still denoted by t̂h, ẑh) such that

t̂h(τ) converges uniformly to t̂∗(τ) as h→ 0, and

ẑh(τ) converges uniformly to ẑ∗(τ) as h→ 0.

Moreover, again using dimX <∞,

˙̂th converges weak−∗ to ˙̂t∗ in L∞
(
[0, T̂ ],R

)
as h→ 0, and

˙̂zh converges weak−∗ to ˙̂z∗ in L∞
(
[0, T̂ ], X

)
as h→ 0.

In the same manner as in Section 3, one can show that any limit
(
t̂∗, ẑ∗

)
in the above

sense of
(
t̂h, ẑh

)
∈W1,∞([0, T̂ ],R×X

)
satisfies

0 ∈ ∂∆‖·‖
(

˙̂z∗(τ)
)

+ DzI
(
t̂∗(τ), ẑ∗(τ)

)
,

˙̂t∗(τ) +
∥∥ ˙̂z∗(τ)

∥∥ 6 1 .
(4.11)

Example 4.4 Here we show that, if Assumption 3.4 is violated, then in (4.11) the strict
inequality may hold. Indeed, let X = R2 and for z = (u, w) we set I(t, z) = −u − w,
∆(z) = |z|1 := |u| + |w|, ‖z‖ = |z|2 :=

√
u2 + w2. In this case M

(
(1, 1)

)
=
{
z =(

ũ, w̃
) ∣∣ ũ > 0, w̃ > 0 with |z|2 ≤ 1

}
and | · |2 is not affine on M

(
(1, 1)

)
. Moreover (IP)

given by

ẑk ∈ argmin
|z−bzk−1|26h

{I(t̂k−1, z) + |z − ẑk−1|1}

t̂k := t̂k−1 + h− |ẑk − ẑk−1|2
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with t0 = 0, z0 = (0, 0) has, among others, the following solution

t̂k = 0, for all k and ẑk =

{(
hk
2
, hk

2

)
, if k even,(

h(k+1)
2

, h(k−1)
2

)
, if k odd.

Clearly,
∣∣ẑk − ẑk−1

∣∣
1

=
∣∣ẑk − ẑk−1

∣∣
2

= h and the uniform limit is t̂∗ ≡ 0, ẑ∗(τ) =
(
τ
2
, τ

2

)
.

Hence, ˙̂z∗(τ) =
(

1
2
, 1

2

)
whereas ˙̂zh(τ) oscillates between (1, 0) and (0, 1). In particular,

˙̂th + | ˙̂zh|1 = 1 >
1√
2

= ˙̂t∗ + | ˙̂z∗|2

a.e. on
[
0, T̂

]
. Choosing ‖z‖ = |z|1 = ∆(z) would allow for the same approximating

solutions ẑh with oscillating derivative ˙̂zh. But Assumption 3.4 holds and
∣∣ ˙̂z∗
∣∣
1
≡ 1.

As in Section 3 it remains to show that we can reparametrize
(
t̂∗, ẑ∗

)
such that the

reparametrized solution
(
t̃∗, z̃∗

)
solves problem (2.2)–(2.4). Again, we have to show that

the limit functions satisfy L̇(τ) = ˙̂t(τ) + ‖ ˙̂z(τ)| ≥ c∗ > 0 a.e. on [0, T̂ ]. In complete
analogy to Lemma 3.2 we have the following result.

Lemma 4.5 Let Condition 2.5 hold and let (t̂, ẑ) be any limit obtained from (t̂pl
h , ẑ

pl
h )

constructed above. Then, there exists c∗ > 0 such that L̇(τ) ≥ c∗ for a.a. τ ∈ [0, T̂ ].

Proof: The discrete energy inequality (4.10) and (2.6) imply

I
(
t̂k, ẑk

)
− I
(
t̂j, ẑj

)
+Dj,k 6 CI

(
t̂k − t̂j

)
with Dj,k =

∑k
m=j+1 ∆

(
ẑm − ẑm−1

)
,

for 0 6 j < k 6 N . Again using (2.6) we find Dj,k 6 2CI
(
t̂k− t̂j

)
+M

∥∥ẑk− ẑj
∥∥ and (2.5)

leads to

Nj,k 6 1
C∆

(
2CI

(
t̂k − t̂j

)
+M

∥∥ẑk − ẑj
∥∥) with Nj,k =

∑k
m=j+1

∥∥ẑm − ẑm−1

∥∥ .

By construction (see Prop. 4.2(c)) we have Nj,k +
(
t̂k−t̂j

)
= h(k−j) and conclude

τk − τj = h(k−j) ≤ C∗
(∥∥ẑk − ẑj

∥∥ +
(
t̂k − t̂j

)
where C∗ = max {1+2CI/C∆,M/C∆} .

Taking the limit as h→ 0 and uniform convergence of a subsequence of
(
t̂h(τ), ẑh(τ)

)
to

the limit (t̂, ẑ) we arrive at

|t̂∗(τ2)−t̂∗(τ1)|+
∥∥ẑ∗(τ2)−ẑ∗(τ1)

∥∥ > c∗|τ2−τ1| with c∗ = 1/C∗ ,

for all τ1, τ2 ∈ [0, T̂ ]. This gives L̇(τ) = ˙̂t∗(τ) +
∥∥ ˙̂z∗
∥∥ > c∗ and proves Lemma 4.5.

Thus, reparametrization works the same way as in Section 3. Moreover, the arguments
involving the compatibility condition 3.4 (i.e., Lemma 3.5 and Corollary 3.6) apply for
the discrete approximations in exactly the same way. Summarizing, the results of this
section are the following.
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PSfrag replacements

J ′(z)

g(t)

Figure 1: Stress-strain diagram for the model in Example 4.7: Horizontal lines correspond
to sticking ( ˙̂z = 0), lines parallel to the diagonal correspond to motion under dry friction

(0 < | ˙̂z| < 1), and vertical lines correspond to viscously slipping motions (| ˙̂t| = 0).

Theorem 4.6 Let Condition 2.5 be satisfied. Then, a subsequence of the discrete ap-
proximations

(
t̂ pl
h , ẑ

pl
h

)
converges uniformly to limit function

(
t̂∗, ẑ∗

)
which is a solution

of (3.4). The latter, after reparametrization of time, gives a solution of (2.2)–(2.4).
Moreover, if ∆ and ‖ · ‖ satisfy the additional compatibility condition 3.4, then

(
t̂∗, ẑ∗

)

solves (2.2)–(2.4) without reparametrization of time.

Example 4.7 Finally we provide a simple one-dimensional example which displays the
different features of our model. Since the function I is nonconvex we will have sticking

( ˙̂z = 0), dry friction (0 < ‖ ˙̂z‖ < 1) and also viscous slips (| ˙̂t| = 0 and ‖ ˙̂z‖ = 1).
Let X = R and ∆(v) = δ|v|, δ > 0, and I(t, z) = J(z)− g(t)z, where

J(z) =





1
2
(z + 2)2 , for z 6 −1,

1− 1
2
z2 , for −1 6 z 6 1,

1
2
(z − 2)2 , for z > 1,

(4.12)

and g(t) = min {t, 2a− t}, with a > 2 + δ. Then direct computation of the solutions
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(2.2)–(2.4), with t̂(0) = 0, ẑ(0) = −2, leads to

(
t̂(τ)

ẑ(τ)

)
=





(
τ

−2

)
in [0, δ], ˙̂z ≡ 0 sticking

(
δ+1

2
(τ−δ)

−2+1
2
(τ−δ)

)
in [δ, 2+δ], ˙̂z ≡ 1

2
dry fric.

(
1+δ

−1+
(
τ−(2+δ)

)
)
, in [2+δ, 4+δ], ˙̂z ≡ 1 viscous

(
1+δ

1+
(
τ−(4+δ)

)
)

in [4+δ, 6+δ], ˙̂z ≡ 1 viscous

(
1+δ+1

2

(
τ−(6+δ)

)

3+1
2

(
τ−(6+δ)

)
)

in [6+δ, 2a+4−δ], ˙̂z ≡ 1
2

dry fric.

(
a+
(
τ−(2a+4−δ)

)

a+2−δ)

)
in [2a+4−δ, 2a+4+δ], ˙̂z ≡ 0 sticking

(
2δ+1

2

(
τ−(4+δ)

)

2−δ−1
2

(
τ−(4+δ)

)
)

in [2a+4+δ, 4a+6−δ], ˙̂z ≡ −1
2

dry fric.

(
2a+δ+1

1−
(
τ−(4a+6−δ)

)
)

in [4a+6−δ, 4a+8−δ], ˙̂z ≡ −1 viscous

which show possible hysteretic behavior of
(
g
(
t̂(τ)

)
, J ′
(
ẑ(τ)

))
, see Figure 1.
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