Non-triviality of the phase transition in inhomogeneous long-range percolation in dimension one

joint work with Peter Gracar and Christian Mönch

Lukas Lüchtrath, 16/03/2022

Percolation

- Let $(\mathscr{G}(\beta): \beta>0)$ be a family of locally finite graphs with vertex set given by a Poisson process (on \mathbb{R}^{d}) where β is an edge-density parameter such that larger β leads to more edges on average
- The connection mechanism depends on the spatial distance of the vertices in a way that short edges are more likely than long edges
- Standard question in percolation theory: Is there a $\beta_{c} \in(0, \infty)$ such that
- if $\beta>\beta_{c}$ then $\mathscr{G}(\beta)$ contains an infinite connected component but
- if $\beta<\beta_{c}$ then does not contain an infinite connected component?
- Pete's talk: Is it possible to have $\beta_{c}=0$ (when combining long-range edges and heavy-tailed degree distributions)?

Percolation

- Standard question in percolation theory: Is there a $\beta_{c} \in(0, \infty)$ such that
- if $\beta>\beta_{c}$ then $\mathscr{G}(\beta)$ contains an infinite connected component but
- if $\beta<\beta_{c}$ then does not contain an infinite connected component?
- Pete's talk: Is it possible to have $\beta_{c}=0$ (when combining long-range edges and heavy-tailed degree distributions)?
- In this talk we consider $d=1$ and ask whether there is a supercritical phase or $\beta_{c}<\infty$.

Percolation

- $\ln d=1$ the situation is special because of spatial restrictions
- Question: Is $\beta_{c}<\infty$ possible?
- Models without supercritical phase:
- 1-d-Gilbert's disc model: Connect two vertices whenever their distance is beneath a threshold β
- Any model with bounded edge length and some independence in the connection mechanism
- (Poisson) Boolean model: Assign i.i.d. and integrable radii to the vertices and connect two vertices when the associated balls intersect.

Percolation

- $\ln d=1$ the situation is special because of spatial restrictions
- Question: Is $\beta_{c}<\infty$ possible?
- Long-range percolation model (random connection model):
- Given the points connect any pair of vertices independently with probability proportional to $(|x-y| / \beta)^{-\delta}$ for $\delta>1$
- If $\delta \in(1,2]$ then $\beta_{c}<\infty$ but
- If $\delta>2$ then $\beta_{c}=\infty$.

Weight-dependent random connection model

- The vertex set is a Poisson point process on $\mathbb{R} \times(0,1)$
- Connect two vertices (x, t) and (y, s) (independently) with probability

- Preference is given to short edges and to vertices with small marks.
- Assume $\int \rho(|x|) d x=1$ since then the degree distribution only depends on the kernel g and β

Interesting kernels and models

- Random connection model: $g^{\text {plain }}(s, t)=1$
- Boolean model: $g^{s u m}(s, t)=\left(s^{-\gamma}+t^{-\gamma}\right)^{-1}$ or $g^{\min }(s, t)=(s \wedge t)^{\gamma}$
- With $\rho(x)=\mathbf{1}_{[0,1 / 2]}(x)$: Standard Poisson Boolean model
- With $\rho(x) \sim x^{-\delta}$: Soft Boolean model.
- Age-dependent rcm: $g^{p a}(s, t)=(s \wedge t)^{\gamma}(s \vee / t)^{1}-\gamma$
- Scale-free percolation model: $g^{p r o d}(s, t)=s^{\gamma} t+$

Main result

Define the effective decay exponent $\delta_{\text {eff }}:=-\lim _{n \rightarrow \infty} \frac{\log \int_{1 / n}^{1} \int_{1 / n}^{1} \rho(g(s, t) n) d s d t}{\log n}(\leq \delta)$

Theorem (Mönch, L, Gracar (2022))
A. If $\delta_{\text {eff }}<2$, then $\beta_{c}<\infty$ and
B. if $\delta_{\text {eff }}>2$, then $\beta_{c}=\infty$.

Intuition:

- Take two sets of n vertices at distance n. The minimum mark in each set is roughly $1 / n$ so the integral is the probability of two randomly picked vertices being connected.
- (Ignoring correlations) the number of edges connecting both sets is binomial with n^{2} trials and success probability $n^{-\delta_{e f f}}$

Examples

Scale free percolation

Deijfen et. al (2013), Deprez, Wüthrich (2018)
$\delta_{e f f} \begin{cases}>2, & \gamma<1 / 2 \\ =2, & \gamma=1 / 2 \\ <2, & \gamma>1 / 2\end{cases}$

Soft Boolean

$$
\delta_{e f f} \begin{cases}>2, & \gamma<1-1 / \delta \\ =2, & \gamma=1-1 / \delta \\ <2, & \gamma>1-1 / \delta\end{cases}
$$

Age-dependent

$\delta_{e f f} \begin{cases}=2, & \gamma \leq 1-1 / \delta \\ <2, & \gamma>1-1 / \delta\end{cases}$

Proof idea

- Generalise a renormalisation scheme of Duminil-Copin, Garban, Tassion (2020).
- Write $\eta_{0}=\left\{\mathbf{X}_{i}=\left(X_{i}, T_{i}\right): i \in \mathbb{Z}: X_{0}=0, X_{j}<X_{\ell}(j<\ell)\right\}$
- Define blocks: $B_{K_{n}}^{i}:=\left\{\mathbf{X}_{K_{n}(i-1)}, \ldots, \mathbf{X}_{K_{n}}, \ldots, \mathbf{X}_{K_{n}(i+1)-1}\right\}$, for the scales $K_{n}=(n!)^{3} K^{n}$

- Say a block is ϑ-good, if it contains a connected component of density at least ϑ. Define

$$
p_{\beta}\left(K_{n}, \vartheta\right)=\mathbb{P}\left\{B_{K_{n}}^{0} \text { is } \vartheta \text {-bad }\right\}
$$

Proof idea

Lemma

Assume $\delta_{\text {eff }}<2$. Let $3 / 4<\vartheta<1$. Then $\exists M \in \mathbb{N}$ such that it holds for all $K>M$ and $n \geq 2$

$$
p_{\beta}\left(K_{n}, \vartheta-\varepsilon_{n}\right) \leq \frac{1}{100} p_{\beta}\left(K_{n-1}, \vartheta\right)+8 \varepsilon_{n}^{-2} p_{\beta}\left(K_{n-1}, \vartheta\right)^{2}
$$

where $\varepsilon_{n}=2 /\left(n^{3} K\right)$.

$$
\text { Proof idea } \quad p_{\beta}\left(K_{n}, \vartheta-\varepsilon_{n}\right) \leq \frac{1}{100} p_{\beta}\left(K_{n-1}, \vartheta\right)+8 \varepsilon_{n}^{-2} p_{\beta}\left(K_{n-1}, \vartheta\right)^{2}
$$

- Block $B_{K_{n}}^{0}$ is formed by $4 / \varepsilon_{n}$ of the $B_{K_{n-1}}$ blocks. If all are ϑ-good, then $B_{K_{n}}^{0}$ is good as well
- Either, there are at least two disjoint bad blocks (second summand) or
- One bad block and all blocks disjoint from it are good. Then we need to show

Proof idea

$\mathbb{P}\left(\mathscr{L} \nsim \mathscr{R} \mid B_{K_{n-1}^{i}}\right.$ is ϑ-bad, all disjoint are good $)$

$$
\begin{aligned}
& \leq \exp \left(- \text { const } K_{n-1}^{2} \int_{K_{n-1}^{\mu-1}}^{1} \int_{K_{n-1}^{\mu-1}}^{1} \rho\left(\beta^{-1} g(s, t) K_{n}\right) d s d t\right) \\
& \leq \exp \left(-K_{n-1}^{2-\delta_{e f f}-\epsilon}\right) .
\end{aligned}
$$

Proof idea

1. $p_{\beta}\left(K_{n}, \vartheta-\varepsilon_{n}\right) \leq \frac{1}{100} p_{\beta}\left(K_{n-1}, \vartheta\right)+8 \varepsilon_{n}^{-2} p_{\beta}\left(K_{n-1}, \vartheta\right)^{2}$ for large enough K
2. $p_{\beta}\left(K_{1}, \vartheta\right) \leq \exp (-$ const $K)$ for large enough $\beta \gg K$.

- For the non-existence of a supercritical phase we use a similar approach to generalize to count the number of edges crossing the origin.

Advertising:

- Summer School in Cologne: September 12 to 16
- Topic: Processes on Random Geometric Graphs
- Mini Courses by Mia Deijfen and Markus Heydenreich
- https://sites.google.com/view/uzksummerschool22/home

(c) Christian Huebner, fotocommunity.de

Thank You

