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Percolation

Let G be a random graph with infinite vertex set and finite degrees.

Percolation is the event that G contains an infinite connected component.
Let G (β) be a family of graphs where edge densities are increasing with β. If the
graph percolates, can percolation be destroyed by decreasing β?
There exists a percolation phase transition if there exists a critical edge density
βc ∈ (0,∞) such that almost surely

if β < βc =⇒ G (β) does not percolate but
if β > βc =⇒ G (β) percolates.
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The weight-dependent random connection model

The vertex set of G (β) is a Poisson point process of unit intensity on Rd × (0, 1).
We think of x = (x , t) as a vertex at position x with mark t

Vertices x = (x , t) and y = (y , s) are connected by an edge in G (β) independently
with probability

ρ
( 1
β g(s, t)|x − y |d

)
.
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The weight-dependent random connection model

Vertices x = (x , t) and y = (y , s) are connected by an edge in G (β) independently
with probability

ρ
( 1
β g(s, t)|x − y |d

)
, for

a non-increasing, integrable profile function ρ : R+ → [0, 1]
a non-decreasing, symmetric kernel function g : (0, 1)× (0, 1)→ R+

the temperature β > 0.
Without loss of generality, we assume

∫
Rd ρ(|x |d)dx = 1.

Because then the degree distribution only depends on the kernel g (and β).
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Is there a percolation phase transition βc > 0?

Yes, for:
Gilbert’s Disc model:
Boolean model:
Long range percolation model:

Summary: Neither long-range edges nor heavy tailed degree distributions alone
can remove the subcritical phase and ensure βc = 0. Is this possible at all?

Scale-free percolation model:
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Is there a percolation phase transition βc > 0?

Yes, for:
Gilbert’s Disc model: Gilbert (’61)
ρ(x) = 1[0,a](x) and gplain(s, t) = 1

Boolean model:
Long range percolation model:

Summary: Neither long-range edges nor heavy tailed degree distributions alone
can remove the subcritical phase and ensure βc = 0. Is this possible at all?

Scale-free percolation model:
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Is there a percolation phase transition βc > 0?
Yes, for:

Gilbert’s Disc model:
Boolean model: Hall (’85), Meester and Roy (’96), Gouéré (2008)
ρ(x) = 1[0,a](x) and
g sum(s, t) = (s−γ/d + t−γ/d)−d or
gmin(s, t) = (s ∧ t)γ for γ ∈ (0, 1).
Leads to heavy-tailed degree distribution with power-law
exponent τ = 1 + 1/γ.

Long range percolation model:
Summary: Neither long-range edges nor heavy tailed degree distributions alone
can remove the subcritical phase and ensure βc = 0. Is this possible at all?
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Is there a percolation phase transition βc > 0?

Yes, for:
Gilbert’s Disc model:
Boolean model:
Long range percolation model: Newman and Schulman (’86), Penrose
(’91)
ρ(x) ∼ cx−δ for δ > 1 and gplain ≡ 1.

Summary: Neither long-range edges nor heavy tailed degree distributions alone
can remove the subcritical phase and ensure βc = 0. Is this possible at all?

Scale-free percolation model:
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Is there a percolation phase transition βc > 0?

Yes, for:
Gilbert’s Disc model:
Boolean model:
Long range percolation model:

Summary: Neither long-range edges nor heavy tailed degree distributions alone
can remove the subcritical phase and ensure βc = 0. Is this possible at all?

Scale-free percolation model: Deijfen et al (2018)
ρ(x) ∼ cx−δ and gprod(s, t) = sγtγ for δ > 1, γ ∈ (0, 1).
Power-law: τ = 1 + 1/γ
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Is there a percolation phase transition βc > 0?

Yes, for:
Gilbert’s Disc model:
Boolean model:
Long range percolation model:

Summary: Neither long-range edges nor heavy tailed degree distributions alone
can remove the subcritical phase and ensure βc = 0. Is this possible at all?

Scale-free percolation model:
ρ(x) ∼ cx−δ and gprod(s, t) = sγtγ for δ > 1, γ ∈ (0, 1).
Power-law: τ = 1 + 1/γ

Theorem (Deijfen et al (2018), Deprez and Wüthrich (2019))
If γ < 1/2, then βc > 0, but if γ > 1/2, then βc = 0.
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Further interesting models

Soft Boolean model:
ρ(x) ∼ cx−δ for δ > 1 and
g sum(s, t) = (s−γ/d + t−γ/d)−d or
gmin(s, t) = (s ∧ t)γ for γ ∈ (0, 1)

Soft Boolean model:
ρ(x) ∼ cx−δ for δ > 1 and
g sum(s, t) = (s−γ/d + t−γ/d)−d or
gmin(s, t) = (s ∧ t)γ for γ ∈ (0, 1)

Age-dependent random connection model:
ρ(x) ∼ cx−δ for δ > 1 and
gpa(s, t) = (s ∧ t)γ(s ∨ t)1−γ

Again, heavy tailed degree-distribution with power-law τ = 1 + 1/γ.
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Main Result

Theorem (Gracar, L, Mörters (2020))
For the weight-dependent connection model with preferential attachment kernel,
gpa, or sum kernel, g sum, or min kernel, gmin, and parameters δ > 1 and γ ∈ (0, 1)
we have
(a) if γ < δ/(δ+1) , then βc > 0.
(b) If γ > δ/(δ+1) , then βc = 0.
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Main Result

Theorem (Gracar, L, Mörters (2020))
For the weight-dependent connection model with preferential attachment kernel,
gpa, or sum kernel, g sum, or min kernel, gmin, and parameters δ > 1 and γ ∈ (0, 1)
we have
(a) if γ < δ/(δ+1) , then βc > 0.
(b) If γ > δ/(δ+1) , then βc = 0.

Remark: The theorem also applies for the plain kernel, gplain, i.e. γ = 0, or profile
functions decaying faster then any polynomial for δ →∞. Hence, it includes the
previous shown results about the classical Boolean Model and the long range
percolation model.
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Main Result

Theorem (Gracar, L, Mörters (2020))
For the weight-dependent connection model with preferential attachment kernel,
gpa, or sum kernel, g sum, or min kernel, gmin, and parameters δ > 1 and γ ∈ (0, 1)
we have
(a) if γ < δ/(δ+1) or τ > 2 + 1/δ, then βc > 0.
(b) If γ > δ/(δ+1) or τ < 2 + 1/δ, then βc = 0.

Theorem (Deijfen et al (2018), Deprez and Wüthrich (2019))
For the product kernel, gprod and δ > 1 and γ ∈ (0, 1), we have
(c) If γ ≤ 1/2 or τ ≥ 3, then βc > 0.
(d) If γ > 1/2 or τ < 3, then βc = 0.
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Age-based spatial preferential attachment

We build a network or growing sequence of graphs (Gt)t≥0 on the unit torus Td
1 as

follows:

G0 is the empty graph without any vertices or edges.
Vertices arrive successively after exponential waiting times and are placed
uniformly at random on Td

1 .
Given Gt− a new vertex born at time t and with position x is connected by
an edge to each already existing vertex at y and born at time s independently
with probability

ρ
( t d(x , y)d

β (t/s)γ
)
.
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Age-based spatial preferential attachment

(Gt)t≥0 has a giant component if its largest connected component is of
asymptotic linear size. It is robust if it has a giant component for all β > 0.

The idea is that networks are robust against random attack.

Theorem
The network (Gt)t≥0 is robust if γ > δ/(δ+1) but non-robust if γ < δ/(δ+1).
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Proof idea

(1) Rescale the graph. The rescaled graph has the same law as G t that is
constructed on a Poisson process on Td

t × (0, 1) and connection probability
ρ
( 1
β gpa(s, t)d(x , y)d).
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Proof idea

(1) Rescale the graph. The rescaled graph has the same law as G t that is
constructed on a Poisson process on Td

t × (0, 1) and connection probability
ρ
( 1
β gpa(s, t)d(x , y)d).

(2) The graph process t 7→ G t converges to the age-dependent random
connection model G (β).
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Proof idea

(2) The graph process t 7→ G t converges to the age-dependent random
connection model G (β).

(3) Use the following weak law of large numbers which is an adoption of Penrose
and Yukich (2003)

Theorem (Jacob, Mörters (2015))
Let (At)t≥0,A∞ events that depend on a graph and a given root vertex such that

1{(0,G t
0 )∈At}

t→∞−→ 1{(0,G0(β))∈A∞} in probability

where 0 is an additional vertex at the origin that is added to G t resp. G (β). Then

1
t
∑
x∈Gt

1{(x,θxGt )∈At}
t→∞−→ P0{(0,G (β)) ∈ A∞} in probability.
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Proof idea

(4) Show that

# vertices in Gt connected to the oldest vertex
t

t→∞−→ P0{0↔∞ in G (β)}
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Proof idea

(4) Show that

# vertices in Gt connected to the oldest vertex
t

t→∞−→ P0{0↔∞ in G (β)}

and

# vertices with components ≤ k
t

t→∞−→ P0{component of 0 is of size ≤ k}

For k →∞ the left hand side is the proportion of vertices in finite
components and the right hand side equals 1− P{0↔∞}.
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Specialities in Dimension one
Ongoing project with Peter Gracar and Christian Mönch (Mainz)

Assume a graph G (β) in d = 1 and a parameter regime such that βc > 0. Can
there exists an infinite component at all? In other words: Is βc <∞

Boolean model: Meester and Roy (’96): βc =∞.
Long range percolation model: Newman and Schulman (’86),
Duminil-Copin et al (2020): if δ ∈ (1, 2] then βc <∞ but if δ > 2 then
βc =∞.
Scale-free percolation: Deprez and Wüthrich (2018): For δ > 2 and γ < 1/2
it holds βc =∞.
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Our result
Theorem
Let δ > 2, γ ∈ (0, 1) and d = 1 then
(a) for the soft Boolean model, g sum, gmin and the age-depended random

connection model, gpa, it holds

γ ∈
(
δ−1
δ , δ

δ+1
)

=⇒ βc ∈ (0,∞).

(b) for the soft Boolean model, it holds

γ < δ−1
δ =⇒ βc =∞.

(c) for the age-dependent random connection model, it holds

γ < 1
2 =⇒ βc =∞.
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Phase diagram soft Boolean vs scale-free percolation
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Thank you for your attention
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