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Abstract. We derive an annealed large deviation principle (LDP) for the nor-
malised and rescaled local times of a continuous-time random walk among ran-
dom conductances (RWRC) in a time-dependent, growing box in Z

d. We work
in the interesting case that the conductances are positive, but may assume ar-
bitrarily small values. Thus, the underlying picture of the principle is a joint
strategy of small conductance values and large holding times of the walk. The
speed and the rate function of our principle are explicit in terms of the lower
tails of the conductance distribution as well as the time-dependent size of the
box.

An interesting phase transition occurs if the thickness parameter of the con-
ductance tails exceeds a certain threshold: for thicker tails, the random walk
spreads out over the entire growing box, for thinner tails it stays confined to
some bounded region. In fact, in the first case, the rate function turns out to be
equal to the p-th power of the p-norm of the gradient of the square root for some
p ∈ (2d/(d+2), 2). This extends the Donsker – Varadhan– Gärtner rate function
for the local times of Brownian motion (with deterministic environment) from
p = 2 to these values.

As corollaries of our LDP, we derive the logarithmic asymptotics of the non-
exit probability of the RWRC from the growing box, and the Lifshitz tails of
the generator of the RWRC, the randomised Laplace operator.

To contrast with the annealed, not uniformly elliptic case, we also provide an
LDP in the quenched setting for conductances that are bounded and bounded
away from zero. The main tool here is a spectral homogenisation result, based
on a quenched invariance principle for the RWRC.



592 W. König and T. Wolff

Keywords: random conductances, random walk, randomised Laplace operator, local

times, large deviations, Donsker – Varadhan – Gärtner theory, spectral homogenisation,
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1. Introduction and main results

Random motions in random media have attracted the attention of researchers
for decades because of various reasons. On one hand, they exhibit various crit-
ical behaviours that strongly differ from the classical theory in non-random
media, and are sometimes surprising and on the first view counter-intuitive.
This makes this subject a fascinating enterprise, a source of inspiration and
beautiful mathematics and an incitation for finding new ideas and arguments.
On the other hand, the introduction of randomness in the medium makes appli-
cations in many fields much more realistic and the model therefore much more
valuable. For example, random impurities in glasses, random retardations of
electrical currents and much more are most efficiently modeled with the back-
ground of a random medium.

In this paper, we consider a special case of what is often called random walk

in random environment; in fact it is one of its most-studied continuous-time
analogues, the random conductance model (RCM ), where the randomness in
the medium appears via weights on the bonds. This model was recently stud-
ied a lot (and continues to do so) with stress on the long-time behaviour of
the diffusing particle in that medium, the random walk among random con-

ductances (RWRC ). People were interested in deriving laws of large numbers,
central limit theorems and invariance principles [1, 7, 12, 17, 28, 30] in both the
quenched and the annealed setting, under various assumptions on the distribu-
tion of the medium. Furthermore, heat kernel estimates [4] and certain aspects
of anomalous behaviour of the walk [3] and connections with trapping models [5]
were studied. See [2] for a survey on recent progress on the random conductance
model with special emphasis on homogenisation and martingale techniques.

However, our focus is not on the long-time behaviour in the vicinity of in-
variance principles in the entire space, but on the clumping behaviour in given
boxes. More precisely, we derive a large-deviation principle (LDP) for the lo-
cal times of a RWRC caught in boxes in the annealed setting, i.e., averaging
over both randomnesses. This type of question stands in the tradition of the
famous pioneering large-deviation results for the occupation times of random
walks and Brownian motion from the 1970s [15, 18]. Furthermore, there are
close connections with the Lifshitz tails of the generator of the random walk in
the boxes.

The present paper is a continuation of our recent study [25], where we con-
sider fixed boxes, not depending on time. In the present paper, we study large
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boxes that increase with time. Again, in contrast to the uniformly elliptic case,
which is most often studied, we work under the assumption that the conduc-
tances are positive, but can attain arbitrarily small values, and we specify their
lower tails. Then the speed of the LDP is a power of the time, and the rate
function turns out to be the p-th power of the p-norm of the gradient of the
square root for some p ∈ (2d/(d + 2), 2). The boundary case p = 2 is the case
of the Donsker –Varadhan –Gärtner LDP mentioned above. This explicit form
of the rate function makes the LDP rather appealing, and the question about
the minimisers contains interesting analytical questions. This rate function is
the continuous version of the rate function that we introduced in [25].

Like in [25], the annealed asymptotics are determined by a joint strategy of
the medium and the walk, in that the conductances assume very small, time-
dependent values in order to help the walk to realise large holding times in the
growing box. Even more interestingly, it also turns out that there is an inter-
esting sharp transition when the tails of the conductances at zero become thin
enough: the optimal strategy consists now of an even much stronger clumping
behaviour; in fact the walk confines to a fixed region that does not grow with
time. In both cases, we are able to say something interesting about the non-exit
probability of the walk from the growing box, and this leads, via a standard
device, to the identification of the Lifshitz tails of the generator of the RWRC,
the randomised Laplace operator.

One of our motivations for the present work was the desire to understand
the parabolic Anderson model (PAM ) with the underlying diffusion taken as a
RWRC, a project that we plan to attack in future. The PAM describes a random
mass flow through a random potential of sinks and sources and is determined by
spectral theory of the Anderson Hamiltonian [19,26]. In fact, both the generator
of the PAM (the Anderson Hamiltonian) and the generator of the RWRC are
important examples of random operators, and their spectral properties are of
high interest. The interplay between these spectral properties and the long-time
behaviour of the random walk generated makes these two models particularly
interesting. As the PAM possesses self-attractive forces, the description of its
behaviour heavily draws on the understanding of the clumping behaviour in
given boxes, i.e., on the research brought out in the present paper.

To contrast with the annealed setting where the conductances help the
RWRC by assuming extremely small values, we also provide in Section 1.6 a
quenched (i.e., almost surely with respect to the conductances) LDP in growing
boxes in the uniformly elliptic case, where the conductances are bounded away
from zero. In this case, the conductances form a homogenised environment in
which the RWRC satisfies a Donsker-type invariance principle, and the rescaled
local times satisfy an LDP with rate function given by the Dirichlet energy of
the limiting Brownian motion.

In the remainder of this first section, we give an introduction and formulate
and comment our main results. The new contributions of this paper appear in
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Sections 1.3 (LDPs in large boxes), 1.4 (non-exit probabilities and a relevant
variational problems), 1.5 (Lifshitz tails) and 1.6 (a quenched LDP for uniformly
elliptic conductances). Section 1.7 explains the connection with the PAM, Sec-
tion 1.8 gives heuristics, and in Section 1.9 we list some interesting problems
that are left open in this paper.

1.1. Random Walk among random conductances

Consider the lattice Z
d with d ≥ 1 and a family a = (axy)x,y∈Zd of non-

negative random variables axy. We write Pr for the corresponding probability
and 〈·〉 for the expectation. We assume that, Pr-almost surely, axy = ayx for
all x, y ∈ Z

d and axy = 0 unless x ∼ y, that is, unless x and y are nearest
neighbours in the lattice. Hence, we attach to any bond on the lattice a positive
random weight, and the bonds are undirected. We also sometimes write ax,y
instead of axy. This model is often referred to as the random conductance model

(RCM ). The most important object throughout this work will be the associated
discrete Laplacian

∆a = ∇∗A(x)∇, where
(
A(x)

)
ij

= δijax,x+ei
, x ∈ Z

d, i, j ∈ {1, . . . , d},
(1.1)

ei is the i-th unit vector (with 1 in the i-th component and zero everywhere
else) in the lattice and δij is the Kronecker delta. On functions f : Z

d → R, the
random Laplacian acts like

∆af(x) =
∑

y∈Zd : y∼x

axy[f(y) − f(x)]. (1.2)

For e ∈ N = {e1, . . . , ed}, the set of unit vectors in the lattice, we introduce
a(x, e) as a shortcut for ax,x+e. We assume that the conductances are indepen-
dent and identically distributed, that is,

(
a(x, e)

)
x∈Zd,e∈N

is an i.i.d. family of

random variables.
The operator ∆a is symmetric and generates the continuous-time random

walk (Xt)t∈[0,∞) in Z
d, the random walk among random conductances (RWRC ).

This process starts at x ∈ Z
d under P

a
x and evolves as follows. When located at y,

it waits an exponential random time with parameter πy =
∑

z∈Zd : z∼y ay,z, i.e.,
with expectation 1/πy, and then jumps to a neighbouring site z′ with probability
ay,z′/πy. We write E

a
x for expectation w.r.t. P

a
x.

1.2. Large deviations for local times in boxes

The main object of our study is the family of local times of the walk,

`t(z) =

t∫

0

δXs
(z) ds, z ∈ Z

d, t > 0, (1.3)
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which register the amount of time that the walker spends in z by time t. More
precisely, we are interested in large-deviation principles (LDPs) for `t/t as t →
∞, conditional on not leaving a given bounded region B ⊂ Z

d. For a given
choice of the conductances a, one of the main statements in that direction was
provided by Donsker and Varadhan [15] and Gärtner [18].

Theorem 1.1 (Donsker – Varadhan–Gärtner LDP on a finite region).
Fix a bounded set B ∈ Z

d containing 0 and a conductance configuration a =
(axy)x,y∈Zd . Then, under the measures P

a
0( · | supp(`t)⊂B), the normalised local

times `t/t satisfy a large deviation principle on the space

M = {g2 : g ∈ `2(Zd), supp(g) ⊂ B, ‖g‖2 = 1}

of probability measures on B with scale t and rate function I (d)

a,0 =I (d)
a −infM I (d)

a ,

where

I (d)

a (g2) =
∑

e∈N

∑

z∈Zd

az,z+e
[
g(z + e) − g(z)

]2
, g2 ∈ M. (1.4)

Here, ‖ · ‖2 denotes the norm in `2(Zd), and the superscript d highlights
that B is a discrete space. Note that the terms in the sum on the right-hand
side of (1.4) are non-zero only if either z ∈ B or z + e ∈ B, that is, we are
looking at a finite sum. More verbosely, the LDP says that the level sets {g2 ∈
M : I (d)

a (g2) ≤ s} for s ∈ [0,∞) are compact, and that

lim inf
t→∞

1

t
log P

a
0(`t ∈ O, supp(`t) ⊂ B) ≥ − inf

g2∈O
I (d)

a (g2), for O ⊂ M open,

(1.5)

lim sup
t→∞

1

t
log P

a
0(`t ∈ C, supp(`t) ⊂ B) ≤ − inf

g2∈C
I (d)

a (g2), for C ⊂ M closed.

(1.6)

Theorem 1.1 is a quenched result, as the conductances are kept fixed. There is
no interesting effect coming from the randomness of the conductances, as the
number of involved random variables is finite and fixed.

For the annealed regime, i.e., when also averaging over the conductances,
there is an interesting question that arises. Under what assumptions on the
environment is the annealed behaviour on a different scale than the quenched
one? Is it possible that the conductances ‘help’ the walker to spend much time
in B by attaining very small t-dependent values, which slow down the movement
and increase the holding times? Consequently, there would be an interplay, a
compromise, between the medium and the motion. This happens in the case
where the conductances are positive, but can assume arbitrarily small values.
More precisely, we make the following assumption on the lower tails of the
conductances.
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Assumption 1.1. For any x ∼ y ∈ Z
d,

Pr(ax,y > 0) = 1 and essinf(ax,y) = 0. (1.7)

Moreover, there exist positive parameters η andD such that, for any x ∼ y ∈ Z
d,

log Pr(ax,y ≤ ε) ∼ −Dε−η as ε↘ 0. (1.8)

The parameter η measures the thickness of the tails at zero; the two extreme
cases correspond to conductances bounded away from zero (η = ∞) and conduc-
tances that might be zero as well (η = 0). Under Assumption 1.1, the annealed
asymptotic behavior of the normalised local times is indeed on a smaller scale
than t. In our recent paper [25], we obtained the following result.

Theorem 1.2 (Annealed LDP, finite region). If Assumption 1.1 holds,

then, under the annealed measures 〈Pa0( · | supp(`t) ⊂ B)〉, the normalised local

times `t/t satisfy a large deviation principle on the space M with scale tη/(η+1)

and rate function J (d)

0 = J (d) − infM J (d), where

J (d)(g2) = Kη,D

∑

e∈N

∑

z∈Zd

∣∣g(z + e) − g(z)
∣∣2η/(1+η), g2 ∈ M. (1.9)

Here, Kη,D =
(
1 + 1/η

)
(Dη)1/(1+η).

1.3. LDPs in growing boxes

Now we come to the main purpose of the present paper: we extend the
annealed LDP of Theorem 1.2 to a region B that depends on time t and tends
to Z

d. Our main motivation for this problem stems from the wish to understand
a version of the parabolic Anderson model (PAM) where the underlying diffusion
is itself taken random as the random conductance model; see Section 1.7 below.

Consider a spatial scaling function αt ∈ (1,∞) with 1 � αt � t1/2 and
replace B by a time-dependent, growing set Bt = αtG ∩ Z

d, where we fix
G ⊂ R

d as an open, connected and bounded set containing the origin and
having a sufficiently regular boundary. In order to properly incorporate the
t-dependence of the set Bt, we consider the normalised and rescaled version Lt
of `t, given by

Lt(x) :=
αdt
t
`t(bαtxc), x ∈ R

d, t > 0. (1.10)

Observe that Lt is an L1-normalised random step function on R
d, having support

in G on the event {supp(`t) ⊂ αtG}. Hence, Lt is a member of the set

F = {f2 : f ∈ L2(G), ‖f‖2 = 1},

which we equip with the weak topology of integrals against bounded continuous
functions G → R. In the simple case of constant non-random conductances
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axy ≡ 1, i.e., simple random walk, it is already known that Lt conditioned on
the event {supp(`t) ⊂ αtG} satisfies a large deviation principle on F with scale
tα−2
t and rate function I (c)

0 = I (c) − infF I
(c), where

I (c)(f2) =

{∑d
i=1

∫
G

(
∂if(y)

)2
dy = ‖∇f‖2

2, f ∈ H1
0 (G),

∞, otherwise,
(1.11)

see e.g. [20]. Here, the Sobolev space H1
0 (G) is defined as the closure of the set

of infinitely differentiable functions R
d → R with support in G with regard to

the Sobolev norm

f 7→
( ∫

G

(
|f |2 + |∇f |2

))1/2

.

Moreover, the superscript c on the rate function stands for continuous, as the
local times have rescaled to a continuous object. The additional factor of α−2

t

in the scale results from the transition from squares of differences (that occur
in the Donsker – Varadhan– Gärtner rate function) to squares of derivatives in
the rate function above. This also reflects the natural scaling behavior of the
Laplacian, and a simple argument involving the central limit theorem easily
shows that tα−2

t is the exponential scale of the non-exit probability from a box
with radius αt up to time t.

Let us turn to annealed asymptotics in the presence of random conductances.
We now establish a continuous analog to Theorem 1.2. Introduce a new scale
function γ by

γt = tη/(1+η)α
(d−2η)/(1+η)
t .

A continuous analog to the rate function in Theorem 1.2 is given by J (c)

0 =
J (c) − infF J

(c), where

J (c)(f2) = Kη,D

d∑

i=1

∫

G

∣∣∂if(y)
∣∣2η/(1+η) dy

= Kη,D

d∑

i=1

‖∂if‖pp, if f ∈ H1
0 (G), (1.12)

where p = 2η/(1+η) ∈ (0, 2), and Kη,D is as in Theorem 1.2, and J (c)(f2) = ∞
otherwise. (Note that there is no standard notation for this in terms of ∇f .)
It turns out that J (c) has compact level sets in the case η > d/2 only. This
corresponds to conductances the tails of which at zero are not too thick. In
the converse case, we thus cannot hope for a full LDP to hold. Let us for that
reason consider the case η > d/2 first. Recall that G is a bounded open set
containing the origin with regular boundary.
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Theorem 1.3 (Annealed asymptotics, time-dependent region). Sup-

pose that Assumption 1.1 holds, and assume that η > d/2. In case d = 1,

suppose that η ≥ 1. Furthermore, assume that the conductances are bounded

almost surely and that axy1l{axy ≤ ε} possesses, for some ε > 0, a density

that is non-decreasing. Pick a scale function (αt)t>0 such that 1 � αd+2
t �

t(log t)−(1+η)/η .

Then the distributions of Lt under the conditional annealed measures 〈Pa0( · |
supp(`t) ⊂ αtG)〉 satisfies a large-deviation principle on F with good rate func-

tion J (c)

0 .

More explicitly, Theorem 1.3 says that J (c)

0 is has compact level sets, and

lim inf
t→∞

1

γt
log〈Pa0(Lt ∈ O, supp(`t) ⊂αtG)〉 ≥−Kη,Dχ

(c)(G,O), for O⊂F open,

(1.13)

lim sup
t→∞

1

γt
log〈Pa0(Lt ∈ C, supp(`t) ⊂αtG)〉 ≤−Kη,Dχ

(c)(G, C), for C⊂F closed,

(1.14)

where

χ(c)(G,A) = inf

{
d∑

i=1

∫

G

∣∣∂if(y)
∣∣2η/(1+η) dy : f ∈ H1

0 (G), ‖f‖2 = 1, f2 ∈ A
}
.

(1.15)
A heuristic explanation of Theorem 1.3 is in Section 1.8. The proof is in

Section 4. The technical assumption on the existence of an increasing density
of small conductances will be used in Lemma 3.3 where we will confine the
conductances very strongly, which is in turn used in the proof of the lower bound.
The technical assumption on the boundedness and the additional logarithmic
term in the upper bound for αt will help us to make the proof of the upper
bound less cumbersome.

There is no reason to expect that the rate function J (c)

0 is convex. In (1.33)
we give an alternative formula for J (c)

0 , but also this gives no hint at convexity,
since the min-max-formula for interchange of infimum and supremum [16, p. 151]
cannot be applied, unlike in [14] at the end of Section 3. Rather we presume
that J (c)

0 is not convex. See [22, Prop. 4] for a proof of convexity in the case
p ≥ 2.

As we already mentioned in connection with Theorem 1.2, and as we will
explain in detail in Section 1.8, the main contribution of the conductances to
the LDP is to assume very small values, in order to make it easier for the walk
to stay in the set αtG for t time units; this is a large-deviation event by the
assumption 1 � αt � t1/(d+2). By the assumption η > d/2, the probabilistic
cost for this contribution is small enough that it can be performed all over the
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growing set αtG∩Z
d, as the cost for assuming small values is not too high. We

will see in the next section that d/2 is precisely the threshold for η for this to
happen.

1.4. Non-exit probabilities, variational formulas, and the case η ≤ d/2

Let us look at non-exit probabilities and find two independent arguments,
a probabilistic and an analytic one, for the existence of an interesting phase
transition, as η traverses d/2.

As a corollary of Theorem 1.2, we pointed out in [25] that the non-exit
probability from the finite region B satisfies

log〈Pa0
(
supp(`t) ⊂ B

)
〉 ∼ −tη/(1+η)Kη,Dχ

(d)(B), (1.16)

where

χ(d)(B) = inf
{∑

e∈N

∑

z∈Zd

∣∣g(z + e) − g(z)
∣∣2η/(1+η) : g ∈ `2(Zd),

supp(g) ⊂ B, ‖g‖2 = 1
}
. (1.17)

In the same way, we obtain as a corollary from Theorem 1.3 that, in the case
η > d/2,

log〈Pa0
(
supp(`t) ⊂ αtG

)
〉 ∼ −tη/(1+η)α(d−2η)/(1+η)

t Kη,Dχ
(c)(G), (1.18)

where χ(c)(G) = χ(c)(G,F) is the continuous version of χ(d)(B); see (1.15).
However, in the case η ≤ d/2, (1.18) is awkward, since the left-hand side is

obviously non-decreasing in αt, but the right-hand side is non-increasing. This
suggests that χ(c)(G) = 0 in that case. The following result shows that the
non-exit probability is in fact on a slower scale.

Theorem 1.4. Suppose 1 � αt � tη/(d(η+1)) and that Assumption 1.1 holds.

In addition, assume that η ≤ d/2. Then,

(i) The level sets of J (c) are not closed and in particular not compact,

(ii) for all finite and connected sets B ⊂ Z
d containing the origin,

lim inf
t→∞

t−η/(η+1) log〈Pa0
(
supp(`t) ⊂ αtG

)
〉 ≥ −Kη,Dχ

(d)(B), (1.19)

(iii)

lim sup
t→∞

t−η/(η+1) log〈Pa0
(
supp(`t) ⊂ αtG

)
〉 ≤ −Kη,Dχ

(d)(Zd). (1.20)
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In the case η = d/2 we have the corresponding lower bound

lim inf
t→∞

t−η/(η+1) log〈Pa0
(
supp(`t) ⊂ αtG

)
〉 ≥ −Kη,Dχ

(d)(Zd). (1.21)

Hence, the leading-order logarithmic asymptotics of the non-exit probability
do not depend on the set G ⊂ R

d nor on the scale function αt. The proof of
Theorem 1.4 is in Section 5. We will see in Section 1.8 below that the heuristics
for the LDP of Theorem 1.3 also apply for the case η ≤ d/2 of Theorem 1.4. Its
Assertion (i) gives a first reason why nevertheless the LDP does not hold true.
Assertion (iii) gives another one: Except for the special case η = d/2, we clearly
have

γt = tη/(1+η)α
(d−2η)/(1+η)
t � tη/(1+η).

This means that the non-exit probability is on a slower (i.e., probabilistically
less costly) scale than the one the LDP in Theorem 1.3 would imply.

A heuristic explanation is the fact that η ≤ d/2 corresponds to a high prob-
abilistic cost for very small conductances. Therefore, the non-exit probability
is governed by the event where conductances are very small only on a bounded
number of sites, or at the most on a set of sites much smaller that Bt, in con-
trast to the event where conductances are small everywhere which would lead
to the scale γt. The random walk is then slowed down so much that it does not
even leave the smaller set. Theorem 1.4 shows that this is exactly the behavior
that governs annealed asymptotics, at least those of non-exit probabilities, in
the case η ≤ d/2.

Combining the results of Theorems 1.3 and 1.4, we would like to remark that
the scale of the non-exit probabilities is decreasing in η across all values η > 0,
since under the restriction that 1 � αt � tη/(d(η+1)),

γt = tη/(1+η)α
(d−2η)/(1+η)
t � tη

∗/(1+η∗) for any η > η∗ = d/2.

The different behaviours in the two regimes are also reflected by analytic
properties of the arising variational problems, as we will see now. In fact,
for η > d/2, the continuous variational problems are well-behaved and admit
standard compactness arguments, but not the discrete ones, and vice versa.
Recall that χ(c)(G) equals χ(c)(G,F) defined in (1.15).

Proposition 1.1. (i) Assume that η > d/2. Then,

• χ(c)(G) > 0, and the continuous variational problem in (1.15) for

A = F possesses at least one minimiser. In the case d = 1, we need

to make the additional assumption that η ≥ 1;

• χ(d)(Zd) = 0 and the discrete variational problem in (1.17) (with

B = Z
d) has no minimiser.

(ii) Assume that η ≤ d/2. Then,
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• χ(c)(G) = 0 and the continuous variational problem in (1.15) for

A = F has no minimiser;

• χ(d)(Zd) > 0 if and only if d > 1.

The proof of Proposition 1.1 is in Section 2.

1.5. Lifshitz tails for the principal eigenvalue

Let us denote by λa(B) the bottom of the spectrum of −∆a in the con-
nected set B ⊂ Z

d with Dirichlet (i.e., zero) boundary condition. Using the
abbreviation a(x, e) = ax,x+e, the well-known Rayleigh –Ritz formula reads

λa(B) = inf
{ ∑

z∈Zd

∑

e∈N

a(z, e)(g(z + e) − g(z))2 : g ∈ `2(Zd),

‖g‖2 = 1, supp(g) ⊂ B
}
. (1.22)

Under Assumption 1.1, λa(B) is a positive random variable with essential infi-
mum equal to zero, and its tails at zero are of high interest from the viewpoint
of Lifshitz tails of the random operator −∆a. In [25], we proved as a corollary
of Theorem 1.2 that, for B a fixed bounded set, the Lifshitz tails are given by

lim
ε↓0

εη log Pr(λa(B) ≤ ε) = −Dχ(d)(B)η+1. (1.23)

Now, Theorem 1.3 also yields the analogous corollary for the Lifshitz tails
in the t-dependent set B = Bt = αtG∩Z

d with G ⊂ R
d as in Theorem 1.3. For

simplicity, we restrict to the case where αt is a power of t.

Corollary 1.1. Suppose that the assumptions of Theorem 1.3 are satisfied; in

particular we assume that η > d/2. Furthermore, assume that αt = ts/(d−2η)

for some s ∈ (0, d−2η
d+2 ). Then

lim
ε↓0

εη+s log Pr(λa(αtG ∩ Z
d) ≤ ε1−s) = −

(1

η
χ(c)(G)

)η+1

(1 − s)1−s(η + s)η+s.

(1.24)

Certainly, from Theorem 1.4, one can deduce an analogous statement also
in the case η = d/2, but our precision in the case η < d/2 is not high enough
for deriving Lifshitz tails.

The proof of Corollary 1.1 is a variant of the proof of (1.23) in [25]. It uses
the fact that

log
〈
exp{tλa(αtG ∩ Z

d)}
〉
∼ log

〈
P
a
0

(
supp(`t) ⊂ αtG

)〉
, t→ ∞,

which is easy to show by standard arguments (also using that we indeed prove
the upper bound in (1.14) for any starting point uniformly). Using now the
asymptotics from (1.18) and applying de Bruijn’s exponential Tauberian theo-
rem [8, Theorem 4.12.9] yields the assertion.
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1.6. A quenched LDP for uniformly elliptic conductances

To contrast with the main topic of the present paper (the annealed setting
for conductances whose essential infimum is zero) we give now a result in the
quenched setting (i.e., with probability one with respect to the conductances) for
conductances that are bounded and bounded away from zero, in which case the
environment is called uniformly elliptic. Again, we consider an open bounded
set G that contains the origin and a scale function αt � 1 and consider the
RWRC in the growing box Bt = αtG ∩ Z

d. In this case, the conductances
cannot have any tendency to assume extreme values, but will form a more or
less homogeneous environment, and the random walk will behave qualitatively
like in the LDP of [20] (mentioned around (1.11)) in this homogenised environ-
ment. Accordingly, we will be using techniques from the theory of stochastic
homogenisation, and we will rely on a quenched functional central limit theorem.
The latter states that the RWRC, rescaled in the standard way as in Donsker’s
invariance principle, converges in probability towards a Brownian motion with
covariance matrix ceff Id, see [1], e.g. The constant ceff > 0 is called effective

diffusion constant or effective conductivity and depends in a rather complex way
upon the conductance distribution.

For simplicity, we restrict to the case where G is a cube.

Theorem 1.5 (Quenched LDP for uniformly elliptic conductances).
Assume that λ ≤ axy ≤ 1/λ almost surely, for some λ ∈ (0, 1). Moreover, as-

sume that G = (0, 1)d is the open unit cube. Then, Pr-almost surely, the

rescaled local times Lt under P
a
0

(
· |supp(`t) ⊂ αtG

)
satisfy a large deviation

principle on F with scale tα−2
t and rate function ceffI

(c)

0 defined in (1.11).

We will prove this theorem in Section 6. The proof relies on a spectral
homogenisation result from [6], which states that the eigenvalues and eigen-
functions of the rescaled discrete random Laplacian on Bt = αtG ∩ Z

d behave
on the large scale like those of the continuous counterpart ceff∆ on G. We
mention that this assertion has been proved only for i.i.d. conductances yet.

1.7. Relevance for the parabolic Anderson model

As we mentioned above, one of our main motivations for the present study
stems from the interest in understanding the parabolic Anderson model (PAM )
with additional randomness in the diffusivity given by random conductances.
The usual PAM is the solution to the heat equation on Z

d with random potential,
see [19] and [26] and the references therein for more background. Consider
u : [0,∞] × Z

d solving the Cauchy problem




∂

∂t
u(t, z) = ∆u(t, z) + ξ(z)u(t, z), (t, z) ∈ [0,∞] × Z

d,

u(0, z) = δ0(z), z ∈ Z
d,
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where ξ = (ξ(z))z∈Zd is a real-valued random potential. For simplicity, we
assume that ξ is an i.i.d. collection of random variables. The solution u can
be represented in terms of the Feynman –Kac formula as an expectation over a
continuous-time simple random walk with generator ∆. Its total mass U(t) =∑

z∈Zd u(t, z) can then be written as

U(t) = E0

(
exp

{ ∑

z∈Zd

ξ(z)`t(z)
})
.

From here, one can already suspect that one of the keys in understanding, or
at least proving, the large-t behaviour would be a good control on the large
deviations of the local times of the walks, and in many research papers this
indeed turned out to be decisive. This gets even more convincing when we look
at the expectation of U(t) with respect to ξ, which equals, as one can see from
an elementary calculation,

E0

(
exp

{ ∑

z∈Zd

H(`t(z))
})
, (1.25)

whereH(`) = log E(exp{`ξ(0)}) denotes the logarithm of the moment generating
function. Since H is a convex function, this term has a self-attracting effect
on the random walk, hence the description of the large-t behaviour requires a
deep understanding of the asymptotic behaviour of the local times in boxes on
length scales that are much smaller than the scale of the central limit theorem,
i.e., having radii �

√
t. The size of the relevant box depends on the large-`

asymptotics of H(`). An example is the case where ξ(0) has double exponential
tails, where the relevant box turns out not to depend on t [21]. For bounded
potentials, it has a radius that diverges like a power ≤ 1/(d+ 2) of t [9].

It is of interest to introduce randomness also in the diffusivity, i.e., to replace
the Laplace operator ∆ by the randomised one, ∆a, and the study of this model
is our future goal. From the above, it is clear that all we have to do for identifying
the expected total mass is to replace E0 in (1.25) by E

a
0 , i.e., the simple random

walk by the RWRC. Hence, the large-deviation principles of the present paper
will be an indispensable help for this future task.

1.8. Heuristic derivation of Theorem 1.3

Let us present a heuristic derivation of the LDP of Theorem 1.3, will serve
also as an outline for the proof of the lower bound in Theorem 1.3, and it
introduces some notation that will be frequently used later. Let us fix any
η ∈ (0,∞); the following does not depend on whether η is smaller or larger
than d/2. We intend to find the asymptotics for the annealed probability of the
event {Lt ≈ f2} for any f2 ∈ F , and we keep in mind that this event is to be
interpreted as {Lt ≈ f2, supp(`t) ⊂ αtG}.
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The main idea is to find the conductance profile contributing optimally to
the probability of the event, and to apply an LDP for the local times given this
particular conductance profile. As opposed to the finite region case, the optimal
realisation of conductances will depend on time. Let us therefore consider the
rescaled conductance field

at(y, e) = βta(bαtyc, e), e ∈ N , y ∈ G, (1.26)

and the scale function βt � 1 will be chosen along the way (recall our convention
a(z, e) = az,z+e for z ∈ Z

d and e ∈ N ). We consider the event that at resembles
a given function ϕ : G×N → (0,∞), i.e., we approximate

〈Pa(Lt ≈ f2)〉 ≈ 〈Pa(Lt ≈ f2)1l{at ≈ ϕ on G×N}〉 (1.27)

for some optimal conductance shape ϕ. Let us first calculate the exponential
decay rate of the probability of {at ≈ ϕ on G×N}. Based on Assumption 1.1,
we obtain

log Pr(at ≈ ϕ on G×N ) ≈ log
( ∏

e∈N

∏

z∈αtG∩Zd

Pr
(
a(z, e) ≈ β−1

t ϕ(z/αt, e)
))

≈ −Dβηt
∑

e∈N

∑

z∈αtG∩Zd

ϕ(z/αt, e)
−η

≈ −βηt αdt
∑

e∈N

D

∫

G

ϕ(y, e)−η dy. (1.28)

(We will present a more rigorous version of this in Lemma 3.3.) On the other
hand, we may evaluate the P

a-probability of {Lt ≈ f2} on the event {at ≈
ϕ on G×N} in terms of a rescaled version of the famous Donsker –Varadhan –
Gärtner large deviation principle. In analogy with the large deviation principle
for Lt mentioned in Section 1.1 for the simple random walk case,

P
a(Lt ≈ f2) ≈ exp

(
− t

α2
tβt

∑

e∈N

∫

G

ϕ(y, e)
(
∂ef

)2
(y) dy

)
(1.29)

on the event where {at ≈ ϕ on G × N}. This is well-aligned with the rate
function given in (1.11), and Proposition 3.1 in Section 3 gives an account of
this in a more rigorous way. Combining the approximations in (1.28) and (1.29)
with (1.27), we obtain

log〈Pa(Lt ≈ f2)〉 ≈ − t

α2
tβt

∑

e∈N

∫

G

ϕ(y, e)
(
∂ef

)2
(y) dy

− βηt α
d
t

∑

e∈N

D

∫

G

ϕ(y, e)−η dy. (1.30)
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The decay rate on the right-hand side is minimal if we choose βt such that

t

α2
tβt

= βηt α
d
t , i.e., βt =

( t

αd+2
t

)1/(1+η)

. (1.31)

Note that the condition αt � t1/(d+2) from Theorem 1.3 ensures that βt � 1.
Furthermore, the optimal scale is now seen to be equal to

γt =
t

α2
tβt

= βηt α
d
t = tη/(1+η)α

(d−2η)/(1+η)
t . (1.32)

The optimal shape ϕ is determined by the minimisation of the sum of the two
integrals on the right-hand side of (1.29). Minimizing term by term, we see that

ϕ(y, e) = arg inf
{
r
(
∂ef(y)

)2
+Dr−η : r ∈ [0,∞]

}
,

which yields

ϕ(y, e)
(
∂ef(y)

)2
+Dϕ(y, e)−η = Kη,D

∣∣∂ef(y)
∣∣p, y ∈ G, e ∈ N ,

with Kη,D as in Theorem 1.3 and p = 2η/(η + 1). In particular, we have
identified the rate function J (c) of (1.12) as

J (c)(f2) = inf
ϕ : G×N→(0,∞)

[∑

e∈N

∫

G

ϕ(y, e)
(
∂ef

)2
(y) dy +

∑

e∈N

D

∫

G

ϕ(y, e)−η dy

]
.

(1.33)
This ends our heuristic explanation of the LDP in Theorem 1.3.

1.9. Open problems

The present work leaves open a number of interesting questions, both on the
analytic and the probabilistic side. It is open whether or not the rate functions
J (c) and J (d) are linked with some interesting operator on its own right, like the
pseudo-p-Laplacian. See [10] for the study of a problem that is closely related
with the analysis of the minimiser(s) of J (c). Another question concerns the
precise behaviour of the minimisers of the formula for χ(d)(B) for B ↑ Z

d in the
three cases η < d/2, η = d/2 and η > d/2: do we have convergent subsequences,
and does a continuous or a discrete picture arise? On the probabilistic side,
it would be interesting to find methods to determine the asymptotic shape of
the local times conditional on staying in αtG for η ≤ d/2, where we expect a
discrete picture to arise. Furthermore, the methods of the present paper are not
strong enough to rigorously identify the behaviour of the conductances under
the annealed law, conditional on the walk not leaving the set αtG; also this
is interesting. Moreover, the quenched setting (i.e., with probability one with
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respect to the conductances) is rather interesting as well; is it true that a similar
picture as for the PAM arises: the random walk quickly moves to a remote small
region in which the conductances create a particularly preferable environment?
And lastly, of course the model that gave the main motivation of this paper
remains to investigated, the PAM with diffusivity taken equal to the RWRC.

2. The characteristic variational problems

In this section, we prove Proposition 1.1. It follows from a couple of lemmas
that we are going to state and prove. All results of this section are self-contained
and do not need any probabilistic input. Nevertheless, the proof of the upper
bound in Theorem 1.3 also relies on some of the results presented in this section.

Let us state, for future reference, a form of the Rellich –Kondrashov theorem,
which the reader may find in [27, Theorem 8.9], for instance.

Theorem 2.1 (Rellich –Kondrashov). Let 1 ≤ p ≤ ∞ and f, f1, f2, . . . ∈
W 1,p

0 (G) such that fn → f weakly. Then

i) If p < d, then ‖fn − f‖q → 0 for all q with 1 ≤ q < dp/(d− p).

ii) If p = d, then ‖fn − f‖q → 0 for all q ∈ (0,∞).

iii) If p > d, then ‖fn − f‖∞ → 0.

Lemma 2.1. If η > d/2 (in dimension d = 1, assume in addition that 2η/(η +
1) ≥ 1), then the continuous variational problem in (1.15) for A = F has a

minimiser.

Proof. Put p = 2η/(eta+ 1) < 2 and choose a sequence (fn)n∈N in H1
0 (G) with

‖fn‖2 = 1 for all n ∈ N that satisfies limn→∞

∑
e∈N ‖∂efn‖pp = χ(c)(G). Clearly,

the p-norms of all derivatives ∂efn with e ∈ N must be bounded as the sequence
approximates the infimum. In addition, we may estimate

‖fn‖pp = ‖fn1l{fn>1}‖pp + ‖fn1l{fn≤1}‖pp ≤ ‖fn‖2 + |G| = 1 + |G|,

which means that the sequence (fn)n is bounded in W 1,p. Consequently, we
may assume that it converges weakly towards some f ∈ W 1,p. We now have
to check the conditions in the Rellich –Kondrashov theorem above (with the
choice q = 2) to establish strong convergence of fn in L2(G).

Case d ≥ 2: On the one hand, p > 2d/(d + 2), so in particular p ≥ 1. On
the other, we have p < 2 ≤ d. In order to use Theorem 2.1 i) with q = 2, we
just estimate

dp

d− p
=

2dη

dη + d− 2η
> 2.
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Case d = 1: By the additional assumption, p ≥ 1. Therefore, we may either
use Theorem 2.1 ii) or iii).

We have now shown that fn → f strongly in L2(G) and in particular ‖f‖2 =
1. As ∂efn → ∂ef weakly for all e ∈ N and Lp-norms are lower semicontinuous
with regard to the weak topology (see e.g. [27], Section 2.11), we have that∑

e∈N ‖∂ef‖pp ≤
∑
e∈N lim infn→∞ ‖∂efn‖pp, i.e., f is a minimiser. This finishes

the proof of Lemma 2.1. 2

Remark 2.1. The case d = 1 and p = 2η/(η + 1) < 1 is not accessible to the
techniques above as the map f 7→ (

∫
G f

p)1/p is not even a seminorm if p < 1.

In the following, we write | · |r for the standard r-norm on R
d.

Lemma 2.2. If η ≤ d/2, then χ(c)(G) = 0 and the continuous variational

problem in (1.15) for A = F does not have a minimiser.

Proof. It will be sufficient to show that χ(c)(G) = 0. Pick ε0 > 0 such that
the open ball with radius ε0 around the origin is contained in G. The proof is
separated into the cases d = 1 and d ≥ 2.

Case d = 1: Here, we have p ≥ 2d/(d + 2) = 2/3. For r > 0, define

fr(x) = Ar(ε0 − |x|)r1l{|x|<ε0} with A2
r = (2r + 1)/(2ε2r+1

0 ). We easily check
that fr ∈ H1

0 (G), ‖fr‖2 = 1 and |f ′(x)| = rAr(ε0 − |x|)r−11l{|x|<ε0}. Then,

∫

G

|f ′(x)|p dx = 2rpApr
1

pr − p+ 1
εpr−p+1
0 ≤ Crprp/2ε−pr0 r−1εpr0 = Cr3p/2−1

for some constant C > 0. As the last term obviously vanishes for r → ∞, the
assertion is shown in the case d = 1.

Case d ≥ 2: We construct a family (fε)ε∈(0,ε0) of functions in H1
0 (G) with

‖fε‖2 = 1 and ∑

e

‖∂efε‖pp → 0 asε→ 0,

where we recall that p = 2η/(1 + η). Choose some γ ∈ (d/4, d/2) and put

f̃ε(x) =
(
|x|−2γ

2 − ε−2γ
)1/2

1l{|x|2<ε},

to obtain

‖f̃‖2
2 = dΩd

ε∫

0

[r−2γ − ε−2γ ]rd−1 dr = C1ε
d−2γ ,

where Ωd denotes the volume of the unit ball in R
d, C1 is some appropriate

constant, and the existence of the integral above follows from γ < d/2. Choosing
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A2
ε = C−1

1 ε2γ−d, the functions fε = Aεf̃ε are L2(G)-normed. Moreover, for
x ∈ R

d with |x|2 < ε,

|∇fε(x)|22 =

d∑

i=1

∣∣∣ ∂

∂xi

[
Aε

(
|x|−2γ

2 − ε−2γ
)1/2

]∣∣∣
2

= A2
ε

d∑

i=1

∣∣∣1
2

(
|x|−2γ

2 − ε−2γ
)−1/2 · γ|x|−2γ−2

2 · 2xi
∣∣∣
2

= A2
εγ

2
(
|x|−2γ

2 − ε−2γ
)−1|x|−4γ−4

2

d∑

i=1

|xi|2

= A2
εγ

2 |x|−4γ−2
2

|x|−2γ
2 − ε−2γ

.

We may estimate the p-norm | · |p on R
d against a constant C2 times the 2-norm

| · |2 and get that

∫

G

|∇fε(x)|pp dx ≤ C2

∫

G

|∇fε(x)|p2 dx. (2.1)

We calculate the integral on the right as

∫

G

|∇fε(x)|p2 dx = Ap/2ε γp/2
ε∫

0

( r−4γ−2

r−2γ − ε−2γ

)p/2
rd−1 dr

= Ap/2ε γp/2
(
ε−2γ−2

)p/2
εd

1∫

0

( s−4γ−2

s−2γ − 1

)p/2
sd−1 ds.

(2.2)

The integral in the last term is obviously finite if, for some δ > 0,

δ∫

0

s−pγ−p+d−1 ds <∞ and

1∫

1−δ

1

s−2γ − 1
ds <∞. (2.3)

As p ≤ 2d/(d+ 2) by assumption, it follows (d − p)/p ≥ d/2 > γ, which means
the exponent in the first integral in (2.3) is greater than −1 and that integral is
finite. For the second integral in (2.3), we substitute r = s−2γ − 1 and estimate

1∫

1−δ

1

s−2γ − 1
ds =

1

2γ

1∫

1−δ

r−1(r + 1)(1−2γ)/(2γ) dr ≤ 1

γ

1∫

1−δ

r(1−4γ)/(2γ) dr,
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which is finite as γ > d/4 ≥ 1/2. Thus, with some constant C3 > 0, (2.1) and
(2.2) yield

J (c)(f2
ε ) ≤ C3ε

(γ−d/2)p/2ε−pγ−pεd = C3ε
(−2pγ−pd−4p+4d)/4.

The assertion of Lemma 2.2 follows if −2pγ − pd − 4p + 4d > 0. This is again
satisfied as γ < d/2 and p ≤ 2d/(d+ 2). 2

Let us in the following consider the discrete variational problem. In the next
statement, we write Qn = [−n, n]d ∩ Z

d for the discrete cube of side length
2n+ 1.

Lemma 2.3. If d = 1 or η > d/2, then χ(d)(Qn) → 0 as n→ ∞. In particular,

χ(d)(Zd) = 0.

Proof. The case d = 1 is straightforward. We just consider the sequence of
functions fn = n−1/21l[−n,n]. Then, up to a constant that arises from norming,

χ(d)(Qn) ≤
∑

z∈Z

|fn(z + 1) − fn(z)|2η/(η+1) = 2n−η/(η+1)

and we are done. In the case η > d/2, a more careful argument works in
all dimensions. For some fixed and L2(G)-normed g ∈ C1

c ((−1, 1)d) (i.e., g
possesses continuous partial derivatives and has compact support), define the
discretisations

g(n)(z) =

[
n−d

∫

[0,1]d

g2
(z + y

n

)
dy

]1/2

, z ∈ Z
d.

These are normed and, at least for large n, supported on Qn. Therefore

χ(d)(Qn) ≤
∑

e∈N

∑

z∈Zd

|g(n)(z + e) − g(n)(z)|2η/(η+1). (2.4)

By Hölder’s and Jensen’s inequalities, we find

∑

e∈N

∑

z∈Zd

|g(n)(z + e) − g(n)(z)|2η/(η+1)

≤ n−dη/(η+1)
∑

z∈Z
d

e∈N

[ ∫

[0,1]d

∣∣∣g
(z + y + e

n

)
− g

(z + y

n

)∣∣∣
2

dy

]η/(η+1)

.

[ ∑

e∈N

∑

z∈Zd

∫

[0,1]d

∣∣∣g
(z + y + e

n

)
− g

(z + y

n

)∣∣∣
2

dy

]η/(η+1)
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= nd/(η+1)

[ ∑

e∈N

∫

Rd

∣∣∣g
(
y +

e

n

)
− g(y)

∣∣∣
2

dy

]η/(η+1)

. (2.5)

Replacing the difference under the last integral according to the fundamental
theorem of calculus, we see that

r.h.s. of (2.5) = n(d−2η)/(η+1)
[ d∑

i=1

∫

Rd

1∫

0

∣∣∣∂ig
(
y +

sei
n

)∣∣∣
2

ds dy
]η/(η+1)

= n(d−2η)/(η+1)
[ d∑

i=1

∫

Rd

|∂ig(y)|2 dy
]η/(η+1)

,

where the term in parentheses is obviously finite. This shows that the right-hand
side in (2.4) tends to 0 as n → ∞ and thus completes the proof of Lemma 2.3.

2

Lemma 2.4. If d > 1 and η ≤ d/2, then χ(d)(Zd) > 0.

Proof. As χ(d)(Zd) is non-increasing with η, it suffices to consider the case η =
d/2 and we abbreviate p = 2η/(η + 1) = 2d/(d + 2). We prove the case d = 2
and d ≥ 3 separately.

The proofs rely on a discrete Sobolev inequality the reader may find in [29,
Lemma 3.2.10], see also [24]. It states that in dimension d ≥ 2, we have for all
g : Z

d → [0,∞) with g(z) → 0 as |z| → ∞
∑

z∈Zd

g(z)d/(d−1) ≤
( ∑

z∈Zd,e∈N

|g(z + e) − g(z)|
)d/(d−1)

. (2.6)

Case d = 2: Here, p = 1 and d/(d − 1) = 2. It follows directly from (2.6)
that

∑
z,e |f(z+ e)− f(z)| ≥ 1 for all normed functions f ∈ `2(Z2). This shows

the assertion.

Case d ≥ 3: Take an arbitrary normed function f ∈ `2(Zd). Without loss
of generality, we may assume that f is non-negative. Put α = (2d − 2)/d > 1,
consider (2.6) with g = fα and apply the mean value theorem to each summand.
It follows

1 ≤
∑

z∈Zd,e∈N

|f(z+e)α−f(z)α| ≤
∑

z∈Zd,e∈N

α|f(z+e)−f(z)|(f(z+e)α−1+f(z)α−1),

which in combination with Hölder’s inequality yields

1 ≤ 2dα
( ∑

z∈Zd,e∈N

|f(z + e) − f(z)|p
)1/p( ∑

z∈Zd

f(z)((α−1)p)/(p−1)
)(p−1)/p

.
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The second sum is equal to 1 as ((α − 1)p)/(p − 1) = 2 due to the choices
p = 2d/(d+2) and α = (2d−2)/d. Rearrangement of the equation above yields
the desired result. 2

Lemma 2.5. Assume η ≥ d/2. Consider, for n ∈ N, the boxes Qn = [−n, n]d∩
Z
d. Then

lim
n→∞

χ(d)(Qn) = χ(d)(Zd). (2.7)

Proof. As obviously χ(d)(Qn) ≥ χ(d)(Zd), it remains to show that

lim sup
n→∞

χ(d)(Qn) ≤ χ(d)(Zd). (2.8)

To that end, write p = 2η/(η + 1) and choose some arbitrarily small δ > 0.
Then there exists some normed g ∈ `2(Zd) such that

∑

e∈N

∑

z∈Zd

|g(z + e) − g(z)|p ≤ χ(d)(Zd) + δ. (2.9)

We will now cut off this g in a sufficiently smooth way to obtain an upper bound
for χ(d)(Qn). Define ξ : R

d → R by

ξ(x) =





1, |x|2 ≤ 1,

2 − |x|2, 1 < |x|2 < 2,

0, |x|2 ≥ 2.

(2.10)

Then, the norm r(n) of gn defined as gn(z) = g(z)ξ(z/n), z ∈ Z
d, obviously

tends to 1 as n→ ∞. Moreover, we have in the case p ≤ 1,

χ(d)(Q2n+1) ≤ r(n)−p
∑

e∈N

∑

z∈Zd

|gn(z + e) − gn(z)|p

≤ r(n)−p
∑

e∈N

∑

z∈Zd

|g(z + e) − g(z)|pξ
(
(z + e)/n

)p

+ r(n)−p
∑

e∈N

∑

z∈Zd

|g(z)|p
∣∣ξ

(
(z + e)/n

)
− ξ(z/n)

∣∣p.

In the case p > 1, we obtain as an analogous estimate by Minkowski’s inequality

(
χ(d)(Q2n+1)

)1/p ≤ 1

r(n)

( ∑

e∈N

∑

z∈Zd

|gn(z + e) − gn(z)|p
)1/p

≤ 1

r(n)

( ∑

e∈N

∑

z∈Zd

|g(z + e) − g(z)|pξ
(
(z + e)/n

)p)1/p
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+
1

r(n)

( ∑

e∈N

∑

z∈Zd

|g(z)|p
∣∣ξ

(
(z + e)/n

)
− ξ(z/n)

∣∣p
)1/p

.

In both cases, the first term on the right-hand side clearly tends to χ(d)(Zd) + δ
and its 1/p-th power, respectively. As δ was chosen arbitrarily small, it is enough
to show that the sums in the respective second terms vanish as n → ∞. For
some positive constants c1 < c2 that depend on dimension only, it is obvious
that

|ξ
(
(z + e)/n

)
− ξ(z/n)| = 0 if z /∈ Qbc2nc \Qbc1nc, e ∈ N , (2.11)

if n is large enough. Moreover, the same difference is of course always bounded
by n−1. Therefore, we may estimate, with the help of Hölder’s inequality,

∑

e∈N

∑

z∈Zd

|g(z)|p
∣∣ξ

(
(z + e)/n

)
− ξ(z/n)

∣∣p

≤
(
d

∑

z∈Zd\Qbc1nc

|g(z)|2
)p/2(

d
∑

z∈Qbc2nc

n−2p/(2−p)
)(2−p)/2

≤ c3

( ∑

z∈Zd\Qbc1nc

|g(z)|2
)p/2(

nd−2p/(2−p)
)(2−p)/2

with a constant c3 > 0 that also depends on the dimension only. As g was
assumed to be `2-normed, the assertion follows if only d− 2p/(2 − p) ≤ 0. But
this is tantamount to η ≥ d/2. 2

3. Auxiliary large deviation statements

In this section, we prove two tools that will be important for the proof of
the main results later and have also some interest in their own right: a rescaled
LDP of Donsker –Varadhan –Gärtner type with deterministic conductances in
Section 3.1, and a version of an LDP for the conductances in Section 3.2.

3.1. Donsker – Varadhan – Gärtner type LDP for deterministically re-
scaling conductances

In this section, we prove an LDP for the rescaled local times, Lt, for a time-
dependent sequence of conductances that rescale to some fixed profile. More
precisely, for ϕ : G×N → (0,∞) we define its ‘unscaled’ version by

ϕt(z, e) =

∫

[0,1]d

ϕ
(z + y

αt
, e

)
dy, z ∈ Bt, e ∈ N . (3.1)
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Here, we recall that Bt = αtG ∩ Z
d. The following is an extension of [20,

Lemma 3.1] from ϕ ≡ 1 (i.e., simple random walk) to a much larger class of
conductances.

Proposition 3.1. Fix ϕ : G × N → (0,∞) such that ϕ(·, e) ∈ C(G) for any

e ∈ N and such that m ≤ ϕ ≤M for some 0 < m < M <∞. Then the rescaled

local times Lt under P
β−1

t ϕt conditioned on the event {supp(`t) ⊂ αtG} satisfy

an LDP on F with scale tα−2
t β−1

t and rate function I (c)

ϕ,0 = I (c)
ϕ − infF I

(c)
ϕ where

I (c)

ϕ (f2) =

{∑
e∈N

∫
G ϕ(y, e)

(
∂ef

)2
(y) dy, if f ∈ H1

0 (G),

∞, else.
(3.2)

Here, the space F is equipped with the weak topology of test integrals against

bounded continuous functions V : G→ R.

We follow partly the proof of [20, Lemma 3.1] and use the Gärtner –Ellis the-
orem, i.e., we identify the exponential rate of exponential test integrals against
bounded continuous functions. However, we cannot rely on the local central
limit theorem here, but rather use an eigenvalue expansion. Hence we will have
to control the principal eigenvalue and the corresponding eigenfunction. This
will be done in Lemmas 3.1 and 3.2, respectively, which are the two main steps
in the proof of Proposition 3.1.

For V in Cb(G), the set of bounded continuous functions G → R, we define
its unscaled discretisation analogously to (3.1):

Vt(z) =

∫

[0,1]d

dy V
(z + y

αt

)
, z ∈ αtG ∩ Z

d. (3.3)

Then, denote by λ(t)(ϕ, V ) the principal (i.e., smallest) eigenvalue of −α2
t∆

ϕt +
Vt in Bt with zero boundary condition. Analogously, we call λ1(ϕ, V ) the largest
eigenvalue of the continuous operator

−∆ϕ + V = −∇∗A∇ + V

on H1
0 (G), where the space-dependent matrix A is given by

Aij(y) = δijϕ(y, ei), y ∈ G, i, j ∈ {1, . . . , d}.

The Rayleigh –Ritz principle can be written as

λ1(ϕ, V ) = inf
f∈F

{I (c)

ϕ (f2) + (V f, f)}.

It turns out that the discrete eigenvalue converges towards the continuous one
if the discrete region grows.
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Lemma 3.1. Fix ϕ as in Proposition 3.1. Then, for any V ∈ Cb(G),

lim
t→∞

λ(t)

1 (ϕ, V ) = λ1(ϕ, V ).

Proof. Let us write λ(t)

1 and λ1 instead of λ(t)

1 (ϕ, V ) and λ1(ϕ, V ). We need to
show that

lim sup
t→∞

λ(t)

1 ≤ I (c)

ϕ (f2) + (V f, f), for all f ∈ F and (3.4)

lim inf
t→∞

λ(t)

1 ≥ λ1. (3.5)

Proof of (3.4). This equation is only non-trivial for functions f in H1
0 (G), so

let f be such a function. As C∞
c (G) is dense in H1

0 (G), there exists a sequence
of functions f (n) ∈ C∞

c (G) with ‖f − f (n)‖H1 ≤ 1/n for any n ∈ N. Moreover,
we may assume that the H1-norms of all these functions f (n) are bounded by
some constant N > 0. With the convention

ft(z)
2 = α−d

t

∫

[0,1)d

f
(z + y

αt

)2

dy, z ∈ αtG ∩ Z
d,

we have by the Rayleigh– Ritz formula

λ(t)

1 ≤ α2
t

∑

z∈αtG∩Zd,e∈N

ϕt(z, e)(f
(n)

t (z + e) − f (n)

t (z))2 +
∑

z∈αtG∩Zd

Vt(z)f
(n)

t (z)2.

(3.6)
We estimate the first sum by

∑

z,e

ϕt(z, e)(f
(n)

t (z + e) − f (n)

t (z))2

= α−d
t

∑

z,e

ϕt(z, e)

[( ∫

[0,1)d

f (n)

(z + x+ e

αt

)2

dx
)1/2

−
( ∫

[0,1)d

f (n)

(z + x

αt

)2

dx

)1/2]2

≤ α−d
t

∑

z,e

ϕt(z, e)

∫

[0,1)d

[
f (n)

(z + x+ e

αt

)
− f (n)

(z + x

αt

)]2

dx

≤
∑

e

∫

G

ϕt(bαtyc, e)
[
f (n)

(
y +

e

αt

)
− f (n)

(
y
)]2

dy

≤ α−2
t

∑

e

1∫

0

∫

G

ϕt(bαtyc, e)∂ef (n)

(
y +

se

αt

)2

dy ds,
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making use of Hölder’s inequality in the second step, an integral substitution
in the third, and the fundamental theorem of calculus combined with Jensen’s
inequality and Fubini’s theorem in the fourth. From here, we may estimate by
the triangle inequality

α2
t

∑

z,e

ϕt(z, e)(f
(n)

t (z + e) − f (n)

t (z))2

≤
∑

e

∫

G

ϕ(y, e)(∂ef)2(y) dy +R1 +R2 + R3

with

R1 =
∑

e

1∫

0

∫

G

ϕt(bαtyc, e)
[
∂ef

(n)

(
y +

se

αt

)2

− ∂ef
(n)(y)2

]
dy ds,

R2 =
∑

e

∫

G

ϕt(bαtyc, e)
[
∂ef

(n)(y)2 − ∂ef(y)2
]
dy,

R3 =
∑

e

∫

G

[
ϕt(bαtyc, e) − ϕ(y, e)

]
(∂ef)2(y) dy.

Firstly, by Hölder’s and Minkowski’s inequalities, we have

|R1| ≤ 2MN
∑

e

1∫

0

∫

G

[
∂ef

(n)

(
y +

se

αt

)
− ∂ef

(n)(y)
]2

dy ds,

which converges to zero with t → ∞ as f (n) is bounded and continuous. Again
with Hölder’s and Minkowski’s inequalities, we find that |R2| ≤ 2MN/n. The
term R3 goes to zero with t → ∞ as ϕ is bounded and continuous. Finally,
convergence of

∑
z∈αtG∩Zd Vt(z)f

(n)

t (z)2 towards (V f, f) follows in a similar
way by dint of Lebesgue’s theorem. This means we have

lim sup
t→∞

λ(t)

1 ≤ I (c)

ϕ (f2) + (V f, f) +
2MN

n
(3.7)

for all n ∈ N and f ∈ H1
0 (G). Letting n→ ∞, we obtain (3.4).

Proof of (3.5). We denote by vt the `2-normed and positive principal eigen-
function of the operator −α2

t∆
ϕt + Vt in Bt with zero boundary condition cor-

responding to the eigenvalue λ(t)

1 . The strategy is to construct a sequence of
functions ft ∈ H1

0 (G) satisfying

−α2
t

(
∆ϕtvt, vt

)
= I (c)

ϕ

(
f2
t

)
, (3.8)

lim inf
t→∞

(
Vtvt, vt

)
= lim inf

t→∞

(
V ft, ft

)
, (3.9)
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lim
t→∞

‖ft‖2 = 1. (3.10)

Given such a sequence, we then easily deduce

lim inf
t→∞

(
− α2

t

(
∆ϕtvt, vt

)
+

(
Vtvt, vt

))

= lim inf
t→∞

(
‖ft‖−2

2 I (c)

ϕ

(
f2
t

)
+ ‖ft‖−2

2

(
V ft, ft

))

≥ inf
f∈F

[
I (c)

ϕ (f2) +
(
V f, f

)]
= λ1,

which implies (3.5) as the vt are the discrete principal eigenfunctions.
The construction uses a finite element approach which was used in a similar

way in [11] and involves an extension of the discrete eigenfunctions vt onto
the continuous space αtG by linear interpolation along certain simplices and
subsequent rescaling. The unit cube K = [0, 1]d is split into d! simplices as
follows: For each permutation σ ∈ Σd of the set {1, . . . , d}, let Tσ denote the
interior of the convex hull of the integer vertices 0, eσ(1), eσ(1) +eσ(2), . . . , eσ(1) +
. . .+ eσ(d) with ei the i-th unit vector. Consequently, the sets Tσ with σ ∈ Σd
are pairwise disjoint. For Lebesgue-almost all x ∈ R we find σx ∈ Σd such that
x − bxc is in Tσx

. We may consequently define, for t > 0, almost all x ∈ αtG
and i ∈ {1, . . . , d},

g(t)

i (x) =
(
xσx(i) − bxσx(i)c

)

×
[
vt

(
bxc + eσx(1) + . . .+ eσx(i)

)
− vt

(
bxc + eσx(1) + . . .+ eσx(i−1)

)]
.

Let us now define the sequence ft with the desired properties. If y ∈ G with
αty − bαtyc belonging to some Tσ, let

ft(y) = α
d/2
t vt

(
bαtyc

)
+ α

d/2
t

d∑

i=1

g(t)

i (αty). (3.11)

We may extend the functions ft continuously to the whole space G as is shown
in [11], and they are clearly differentiable in all points y ∈ G with αty − bαtyc
belonging to some Tσ, which means ft ∈ H1

0 (G). It is easily seen that the
functions ft satisfy (3.8): For almost all y ∈ G,

∂eft(y) = α
1+d/2
t

[
vt(bαtyc + e) − vt(bαtyc)

]
, e ∈ N , t > 0. (3.12)

In particular, ∂eft is almost everywhere constant on the boxes α−1
t (z + [0, 1]d)

with z ∈ αtG ∩ Z
d, thus

α2
t

(
∆ϕtvt, vt

)
= αd+2

t

∑

e∈N

∫

G

ϕt(bαtyc, e)
[
vt(bαtyc + e) − vt(bαtyc)

]2
dy
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=
∑

e∈N

∫

G

ϕt(bαtyc, e)
(
∂eft(y))

2 dy

=
∑

e∈N

∫

G

ϕt(bαtyc, e)
(
∂eft(y))

2 dy = −I (c)

ϕ

(
f2
t

)
.

Let us in a next step show that the functions ft also satisfy (3.10). By the
triangle inequality applied to (3.11), it is enough to show that the L2(G)-norms

of each sequence of functions α
d/2
t g(t)

i (αt·), i = 1, . . . , d, vanish as t → ∞. We
calculate

αdt

∥∥∥
d∑

i=1

g(t)

i (αt·)
∥∥∥

2

2
= αdt

∫

G

( d∑

i=1

g(t)

i (αty)
)2

dy

≤
d∑

i=1

( ∫

αtG

(
yσy(i) − byσy(i)c

)2
[
vt

(
byc + eσy(1) + . . .+ eσy(i)

)

− vt
(
byc+ eσy(1) + . . .+ eσy(i−1)

)]2

dy

)

≤
d∑

i=1

( ∫

αtG

[
vt

(
byc + eσy(1) + . . .+ eσy(i)

)

− vt
(
byc+ eσy(1) + . . .+ eσy(i−1)

)]2

dy

)

=
∑

e∈N

∫

αtG

[
vt

(
byc + e

)
− vt

(
byc

)]2

dy

≤ m−1
∑

z∈αtG∩Zd,e∈N

ϕt(z, e)
[
vt(z + e) − vt(z)

]2
. (3.13)

The last expression must converge to zero as t→ ∞ as the converse would imply

lim sup
t→∞

α2
t

(
− ∆ϕtvt, vt

)
= ∞

in contradiction to (3.4) that we have already proven. Equation (3.9) is seen as
follows. By the triangle inequality,

∣∣∣
(
Vtvt, vt

)
−

(
V ft, ft

)∣∣∣ ≤
∑

z∈αtG∩Zd

∣∣Vt(z) − V (z/αt)
∣∣(vt(z)

)2

+

∫

G

∣∣V (y)
∣∣
∣∣∣αdt

(
vt(bαtyc)

)2 −
(
ft(y)

)2
∣∣∣dy,
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where the second term vanishes with t → ∞ due to (3.10) and the fact that V
is bounded. As vt is normed, we obtain an upper bound for the first term by

replacing
(
vt(z)

)2
with δz(zt) where

zt = argmax
∣∣Vt(z) − V (z/αt)

∣∣.

Then, (3.9) follows considering that
∣∣Vt(zt) − V (zt/αt)

∣∣ → 0 as V is uniformly
continuous. This finishes the proof of (3.5). 2

Recall that vt denotes the `2-normed and positive principal eigenfunction of
−α2

t∆
ϕt + Vt in Bt = αtG ∩ Z

d with zero boundary condition corresponding to
the eigenvalue λ(t)

1 = λ(t)

1 (ϕ, V ).

Lemma 3.2. Under the assumptions of Lemma 3.1,

lim inf
t→∞

βtα
2
t

t
log vt(0) ≥ 0.

Proof. We treat the cases d = 1 and d ≥ 2 separately.

Case d = 1: There is a unique L2-normed g ∈ H1
0 (G) such that

I (c)

ϕ (g2) + (V g, g) = λ1(ϕ, V )

and g is strictly positive in the sense that for any compact setK ⊂ G there exists
δ > 0 such that g > δ almost everywhere on K, thus g > δ1 on [−δ2, δ2]d ⊂ G
for some fixed positive constants δ1, δ2. This follows from the spectral theorem
for uniformly elliptic operators (compare e.g. [31]), note that ϕ is continuous
and 0 < m ≤ ϕ ≤ M < ∞ by assumption. Let ft be the interpolating se-
quence we have constructed in the proof of the previous lemma. We now show
that ft converges to g in L∞ towards g as t → ∞. As every sequence (ftk)k∈N

is a minimizing sequence with respect to the Dirichlet energy associated with
−αt∆ϕ

t + Vt, and ϕ is bounded away from zero, this sequence is bounded in
H1

0 (G) and therefore admits a weakly convergent subsequence that we also de-
note by (ftk )k∈N. By the Rellich – Kondrashov theorem (Theorem 2.1) in the
special case p = 2, d = 1, we have ftk → f in L∞ for some f ∈ L2(G). As the
minimiser g is unique and

I (c)

ϕ (f2) + (V f, f) ≤ lim inf
k→∞

I (c)

ϕ

(
f2
tk

)
+ (V ftk , ftk)

by lower semicontinuity of I (c)
ϕ and continuity of V , we have f = g. For t

large enough, we have consequently ft > δ1/2 on [−δ2, δ2]d. As ft interpolates

α
d/2
t vt, this also implies that α

d/2
t vt(0) > δ1/2. The decay of vt(0) is therefore

only polynomial in t and the assertion is shown.
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Case d ≥ 2: As vt is an eigenfunction of −α2
t∆

ϕt + Vt corresponding to the
eigenvalue λ(t)(ϕ, V ), we have

vt(0) = e−λt(V )
(
exp{α2

t∆
ϕt − Vt}vt

)
(0)

= e−λt(V )
E
α2

tϕt

0

[
exp

{
−

1∫

0

Vt(Xs) ds

}
vt(X1)

]
.

Abbreviating v∗t = maxαtG∩Zd vt and V∗ = supG V , we estimate

vt(0) ≥ v∗t exp{−λt(V ) − V∗} min
x∈αtG∩Zd

P
α2

tϕt

0

(
X1 = x

)
.

As vt is normed, the decay of its maximal value is slower than exponential as
t → ∞, so we only need to consider the exponential decay of the probability
term above. With | · | = | · |1 denoting the lattice distance, r the radius of the
smallest ball to contain G and S1 the random number of jumps a random walk
makes up to time 1, we have

P
α2

tϕt

0

(
X1 = x

)
=

∞∑

k=|x|

P
α2

tϕt

0

(
X1 = x, S1 = k

)

≥
(2dM

m

)−2drdαte

P
α2

tϕt

0

(
S1 ≥ |x|

)
,

as jump times are independent from jump directions and the random walk can
always reach the vertex x by making its last 2drdαte steps in the ‘right’ direction,
since this is the maximum lattice distance within αtG. Certainly the probability
of the random walk generated by ∆α2

tϕ to make at least |x| jumps dominates
the probability of the slower simple random walk generated by α2

tm∆ to make
at least 2drαt jumps. Thus,

min
x∈αtG∩Zd

P
α2

tϕt

0

(
X1 = x

)
≥

(2dM

m

)−2drdαte

P
α2

tm
0

(
S1 ≥ 2drαt)

=
(2dM

m

)−2drdαte

exp{−2dα2
tm}

∞∑

k=2drdαte

(2dα2
tm)k

k!

≥
(2dM

m

)−2drdαte

exp{−2dα2
tm} (2dα2

tm)2drdαte

(2drdαte)!
.

In the last line, we observe that the fraction in the end is greater than 1 if αt is
large enough. Therefore,

log vt(0) ≥ −2dα2
tm+ o(α2

t ). (3.14)

As we are in the case d ≥ 2 and we have chosen βt � 1 such that αdtβ
η
t =

tα−2
t β−1

t , we may conclude α2
t � tα−2

t β−1
t . The assertion follows dividing

(3.14) by tα−2
t β−1

t and passing to the limit inferior. 2
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Proof of Proposition 3.1. The proof of the LDP in Proposition 3.1 relies on the
Gärtner –Ellis theorem (e.g., in [16]). It will be sufficient to show that

lim
t→∞

βtα
2
t

t
log E

β−1
t ϕt
z

[
exp

{
− t

βtα2
t

∫

G

V (y)Lt(y) dy

} ∣∣∣∣X[0,t] ⊂ αtG

]

= −λ1(ϕ, V ) + λ1(ϕ, 0) (3.15)

for all V ∈ Cb(G). Then, by the Gärtner –Ellis theorem, the desired result
follows as the Legendre transform of the rate function I (c)

ϕ,0 is given by

V 7→ sup
g2∈F

{
(V, g2) − I (c)

ϕ,0(g
2)

}
= sup

g2∈F

{
(V, g2) − I (c)

ϕ (g2)
}

+ λ1(ϕ, 0)

= −λ1(ϕ, V ) + λ1(ϕ, 0). (3.16)

Here, (·, ·) denotes the L2(G)-scalar product and we have made use of the well-
established fact that the eigenvalue λ1(ϕ, V ) satisfies the variational equality

λ1(ϕ, V ) = inf
g2∈F

{
I (c)

ϕ (g2) − (V, g2)
}
. (3.17)

For V ∈ Cb(G), introduce the operator Pϕ,V
t on `2(αtG ∩ Z

d) by

Pϕ,Vt f(z) = E
β−1

t ϕt

z

[
exp

{
− t

βtα2
t

∫

G

V (y)Lt(y) dy

}
1l{X[0,t] ⊂ αtG}f(Xt)

]
.

Then, (3.15) is shown for all V ∈ Cb(G) if we verify

lim
t→∞

βtα
2
t

t
logPϕ,Vt 1l(0) = −λ1(ϕ, V ) (3.18)

for all such V (including V ≡ 0). Recalling the notation (3.3) and using that
Lt is a step function, we calculate

Pϕ,Vt f(z) = E
β−1

t ϕt
z

[
exp

{
− 1

βtα2
t

t∫

0

Vt(Xs) ds

}
1l{X[0,t] ⊂ αtG}f(Xt)

]
.

Consequently, Pϕ,V
t admits the semigroup representation

Pϕ,Vt = exp{t(∆β−1
t ϕt − β−1

t α−2
t Vt)} = exp

{
tβ−1
t α−2

t

[
α2
t∆

ϕt − Vt
]}
,

where the operator in the exponent is considered in `2(αtG ∩ Z
d) with zero

boundary condition. Note that Pϕ,V
t has the same principal eigenfunction vt

as the operator −α2
t∆

ϕt +Vt has, and the corresponding principal eigenvalue is
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given by exp
{
− t/(βtα

2
t )λ

(t)

1 (ϕ, V )
}
. An eigenvalue expansion yields, for each

t ≥ 0,

exp
{
− t

βtα2
t

λ(t)

1 (ϕ, V )
}(
vt(0)

)2 ≤ Pϕ,Vt 1l(0) ≤ |αtG|2 exp
{
− t

βtα2
t

λ(t)

1 (ϕ, V )
}
.

Thus, (3.18) follows by Lemmas 3.1 and 3.2. 2

Remark 3.1. In the proof of the lower bound in Theorem 1.3, we in fact use

Proposition 3.1 for the local times Lt under P
β−1

t (ϕt−δα
−2
t ) where 0 < δ < m

instead of P
β−1

t ϕt . It is easily seen that the proof given above works just as
well with this slight modification as we are only subtracting a spatially constant
factor that vanishes as t→ ∞. However, we prefer to omit this modification in
the proof and in the statement of the lemma for reasons of conciseness.

3.2. Large deviations for rescaled conductances

In this section, we characterise the asymptotic probability of having a small
conductance field. The first important lemma will be used for the lower bound
in Theorem 1.3 and reads like the lower bound of an LDP for the rescaled
conductances in a growing box. Consider the set

A(B,ψ, δ) = {ψ̃ : B ×N → (0,∞) |ψ − δ ≤ ψ̃ ≤ ψ} (3.19)

and recall the scale function βt � 1 from (1.31). It turns out that we will need
a lower estimate for the probability of the event that βta is δα−2

t -close to ϕt on
Bt = αtG ∩ Z

d, i.e., lies in A(Bt, ϕt, δα
−2
t ). Here, ϕt is the unscaled version of

ϕ defined in (3.1).

Lemma 3.3. Fix a scale function βt � 1, positive numbers m < M and some

ϕ : G × N → (m,M) such that ϕ(·, e) ∈ Cb(G) for any e ∈ N . Then, for any

δ ∈ (0,m),

lim inf
t→∞

1

βηt α
d
t

log Pr
(
βta ∈ A(Bt, ϕt, δα

−2
t )

)
≥ −D

∑

e∈N

∫

G

ϕ(y, e)−η dy. (3.20)

Proof. As a pre-step we first derive this lower estimate for the event that βta
is only δ-close, i.e., we prove (3.20) with δα−2

t replaced by δ. Assumption 1.1

yields the existence of a non-decreasing map R : [0,∞) → [0,∞) with R(ε)
ε→0→ 0

such that, for all ε > 0,

−Dε−η(1 +R(ε)) ≤ log Pr(a(0, e1) ≤ ε)

≤ −Dε−η(1 −R(ε)).
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Therefore, we may estimate

Pr(βta ∈ A(Bt, ϕt, δ))

=
∏

z,e

[
Pr(a(z, e) ≤ β−1

t ϕt(z, e)) − Pr(a(z, e) ≤ β−1
t (ϕt(z, e) − δ))

]

≥
∏

z,e

[
exp

{
−Dβηt ϕt(z, e)−η(1 +R(β−1

t M))
}

− exp
{
−Dβηt (ϕt(z, e) − δ)−η(1 −R(β−1

t M))
}]

=
∏

z,e

exp
{
−Dβηt ϕt(z, e)−η(1 +R(β−1

t M))
}

×
∏

z,e

[
1 − exp

{
−Dβηt

[
(ϕt(z, e) − δ)−η(1 −R(β−1

t M))

− ϕt(z, e)
−η(1 +R(β−1

t M))
]}]

. (3.21)

Pick some positive δ0 and choose t large enough to satisfy

( M

M − δ

)η
>

1 +R(β−1
t M)

1 −R(β−1
t M)

+ δ0.

Thus, for all z ∈ Bt,

(ϕt(z, e) − δ)−η(1 −R(β−1
t M)) − ϕt(z, e)

−η(1 +R(β−1
t M)) > 2δ0M

−1.

We may therefore continue (3.21) by

log Pr(βta ∈ A(Bt, ϕt, δ)) ≥ −Dβηt
∑

z,e

ϕt(z, e)
−η(1 +R(β−1

t M))

+ d|αtG| log
(
1 − e−2DM−1δ0β

η
t

)
.

Finally, by Hölder’s reverse inequality and merging asymptotically negligible
terms,

1

βηt α
d
t

log Pr(βta ∈ A(Bt, ϕt, δ)) ≥ −Dα−d
t

∑

z,e

ϕt(z, e)
−η + o(1)

= −Dα−d
t

∑

z,e

( ∫

[0,1]d

ϕ
(z + y

αt
, e

))−η

dy + o(1)

≥ −D
∑

e

∫

G

ϕ(y, e)−η dy + o(1).
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Now we prove (3.20). To estimate the asymptotic probability of the event
βta ∈ A(Bt, ϕt, δα

−2
t ) instead of A(Bt, ϕt, δ), we need the additional technical

condition on the existence of an increasing density for small conductances, which
we put in Theorem 1.3. Under this assumption, we may easily estimate for some
C ∈ (0,∞), any x ∈ (m,M) and all sufficiently large t,

Pr
(
x− α−2

t δ ≤ a(z, e) ≤ x
)
≥ C

α2
t

Pr
(
x− δ ≤ a(z, e) ≤ x

)
.

Using this in what we proved so far, i.e., in (3.20) with δα−2
t replaced by δ, we

obtain

log Pr
(
βta ∈ A(Bt, ϕt, δα

−2
t )

)
≥ log

(
1
C α

−2d|αtG|
t

)
+log Pr

(
βta ∈ A(Bt, ϕt, δ)

)
.

Since obviously log
(
α
−2d|αtG|
t

)
= o(βηt α

d
t ), we arrive at the desired result. 2

For the proof of the upper bound in Theorem 1.3 in Section 4.3 below, we
will need also a large-deviations statement about the rate function of the con-
ductances, applied to the rescaled conductances themselves. Recall the rescaled
conductance field at(y, e) = βta(bαtyc, e) from (1.26) for y ∈ G, e ∈ N .

Lemma 3.4. Fix some scale function βt � 1. Then, for any ε > 0, we have

lim sup
t→∞

1

αdt β
η
t

log Pr
( ∑

e∈N

∫

G

(at(y, e))
−η dy ≥ ε

)
≤ −Dε.

Proof. Choose some positive x < D. By the exponential Chebyshev inequality,

Pr

(∑

e

∫

G

(at(y, e))
−η dy ≥ ε

)

≤ exp
{
−αdtβηt xε

}〈
exp

{
αdtβ

η
t x

∑

e

∫

G

(at(y, e))
−η dy

}〉
.

Therefore, it will be sufficient to show that

lim sup
t→∞

1

αdtβ
η
t

log

〈
exp

{
αdtβ

η
t x

∑

e

∫

G

(at(y, e))
−η dy

}〉
≤ 0. (3.22)

We make use of the independence of conductances over edges and obtain after
rescaling

〈
exp

{
αdt β

η
t x

∑

e

∫

G

(at(y, e))
−η dy

}〉
≤

〈
exp

{
βηt x

∑

e

∑

z∈αtG∩Zd

(βta(z, e))
−η

}〉
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≤
〈
exp{xa−η}

〉Cαd
t

for some constant C > 0 with a = a(0, e1) representing a single conductance.

Consequently, it will now be sufficient to show that 〈exa−η 〉 < ∞ for x < D.
This is implied by Assumption 1.1. Indeed, with some bounded residual term r
such that r(s) → 0 as s→ ∞,

〈
exp{xa−η}

〉
=

∞∫

0

Pr
(
exp{xa−η} > s

)
ds ≤ b+

∞∫

b

Pr
(
a < (log s)−1/ηx1/η

)
ds

= b+

∞∫

b

exp
{
− (D/x)(log s)[1 + r(s)]

}
ds

for arbitrary b > 0. Choosing b so large that (D/x)[1 + r(s)] > c for all s > b
and some c > 1, we arrive at

〈
exp{xa−η}

〉
≤ b+

∫ ∞

b s−c ds <∞. 2

4. Proof of Theorem 1.3

In this section, we assemble the results from the previous sections and
prove Theorem 1.3. Recall that we are working on the space F = {f 2 : f ∈
L2(G), ‖f‖2 = 1}, equipped with the weak topology of integrals against bounded
continuous functions G → R.

4.1. Compactness of the level sets of J (c)

Let us show that the level sets Is = {f2 ∈ F : J (c)(f2) ≤ s}, s ∈ [0,∞), of
J (c) are compact. To that end, choose s ≥ 0 and some sequence (fn)n∈N in Is.
Abbreviate p = 2η/(η + 1). We need to show the existence of some f ∈ Is such
that, along some subsequence,

∫

G

f2
n(y)V (y) dy →

∫

G

f(y)2V (y) dy as t→ ∞ (4.1)

for all V : G → R bounded and continuous. As F is bounded in L2(G), the
Banach– Alaoglu theorem implies that there exists f ∈ L2(G) such that

∫

G

fn(y)V (y) dy →
∫

G

f(y)V (y) dy as t→ ∞ (4.2)

for all V ∈ L2(G), after choosing a subsequence. By Hölder’s inequality and
boundedness of the test functions, this implies (4.1) for some subsequence. Thus,
it remains to show that f ∈ Is. For the requirement that ‖f‖2 = 1, it is
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necessary to show convergence of fn in the strong L2(G)-sense. This is implied
by the Rellich –Kondrashov theorem (Theorem 2.1) in analogy with Section 2.
At this point, we need the restrictions on the parameter η made in Theorem 1.3
(η > d/2 and if d = 1, η ≥ 1).

The requirement that J (c)(f2) ≤ s still needs to be verified. Let i ∈
{1, . . . , d}. As the sequence (∂ifn)n∈N is bounded in Lp(G), we may assume
that it converges weakly (that is, with respect to integrals against functions
V ∈ Lq(G) where 1/p+1/q = 1) against some gi ∈ Lp(G). As all norms are lower

semicontinuous with respect to the weak topology, we have
∑d

i=1 ‖gi‖pp ≤ s.

Since J (c)(f2) =
∑d
i=1 ‖∂if‖pp, the assertion is shown if only ∂if = gi for all

i ∈ {1, . . . , d}. In order to show this, choose some V ∈ C∞
0 (G) ⊂ Lq(G). On the

one hand, ∫

G

∂ifn(y)V (y) dy →
n→∞

∫

G

gi(y)V (y) dy.

On the other hand,

∫

G

fn(y)∂iV (y) dy →
n→∞

∫

G

f(y)∂iV (y) dy

as ∂iV ∈ L2(G) and fn → f weakly in L2(G). The limits above imply (by the
definition of the weak derivative)

∫

G

gi(y)V (y) dy =

∫

G

∂if(y)V (y) dy

for all V ∈ C∞
0 (G). This shows ∂if = gi for all i ∈ {1, . . . , d} as both functions

are elements of Lp(G), and C∞
0 (G) is dense in Lq(G). This means the level sets

Is of J (c), and therefore those of J (c)

0 , are compact.

4.2. Proof of Theorem 1.3, lower bound

Let us go on with the proof of the lower bound. We start by recalling an aux-
iliary result from [25]. It ensures a certain continuity property of probabilities
of certain events with regard to small changes of the conductances.

Lemma 4.1. Let ϕ, ψ : Z
d × N → (0,∞) with 0 < ψ(x, e) − ε ≤ ϕ(x, e) ≤

ψ(x, e) + ε for some ε > 0 and all x ∈ Z
d and e ∈ N . Moreover, let F be some

event that depends on the process (Xs)s∈[0,t] up to time t only. Then

P
ϕ
0

(
F

)
≥ e−4dεt

P
ψ−ε
0

(
F

)
.
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With this tool at hand, we now turn to the proof of the lower bound in
Theorem 1.3. The proof follows the approach pointed out in the heuristics in
Section 1.8, which consists of restricting the annealed probability to the time-
dependent event in which the conductance environment assumes an optimal
shape. Choose an open set O in F with respect to the weak topology and some
function f2 ∈ O. Our goal is to prove (1.13). We will write just {Lt ∈ O} for
{Lt ∈ O, supp(`t) ⊂ αtG}.

We may assume that f2 ∈ H1
0 (G)∩O since (1.13) is trivial otherwise. For the

same reason, it is possible to assume that f ∈ W 1,p(G) with p = 2η/(η+1). By
convolution with an appropriate mollifier and norming, we consequently obtain
functions fε ∈ C1

0(G) such that fε → f as ε↘ 0 both in H1
0 (G) and in W 1,p(G).

As O is open in the weak L2-topology, it is also open in the strong L2-topology
and therefore fε ∈ O for ε small enough. Let us fix such an ε > 0 and some
M > 0 and define

ϕ
(f,ε)
M (y, e) = M−1 ∨ (Dη)1/(η+1)|∂efε(y)|−2/(η+1) ∧M

with the convention 0−2/(η+1) = ∞. Note that this function is continuous in
the first argument. In analogy with Section 3, put

ϕt(z, e) =

∫

[0,1]d

ϕ
(f,ε)
M

(z + y

αt
, e

)
dy, z ∈ Bt, e ∈ N .

Choose some δ ∈ (0,M−1) and βt such that βηt α
d
t = tβ−1

t α−2
t (the condition

αt � td/(d+2) ensures βt � 1). We restrict the expectation with respect to the
conductances to the event where βta lies in At = A(Bt, ϕt, δα

−2
t ), where we

recall (3.19). We estimate

〈Pa0(Lt ∈ O)〉 ≥ 〈Pa0(Lt ∈ O)1l{βta∈At}〉 ≥ inf
ψ∈At

P
β−1

t ψ
0 (Lt ∈ O) Pr(βta ∈ At)

≥ exp
{
−4dtδα−2

t β−1
t

}
P
β−1

t (ϕt−δα
−2
t )

0 (Lt ∈ O) Pr(βta ∈ At),
(4.3)

where the last step is due to Lemma 4.1. Now, by Proposition 3.1 (taking
Remark 3.1 into consideration) and Lemma 3.3, we obtain (with our particular
choice of βt)

lim inf
t→∞

t−η/(1+η)α
−(d−2η)/(1+η)
t log〈Pa0(Lt ∈ O)〉

≥ −
∑

e

∫

G

(
ϕ

(f,ε)
M (y, e)

(
∂efε(y)

)2
+Dϕ

(f,ε)
M (y, e)−η

)
dy − 4dδ.

As δ was chosen arbitrarily small, we may omit the last term in the above
inequality. Moreover, the resulting scale is seen to be equal to γt from Theo-
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rem 1.3. Then, it is quickly verified that

∑

e

∫

G

(
ϕ

(f,ε)
M (y, e)

(
∂efε(y)

)2
+Dϕ

(f,ε)
M (y, e)−η

)
dy → J (c)

(
f2
ε

)

as M → ∞ by applying the monotone and dominated convergence theorems on
the parts of the integral where ∂efε is equal to 0, between 0 and 1 and greater
than 1, respectively. Since M was chosen arbitrarily,

lim inf
t→∞

1

γt
log〈Pa0(Lt ∈ O)〉 ≥ J (c)

(
f2
ε

)
.

Letting ε↘ 0, we may also conclude

lim inf
t→∞

1

γt
log〈Pa0(Lt ∈ O)〉 ≥ J (c)(f2)

as ∂efε → ∂ef in the Lp-norm. We arrive at the desired lower bound by taking
the infimum over all functions f ∈ H1

0 (G) ∩ O remembering that f was chosen
arbitrarily in O.

4.3. Proof of Theorem 1.3, upper bound

Let us now turn to the proof of the upper bound. Let C be a closed set of
probability densities on G. We will show that (1.14) holds, even when we replace
the starting point 0 by any other site x ∈ Bt = αtG ∩ Z

d, possibly depending
on t, uniformly in x. Note that Lt ∈ C is equivalent to `t/t ∈ Ct, where

Ct = {g2 : g ∈ `2(Bt), ‖g‖ = 1, αdt g
2(bαt·c) ∈ C} (4.4)

is the set of rescalings of step functions in C. The proof proceeds as follows. We
first use a very flexible estimate for the probability term (taken with respect to
the random walk only) over the (non-rescaled) local times `t, which is in the
spirit of the Donsker –Varadhan large deviation principle, but uses no bounded-
ness nor continuity in any topology, on the cost of an error term that we control
afterwards. Before we take also expectation over this bound with respect to the
scenery, we separate the walk term from the scenery term by means of Hölder’s
inequality. Taking the infimum over the walk term, we arrive at an exponential
functional of the scenery, which is handled by a large-deviation result for this
functional that we derived earlier. Some technicalities, due to a lack of bound-
edness from zero and infinity, have to be handled on the way. In this way, we
arrive at a variational formula on scenery space that plays on a t-dependent,
discrete large subset. The large-t limit is handled by analytic techniques in the
spirit of Gamma convergence.
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We now fix any starting point x ∈ Bt = αtG∩Z
d and estimate the probability

term with the help of [13, Theorem 3.6], which states that

P
a
x

(
Lt ∈ C, supp(`t) ⊂ αtG

)
= P

a
x

(
1
t `t ∈ Ct, supp(`t) ⊂ Bt

)

≤ exp
{
− t inf

µ∈Ct

Λa(Bt, µ)
}

eCt , (4.5)

where we put

Λa(Bt, µ) =
∑

x,y∈Bt : x∼y

ax,y
(√

µ(x) −
√
µ(y)

)2
.

Furthermore, Ct is an error term that can be estimated as follows.

Ct = |Bt| log
(
ηBt

√
8et) + log |Bt| +

|Bt|
4t

,

where
ηBt

= max
{

max
x∈Bt

∑

y∈Bt\{x}

|∆a
x,y|,max

y∈Bt

∑

x∈Bt\{y}

|∆a
x,y|, 1

}

is bounded in t, since the conductances are, according to our assumptions.
Furthermore, from our upper bound on αt in Theorem 1.3, we have that log t�
βη ; see (1.31). This shows that the error term Ct is negligible on the scale
γt = αdtβ

η
t ; see (1.32).

Now we use Hölder’s inequality to estimate, for g2 = µ ∈ Ct having support
in Bt,

Λa(Bt, µ) =
∑

e∈N

∑

z∈Zd

a(z, e)|g(z + e) − g(z)|2

≥
( ∑

z,e

|g(z + e) − g(z)|2η/(η+1)
)(η+1)/η(∑

z,e

(
a(z, e)

)−η)−1/η

.

(4.6)

Recalling the rescaled conductance field at(y, e) = βta(byαtc, e) from (1.26) and
introducing the notation

χ(d)(Bt, Ct) = inf
g2∈Ct

∑

e∈N

∑

z∈Zd

|g(z + e) − g(z)|2η/(η+1), (4.7)

we see that

inf
µ∈Ct

Λa(Bt, µ) ≥ 1

βt α2
t

(
α

(2η−d)/(η+1)
t χ(d)(Bt, Ct)

)(η+1)/η

×
(∑

e

∫

G

(
at(y, e)

)−η
dy

)−1/η

.
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Pick some small δ > 0. By Lemma 4.2 below, we have, for all t large enough,

inf
µ∈Ct

Λa(Bt, µ) ≥ 1

βtα2
t

[
χ(c)(G, C) − δ

](η+1)/η
(∑

e

∫

G

(
at(y, e)

)−η
dy

)−1/η

.

(4.8)
Choose now a large positive number M and some small ε > 0 and define on the
environment space of measurable non-negative functions G ×N → (0,∞), the
events

An =

{
ϕ :

∑

e

∫

G

ϕ(y, e)−η dy ∈ ((n− 1)ε, nε]

}
, n ∈ N, n ≤M/ε, (4.9)

B1 =

{
ϕ :

∑

e

∫

G

ϕ(y, e)−η dy ≥M

}
, B2 =

{
ϕ :

∑

e

∫

G

ϕ(y, e)−η dy ≤ ε

}
.

(4.10)

We proceed by combining (4.5) and (4.8) and splitting the expectation w.r.t. the
environment as

P
a
0

(
Lt ∈ C, supp(`t) ⊂ αtG

)

≤ Pr(at ∈ B1)

+

M/ε∑

n=1

exp
{
−tβ−1

t α−2
t

[
χ(c)(G, C) − δ

](η+1)/η
(nε)−1/η

}
Pr(at ∈ An)

+ exp
{
−tβ−1

t α−2
t

[
χ(c)(G, C) − δ

](η+1)/η
ε−1/η

}
Pr(at ∈ B2).

For the environment terms, we use Lemma 3.4 to calculate their asymptotic
behavior, noting that tβ−1

t α−2
t = βηt α

d
t by the choice of βt in (1.31). The

condition αt � tη/(d(η+1)) ensures that βt � 1. Noting the definition of γt in
(1.32), this means that

lim sup
t→∞

γ−1
t log〈Pa0

(
Lt ∈ C, supp(`t) ⊂ αtG

)
〉

≤ −DM ∨ max
n

[
−

[
χ(c)(G) − δ

](η+1)/η
(nε)−1/η −D((n− 1)ε)

]

∨ −
[
χ(c)(G, C) − δ

](η+1)/η
ε−1/η

≤ −DM ∨ sup
y∈(ε,M)

[
−

[
χ(c)(G) − δ

](η+1)/η
y−1/η −Dy

]

+Dε ∨ −
[
χ(c)(G) − δ

](η+1)/η
ε−1/η.

Optimizing over y after choosingM large enough and ε small enough, and finally
taking limits δ → 0 and ε→ 0, yields the desired result.
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Lemma 4.2. Let η > d/2. Fix a closed subset C of F with rescaled version Ct
defined in (4.4). Then we have

lim inf
t→∞

α
(2η−d)/(η+1)
t χ(d)(Bt, Ct) ≥ χ(c)(G, C).

Proof. We may assume that Ct is nonempty. Pick minimisers gt ∈ Ct of the
formula for χ(d)(Bt, Ct) in (4.7) such that

χ(d)(Bt, Ct) =
∑

e∈N

∑

z∈Zd

|gt(z + e) − gt(z)|2η/(η+1). (4.11)

Let us consider the rescaled versions f̃t ∈ L2(G) defined as

f̃t(y) = α
d/2
t gt(bαtyc).

Note that f̃t ∈ C. Due to norming of the sequence f̃t and closedness of C, we find
f ∈ C such that f̃t → f in the weak L2-sense, which in turn implies convergence
in the weak topology we are considering. Let us show that

lim inf
t→∞

α
(2η−d)/(η+1)
t χ(d)(Bt, Ct) ≥

∑

e∈N

∫

Rd

|∂ef(y)|2η/(η+1) dy,

which instantly yields the desired result. In analogy with the construction in
Lemma 3.1, we find functions ft ∈ H1

0 (G) (trivially extended to R
d) such that

for almost all y ∈ G, e ∈ N and t > 0,

∂eft(y) = α
1+d/2
t

[
gt(bαtyc + e) − gt(bαtyc)

]
. (4.12)

In particular, ∂eft is almost everywhere constant on the boxes α−1
t (z + [0, 1]d)

with z ∈ Z
d, thus

α
(2η−d)/(η+1)
t

∑

e∈N

∑

z∈Zd

|gt(z + e) − gt(z)|2η/(η+1)

= α
(2η−d)/(η+1)
t αdt

∑

e∈N

∫

Rd

(
α
−1−d/2
t |∂eft(y)|

)2η/(η+1)
dy

=
∑

e∈N

∫

Rd

|∂eft(y)|2η/(η+1) dy.

It therefore remains to show that

lim inf
t→∞

∑

e∈N

∫

Rd

|∂eft(y)|2η/(η+1) dy ≥
∑

e∈N

∫

Rd

|∂ef(y)|2η/(η+1) dy. (4.13)
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To that end, we need to establish weak convergence of the ft towards f and
convergence to 1 of their L2-norms. Then, (4.13) follows from lower semiconti-
nuity of the functional f2 7→ ∑

e∈N ‖∂ef‖pp (with p = 2η/(1+η)), which follows
from the compactness of the level sets of J (c). Here, we require the assumptions
made on the value of η. According to (3.13), we obtain the desired convergence

properties and even ‖ft − f̃t‖ → 0 if
∑

e∈N

∑

z∈Zd

|gt(z + e) − gt(z)|2 → 0 as t→ ∞. (4.14)

As we are on a discrete space and consider normed functions, we may esti-
mate∑

e∈N

∑

z∈Zd

|gt(z+ e)− gt(z)|2 ≤ C
∑

e∈N

∑

z∈Zd

|gt(z+ e)− gt(z)|2η/(η+1) = Cχ(d)(Bt),

(4.15)
for some C > 0. As G is open, it contains the box [−δ, δ]d with some δ > 0. With
Qt = αt[−δ, δ]d ∩ Z

d, we have χ(d)(Bt) ≤ χ(d)(Qt). By Lemma 2.3, the latter
vanishes as t→ ∞. Hence, (4.15) implies (4.14), and the proof of Lemma 4.2 is
complete. 2

5. Proof of Theorem 1.4

Let us turn to the case where η ≤ d/2.

5.1. Non-compactness of levels sets of J (c)

We start by showing that the level sets fail to be compact in this case. This
property seems obvious after studying the variational problems in Section 2, but
let us provide a rigorous proof.

Lemma 5.1. If η ≤ d/2, the level sets of J (c) are not closed. In particular, they

are not compact.

Proof. From Lemma 2.2, we obtain sequences (fn) with fn ∈ H1
0 (G), ‖fn‖2 ≡ 1

for n ∈ N and J (c)(f2
n) → 0 as n→ ∞. In particular, f2

n ∈ F and for each level
set Is = {f2 : J (c)(f2) ≤ s}, s > 0, we have f2

n ∈ Is for n large enough. As the
sequence (fn) is bounded in L2, there exists a weak limit f . We easily check by
Hölder’s inequality that

∫

G

f2
n(y)V (y) dy →

∫

G

f(y)2V (y) dy as t → ∞

for all bounded and continuous V : G → R, so (fn) converges in the right
topology. By lower semicontinuity of norms with regard to weak convergence,
J (c)(f2) = 0. That implies ‖f‖2 = 0 which in turn yields f2 /∈ F . As in
particular f2 /∈ Is, the assertion follows. 2
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5.2. Proof of Theorem 1.4, upper bound

Now, we proceed by showing the main statement, that is,

lim sup
t→∞

t−η/(η+1) log〈Pa0
(
supp(`t) ⊂ αtG

)
〉 ≤ −Kη,D χ

(d)(Zd).

Using a spectral Fourier expansion and estimating in standard way, we estimate
the probability term as

P
a
0

(
supp(`t) ⊂ αtG

)
≤ |αtG|2 exp{−tλ(t)

1 (a)}, (5.1)

where λ(t)

1 (a) is the principal eigenvalue of the operator ∆a in the box Bt with
zero boundary condition. Using its Rayleigh –Ritz representation and Hölder’s
inequality analogously to (4.6), we see that

λ(t)

1 (a) ≥ β−1
t inf

g

( ∑

z,e

|g(z + e) − g(z)|2η/(η+1)
)(η+1)/η(∑

z,e

(
βta(z, e)

)−η)−1/η

= β−1
t α

−d/η
t (χ(d)(Bt))

(η+1)/η

(∑

e

∫

G

(
at(y, e)

)−η
dy

)−1/η

. (5.2)

In contrast to the proof of the upper bound in Theorem 1.3, we continue the
inequality differently by just estimating χ(d)(Bt) ≥ χ(d)(Zd). Choose now a large
positive number M and some small ε > 0 and consider the events An, B1 and
B2 defined in (4.9) and (4.10). We proceed by combining (5.1) and (5.2) and
splitting the expectation w.r.t. the environment as

|αtG|−2〈Pa0
(
supp(`t) ⊂ αtG

)
〉

≤ Pr(at ∈ B1) +

M/ε∑

n=1

exp{−tβ−1
t α

−d/η
t χ(d)(Zd)(η+1)/η(nε)−1/η}Pr(at ∈ An)

+ exp{−tβ−1
t α

−d/η
t χ(d)(Zd)(η+1)/ηε−1/η}Pr(at ∈ B2).

For the environment terms, we use Lemma 3.4 to calculate their asymptotic
probabilities, noting that

tβ−1
t α

−d/η
t = βηt α

d
t = tη(η+1),

by the choice of βt in (1.31). Again, the condition αt � tη/(d(η+1)) ensures that
βt � 1. The remainder of the proof is now similar to the analogous part of the
proof of the upper bound in Theorem 1.3, which we do not spell out.

5.3. Proof of Theorem 1.4, lower bound

For any finite and connected set B ⊂ Z
d containing the origin and any

sufficiently large t, we simply use that B ⊂ αtG and apply Theorem 1.2, to
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obtain

lim sup
t→∞

t−η/(η+1) log〈Pa0
(
supp(`t) ⊂ αtG

)
〉 ≥ −Kη,Dχ

(d)(B),

which is exactly (1.19). To obtain the better lower bound in (1.21) in the
special case η = d/2, we apply (1.19) for any [−n, n] ∩ Z

d for any n ∈ N. It
therefore suffices to show that lim supn→∞ χ(d)([−n, n] ∩ Z

d) ≤ χ(d)(Zd) in the
case η = d/2. This was shown in Lemma 2.5.

6. Proof of Theorem 1.5

As in the proof of the LDP in Proposition 3.1 via the Gärtner –Ellis theorem,
the main work in proving Theorem 1.5 consists in proving asymptotic rescal-
ing properties of the principal `2(Bt)-eigenvalue, but this time of the random
operator α2

t∆
a + Vt in Bt = αtG ∩ Z

d for large t, where the rescaled version
Vt of a bounded and continuous function V was defined in (3.3). This is done
using methods from the field of spectral homogenisation, which provides an an-
swer to this question that actually extends to the full spectrum, not only the
largest eigenvalue. Recall that G = (0, 1)d is the open unit cube and that the
conductances are uniformly elliptic, i.e., stay in (λ, 1/λ) almost surely for some
λ ∈ (0, 1).

In Section 6.1, we modify a powerful existing result on spectral homogeni-
sation of ∆a to fit our needs. In Section 6.2, we use the modified result for a
proof of Theorem 1.5.

6.1. Spectral homogenisation in the random conductance model

Let us introduce a number of notations and recall some important facts.
Recall that ceff is the diffusion constant of the limiting Brownian motion that
appears in the invariance principle for RWRC. Denote by A = ceff Id the co-
variance matrix corresponding to the Brownian motion. For some function
V ∈ Cb(G), the set of bounded and continuous real-valued functions on G, let
us consider the operator

−1

2
∇∗A∇ + V = −ceff

2
∆ + V

defined on the Sobolev space H1
0 (G). By the spectral theorem for elliptic opera-

tors (compare e.g. Zimmer [31]), the spectrum of this operator is given by a se-
quence λ1(V ) < λ2(V ) ≤ λ3(V ) ≤ . . . of eigenvalues (counted according to their
multiplicity) with corresponding L2-normed eigenfunctions v1, v2, . . . ∈ C∞

0 (G).
For t ≥ 0, let λ(t)

1 (V ) < λ(t)

2 (V ) ≤ λ(t)

3 (V ) ≤ . . . denote the eigenvalues of
−α2

t∆
a + Vt on `2(Bt) with zero boundary condition, where Vt is defined in

(3.3) above. Then, let v(t)

1 , v(t)

1 , . . . be the corresponding normed eigenfunctions.



634 W. König and T. Wolff

The values λ(t)

j (V ) and functions v(t)

j in the case that j is larger than the di-

mension of `2(Bt), say j0, are of no importance and we just define them to be
equal to λ(t)

j0
(V ) resp. v(t)

j0
.

Theorem 6.1 (Spectral homogenisation). Fix V ∈ Cb(G). Then, for each

j ∈ N, as t→ ∞,

λ(t)

j (V ) −→ λj(V ) and
∥∥v(t)

j − α
−d/2
t vj

(
·

αt+1

)∥∥
2
→ 0. (6.1)

This statement has been proven in the special case V ≡ 0 in [6] with ideas
going back to Kesavan ([23]). In order to generalise their result to cover the case
of non-zero potential V , we state a version of an intermediate result from [6]
based on which we subsequently prove Theorem 6.1. In the following, we tacitly
extend any function f : G→ R trivially (i.e., with the value zero) to a function

f : R
d → R and define f̂n(z) = f(z/(n+ 1)) for z ∈ Z

d and n ∈ N.

Lemma 6.1. For n ∈ N, let un ∈ `2(Z
d) with supp(un) ⊂ nG and ‖un‖2 = 1.

Assume that n2‖(∆aun)1lnG‖2 is bounded.

Then, almost surely, any subsequence (nk)k∈N of strictly increasing integers

contains a further subsequence (n̂k)k∈N such that there is a function q ∈ H1
0 (G)

such that for all ϕ ∈ C(G) ∩ L2(G) and f ∈ {1} ∪ {a(·, e) : e ∈ N} and for all

e ∈ N , as n→ ∞ along n̂k,

n−d/2
∑

z∈Zd

un(z)ϕ̂n(z)f(z) → 〈f〉
∫

G

q(y)ϕ(y) dy, (6.2)

n(2−d)/2
∑

z∈Zd

a(z, e)(un(z + e) − un(z))ϕ̂n(z) → ceff

∫

G

∂eq(y)ϕ(y) dy. (6.3)

If the function q is continuous, we have in addition

‖un − n−d/2q̂n‖2 → 0 as t→ ∞. (6.4)

This result already encapsulates the input from homogenisation theory and
ergodic theory. We turn to the proof of Theorem 6.1 following the same route
as the the proof of the analogous result for V ≡ 0 in [6].

Proof of Theorem 6.1. Write λ(t)

j and λj instead of λ(t)

j (V ) and λj(V ). As we
consider subsets of the lattice, we may, without loss of generality, assume that
αt takes integer values only. With µ(t)

1 , µ
(t)

1 , . . . the Dirichlet eigenvalues of the
homogeneous discrete operator −(1/2)∆ on αtG ∩ Z

d, the eigenfunctions v(t)

j ,
j ∈ N clearly satisfy

α2
t ‖(∆av(t)

j )1lαtG‖2 ≤ λ(t)

j ≤ α2
t

λ
µ(t)

j , (6.5)



LDP for the local times of a RWRC in a large box 635

where λ ∈ (0, 1) is the ellipticity parameter for the conductances. As the
eigenvalues µ(t)

j are known to be of order α−2
t , the v(t)

j satisfy the prerequi-
sites of Lemma 6.1 and we may conclude that, for j ∈ N, there are νj ∈ R and
qj ∈ H1

0 (G) such that for all ϕ ∈ C(G) ∩ L2(G), as t→ ∞,

λ(t)

j → νj , (6.6)

α
−d/2
t

∑

z∈Zd

v(t)

j (z)ϕ̂αt
(z) →

∫

G

qj(y)ϕ(y) dy, (6.7)

α
(2−d)/2
t

∑

z∈Zd

a(z, e)(v(t)

j (z + e) − v(t)

j (z))ϕ̂αt
(z) → ceff

∫

G

∂eqj(y)ϕ(y) dy. (6.8)

Let us show that the νj are eigenvalues of −(ceff/2)∆ + V with corresponding
eigenfunction qj . Indeed, for all ϕ ∈ C∞

0 (G), by (6.7),

α
−d/2
t

∑

z∈Zd

(
(−α2

t∆
a + Vt)v

(t)

j (z)ϕ̂αt
(z)

)
= λ(t)

j α
−d/2
t

∑

z∈Zd

v(t)

j (z)ϕ̂αt
(z)

−→
t→∞

νj

∫

G

qj(y)ϕ(y) dy. (6.9)

On the other hand, by (6.7), (6.8) and integration by parts (using symmetry of
the conductances),

α
−d/2
t

∑

z∈Zd

(
(−α2

t∆
a + Vt)v

(t)

j (z)ϕ̂αt
(z)

)

= − 1
2α

(2−d)/2
t

∑

z∈Zd

∑

e∈N

a(z, e)
[
(v(t)

j (z + e) − v(t)

j (z))αt
(
ϕ̂αt

(z + e) − ϕ̂αt
(z)

)]

+ α
−d/2
t

∑

z∈Zd

(
Vt(z)v

(t)

j (z)ϕ̂αt
(z)

)

−→
t→∞

−ceff
2

∑

e∈N

∫

G

∂eqj(y)∂eϕ(y) dy +

∫

G

qj(y)V (y)ϕ(y) dy. (6.10)

In the last step, we also used that αt
(
ϕ̂αt

(z+ e)− ϕ̂αt
(z)

)
− ∂̂eϕαt

(z) as well as

Vt(z)− V̂αt
(z) vanish at least in a weak L2-sense. The limits in (6.9) and (6.10)

show that the left-hand sides of these two are equal, which means the νj are
eigenvalues of −(ceff/2)∆ + V with eigenfunction qj . It now remains to show
that the νj are in fact all eigenvalues of that operator and therefore constitute
the entire H1

0 -spectrum. This is done in complete analogy with [6], Corollary 2,
hence we omit it here for conciseness. As the eigenvalues λ(t)

j are ordered, so are

the νj . This means we have, for all j ∈ N, λ(t)

j → νj = λj as t→ ∞ and qj = vj .
Finally, as the vj are continuous, (6.1) follows from (6.4) in Lemma 6.1. 2
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6.2. Proof of Theorem 1.5

The proof is conducted in analogy with the proof of Proposition 3.1 in Section
3. Like in that proof, it will be sufficient to show that

lim
t→∞

α2
t

t
log E

a
z

[
exp

{
− t

α2
t

∫

G

V (y)Lt(y) dy

} ∣∣∣∣X[0,t] ⊂ αtG

]
= −λ1(V ) + λ1(0),

(6.11)

for all V ∈ Cb(G). For such a V , define the operator Pa,V
t on `2(αtG ∩ Z

d) by

Pa,Vt f(z) = E
a
z

[
exp

{
− t

α2
t

∫

G

V (y)Lt(y) dy

}
1l{X[0,t] ⊂ αtG}f(Xt)

]
.

Then, (6.11) is implied by showing limt→∞(α2
t /t) logPa,Vt 1l(0) = −λ1(V ) in-

stead. Recalling the definitions (3.3) of Vt and (1.10) of Lt, we see that

Pa,Vt f(z) = E
a
z

[
exp

{
− 1

α2
t

t∫

0

Vt(Xs) ds

}
1l{X[0,t] ⊂ αtG}f(Xt)

]
.

Consequently, Pa,V
t admits the semigroup representation

Pa,Vt = exp{t(∆a − α−2
t Vt)} = exp

{
− tα−2

t

[
− α2

t∆
a + Vt

]}
,

where the operator in the exponent is considered in `2(αtG ∩ Z
d) with zero

boundary condition. Note that Pa,V
t has the same principal eigenfunction as

the operator −α2
t∆

ϕt + Vt has, and the corresponding principal eigenvalue is
given by exp

{
− (t/α2

t )λ
(t)

1 (V )
}
. An eigenvalue expansion yields, for each t ≥ 0,

exp
{
− t

α2
t

λ(t)

1 (V )
}(
vt(0)

)2 ≤ Pa,Vt 1l(0) ≤ |αtG|2 exp
{
− t

α2
t

λ(t)

1 (V )
}
.

By Theorem 6.1, λ(t)

1 (V ) → λ1(V ) as t → ∞, so it remains to show that vt(0)
decays only polynomially as t→ ∞. Since vt is an eigenfunction of −α2

t∆
a+Vt

corresponding to the eigenvalue λ(t)

1 (V ), we have

vt(0) = exp
{
−λ(t)

1 (V )
}(

exp{α2
t∆

a − Vt}vt
)
(0)

= exp
{
−λ(t)

1 (V )
}
E
α2

ta
0

[
exp

{
−

1∫

0

Vt(Xs) ds

}
vt(X1)

]

≥ exp
{
−λ(t)

1 (V ) − V∗
}
E
α2

ta
0

[
vt(X1)

]
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where V∗ is some upper bound for V . Abbreviating v∗t = maxx∈αtG∩Zd vt(x), we

estimate vt(0) ≥ v∗t exp{−λt(V )− V∗}minx∈Bt
P
α2

ta
0

(
X1 = x

)
. As vt is normed,

the decay of its maximal value is only polynomial as t→ ∞, so we only need to
consider the exponential decay of the probability term above. Here we employ
a heat kernel estimate from [7, Theorem 1.2]. It says that there are positive
constants c1, c2 such that, for t sufficiently large (depending on the realisation

of the conductances), P
α2

ta
0

(
X1 = x

)
= P

a
0

(
Xα2

t
= x

)
≥ c1α

−d
t exp{−c2|x|2/α2

t}
for all x ∈ Z

d with |x| ≤ α3
t . As |x|2/α2

t is bounded, we have shown that vt(0)
decays only polynomially as t→ ∞, and the proof of Theorem 1.5 is finished.
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[5] M.T. Barlow and J. Černý (2011) Convergence to fractional kinetics for
random walks associated with unbounded conductances. Probab. Theory Relat.

Fields 149 (3–4), 639–673.

[6] D. Boivin and J. Depauw (2003) Spectral homogenization of reversible random
walks on Z

d in a random environment. Stoch. Process. Appl. 104 (1), 29–56.

[7] M.T. Barlow and J.-D. Deuschel (2010) Invariance principle for the random
conductance model with unbounded conductances. Ann. Prob. 38, 234–276.

[8] N.H. Bingham, C.M. Goldie and J.L. Teugels (1989) Regular Variation.
Cambridge University Press.

[9] M. Biskup and W. König (2001) Long-time tails in the parabolic Anderson
model with bounded potential. Ann. Prob. 29 (2), 636–682.

[10] M. Belloni and B. Kawohl (2004) The pseudo-p-Laplace eigenvalue problem
and viscosity solutions as p → ∞. ESAIM: COCV 10, 28–52.

[11] M. Becker and W. König (2012) Self-intersection local times of random walks:
Exponential moments in subcritical dimensions. Probab. Theory Relat. Fields 154

(3–4), 585–605.

[12] M. Biskup and T.M. Prescott (2007) Functional CLT for random walk among
bounded conductances. Elec. J. Probab. 12, 1323–1348.



638 W. König and T. Wolff

[13] D. Brydges, R. van der Hofstad and W. König (2007) Joint density for the
local times of continuous-time Markov chains. Ann. Prob. 35 (4), 1307–1332.

[14] F. Comets, N. Gantert and O. Zeitouni (2000) Quenched, annealed and
functional large deviations for one-dimensional random walk in random environ-
ment. Probab. Theory Relat. Fields 118, 65–114.

[15] M.D. Donsker and S.R.S. Varadhan Asymptotic evaluation of certain Markov
process expectations for large time, I–IV. Commun. Pure Appl. Math. 28, 1–47,
279–301 (1975), 29, 389–461 (1979), 36, 183–212 (1983).

[16] A. Dembo and O. Zeitouni (1998) Large Deviations Techniques and Applica-

tions, 2nd edn., Springer, New York.

[17] L.R.G. Fontes and P. Mathieu (2006) On symmetric random walks with
random conductances on Z

d. Probab. Theory Relat. Fields 134, 565–602.
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