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Background

Why are we interested in random motions in random media?

Important objects of interest (with references specialising to the random conductance model):

� Long-time trajectories of particles in random environment (Law of large numbers, central

limit theorems, invariance principle) =⇒ [BISKUP/PRESCOTT 2007],

[BARLOW/DEUSCHEL 2010], [ANDRES, BARLOW, DEUSCHEL, HAMBLY 2012] and many

more for other models.

� Random heat kernels [BERGER et al. 2008]

� Anomalies, e.g., CLT without local CLT [BISKUP/BOUKHADRA 2011]

Our interest is in conductance properties of disordered materials with random impurities.

Our main questions:

� Concentration properties of random mass flow?

� Non-exit probabilities from large boxes?

� principal eigenvalue in large boxes?

The probabilistic treatment of these questions is based on the study

of the local times of the random walk.
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Motivation: the parabolic Anderson model (I)

Total mass of the solution to Cauchy problem for the Laplace operator with random potential,

∆ + ξ:

U(t) = E0

[
exp

{∫ t

0

ξ(Xs) ds
}]
, t > 0,

where E0 is expectation w.r.t. a simple random walk (Xs)s∈[0,∞),

and ξ = (ξ(z))z∈Zd is an i.i.d. random potential.

In terms of the local times

`t(z) =

∫ t

0

δXs(z) ds,

we can write ∫ t

0

ξ(Xs) ds =
∑
z∈Zd

ξ(z)`t(z).

Moments of U(t):

〈U(t)〉 = E0

[
exp

{ ∑
z∈Zd

H(`t(z))
}]
,

with the cumulant generating function

H(l) = log〈elξ(0)〉, l > 0.
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Motivation: the parabolic Anderson model (II)

Necessary inputs:

� some assumption on the asymptotics of H(l) and

� a large-deviation principle (LDP) for `t.

Example: Assume that H(yt)− yH(t) ∼ t y log y for t→∞ (=⇒ double exponential

distribution), see [GÄRTNER AND MOLCHANOV 1998]. Hence,

〈U(t)〉 = eH(t)E0

[
exp

{
t
∑
z∈Zd

H(t 1
t
`t(z))− 1

t
`t(z)H(t)

t

}]
≈ eH(t)E0

[
exp

{
tJ
(
1
t
`t
)}]

,

where J(µ) =
∑
z∈Zd µ(z) log µ(z).

The Donsker-Varadhan-Gärtner LDP says that

log P0( 1
t
`t ≈ µ) ≈ −t

∥∥∇√µ∥∥2
2
, µ ∈M1(Zd).

This and Varadhan’s lemma then give that 〈U(t)〉 = eH(t)e−tχ with

χ = infµ(‖∇√µ‖22 − J(µ)).

Hence, for analysing the PAM for RWRC instead of simple random walk,
we need to know about the large deviations of the local times.
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Random walk among random conductances (RWRC)

Replace the Laplace operator ∆ by the randomized Laplacian,

∆ωf(x) =
∑

y∈Zd : y∼x

ωxy(f(y)− f(x)),

where ω = (ωxy)x∼y is an i.i.d. field of positive weights on the bonds, the conductances.

∆ω generates the RWRC (Xs)s∈[0,∞), a random walk in random environment.

Long-term objective: Understand the Cauchy problem for ∆ω + ξ for various potentials ξ.

Goal today: Understand annealed LDPs for the local times of the RWRC, `t.

In particular: Understand the long-time non-exit probability from a bounded set B ⊂ Zd:

log E[Pω0 (X[0,t] ⊂ B)] ∼ ?

Main assumption on the conductances: ωe > 0 a.s., but essinfωe = 0. More precisely,

Main Assumption:

for some D, η ∈ (0,∞), log P(ωe ≤ ε) ∼ −Dε−η, ε ↓ 0.

Then the conductances can ‘help’ the RWRC to stay in B by assuming very small values.
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Main result: the LDP

Fix a finite connected set B ⊂ Zd and put EB = {{x, y} : x ∈ B, y ∈ Zd, y ∼ x}.

Theorem [K., SALVI, WOLFF 2012]

The process of normalized local times, ( 1
t
`t)t>0, under the annealed sub-probability law

E[Pω0 ( · ∩ {X[0,t] ⊂ B})] satisfies an LDP on the space of probability measures on B, with

speed t
η
η+1 and rate function

Jd(g2) := Kη,D

∑
{x,y}∈EB

|g(y)− g(x)|
2η
η+1 , g ∈ `2(Zd), supp(g) ⊂ B, ‖g‖2 = 1,

where Kη,D =
(
1 + 1

η

)
(Dη)

1
η+1 .

Simplifying a bit, this means that

log E
[
Pω0
(

1
t
`t ≈ g2, X[0,t] ⊂ B

)]
≈ −t

η
η+1 Jd(g2) for g2 ∈M1(B).

� η ≈ ∞:≈ conductances bounded away from zero =⇒≈ simple random walk,

� η ≈ 0:≈ heavy-tailed conductances =⇒ trapping model.
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Consequences and corollaries

Corollary 1: Non-exit probability from B

lim
t→∞

t
− η
η+1 log E

[
Pω0
(
X[0,t] ⊂ B

)]
= −Kη,Dχd(B),

where

χd(B) = inf
g2∈M1(B)

∑
{x,y}∈EB

|g(y)− g(x)|
2η
η+1 .

Corollary 2: Lower tails for the bottom of the spectrum of−∆ω , Lifshitz tails

Denote by λω(B) the spectral radius of−∆ω in B with zero boundary condition, then

lim
ε↓0

εη log P(λω(B) ≤ ε) = −Dχd(B)η+1.

(See also [EXNER/HELM/STOLLMANN 2007] for Anderson localisation properties of−∆ω .)
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Heuristic derivation (I)

For any fixed conductance shape ϕ : EB → (0,∞), the Donsker-Varadhan-Gärtner LDP

gives

Pϕ0
(

1
t
`t ≈ g2

)
≈ exp

{
− tIϕ(g2)

}
,

with rate function

Iϕ(g2) =
(
−∆ϕg, g

)
=

∑
{x,y}∈EB

ϕxy|g(x)− g(y)|2.

Rescaling by tr (to be determined) and using our Main Assumption on ω gives

P
(
trω ≈ ϕ

)
=

∏
{x,y}∈EB

P
(
ωxy ≈ t−rϕxy

)
≈ exp

{
− trηH(ϕ)

}
,

where the rate function for the conductances is given by

H(ϕ) = D
∑

{x,y}∈EB

ϕ−ηxy .
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Heuristic derivation (II)

Combining the two gives

E
[
Pω0
(
1
t
`t ≈ g2

)
1l{trω≈ϕ}

]
≈ Pt

−rϕ
0

(
1
t
`t ≈ g2

)
P
(
ω ≈ t−rϕ

)
≈ exp

{
− tIt−rϕ(g2)− trηH(ϕ)

}
≈ exp

{
−

∑
{x,y}∈EB

(
t1−rϕxy

(
g(x)− g(y)

)2
+ trηDϕ−ηxy

)}
.

We obtain the slowest decay with t1−r = trη , i.e., r = (1 + η)−1.

The optimal conductance shape ϕ is

ϕxy = (Dη)
1
η+1 |g(y)− g(x)|−

2
η+1 .

This leads to the rate function

J(g2) = inf
ϕ

[
Iϕ(g2) +H(ϕ)

]
= Kη,D

∑
{x,y}∈EB

|g(y)− g(x)|
2η
η+1 .
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Time-depending, large box

Replace B by Bt = αtG ∩ Zd with G ⊂ Rd bounded and 1� αt � t1/(d+2) a scale

function. (Very relevant for future study of PAM with RWRC.)

Rescaled local times:

Lt(x) =
αdt
t
`t
(
bαtxc

)
, x ∈ Rd.

For simple random walk, there is an LDP for Lt inBt in the spirit of Donsker-Varadhan-Gärtner

[GANTERT, K., SHI (2007)]

For L2-normalized functions f ∈ H1
0 (G),

log P0

(
Lt ≈ f2, X[0,t] ⊂ αtG

)]
≈ − t

α2
t

d∑
i=1

∫
G

|∂if(x)|2 dx.

This can be easily heuristically derived by a proper combination of Donsker’s invariance

principle with the LDP for Brownian occupation measures.
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LDP for local times of RWRC in large boxes

Now we extend this to the RWRC, again under the Main Assumption. It turns out that we have

to assume that the tails of the conductances are not too thin.

[K. AND WOLFF (2013)]

Assume that η > d/2. Then, Lt satisfies on {X[0,t] ⊂ αtG} an LDP. More explicitly, for

L2-normalized functions f ∈ H1
0 (G),

log E
[
Pω0
(
Lt ≈ f2, X[0,t] ⊂ αtG

)]
≈ −α

d−2η
η+1
t t

η
η+1 Jc(f

2),

where

Jc(f
2) = Kη,D

d∑
i=1

∫
G

|∂if(x)|2
η
η+1 dx.

� In particular, Jc has compact level sets, and its minimum is attained; standard

compactness arguments apply. However, there is no reason to believe that it is convex.

� A heuristic derivation goes along the above lines, leading to the scale (t/α2
t )
η/(1+η),

with additional term α
d/(1+η)
t , coming from spatial rescaling.

� Proof of lower bound uses an extension of the above rescaled LDP; the proof of the upper

bound relies on an explicit formula for a density of the local times [BRYDGES, VAN DER

HOFSTAD, K. (2007)].
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Corollaries, and the case η ≤ d/2

Non-exit probability

For η > d/2,

log E
[
Pω0
(
X[0,t] ⊂ αtG

)]
≈ −α

d−2η
η+1
t t

η
η+1Kη,Dχc(G),

where

χc(G) = inf
f2∈H1

0 (G) : ‖f‖2=1

d∑
i=1

∫
G

|∂if(x)|2
η
η+1 dx > 0,

and this variational problem has a minimizer.

We also prove analytically that

η > d/2 =⇒ χc(G) > 0 and χd(Zd) = 0,

which can be interpreted by saying that the RWRC ‘homogeneously fills’ the domain αtG∩Zd.

However, for η ≤ d/2, the power of αt is nonnegative (=⇒ wrong monotonicity). Explanation:

η ≤ d/2 =⇒ χc(G) = 0 and χd(Zd) > 0,

i.e., the RWRC even concentrates on a set that is not growing with t.

Analytic reason for this dichotomy: Sobolev inequalities for p-Norms with p > d
d+2

on Rd

resp. p ≤ d
d+2

on Zd.
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Corollaries, and the case η ≤ d/2
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More evidence for concentration for η ≤ d/2

Here is a probabilistic version of this interpretation.

Non-exit probabilities for η ≤ d/2

Suppose 1� αt � t
η

d(η+1) . Then, for η ≤ d/2, for any finite and connected set B ⊂ Zd

containing the origin,

−Kη,Dχd(Zd)(1 + o(1))

≥ t−
η
η+1 log E

[
Pω0
(
supp(`t) ⊂ αtG

)]
≥ −Kη,Dχd(B)(1 + o(1)).

and a lower bound with χd(Zd) for η = d/2.

Hence, the non-exit probability from αtG has the same asymptotics as the one from some set

that does not depend on t.
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The uniformly elliptic case

We contrast with the case where λ ≤ ωe ≤ 1
λ

a.s., for some λ > 0. Here, we have a

quenched functional central limit theorem: there is an effective diffusion constant σ2 ∈ (0,∞),

such that, ω-almost surely,(
Xtct

−1/2
)
c∈[0,∞)

=⇒ σBM, t→∞.

(see, e.g., [SZNITMAN, SIDORAVICIUS 2004]).

Quenched LDP for rescaled local times, [WOLFF 2012]

If 1� αt � t1/(d+2) is a scale function, then, almost surely, Lt satisfies an LDP under

{supp(`t) ⊂ αtG} with speed tα−2
t and rate function f2 7→ σ2‖∇f‖22.

� The proof uses homogenization for the principal eigenvalue of the Dirichlet Laplacian in

αtG ∩ Zd.
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Open questions

Analytic questions:

� Does χc(G) for η > d/2 respectively χd(B) for η ≤ d/2 have more than one

minimiser? Is there some useful convexity?

� Does the latter minimiser become trivial for B ↑ Zd? If not, what does it converge to?

� Are Jc or Jd linked with some interesting operator, like the p-Laplacian for

p = η/(1 + η)?

Probabilistic questions:

� Behaviour of path in box αtG for η ≤ d/2?

� Annealed behaviour of conductances on {supp(`t) ⊂ αtG}?
� Almost-sure versions of the LDPs or of the non-exit probabilities?

And finally, of course, the PAM with additional random potential ξ ...
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