

Large Deviations for Cluster Size Distributions in a Classical Many-Body System

Wolfgang König
TU Berlin and WIAS

supported by the DFG-Forschergruppe 718 Analysis and Stochastics in Complex Physical Systems

Background and Goals

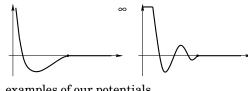
- We consider a classical stable interacting many-particle system with attraction in continuous space.
- Objective: study the transition between gaseous and solid phase in the thermodynamic limit.
- Very difficult at positive temperature and positive particle density.
- Instead, we study a dilute low-temperature regime. This makes the particles organise themselves into small groups called clusters.
- We approximate the system with a well-known ideal-mixture of clusters (droplets) and prove that the difference vanishes exponentially with vanishing temperature.
- We study
 - the free energy,
 - the constrained free energy given a cluster-size distribution,
 - the optimal cluster-size distribution.

Energy

Energy of N particles in \mathbb{R}^d :

$$U_N(x) = U_N(x_1, \dots, x_N) = \sum_{\stackrel{i,j=1}{i \neq j}}^N \nu \big(|x_i - x_j| \big), \qquad \text{for } x = (x_1, \dots, x_N) \in (\mathbb{R}^d)^N.$$
 Pair-interaction function $\nu \colon [0, \infty) \to (-\infty, \infty]$ of Lennard-Jones type:

Lennard-Jones potential $v(r) = r^{-12} - r^{-6}$



examples of our potentials

- short-distance repulsion (possibly hard-core) implying stability,
- preference of a certain positive distance,
- bounded interaction length.

Random Clusters

inverse temperature $\beta \in (0, \infty)$

$$\text{Gibbs measure:} \qquad \mathbb{P}_{\beta,\Lambda}^{\scriptscriptstyle{(N)}}(\mathrm{d}x) = \frac{1}{Z_{\Lambda}(\beta,N)N!} \mathrm{e}^{-\beta U_N(x)}\,\mathrm{d}x, \qquad x \in \Lambda^N.$$

Partition function:
$$Z_{\Lambda}(\beta,N) = \frac{1}{N!} \int_{\Lambda^N} \mathrm{e}^{-\beta U_N(x)} \,\mathrm{d}x.$$

Connectivity structure: Fix R larger than the interaction length of v.

Sites x and y are called connected if $|x-y| \le R$.

clusters (droplets) = the connected components

$$N_k(x)$$
 =number of k -clusters in $x = (x_1, \dots, x_N)$

k-cluster density :
$$\rho_{k,\Lambda}(x) = \frac{N_k(x)}{|\Lambda|}$$

cluster size distribution: $\rho_{\Lambda} = (\rho_{k\Lambda})_{k\in\mathbb{N}}$

$$ho_{\Lambda}=\left(
ho_{k,\Lambda}
ight)_{k\in\mathbb{N}}$$

as an $M_{N/|\Lambda|}$ -valued random variable, where

$$M_{
ho}:=\left\{(
ho_k)_{k\in\mathbb{N}}\in[0,\infty)^{\mathbb{N}}\,\Big|\,\sum_{k\in\mathbb{N}}k
ho_k\leq
ho
ight\},\qquad
ho\in(0,\infty).$$

Regimes Considered

We study the cluster-size distribution in the box $\Lambda = [0, L]^d$

■ in the thermodynamic limit

$$N o \infty, \qquad L = L_N o \infty, \qquad \text{such that } rac{N}{L_N^d} o
ho \in (0, \infty),$$

followed by the dilute low-temperature limit

$$\beta \to \infty, \rho \downarrow 0 \qquad \text{ such that } -\frac{1}{\beta}\log \rho \to v \in (0,\infty),$$

(joint work with Sabine Jansen and Bernd Metzger, WIAS.)

and in the coupled dilute low-temperature limit

$$N \to \infty, \qquad \beta = \beta_N \to \infty, \qquad L = L_N \to \infty \qquad \text{ such that } -\frac{1}{\beta_N} \log \frac{N}{L_N^d} \to \nu \in (0,\infty).$$

(joint work with A. COLLEVECCHIO (Venice), P. MÖRTERS (Bath) and N. SIDOROVA (London))

Here,

- total entropy ≈ sum of the entropies of the clusters,
- excluded-volume effect between the clusters may be neglected,
- mixing entropy may be neglected.

LDP in the Thermodynamic Limit

Free energy per unit volume :
$$f_{\Lambda}(\beta, \frac{N}{|\Lambda|}) := -\frac{1}{\beta|\Lambda|} \log Z_{\Lambda}(\beta, N).$$

$$\underset{N/L^{d}\to\rho}{\text{limiting free energy}}: \qquad f(\beta,\rho):=\lim_{\stackrel{N,L\to\infty}{N/L^{d}\to\rho}}f_{[0,L]^{d}}(\beta,\tfrac{N}{L^{d}}).$$

Goal: find $f(\beta, \rho, \cdot) \colon M_{\rho} \to [0, \infty]$ such that

$$\frac{1}{N!} \int_{\Lambda^N} \mathrm{e}^{-\beta U_N(x)} 1 \! 1 \! \left\{ (\rho_{k,\Lambda}(x))_{k \in \mathbb{N}} \approx (\rho_k)_{k \in \mathbb{N}} \right\} \mathrm{d}x \approx \exp \left(-\beta |\Lambda| f(\beta,\rho,(\rho_k)_{k \in \mathbb{N}}) \right),$$

and define the rate function as

$$J_{\beta,\rho}((\rho_k)_{k\in\mathbb{N}}) = \beta(f(\beta,\rho,(\rho_k)_{k\in\mathbb{N}}) - f(\beta,\rho)).$$

Large deviation principle with convex rate function, [JKM11]

In the thermodynamic limit $N\to\infty$, $L\to\infty$, $N/L^d\to\rho$, the distribution of ρ_Λ under $\mathbb{P}_{\beta,\Lambda}^{(N)}$ with $\Lambda=[0,L]^d$ satisfies a large deviation principle with speed $|\Lambda|=L^d$. The rate function $J_{\beta,\rho}\colon M_{\rho+\varepsilon}\to [0,\infty]$ is convex, and its effective domain $\{J_{\beta,\rho}(\cdot)<\infty\}$ is contained in M_ρ .

On the Proof of the LDP

Standard strategy, adapted to cluster-size distributions:

- **1.** Projection: LDP for $(\rho_{k,\Lambda}(x))_{k=1,\dots,j}$ for fixed j with some rate function $J_{\beta,\rho,j}$.
 - Use subadditivity along special sequences of increasing cubes (having a separating margin) to define a densely defined preliminary rate function,
 - extend this rate function continuously and prove that it is finite on open sets,
 - fill the gaps for an arbitrary sequence of cubes,
 - show that the extended preliminary rate function gives an LDP.
- Apply the Gärtner-Dawson theorem (projective limit LDP) to get full LDP with rate function

$$J_{\beta,\rho}((\rho_k)_{k\in\mathbb{N}}) = \sup_{j\in\mathbb{N}} J_{\beta,\rho,j}((\rho_k)_{k=1,\dots,j}).$$

Dilute Low-Temperature Limit

The ground state, i.e., zero temperature :
$$E_N := \inf_{x \in (\mathbb{R}^d)^N} U_N(x).$$

stability & subadditivity
$$\implies e_{\infty} := \lim_{N \to \infty} \frac{E_N}{N} \in (-\infty, 0)$$
 exists.

Interpret $q_k = k\rho_k/\rho$ as the probability that a given particle lies in a k-cluster.

$$\text{Approximate rate function:} \qquad g_{\mathcal{V}}\big((q_k)_k\big) := \sum_{k \in \mathbb{N}} q_k \frac{E_k - \nu}{k} + \Big(1 - \sum_{k \in \mathbb{N}} q_k\Big) e_{\infty}$$

on the set

$$\mathscr{Q} := \left\{ (q_k)_{k \in \mathbb{N}} \in [0,1]^{\mathbb{N}} \,\middle|\, \sum_{k \in \mathbb{N}} q_k \le 1 \right\}$$

Γ -convergence of the rate function, [JKM11]

In the limit $eta o \infty$, ho o 0 such that $-eta^{-1} \log
ho o
ho$, the function

$$\mathscr{Q} \to \mathbb{R} \cup \{\infty\}, \qquad (q_k)_k \mapsto \frac{1}{\rho} f\left(\beta, \rho, (\frac{\rho q_k}{k})_{k \in \mathbb{N}}\right)$$

 Γ -converges to g_V .

Explanation

Our Approximations:

■ We approximate $f(\beta, \rho, (\rho_k)_k)$ by an ideal gas of clusters, neglecting the "excluded volume":

$$f^{\text{ideal}}(\beta, \rho, (\rho_k)_k) := \sum_{k \in \mathbb{N}} k \rho_k f_k^{\text{cl}}(\beta) + \left(\rho - \sum_{k \in \mathbb{N}} k \rho_k\right) f_{\infty}^{\text{cl}}(\beta) + \frac{1}{\beta} \sum_{k \in \mathbb{N}} \rho_k (\log \rho_k - 1).$$

 $(f_k^{\rm cl}(\beta))$ = free energy per particle in a cluster of size k.)

- We approximate $f^{\text{ideal}}(\beta, \rho, (\frac{\rho q_k}{k})_{k \in \mathbb{N}})$ with $\rho g_{\nu}(q)$ using two simplifications:
 - cluster internal free energies \approx ground state energies: $f_k^{\rm cl}(\beta) \approx E_k$.

$$\begin{split} \frac{1}{\beta} \sum_{k \in \mathbb{N}} \rho_k (\log \rho_k - 1) &= \sum_{k \in \mathbb{N}} \rho_k \frac{\log \rho}{\beta} + \frac{\rho}{\beta} \sum_{k \in \mathbb{N}} \frac{q_k}{k} \left(\log \frac{q_k}{k} - 1 \right) \approx \sum_{k \in \mathbb{N}} \rho_k \frac{\log \rho}{\beta} \\ &\approx -\rho \sum_{k \in \mathbb{N}} q_k \frac{v}{k}. \end{split}$$

In classical statistical physics: "Geometric (or droplet) picture of condensation".

Closely related to the contour picture of the Ising model an lattice gases.

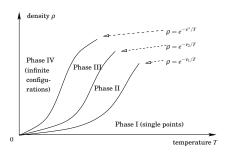
Consequences of Γ -convergence, [JKM11]

In the same limit $\beta \to \infty$, $\rho \downarrow 0$ such that $-\frac{1}{\beta} \log \rho \to v$,

I

$$\frac{1}{\rho}f(\beta,\rho) \to \min_{\mathscr{Q}} g_{\mathcal{V}} =: \mu(\mathcal{V}),$$

• if v is not a kink point of $\mu(\cdot)$, then any minimiser of $J_{\beta,\rho}$ converges to the minimiser of g_v .



Properties of g_{ν}

- $\mathbf{v}^* := \inf_{N \in \mathbb{N}} (E_N Ne_{\infty}) \text{ lies in } (0, \infty).$
- $\qquad \qquad v \mapsto \mu(v) = \inf_{\mathscr{Q}} g_v = \inf_{N \in \mathbb{N}} \tfrac{E_N v}{N} \text{ is continuous, piecewise affine and concave.}$
- $m{\mu}(\cdot)$ has at least one kink, and the kinks accumulate at most at v^* .
- If $v \in (v^*, \infty)$ is not a kink point, then g_v has the unique minimizer $\delta_{k(v)}$ (Dirac sequence) with k(v) the unique minimizer of $k \mapsto (E_k v)/k$.
- For $v < v^*$, the unique minimizer of g_v is 0 (zero sequence).

Interpretation:

- There is at least one phase transition, possibly much more.
- In the high-temperature phase $v \gg 1$, all clusters are singletons.
- In any intermediate phase, all clusters have size k(v).
- In the low-temperature phase $v \in (0, v^*)$, there are only infinite clusters.

Corollary: LLN for Cluster Sizes

The main consequence of the LDP, together with the Γ -convergence of the rate function, is:

Limiting distributions of cluster sizes, [JKM11]

Let $v \in (0,\infty)$ be not a kink point, and fix $\varepsilon > 0$. Then, if β is sufficiently large, ρ sufficiently small and $-\frac{1}{\beta}\log\rho$ is sufficiently close to v, for boxes Λ_N with volume N/ρ ,

$$\begin{split} \lim_{N \to \infty} \mathbb{P}_{\beta, \Lambda_N}^{(N)} \left(\left| \frac{k(\nu)}{\rho} \rho_{k(\nu), \Lambda} - 1 \right| > \varepsilon \right) &= 0 \qquad \text{if } \nu > \nu^*, \\ \lim_{N \to \infty} \mathbb{P}_{\beta, \Lambda_N}^{(N)} \left(\sum_{k \in \mathbb{N}} \rho_{k, \Lambda} > \varepsilon \right) &= 0 \qquad \text{if } \nu < \nu^*. \end{split}$$

In other words, in this two-step limit, the model has only one cluster size, which is infinite for small ν .

Approximation with Ideal Mixture

- The approximation with $g_{\mathcal{V}}$ is difficult to interpret physically, and $g_{\mathcal{V}}$ has some "unphysical" properties: possibly many phase transitions of $v \mapsto \mu(v)$, and many minimisers of $g_{\mathcal{V}}$ in the kinks. We think that just one of these phase transitions is "physical", the others correspond to cross-overs inside the gas phase.
- Much better is the approximation with the ideal mixture of droplets, f^{ideal} , which is known, under reasonable assumptions, to have only one phase transition.
- These assumptions are on the compactness of the shape of the relevant configurations at positive, but low temperature:
 - The main contribution to the cluster internal energy comes from compact (d-dimensional) configurations,
 - the correction term in the convergence $f_k^{\rm cl}(\beta) \to f_\infty^{\rm cl}(\beta)$ is of surface order: $kf_k^{\rm cl}(\beta) kf_\infty^{\rm cl}(\beta) \ge Ck^{1-1/d}$.

(Verification seems out of reach yet.)

We have rigorous bounds for the comparison of the original model with the ideal-mixture model, which are exponentially small in vanishing temperature, see next slides.

The ideal mixture

Recall:

$$f^{\text{ideal}}(\beta, \rho, (\rho_k)_k) := \sum_{k \in \mathbb{N}} k \rho_k f_k^{\text{cl}}(\beta) + \left(\rho - \sum_{k \in \mathbb{N}} k \rho_k\right) f_{\infty}^{\text{cl}}(\beta) + \frac{1}{\beta} \sum_{k \in \mathbb{N}} \rho_k (\log \rho_k - 1).$$

saturation density: Let

$$\rho_{\mathrm{sat}}^{\mathrm{ideal}}(\beta) := \sum_{k \in \mathbb{N}} k \, \mathrm{e}^{\beta k [f_{\infty}^{\mathrm{cl}}(\beta) - f_k^{\mathrm{cl}}(\beta)]} \in (0, \infty]$$

chemical potential: For $\rho <
ho_{\mathrm{sat}}^{\mathrm{ideal}}(m{\beta})$, let $\mu^{\mathrm{ideal}}(m{\beta}, m{\rho}) \in (-\infty, f_{\infty}^{\mathrm{cl}}(m{\beta}))$ be the unique solution of

$$\sum_{k=1}^{\infty} k e^{\beta k [\mu^{ideal}(\beta, \rho) - f_k^{cl}(\beta)]} = \rho,$$

and for $\rho \ge \rho_{\mathrm{sat}}^{\mathrm{ideal}}(\beta)$, let $\mu^{\mathrm{ideal}}(\beta, \rho) := f_{\infty}^{\mathrm{cl}}(\beta)$.

■ Then, the minimiser $(\rho_k^{\text{ideal}}(\beta, \rho))_k$ of $f^{\text{ideal}}(\beta, \rho, \cdot)$ is given by

$$\rho_k^{\text{ideal}}(\beta, \rho) = e^{\beta k \left[\mu^{\text{ideal}}(\beta, \rho) - f_k^{\text{cl}}(\beta)\right]}.$$

■ Under appropriate bounds on $f_k^{\rm cl}(\beta)$, the saturation density is finite at low temperature, and $f^{\rm ideal}(\beta, \rho, \cdot)$ has a phase transition.

Comparison with ideal mixture

Joint work with SABINE JANSEN (WIAS). Our hypotheses:

- (1) Some Hölder continuity and uniform stability of ν . (holds under general assumptions)
- (2) Compact shape of ground states. (in $d \le 2$ see [Au Yeung, Friesecke, Schmidt (2011)])
- (3) Compact shape of clusters at low temperature. (open)
- (4) Surface-order correction: $kf_k^{\rm cl}(\beta) kf_\infty^{\rm cl}(\beta) \ge Ck^{1-1/d}$. (open)

Let $H(a;b) = \sum_{k \in \mathbb{N}} (b_k - a_k + a_k \log \frac{a_k}{b_k})$ denote the entropy.

Approximation with ideal mixture

Under Hypotheses (1), (3) and (4), for any sufficiently large β and sufficiently small ρ ,

$$0 \le f(\beta, \rho) - f^{\text{ideal}}(\beta, \rho) \le \frac{C}{\beta} m^{\text{ideal}}(\beta, \rho) \rho^{1/(d+1)},$$

and, for any minimiser $\rho = \rho^{(\beta,\rho)} = (\rho_k)_{k \in \mathbb{N}}$ of $f(\beta,\rho,\cdot)$, with $m := \sum_{k \in \mathbb{N}} \rho_k$,

$$\left|\frac{m}{m^{\mathrm{ideal}}(\beta,\rho)}-1\right|^2 \leq C' \rho^{1/(d+1)} \qquad \text{and} \qquad \frac{1}{2} H\left(\frac{\rho}{m}; \frac{\rho^{\mathrm{ideal}}(\beta,\rho)}{m^{\mathrm{ideal}}(\beta,\rho)}\right) \leq C' \rho^{1/(d+1)}.$$

If Hypotheses (3) and (4) are replaced by (2), this holds for $-\beta^{-1}\log\rho > \nu^* + \varepsilon$ with ε -dependent constants.

Coupled Limit

Idea: Couple inverse temperature $\beta=\beta_N\to\infty$ with particle density $N/L_N^d=\rho_N\to0$ such that

$$-\frac{1}{\beta_N}\log\frac{N}{L_N^d}=v\in(0,\infty)\qquad\text{is constant}.$$

(Example: $\beta_N \times \log N$ and $|\Lambda_N| = |[0, L_N]^d = N^{\alpha}$ with $\alpha > 1$.)

Then energic and entropic forces compete on the same, critical scale, and determine the behaviour of the system.

Large $v \Longrightarrow$ entropy wins, i.e., typical inter-particle distance diverges,

Small $v \Longrightarrow$ interaction wins, i.e., crystalline structure in the particles emerges.

Free energy per particle in the coupled limit, [CKMS10]

$$-\mu(\nu) = \lim_{N \to \infty} \frac{1}{N\beta_N} \log Z_{[0,L_N]}(\beta_N, N).$$

On the Proof: Empirical Measure

Let $x = \{x_1, \dots, x_N\}$ be a configuration of points in Λ_N , identified with its cloud $\sum_{i=1}^{N} \delta_{x_i}$. It decomposes into its connected components

$$[x_i] := \sum_{j \in \Theta_i} \delta_{x_j},$$

Main object: the empirical measure on the connected components, translated such that any of its points is at the origin with equal measure:

$$Y_N^{(x)} = \frac{1}{N} \sum_{i=1}^N \delta_{[x_i]-x_i}.$$

where

$$\Psi(Y) = \int Y(\mathrm{d}A) \frac{1}{\#A} \sum_{\substack{x,y \in A \\ x \neq y}} \nu(|x - y|).$$

On the Proof: Large-Deviation Principle

Let X be a vector of i.i.d. random variables $X_1^{(N)}, X_2^{(N)}, \dots, X_N^{(N)}$ uniformly distributed on Λ_N , and write $Y_N = Y_N^{(X)}$. Hence,

$$Z_N(\beta_N, \rho_N) = \frac{|\Lambda_N|^N}{N!} \mathbb{E}_{\Lambda_N} \Big[\exp \big\{ -\beta_N \Psi(Y_N) \big\} \Big].$$

Proposition. $(Y_N)_{N\in\mathbb{N}}$ satisfies a large-deviation principle with speed $N\beta_N$ and rate function

$$J(Y) = c \left[1 - \int Y(\mathrm{d}A) \, \frac{1}{\#A} \right].$$

That is,

$$\frac{1}{N\beta_N}\log\mathbb{P}_{\Lambda_N}\big(Y_N\in\cdot\big)\Longrightarrow-\inf_{Y\in\cdot}J(Y).$$

Informally, Varadhan's lemma implies

$$\lim_{N\to\infty} \frac{1}{N\beta_N} \log \mathbb{E}_{\Lambda_N} \left[\exp\left\{ -\beta_N \Psi(Y_N) \right\} \right] = -\inf_{Y} \left\{ \Psi(Y) + J(Y) \right\}.$$

It is not difficult to see that this is basically the assertion.

