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Abstract

We analyze the surface energy and boundary layers for a chain of atoms at
low temperature for an interaction potential of Lennard—Jones type. The pressure
(stress) is assumed to be small but positive and bounded away from zero, while the
temperature 8! goes to zero. Our main results are: (1) As f — oo at fixed positive
pressure p > 0, the Gibbs measures (g and vg for infinite chains and semi-infinite
chains satisfy path large deviations principles. The rate functions are bulk and
surface energy functionals Evuik and Egure. The minimizer of the surface functional
corresponds to zero temperature boundary layers; (2) The surface correction to the
Gibbs free energy converges to the zero temperature surface energy, characterized
with the help of the minimum of Esurf (3) The bulk Gibbs measure and Gibbs
free energy can be approximated by their Gaussian counterparts; (4) Bounds on the
decay of correlations are provided, some of them uniform in g.
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1. Introduction

The purpose of the present article is to analyze the low-temperature behavior for
a one-dimensional chain of atoms that interact via a Lennard—Jones type potential.
The model is atomistic and in terms of the Gibbs measures of classical statistical
mechanics. Two limiting procedures are at play: the zero-temperature limit, for
which the inverse temperature B8 goes to infinity, and the thermodynamic limit,
where the number of particles N and the system size go to infinity. The order of
the limits matters. When the zero-temperature limit is taken before the N — oo
limit, the analysis of Gibbs measures is replaced by energy minimization, leading to
variational models of non-linear elasticity. We perform instead the zero-temperature
limit after the thermodynamic limit. The zero-temperature limit for infinite systems
is far from trivial, see [14,15,55] and the discussion in [7].

For the one-dimensional Lennard—Jones interaction, it is known that energy
minimizers (ground states) converge to a periodic lattice [22] (“crystallization”).
In contrast, for one-dimensional systems with pair potentials that decay faster than
1/ 2, it is well-known that, at positive temperature, no matter how small, there is
no crystallization [11]. Nevertheless, some quantities can be approximated well by
their zero-temperature counterpart. For the bulk free energy this is to be expected;
for other quantities such as surface corrections this is already more subtle. For the
decay of correlations, it is a priori not even clear what the zero-temperature coun-
terpart should be; we propose a natural candidate, see equations (2.11) and (2.12).

At zero temperature, surface corrections and boundary layers have been studied,
for example, in order to better understand variational models of fracture, see for
example [12,49] and the references therein. Fracture might be expected for elon-
gated chains that are forced to stretch beyond their preferred length. At small pos-
itive temperature, large interparticle distances correspond to low pressure (stress)
p = pp — 0. We address this regime in a subsequent work and focus here on
the elastic regime of positive pressure p > 0, though the case of small pressure
pp — 01is discussed in some comments.

Our main results come in four parts. They are listed in sections 2.1-2.4 and
proven in sections 3—7. At zero temperature, we extend the result on bulk peri-
odicity from [22] to a more general class of potentials and positive pressure, see
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Theorem 2.1. We prove the existence of bounded surface corrections, and char-
acterize them with the help of an energy functional Egy¢ for semi-infinite chains
(Theorem 2.2).

At positive temperature, we prove large deviations principles for the Gibbs
measures (g and vg on R%_ and R§ (product topology) as 8 — oo at fixed p > 0
(Theorem 2.4). The speed is 8 and the respective rate functions are energy function-
als Epuik and & gurf — min Egyrs Whose minimizers are, respectively, the periodic bulk
ground state and the zero-temperature boundary layer. The convergence of positive-
temperature surface corrections to their zero-temperature counterpart is addressed
in Theorem 2.5. These results are intimately related to path large deviations for
Markov processes and Hamilton—Jacobi—-Bellman equations [19], semi-classical
analysis [24], and a more direct approach to low-temperature expansions [51]. We
remark that our results are valid for long range interactions which in particular are
not assumed to have superlinear growth at infinity. The large deviations principle
is complemented by a result on Gaussian approximations for the bulk Gibbs mea-
sure and the Gibbs free energy, valid for finite interaction range m (Theorems 2.7
and 2.8).

Finally, we study the temperature-dependence of correlations and informally
discuss how correlations connect with effective interactions of defects and the
decay of boundary layers. Theorem 2.9 provides a priori estimates that hold for all
B, p > 0. In Theorem 2.11 we show that for finite m and small positive pressure
p, the decay of correlations is exponential with a rate of decay that stays bounded
as B — oo—the associated Markov chain has a spectral gap bounded away from
zero. This uniform estimate is proven with perturbation theory for the transfer
operator. For infinite m, we provide instead a uniform estimate for restricted Gibbs
measures (Proposition 2.10), which follows from the convexity of the energy (in
a neighborhood of the periodic gound state) and techniques from the realm of
Brascamp-Lieb inequalities [24]. At vanishing pressure pg — 0 or fixed high
pressure p > 0, the spectral gap might become exponentially small because of
fracture or metastable wells [9] in non-convex energy landscapes.

Bringing statistical mechanics into atomistic models of crystals and elasticity
has arich tradition [6,8,39,56]. Modern developments include the study of gradient
Gibbs measures [20] with sophisticated tools such as renormalization groups and
cluster expansions [1], random walk representations [13], and Witten Laplacians
[24]; scaling limits and gradient Young—Gibbs measures [30,41,47]; the extension
of approximation schemes, for example the quasi-continuum method, to positive
temperature [10,52]. In addition, there have been some inroads into the open prob-
lem of proving crystallization in the form of orientational order for two-dimensional
models [2,25].

To the best of our knowledge, all of the aforementioned mathematical litera-
ture, notably on Gibbs gradient measures, is limited to potentials with a superlinear
growth at infinity. This is in stark contrast with the decay to zero typically im-
posed in statistical mechanics of point particles [44]. We work with potentials
v(r) — 0, an additional linear term pr enters because we work in the constant
pressure ensemble, which is the most convenient ensemble for one-dimensional
systems [44, Section 5.6.6]. As a consequence, the by now classical combination
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of Bakry—Emery estimates and Holley—Stroock perturbation principle, see [34] and
the references therein, becomes potentially more delicate. We use instead estimates
on energy penalties, some aspects of which might generalize to higher-dimensional
models.

Another aspect that might generalize to higher dimension concerns the large
deviations principle. The existence of a large deviations principle for the Gibbs
measure as B — 00, proven using a exponential tightness and fixed point equation
for the measure, amounts to the construction of an infinite volume energy functional
that vanishes on ground states only. In higher dimension, the role of the fixed point
equation is taken by DLR-conditions named after Dobrushin, Lanford, Ruelle [23]
and the proof of a large deviations principle reduces to the investigation of a higher-
dimensional analogue of a Bellman equation. The theory of the latter, for non-unique
ground states, might mirror possible intricacies of the zero-temperature limit of
Gibbs measure described in [55].

Finally we remark that the results of this work allow for a detailed analysis
of typical atomic configurations at low temperature and low density. In [28] we
will in particular prove that, when the density is strictly smaller than the density
of the ground state lattice, a system with N particles fills space by alternating
approximately crystalline domains (“clusters”) with empty domains (‘“‘cracks”).
The number of domains is of the order of N exp(—fBegut/2) with egys the surface
energy from Theorem 2.2 below.

2. Main Results

2.1. Zero Temperature

Let v : (0, 00) — R be a pair potential, m € N U {oo} a truncation parameter
and p > 0 the pressure. At zero temperature we allow for p = 0, at positive
temperature we impose p > 0. The Gibbs energy at zero temperature and pressure

p for a system of N particles with positions x; < ... < xy and interparticle
spacings z; = xj41 —xj, j=1,..., N —1,is
N-1
ENGinan-) = Y vEi e+ P Y 2
I<i<j<N j=1

li—jl=m

The parameter m restricts the range of the interaction: m = 2 corresponds to a next-
nearest neighbor interaction. This section deals with the minimization problem
Ey = inf En(ziy .y zn=1)
Z1,.2N-1>0
in the limit N — oo. Throughout we assume that the following assumption holds
(see also Fig. 1):

Assumption 1. The pair potential v : (0, o0) — R U {400} with (possibly van-
ishing) hard core radius r, > 0 is equal to +o00 on (0, ] and a C? function on
(rhe, 00). There exist rhe < Zmin < Zmax < 2Zmin and a1, ap > 0, s > 2 such that
the following holds:



Boundary Layers for a Chain of Atoms at Low Temperature 919

v (r)
AVAvA

~he
. *min
- -Zmax

2Zmin

Fig. 1. A typical pair interaction potential with 0 < rpe < Zmin < Zmax < 2Zmin as
specified in Assumption 1

(1) Shape of v: Zmax is the unique minimizer of v and satisfies v(Zmax) < 0. v is

decreasing on (0, zmax) and increasing and non-positive on (Zmax, 00).

(ii) Growth of v: v(z) > —ajz7 % for all z > 0 and v(z) + vV(Zmax) — 201
Yoo ,(nz)™* > 0forall z < Zmin.

(iii) Shape of v v” is decreasing on [Zmin, Zmax] and increasing and non-positive
on [2Zmin, 00).

(iv) Growth of v”: v"(z) > —asz "2 for all z > rpe and v (Zmax) + >,
120" (nzmin) > 0.

The assumption is satisfied, for example, by the Lennard—Jones potential v(r) =
r~12 =6 As we will see, parts (i) and (ii) of the assumption guarantee that energy
minimizers at p = 0 have interparticle spacings z; in (Zmin, Zmax), parts (iii) and
(iv) ensure that the distance of nearest neighbors lies within the convexity region
of v while all other interactions occur in the concave region of v. &y will then
be uniformly strictly convex in (Zmin, zmaX)N —!. moreover the Hessian D25N will
be diagonally dominant with positive diagonal entries and negative off-diagonal
entries.

— [V (Zmax)|
Zmax

Assumption 2. The pressure p satisfies 0 < p < p* with p* :

At positive temperature we shall assume in addition that p > 0, r;. > 0, and
for some results we need lim,\;,, v(r) = oo. The next theorem is the adaptation
of a similar result by Gardner and Radin [22]. It is proven in section 3.1.

Theorem 2.1. (Bulk properties) Let m € N U {oo} and p € [0, p*) as in Assump-
tion 2.

(a) For every N > 2, the map En Rf_l — R has a unique minimizer

(z(lN), el ZE\I;])—I)’ The mimizer has all its spacings zj in [Zmin» Zmax]-
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(b) As j, N — oo along N — j — oo, we have 2 — a where a € (zmin, Zmax]
is the unique minimizer of Ry > r v pr+ Y ;= v(kr).
(¢) The limit eg = limy_ o (En/N) < 0 exists and is given by

m m
e) = pa + Z v(ka) = Irn>i{)1<pr + Z v(kr)).
k=1 k=1

Let Dy C (rhe, oo)N be the space of sequences (z;) jen with none or at most
finitely many elements different from a. Define

h(zis. . zm) = pai+ Y v+ + ), (2.1)
k=1
o
Esurt ((z)) jen) = Z(h(z,, s Zjm—1) — €0)
j=1

r”18

[PV/ + Z vka +yj 4+ Vjpr—1) — v(ka))] 2.2)
1 k=1

~.
Il

for (zj)jen € Do, where we have set y; := z; — a and used that ¢ = pa +
Y i v(ka). When m = oo, h((z;) jen) is a function of the whole sequence. Egyt
is the Gibbs energy of a semi-infinite chain, with additive constant chosen in such
a way that at spacings z; = a the Gibbs energy is zero; h(z1, z2, .. .) represents
the interaction of the left-most particle with everybody else. Let D = {(z;) jen €
(Fhe, o)V | 2711 (zj — a)? < oo} be the space of square summable strains.

Theorem 2.2. (Surface energy) Let m € NU {oo} and p € [0, p*) as in Assump-
tion 2. Equip D with the £*-metric. Then

(a) Esurf extends to a continuous functional on D.

(b) On D N [Zmin, zmax]N it is strictly convex.

() Esurf has a unique minimizer. The minimizer lies in D N [Zmin, zmax]N.
(d) The limit eyt = limy— oo (Eny — Neg) exists and is given by

m
Esurf = 21%11 Esurf — pa — ];kv(ka)-

The theorem is proven in section 3.2. Note that —pa — Z,fo:] kv(ka) is the surface
energy for a clamped chain with all spacings equal to a and &t encodes the effect
of boundary layers. Egr is multiplied by 2 because finite chains have two ends.
We note that min Egyt is exactly the boundary layer energy introduced by Braides
and Cicalese [12]; Braides and Cicalese dealt with the special case m = 2 of next-
nearest neighbor interactions but more general potentials. For finite m > 2, see [50,
Theorem 4.2].
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For later purposes we also define a bulk functional

o0

Eou((z)) jez) = Z (h(zj, ...  Zj+m—1) — €0)

j==00

= Z Z(U(Zj+"'+Zj+k—l)_U(ka)"‘alkp(zj_a))§

Jj=—00 k=1

it is defined, a priori, on the space DS of positive bi-infinite sequences (z;) jez €
(Fhe, 00)% that have at most finitely many elements z; # a. Denoting the space of
square summable strains D+ = {(zj)jez € (rnc, 00)™ | Z/eZ(Zj —a)? < oo}, an
analysis similar to the one for the surface functional yields the following result:

Proposition 2.3. (Limiting bulk properties) Let m € N U {oo} and p € [0, p*) as
in Assumption 2. Equip D with the £*>-metric. Then

(@) Epulk extends to a continuous functional on DT

(®) On D N [Zmin, Zmax 1Y if is strictly convex.

(¢) The unique minimizer of Ewyk Is the constant sequence (..., a,a, ...). The
minimum value is Epu (..., a,a,...) =0.

(d) For every (zj) jez € D one has

Eouk ((2)) jez) =Esurt (21, 225 - - -) + Esurf (205 2-15 -+ )
+WC(--z2120 | 2122 - ),

where W(---z_120 | z122--+) = ) j<ok=1 v(zj + --- + zx) is the total
<m—1
interaction between the left and right half-infinite chain.

2.2. Small Positive Temperature

Next we analyze infinite volume Gibbs measures on ]RJNr and R% in the limit
B — oo. We focus on fixed positive p € (0, |v(Zmax)|/Zmax) but comment on
vanishing p = pg — 0 at the end of the section. Let QE{? be the probability

measure on Rﬁ ~! defined by

where

OB = [ e Pz i,
"

Y
Standard arguments (see section 4) show there is a uniquely defined probability
measure Vg on the product space RI}]_ such that for every k € N, every bounded
continuous test function f € Cb(Rﬁ),

lim f(m,--.,Zk)d@%)(zu.--,zzv—l)=/ f@i, e z)dvg((z)) j=1)-
RY! RY

N—o0
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(2.3)

Similarly, there is a uniquely defined probabilty measure wg on R% such that
for all local test functions f as above, and all sequences iy with iy — oo and
N — iN — 00,

. B)
lim / F@in41s oo 2ig+0dQY (21, . zver) =
N—o0 Ri—l

/Z f@r e z)dug((z)) jez)- 2.4)
RJr

Moreover the measure (g is shift-invariant and mixing. The measure 15 describes
the bulk behavior of a semi-infinite chain, the measure vg is the equilibrium measure
for a semi-infinite chain and encodes the probability distribution of boundary layers.

Our first result is a large deviations principle for the equilibrium measure vg as
B — 0. The rate function is a suitable extension of Egyt: define gy : Rl}i —
R U {o0} by

Eaurt((zj)jen),  (zj)jen € D,

2.5)
00, else.

Esurf((Zj)jeN) = {

In the same way &Epyx extends to a map Ebulk from R%_ to R U {oco}. Both Rﬁ and
R% are equipped with the product topology.

Theorem 2.4. Fix p € (0, p*) and m € N U {oco}. Assume that r,. > 0 and
lim,\ g, v(r) = oo. Then as B — oo, the equilibrium measures (vg)g=o and
(1) >0 satisfy large deviations principles with speed B and respective rate func-
tions Esurt — min Eguer and Epuic. The rate functions are good, that is lower semi-
continuous with compact level sets.

The theorem is proven in section 5.3. The large deviations principle for vg says that
for every closed set A C Rﬁ and every open set O C RE (product topology)

1 _
lim sup — logvg(A) < — inf (5 Z;)) — min &, )
ﬂ%oop 8 gvg(A) < (epea surf(( ])) R surf

| _ (2.6)
lgilogf E log Uﬂ(O) > - (Zi‘r)lé:O <5surf((zj)) - IIE%I\&H gsurf>~
It is essential that we work in the product topology. Indeed we shall later see
that vg is mixing, therefore for every ¢ > 0, the measure vg gives full mass 1
to sequences (z;) jen that have infinitely many spacings |z; — a| > e. Thus for
every ball O = {(z;) € RI_\?]_ | Z;’;l(z./ —a)? < 8}, we have vg(0) = 0 hence
B -1 logvg(0) = —00, to be contrasted with the lower bound in equation (2.6).
Another consequence concerns the evaluation of the Gibbs energies of localized
defects: suppose that because of some impurity, the energy is not Ey but Ex + V),
where V is, say, continuous in the product topology, localized in the bulk, and
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bounded from below. Then by Varadhan’s lemma [17], as 8 — oo, the effective
Gibbs energy converges to the zero temperature energy of the defect,

1
3 log jup(e V) — i%f(gbulk +V) (B — ).

Surface energies occur as a specific type of defect, when V cancels all interactions
between two half-infinite chains [see Proposition 4.9(a)], which leads to the next
theorem. Define

1 1
8(B) = G5 02 ONB). () = lim (2 log On(B) ~ Ng(B).

— lim
N—o0 ,BN
2.7

the Gibbs free energy g(B) per particle in the bulk and the surface correction
gsurf (B)-

Theorem 2.5. Fix p € (0, p*) and m € N U {oo}. The limits (2.7) exist. If; in
addition, rnc > 0 and limy\ . v(r) = 00, then the bulk and surface Gibbs energy
approach their zero-temperature counterparts when f§ — 00:

lim g(B) =ep, lim gsuf(B) = esuf-
B—o00 B—00

This proves that the thermodynamic limit and the zero temperature limit can be
exchanged, which is non-trivial (and in fact, fails when the pressure goes to zero
too fast, see below).

One last consequence of Theorem 2.4 concerns the distribution of spacings
and the pressure-density (or stress-strain) relation. The Gibbs free energy and our
partition functions correspond to an ensemble where the overall length of the system
is not fixed, but instead may fluctuate with a law that depends on the pressure—high
pressures p favor compressed states. In the thermodynamic limit N — oo, though,
the average spacing between particles becomes a well-defined quantity, given by

“p) = / 20dip((2)) jez)- 2.8)
RZ

+

By the contraction principle [17, Theorem 4.2.1], the distribution of zp under j1 g sat-
isfies alarge deviations principle with good rate function w(z) = inf {?bulk ((zj)jez) |
(zj)jez € ]R%_, zo = z}. The unique minimizer of w(z) is the ground state spacing
a. Lemma 5.1 implies that the distribution of spacings has exponential tails

np({(zj)jez | zo0 = r}) < Cexp(—Bpr)
for some B-independent constant C.
Corollary 2.6. Under the assumptions of Theorem 2.5, we have

ﬂlim L(B)=a= argmin(pr + Z U(kr)).
o k=1
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In particular, for large B, we have £(8) < ap where ag is the minimizer of the zero-
stress Cauchy—Born energy density Y, v(kr). Conversely, spacings £(8) > ag
(elongated chains) imply vanishing pressure p = pg — 0. This is clearly apparent
for nearest neighbor interactions (m = 1, Takahashi nearest neighbor gas [33,53]),
for which

! - Jo rexp(—Blu(r) + pgri)dr
= —_1 ﬁ[v(r)ﬂiﬂr]d L0 — Ooo )
g(B) 5 og(/o e r) B [ exp(—BlLo(r) + pprl)dr
(2.9)

Comments on vanishing pressure. We add a superscript to indicate that zero-
temperature quantities are evaluated at p = 0. When p = pg — 0 slower than any
exponential, it is still true that g(8) — ). When Bpg = exp(—Bv) with v > 0,
one can show with [26,27] that

ﬂlim g(B) = min(e(o), —Vv). (2.10)

At pressures vanishing faster than exp(—f |68 |), the most likely configurations have
very large spacings (dilute gas phase, £(f) — 00) and the previous results no longer
apply. For lim inf % log(Bppg) > 68, we expect that large deviations principles with
rate functions Egulk and ggurf — min ggurf still hold (in fact our proofs still show
weak large deviations principles). However rate functions have non-compact level
sets and exponential tightness is lost. Moreover large spacings may contribute to the
average (2.8) and Corollary 2.6 need no longer be true, thus allowing for spacings
L(B) — £ > ap.

2.3. Gaussian Approximation

Here we complement the large deviations result by a Gaussian approximation.
This section deals with finite m and the bulk measure 11 only. Rememberd = m—1.
We will see that the Hessian of Epyik at (..., a, a, .. .) is associated with a positive-
definite, bounded operator  in £%(Z). It is represented by a doubly-infinite matrix
(Hij)i, jez that is diagonally dominant. Write (H™Yy,; ; for the matrix elements of
the inverse operator and let 1.52% be the uniquely defined measure on RZ, equipped
with the product topology and its associated Borel o -algebra, such that

[ sissan s (sonez) =
R
for all i, j € Z, and every finite-dimensional marginal of pLGa“SS is a multi-
dimensional Gaussian distribution. Equivalently, ©G2S is the distribution of a
Gaussian process (N;) jez with mean zero and covariance E[N;N;] = (H‘l)ij.
More concrete expressions for the probability density functions of nd-dimensional
marginals of £ are provided in Proposition 6.17 below.

In the following we identify the measure pg on R%_ with the measure IIMr iy

on RZ, We exclude the trivial case m = 1.
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Theorem 2.7. Assume 2 < m < oo, p € (0, p*), and rne > 0. Then for every

n € N, the n-dimensional marginals of ug and wG2S have probability density

functions o and 0SS and

B 2o (a+ B 2s1, . a+ B s)

11m/3—>oo _/Rn

—pSauSs (g L, s,)|dsy ... ds, = 0.

It follows that the distribution of the spacings, suitably rescaled, converges locally
to the Gaussian measure 1192%: for every bounded function f : R — R that
depends on finitely many spacings z; only (bounded cylinder functions), we have

fim [ (VB a)jez)dup(Gjez) = [ Fau.
B—00 JRZ RZ
For example, in the limit 8 — oo, the distribution of a single spacing z; is approxi-
mately normal, with mean a and variance 8~ (H~!);;. We expect that Theorem 2.7
stays true for m = oo but a proof or disproof is beyond the scope of this article.
The next theorem says that the Gibbs free energy is close to the Gibbs free
energy of the approximate Gaussian model.

Theorem 2.8. Assume 2 < m < oo, p € (0, p*), and rnc > 0. The Gibbs free
energy satisfies, as B — 09,

_ 1l 2 _
g(ﬁ)—eo—E og W+o(ﬂ ),

whered = m — 1 and C is a d x d positive-definite matrix.

The matrix C is introduced in equation (6.18) - see also Lemma 6.7 - and is a
function of the Hessian of the energy.

Remark. (Gaussian approximation and semi-classical expansions) If v is smooth
and p > 0 is fixed, the Gibbs energy should admit an asymptotic expansion of
form

2 - .
88 = e = g log [0 + D ap IR+ 0B IR) (= o0)
=1

to arbitrarily high order n, for some ¢ > 0 and coefficients a; € R. The first cor-
rection comes from a Gaussian approximation of the partition function (harmonic
crystal), see section 6, with the constant ¢ capturing the asymptotic behavior of the
determinant of the Hessian around the energy minimum. Higher order corrections
correspond to anharmonic effects. A similar expansion holds for gg,:f(8). Rigorous
results for finite m are derived with semi-classical analysis [3,24,35] which build
on the analogy with the # — 0 limit from quantum mechanics. For m = 2 and
potentials with superlinear growth at infinity, independent results are given in [51].
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2.4. Decay of Correlations

Suppose that two defects change the energy functional from Epyx to Epuk +
Vo + Vi, where we assume for simplicity that My and Vj depend on z¢ and z; alone.
For large k, we may expect that the Gibbs energies are approximately additive, that
is

1 _ 1 _ 1 _
Ié’;}(k) = —Elogug(e FVo+Vi)y 4 Eloguﬂ(e Aoy 4 Blog,uﬂ(e Vi)
(2.11)

should be small when the defects are far apart. Iéf; (k) represents an effective inter-
action between the defects. In the study of systems with many defects it is important
to understand how fast the effective interaction decreases at large distances. Some
intuition is gained from the zero-temperature counterpart

I (k) = inf (Epuik + Vo + Vi) — inf (Epui + Vo) — inf (Epuik + Vo),
(2.12)

however in general the limits 8, k — oo cannot be interchanged and a full study
of (2.11) for large k requires techniques beyond variational calculus.

A closely related problem is about the localization of changes induced by a
defect: at zero temperature, if (z;) jez is a minimizer of Epyx + Vo, how fast does
Zx converge to the ground state spacing a as k — 00? On a similar note, how
fast does zx — a for a minimizer of the surface energy gy (decay of boundary
layers)? At positive temperature, the question is about the speed of convergence,
for test functions f : R’i — R, in

ppe PV fi)
m = up(f), vp(fi) = np(f)
asi — oo. Here f;((zj)jez) := f(Zi, ..., Zitk—1),s0that f,; = fiot" whent

denotes the left shift on RJZF. These questions naturally lead to the investigation of
the decay of correlations. We start with a general result which holds forall 8, p > 0.

Theorem 2.9. Assume m € N U {oo} and p > 0. There exist ¢, C > 0 such that
forall B, p > 0, k € N, and bounded f, g : R’j_ - R,

s (fogn) — mp(fo)is (gn)|
= min ((1 ==+ P P~ 1)1 fllocl 8]l

I=g=n/k

When m is finite and k = m — 1, we have the stronger bound

|1es(fogn) — a(fodrp(gn)| < (1 — e PYK|| fllsollglloo-
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The theorem is proven in section 4.2. When m is finite, it implies exponential decay
of correlations as n — 0o, however the rate —log(1 — e ~“#) can be exponentially
small for large 8. When m is infinite, Theorem 2.9 implies algebraic decay of cor-
relations: for ¢ = |n° | and sufficiently large n, (1 —e~#)¢ is negligible compared
to B(g/n)*~% and we find that as n — oo,

C
s ogn) — s Gooma(an]| = 1+ 0 LR .13

Better bounds are available for restricted Gibbs measures. Let ,a;}N ) be the measure

(@(Is) conditioned on [Zmin, Zmax ] ! and fip the probability measure on [Zmin, Zmax ]Z

obtained from the thermodynamic limit of [L%N).

Proposition 2.10. Let m € N U {oo}. There exists ¢ > 0 such that for all 8, p > 0,
smooth f,g : Ry — R, andi # j,

. . - c -2 = 2\ /2

fp(figi) — ip(fip(g))| < m(uﬁ(ﬂ )i (8] ))
Remark. Whenm is finite, the uniform algebraic decay for the restricted Gibbs mea-
sure is replaced with uniform exponential decay exp(—y | j —i|) with B-independent
y > 0.

The proposition is proven in section 7. It follows from the uniform convexity of the
energy (Lemma 3.3) and known results from the realm of Brascamp-Lieb, Poincaré
and Log—Sobolev inequalities. Proposition 2.10 differs from the estimate (2.13) in
two ways: there is no exponentially large prefactor exp(cf), and the rate of algebraic
decay is 1/n° instead of 1/n°~2. Exponentially large prefactors are absent because
the energy landscape has no local minimum. The improved algebraic decay 1/n*
arises, roughly, because the Gibbs measure is comparable to a Gaussian measure
whose covariance is the inverse of the energy’s Hessian near the minimum, and
instead of the tails of v(r), it is the tails of v/ () that count.

We suspect that for large B and small pressure, these improvements should carry
over to the full Gibbs measure (g, but we have proofs for interactions involving
finitely many neighbors only.

Theorem 2.11. Assume 2 < m < oo, p € (0, p*), and rne > 0. There exists
y > 0 such that for all sufficiently large B, suitable C(B), all n € N, and all
g ]Ri — R, we have

|1p(fogn) — mp(fo)iep(gn)| < C(BYe™"| folloo |1gnlloo-
If m =2, we can pick C(B) = 1.

The theorem is proven in section 6 with perturbation theory for compact integral
operators in L*>(R?). When m = 2, the relevant operators are self-adjoint and
spectral norms and operator norms coincide, leading to improved statements. We
conclude with a few comments.
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Lagrangian vs. Eulerian point of view The theorems above formulate decay
of correlations in terms of labelled spacings, which in the language of continuum
mechanics is a Lagrangian viewpoint. On the other hand, in statistical mechan-
ics of point particles it is more common to deal with unlabelled particles (Eulerian
viewpoint) and correlations are between portions of space rather than labelled inter-
particle distances. The difference between the two approaches becomes quite clear
for nearest neighbor interactions [m = 1, see equation (2.9)], for which the spac-
ings are i.i.d. with probability density gg(r) proportional to exp(—B[v(r) + pgr]).
Because of the independence of spacings, correlations in terms of spacings van-
ish, wg(fogn) — g (fo)ip(gs) = 0. On the other hand, the two-point function
02(0, x)! studied in statistical mechanics of particles is a sum over the number of
particles contained in (0, x],

qpt (x) = 2% +/0 qp(y —x)p2(0, y)dy,

02(0, x)
P L(pB)

_
Cup)

with qgk the n-fold convolution of gg with itself. It is a well-known fact from
renewal theory [18, Chapter XI] that

0200, x) -0 (x = 00),

1
e(p)?
but in general the difference is non-zero for finite x—in fact changing gg the
convergence as x — oo can be arbitrarily slow, even though correlations of labelled
interparticle spacings vanish identically. One should keep this difference in mind
when browsing the literature.
Path-large deviations, non-linear semi-groups, Bellman equation For m = 2,
we may view g as the law of a stationary Markov chain with state space R
and transition kernel Pg defined in equation (6.6). Theorem 2.4 is a path-large
deviations result for the Markov chain. Path large deviations are often investigated
with the help of non-linear semi-groups and Hamilton—Jacobi—Bellman equations
[19]. In our context, a natural non-linear semi-group is

ng = —% log(Pge_ﬁf>,
and for sufficiently smooth f, we have a convergence of the form
ﬂlifr;o Ve f(x) = —u(x) + yieIIlRf+(px + @) +olx 4+ y) —eo +uly) + f(),
where u solves

u(x) = inf (px +v(x) +v(x +y) — e+ u(y)).

inf
yeRy

1 Intuitively, p2 (0, x) represents the probability for having one particle at 0 and one particle
at x. Rigorously, pp(x1, x2) = p2(0, xo — x1) and for every A, fA p2(x1, x2)dxydxy is the
average number (N4 (N4 — 1)) of ordered particle pairs in A.
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Similar equations, motivated by quantum mechanics and geometric optics, appear
in semi-classical analysis [24, Equation (5.4.4)]. Proposition 3.9 below provides an
infinite-m ersatz and is instrumental in the proof of Theorem 2.4.

Vanishing pressure When Bp = Bpg — 0 faster than exp(—ﬂ|e8|) [see (2.10)],
the Gibbs measure should no longer be comparable to a Gaussian. Instead, it should
be close to the ideal gas measure, for which spacings are i.i.d. exponentially dis-
tributed with parameter Bpg, and we may again expect uniform exponential decay
of correlations (for finite m). When Spg — 0 ataspeed comparable to exp(—pf| egl),
we should instead expect an exponentially small spectral gap: the Markov chain
has two metastable wells, one corresponding to the optimal spacing a and another
well at infinity. The exponentially small spectral gap is associated with the fracture
of the chain of atoms, in the spirit of “fracture as a phase transition” [54].

3. Energy Estimates

In this section we analyze the variational problems arising at zero temperature.
Throughout the section we assume that p € [0, p*) as in Assumption 2.

3.1. Bulk Periodicity
Lemma 3.1. Every minimizer of Ey : RY ™' — R lies in [zmin, Zmax]¥ -

Proof. Letzy,...,zy—1 > 0.1f z; > zmax for some j, define a new configuration
by shrinking z; to zmax, leaving all other spacings unchanged: z; = z; fori # j
and 7. = Zmax. SINCe Zmax 18 a strict minimizer of v and  — v(r) increases on
[Zmax, 00), shrinking the bonds decreases & strictly and the original configuration
could not have been a minimizer.

If some interparticle spacing is smaller than zni,, we remove a particle and

reattach it to one end of the chain as follows. Assume b := min(zy, ..., zZy—1) <
Zminandlet j € {1,..., N —1}withz; =b.Letx; =0andx; = z1+---+2z;_1,
i = 2,...,N be associated particle positions. Thus x;y; — x; = z; = b and

Xi+1 — x; > b for all i. The interaction of x; with all other particles is

min{m—1,N—j—1} min{m, j—1}

v(b) + Z v(zj+ ...+ zj4+i) + Z v(zj-1+.. +Zji).
i=1 i=1

For finite m we note that,if v(z;_;+. . .4+2j—j4m) > Oforani € {1, ..., min{m, j—
I}}, thenv(zj— +...+2zj—itm) < v(zj—i +...+2;j—1) by Assumption 1(i). Re-
moving the particle x; thus leads to a configuration of N atoms whose energy has
decreased by at least

A1 =v(b) + v(zmax) = 201 Y _(n5) ™" = v(b) + V(zmax) — 201 Y _ (b)) " > 0.
n=2 n=2
3.D
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The last inequality holds because of Assumption 1(ii) and b < zyin. We define a
new configuration by attaching the removed particle to either end of the chain at
a distance r = Zmax. Since v(Zmax) + PZmax < 0 by Assumption 2, this decreases
En further, so overall the new configuration has strictly smaller energy, and the
original sequence of spacings cannot be a minimizer of £y . O

Atzero pressure, itis a well-known fact that the N -particle energy is subadditive,
Ent+ym < Ey+E ). Indeed placing two N, M -particle minimizers side by side with
large mutual distance, because of v(r) — 0 at r — oo, yields an N 4+ M -particle
configuration with energy < Eyn + E);. Positive pressure penalizes large mutual
distances between two consecutive blocks, so the construction has to be modified.

Lemma 3.2. Let m € NU {oo} and p € [0, p*). Then Eny+y—1 < En + Ey for
all N, M € N, and the limit eg = lim Ey /N exists and satisfies Eny > (N — 1)eg
forall N € N.

Proof. Let z € (rhe, 00)V =1 and w € (rhe, 00)™ ! be minimizers of Ey and
respectively. Define y € (rpe, 00) V=2 by concatenating z and w. By Lemma 3.1,
all spacings are in [Zmin, Zmax]- Therefore interactions that involve bonds from both
blocks are for spacings > 2zmin > Zmax, hence negative, and

Enym—1 <En-1(y) < ENy+ Ep.

As a consquence, a, := E,4 is subadditive. By Fekete’s subadditive lemma, the
limit eg = lima, /n = lim E, /n exists and is equal to the infimum of a, /n, hence
Ex = (N — 1)eg. Notice that ¢y > —o0 since

Ey > (n— 1)<U(Zmax) + i U(jZmin)) > - 1)<U(Zmax) + oz ij_v)
j=2

Jj=2 j=

(In the terminology of statistical mechanics, the energy is stable
[44, Chapter 3.2].) O

The next lemma in particular shows that £y is uniformly convex on
[Zmin, zmax]¥ ~!. For later purposes, we state and prove this on a slightly larger
set.

Lemma 3.3. There are constants €, n, C > 0 such that for all m, N, N;, N € N
with Ny < No < N, andz = (z1, ..., Zn—1) € [Zmin, 001 ! with Zj < Zmax + &
for N1 < j < N> — 1, the Hessian of Ey at 7 satisfies

Nr—1 Ny—1 No—1
Ny G Y GGkdENGR SC Y LT
J=Ni i,j=N j=h

forall¢ € RN=L. Moreover, the submatrix (0;0;EN(2)) Ny <i.j<N»—1 Of the Hessian
has strictly positive diagonal entries 85251\1 (z) > 0 and non-positive off-diagonal
entries 9;0;En(z) < 0. In particular, this matrix is monotone.
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Note that the Hessian is independent of the pressure p.

Proof. Let L be the collection of discrete intervals {i, ..., j—1} C {l,..., N—1}
of length j —i < m. Then for all i, j

3,’3J'SN(Z)= Z v”(ZZj).
LeLl:{i,j}CL JjeL

Fori # jandi, j € L we have ZjeL Zj = 2zmin hence v (3", z;) < 0; it follows

that the off-diagonal entries of the Hessian are non-positive. Next we show that the
row-sums are bounded from below by some constant n > 0if Ny <i < Ny — 1:

N

Y %0 EN(D) = 07EN@ + Y 90iEN(2)

Jj=1 i

V@) + Y v”(ZZ./)+ > 2 ”N<ZZ-/>

Lai #L>2 jeL jij#i Lo, j} jeL

v”(zi)+§:v”(nzmin) Z (1+ Z 1)

n=2 L>i #L=n JEL, j#i

v

o
v"(2i) = V" @max) + V' @max) + Y 170" (1Zmin) = 1.
n=2

v

Assumption 1 guarantees that n > 0 for ¢ > 0 sufficiently small. Thus row sums
are positive, off-diagonal matrix elements non-positive, and consequently diagonal
elements positive. Moreover, with C = 2max{v”(r) | r € [Zmin, Zmax + €]} the
diagonal elements are bounded from above by % The proof of the lemma is then
completed with the help of standard arguments, for example every eigenvalue of
(3;0;EN(2)) Ny <i.j<N,—1 lies in a Gershgorin circle with center 81.28;\; and radius
Zj# [0;0;EN|. In particular, (9;0;EN(2)) N, <i,j<N,—1 is an M-matrix and thus
monotone. O

Proof of Theorem 2.1. (a) By Lemma 3.1 minimizers lie in the compact set
[Zmin, Zmax]™¥ 1. On that set the Hessian of Ey is positive definite because of
Lemma 3.3, so Ey is strictly convex and the minimzer is unique.
(b) The convergence z(jN) — aas j,N — oo along N — j — o0, where
a € [Zmin, Zmax] 18 the unique minimizer of Ry > r — pr+ ka=1 v(kr), with the
help of Lemma 3.3 is a straightforward adaptation of the corresponding proof in [22]
and will be omitted. By Assumption 1(ii) we even have a > zpyi,. We remark that
the proof in [22] also shows that max{z(].N+l), z;.'\f:]”} < z}N) forj=1,...,N—1.
This in turn implies that the convergence is in fact uniform away from a boundary
layer of vanishing volume fraction.

(c) This observation in combination with Lemma 3.2 yields (c). Note thateg < 0
since eg < pPZmax + Z,fil V(kZmax) < PZmax + V(Zmax) < O by Assumptions 1
and 2. O

Notice that also a < zmax except for the exceptional cases in which only nearest
neighbors interact, that is m = 1 or v(z) = 0 for z > 2zmax, and the pressure
vanishes.
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3.2. Surface Energy

Proposition 3.4. Ler m € NU {oo} and p > 0. Then

hm (EN — Negy) = eguf = 21nf Esurf — pa — Zkv(ka)
k=1

Proof. For simplicity we write down the proof for m = oo; the proof when m € N
is completely analogous. Fix k > 2 and ¢ > 0. Let n1,ny € N with np, > &k
and N = ny +na+ 1. Let 2 = (Z—ny--+» Zny—1) € [Zmin> Zmax]"1 "2 be the
spacings of the N -particle ground state, labelled by j = —ny, .. nz — 1 rather than
1,..., N—1.Choosing n| and nj large enough we may assumez i—0 Iz, —al® <e.
Smce the Hessian has matrix norm uniformly bounded from above (Lemma 3.3),
changing the spacings zo, . . ., Zx—1 to a increases the energy by Ce at most thus

EN zgN(Z—VL]’"‘7Z—11a7"'1a7Zk7"'7Zn2—1)_Cg'

We group the atoms into a left, middle and right block and decompose the energy
of the modified configuration as Ay + By + Cy + Dy where

AN = gnl-'rl(z—nla A 7Z—1) +W(Z—n1» MR Z—l; aa .. 'aa)a
By =&q1(a, ..., a),
Cn=W(a,...,a;2, .., Zng—1) + Engmict1 (ks - - -+ Tny—1),

Dy= Y Y v+ +zitkatu+ - +2z),
i=—ny j=k

where W gathers interactions that involve bonds from two consecutive blocks. The
term Dy represents the interactions between the left and right blocks. It satisfies

00
o 1
0>D >E n—kyvnz > —« E 2——2 —,
N ( Jv(nZmin) = 1 (anm)S . 1
n=k mn ,—g

which goes to zero as k — 00. Next we subtract Neg from £y and distribute it as
Neg =nieg+ (k + 1)eg + (ny — k)eg over the first three sums. The middle block
contributes

k o0
By — (k+1)eg =Y (k—n+ Dv(na) +kpa — (k+ ) pa — (k+1) Y _v(na)

n=1 n=1

= —pa — va(na) (k+1) Z v(na) — va(na)

n=k+1

as k — oo. For the first block, we notice that

AN —njep = gsurf(Z—nI: c2-1,a,0,...) > igfgsurf'
0
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Indeed the only missing piece are negative interactions between the left block and
the right tail of a semi-infinite chain. The contribution of the right block Cy is
estimated in a similar way. We combine the estimates and let first n1, np, — 00,
then k — oo, and finally ¢ — 0 and find

o0
liminf(Ey — Neg) > 2inf Equef — pa — nv(na).
NHOO( N 0) = Inf Equrt P n; (na)

For the upper bound, we take approximate minimizers of &g, and glue them to-
gether to an N -particle configuration by assigning them to the left and right bound-
aries, with spacings a in between. This yields an N-particle configuration with
energy En(z) — Neg < 2infp, Esurt — Z;‘;l nv(na) + O(e), and the required
upper bound follows. O

Next we extend Egy,f to the space D C (rpe, oo)N of sequences with 2311 (zj—
az)2 < Q.

Lemma 3.5. Letm € NU{oo}. Let§; = ZZ;Hl(k—j)v/(ka),j =1,....,m—1
Then for all (z) jen € Do, we have

m—1 m Jj+k—1
Eart (@) jer) = = 305z —a)+ 3D [v( X z) - vika)
=1 i=1 k=1 i=j
: Jjt+k—1 ' '
—vka) Y G —a)]. 3.2)

i=j
The right-hand side is absolutely convergent for all (z;) jen € D.

We remark that the double sum in (3.2) might be interpreted as a bulk energy of
the semi-infinite chain in the sense that this term coincides with the expression for
Epulk derived in (3.4) below when the summation is restricted to positive j there.
Proof. Recall from (2.2) that

o0

Esurt ((z) jen) = Z[Pl/j + Z(v(ka +vi+ F Vi) — v(ka))],
j=1 k=1

where yj = z; — a. The equilibrium condition p + Y, kv'(ka) = 0 yields

o0 m
ZZU/(/W)(VJ' ++ Yitk—1)
j=1k=1
o0 m
=Y Y Vka#{j=11j<i<j+k—1}
k=1

i

I
-
I

yi Y v (ka) min(i, k)

o
WE

I
-
=
Il

1



934 S. JANSEN ET AL.

m—1 m m—1 0
==Y v Y (k—ika)=—=) 6yi— > pv
i=1 i=1

i=1 k=i+1

and the alternate expression for &gt follows. Next consider (y;) € £2(N) with
Yj > rac —a forall j € N. Under Assumption 1 the derivatives behave as v (r) =
O YHand vV'(r) = O —* ") asr — oo with s > 2. It follows that gj 1=
> re kv'(ka) decays l.ike ff:r x r=7ldr = 0(j7*") so that P ejz < 0.
The Cauchy—Schwarz inequality then shows that

m—1 00 12
Slesvil =<3 73)
i=1 j=1

for some suitable m-independent constant c. In particular, when m = oo the sum
> j 0jv; is absolutely convergent. In order to show that the double sum over k and
J in equation (3.2) is absolutely convergent, we proceed with estimates analogous
to Lemma 3.3. Assume first that all spacings z; = y; + a are larger than zpyy.
Set sup,~, [v”(r)] = c; and note that, by Assumption 1(iii) for all k¥ > 2,
SUD, = gy 117 (F)] < 0" (kzmin) . Hence

2) Y Jvka+yj + -+ yisk-n) = v(ka) = v'ka)(yj + -+ yirr-1)|
j=1k=I

< Z y}+ Z Z V" kzmin)| () + -+ Vike1)’

/1k2

<a Z yi+ Z ka (kzmin)| (V7 + -+ v 1)

j=1k=2
o

< (a1 + Zk2|v“(kzmm)|) >ov?
k=1 j=l

More generally, if (y;) € 22(N) N (rpe — a, 00)N, then vj — 0 and because of
a > Zmin, there is ani € N such that z; > zyj forall j > i. Let ¢ = min{|z;]| |
j =1,...,i}. Summands with j > i can be estimated as before. For j < i and
k > i + 2, we proceed as before as well, except that we replace v” (kzmin) by
v’ ((k — i)zZmin + i€). This leaves a finite sum over j < i,k < i + 2 and overall,
the sum is absolutely convergent. O

Lemma 3.6. The map D — R, (z;) — gsurf((Zj)jeN) defined by (3.2) is continu-
ous.

Proof. Let z,z", z?, ... be sequences in D such that z” — z — 0in £2(N). As
lim; 00 Y ; i (7/("))2 = 0 uniformly in n, the estimates above show that for every
e > 0,wecan ﬁndl € Nsuchthatthe sumover {(j, k) | j > i or k > i} contributes
t0 Esurt (¥ ™) and Egyrr () an amount bounded by ¢. In the remaining finite sum the
continuity of v(r) allows us to pass to the limit. The proof is easily concluded with
an ¢ /3 argument. O
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Lemma 3.7. The restriction of Esurt t0 D N [Zmin, Zmax + €1V is strictly convex and
satisfies

oo
Eart (@) jen) = 1 Y (zj —a)* — 2
j=1

for suitable m-independent constants ¢, c1, c3 > 0.

Proof. The proof of the convexity is similar to Lemma 3.3 and therefore omitted.

For the coercivity, consider first m = oo. Let y; = z; — a, y" = Vil j<n) the

j
truncated strain, and z}") =a+ y;'”. Then
n

Esurt (2™) = Z(h(z;n)v Zﬁ_lv ...) —eo)
j=1

n o
= n+1(Z1’""Z")_neO+ZZU(Zj+"'+Zn+ka),

j=1k=1
thus
5,1_4_1(11, ..., 2n) —ney < Ssurf(z(”)) + C,
where C = — Z}?Z:l v(€zmin + ka) < oo. Next we cut and paste (z1, ..., 2Zx)

into the middle of a large ground state chain: let ky, k> € N with k > n + 1,
N = ky + k1 + 1 and (zﬁvlzl_H, cee, z,(g)) the spacings of the N-particle ground

I (V) (N) ) (V) .
state. Let 7/ = (ka1+l’ cer 20 5 Zls ey Ty Ly oo By ). A Taylor expansion

of &y around the minimizer z" together with Lemma 3.3 and Theorem 2.1 yields

ENE) —En(iZ™) > gZ(Zj — Z;N))Z — gZ(Zj —a)? (ki ko — 00)3.3)
j=1 j=1

On the other hand, let C; = Z?iz £|v(£zmin)| be a bound for interactions between
blocks and remember E; > keg by Lemma 3.2 and ¢y < 0. Then

EvE) = EnGEY) <2C1 + Ey i1 L1 20 ) F Enn1 @1, )
+ Elpnt1 @y -0 25) — EN
<4C1+ &1z, -5 2n) — 5n+1(z(1N), e, Z;,M)
<4C1 + Ent1(z1, oo zn) — (n+ Deo
<4C1 —eo + C + Eurt (2) = Co + Eurt (2).

We combine with equation (3.3) and let first k1, k; — oo, then n — o0, and
conclude that 7 Z;‘;l yjz < Esurf (z) + C; with the help of Lemma 3.6. This proves

the coercivity in the case m = oo. The proof for finite m is similar. O

Lemma 3.8. The surface energy Egyt has a unique minimizer in D. The minimizer
is in D N [Zmin, Zmax]N-
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Proof. Weproceedasinsection3.1.Let(z;)jen € D.If one of the z;’sis larger than
Zmax, We can define a new configuration by shrinking this spacing to zmax, leaving
all other configurations unchanged. This decreases Eyf. If one of the z;’s is smaller
than zmin, let b be the smallest among them, and j € Nwithb = z;. Then we can de-
fine a new configuration by removing a participating particle and possibly shrinking
abond, thatis (z1, 22, ...) > (21,22, -+ ., Zj—1, MIN(Zj + Zj4+1, Zmax)s Zj42+ - - -)-
Since ep < 0, justas in Lemma 3.1, we see that this decreases the energy. Repeating
these steps if necessary, the initial configuration is mapped to a new one that has
strictly lower energy and all spacings in [Zmin, Zmax]-

The existence of a minimizer now follows from the coercivity proven in Lemma 3.7,
the compactness of [Zmin, Zmax]"' N D with respect to the weak ¢>-convergence
(shifted by (a, a, ...)) and the weak lower semicontinuity of E,f on that set due to
Lemmas 3.6 and 3.7. The minimizer is unique because of the strict convexity from
Lemma 3.7. O

Proof of Theorem 2.2. Clear from Lemmas 3.6, 3.7, 3.8 and Proposition 3.4. O

Proof of Proposition 2.3. In complete analogy to Lemma 3.5 we obtain

m Jj+k—1 i+k—1

Eoulk ((2) jez) = i [v< > Zi) —v(ka) — v’(ka)]ik: (zi —a)]
. P

j=—o00 k=1 i=j
(3.4)

forall (z;) ez € Dg , and as in Lemma 3.6, we see that (3.4) defines a continuous
map DT — R. The proof of strict convexity, even on [Zmin, Zmax =+ el“ N Dt for
some ¢ > 0, is again similar to Lemma 3.3. As in Lemma 3.8 we have that &,k has
a unique minimizer in D, which lies in D N [Zmin, Zmax - Since @ € (Zmin, Zmax]
and 0;&puik((zj) jez) = O for every i € Z by (3.4), the minimizer of Epyik is
(...,a,a,...). Clearly, &k (..., a, a,...) = 0. Finally, the formula connecting
Epulk and Egyyt is clear on D(‘)|r and follows on DT by approximation. O

3.3. A Fixed Point Equation

In the following we assume that v has a hard core:
Assumption 3. rpc > 0 and v(r) — oo as ¥ \( Fhe-
We extend &, defined by (2.1) on (rpc, oo)N, to ]RI}]r by setting
h(z) = o0 if z; < rpc for some j. 3.5)

Our main aim in this subsection is to obtain the following characterisation of Esurts
cf. (2.5).

Proposition 3.9. The unique lower semi-continuous solution (product topology) of
the equation

1(z1,22,...) =h(z1,22,...) —eo+ 1(z2,23,...) (3.6)

for I withminl = 0 and I = oo if z; < ryc for one of the z;’s is given by

I = Egurr — min Egyy.
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Together with Lemmas 5.3 and 5.4 this proposition will show that Eeurf —
min Egyf is the rate function for the large deviations of (vg), cf. Theorem 2.4. Note
that, by induction, (3.6) is equivalent to

=~

I(z) = Z (h(Zj, Zjtlsens) — eo) + 1 (Zk+15 Zht2s - - ) (3.7
j=1

forallk e Nand z = (zj) jen € RL\E. (Observe that h(z) > —oo forall z € RT by
the decay assumption on v and rpc > 0.)
We begin with a technical auxiliary result.

Lemma 3.10. If z1, z2, ... > 0 and ¢ < oo are such that
k
sup »  (h(zi. ... 2Zmti1) — €0) < €.
keN ;-
then z = (zj) jen € D. Moreover, any z € D satisfies

k

kli)n;o X‘: (h(Zj, cees Zj4m—1) — 60) = Esurf (2).
j:

Proof. Letey < min(a—2Zmin, Zmax —a). The partial sum ZIEZI h(zj, ..., Zj+m—1)
is equal to the energy & +1(z1, - - -, z¢) plus an interaction

k m+j—1

Z Z v(zj+...+2z)

Jj=1i=k+1

(the inner sum being 0 if m + j — 1 < k + 1) which is bounded from below by

k oo .
—o1 Z Z ((l —Jj+ 1)rhc)7s —C Z(k —j+ 1)7S+1

j=1i=k+1 j=1

v

v

o0
—C’X:i_s‘H = —C; > —00.
i=1

By adding n; and n, spacings a to the left and right respectively, we may view z
as a block of spacings in an N-particle configuration where N = n| +ny +k + 1.
Letz =(a,...,a,21,...,%k 4, -..,a). The new configuration satisfies

<€'1\/'(2) S gk+1(zlv "'3Zk) +2C1 +gnl+l(a3 ""a) +gn2+1(a’ "'7a)
< C+ Neg

for some suitable constant C that depends on rc, ¢ and v only. Let z*) be the
N -particle ground state with spacings labelled by j = —n1 + 1, ..., k 4 ny rather
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than 1,..., N — 1. Since Ex(z'™) = Ey > Neg by Lemma 3.2 and ¢p < 0, we
get

En@) —Enz"™) < C.

Suppose that all spacings z; are in [Zmin, Zmax]. We use a Taylor approximation
around the minimizer z", apply Lemma 3.3 and Theorem 2.1, and obtain.

k
CZ%Z( . <N>) N Z(Zj Y (n1,ny — o0). (3.8)

Jj=1

Letting k — oo we obtain an upper bound for the £2-norm of (z j —a) jen. If there
are z; with z; < Zpin OT Zj > Zmax, We modify the configuration zy, . . ., zx without
increasing its energy as in the proof of Lemma 3.1 to obtain z}, ..., z;. When we
shrink bonds z; > Zmax to z/j = Zmax, leaving all other spacings unchanged, both z’j
and z; are strictly larger than ¢ so the truncated £%-norm Zl;zl min((z i— a)?, 8(2))
is unaffected.

On the other hand suppose z; = min(z;) < zZmin. Then we remove the particle
X;, reattach it a distance zmax to the left of the k-particle block. This effects the
change

2 2 2 2
(zic1 — @)+ (@i —a)” = @Zmax — @) + (zi-1 +2zi) —a)
on the ¢2-norm. Both |zi — a| and |zmax — a| are larger than gp, moreover,
min((zi—1 +zi — a)*, £5) — min((zi-1 — a)*, &5) < &.

Thus the truncated £>-norm increases by at most e%. Let n be the number of times
this step has to be performed. Iterating we arrive at a configuration z7, ..., 2] €
[Zmins Zmax] With

k k
Zmin(sg, (z’/f — a)z) < neé + Zmin((zj —a)?, 88)

j=1 j=1

and &11(z") < &ry1(z) — né for some § > 0, cf. (3.1). Making gy smaller if
necessary we may assume 8(2) < 8. We combine with equation (3.8) for Z” and
C” = C — né and obtain

k
> “min((z; — a)®, £5) < C —nd +nej < C.
j=1

We let k — oo and find that the truncated £2-norm of (z j) jen is finite. It follows in
particular that there are only finitely many spacings |z; —a| > &o, and (z; —a) jeN
is square summable. This establishes the first assertion.

In order to show the convergence of the partial sums to gy, first observe that
Esurf satisfies (3.7) for I = Egyyr. This is clear for z € Dy and follows for general
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z € D by continuity. If z € D, the sequence of shifts ((z;) j>x)ren converges to
(...,a,a,...)strongly and thus

(h(zj, 2j41. ) — €0) = Esurt (2) — Equrt (k15 Tkt 25 - - )

k
=1

J
— Eourf(2) = Esurt (.., a,a,...) = Equrr(2)

as k — oo. O

We have actually proven the following: for sufficiently small ¢y > 0, suitable
c1,¢2 > 0,and all (z;) jeny € RY,

Eart((z) = €1 ) _min((z; — a)*, &) — c2. (3.9)
j=1

Proof of Proposition 3.9. Let I = Egyr — min Egyrf. Observe that [ satisfies (3.6).
This is clear for z € Dy and for z ¢ D. For the remaining z it follows from
Lemma 3.6. We now show that / is lower semi-continuous with respect to pointwise
convergence. Without loss we suppose that z” € D converges to z € [rhe, 00)
pointwise with 7(z") < ¢ < oo for some constant ¢ > 0. Passing to a sub-
sequence (not relabelled) we may furthermore assume that liminf,_, o I (z™) =
limy, o0 I (z). Fix an & > 0 such that the estimate in Lemma 3.7 is satisfied. By
(3.9)

max #{j | Z;‘n) ¢ [Zmin, Zmax + €1} < C
neN

for some uniform constant C > 0 since Zmin < a@ < Zmax. For given N € N we
denote by j, the firstindex j > N, if existent, with z;f“) ¢ [Zmin, Zmax + €]. Passing
to a further subsequence (not relabelled) and choosing N sufficiently large we may
achieve that either such indices do not exist or that j, — 0o as n — oo. In both
cases we getthat z; € [Zmin, Zmax +€] for j > N.Inparticular, z; > ryc for j > N.

In the second case we define new configurations 2™ by applying the procedure

detailed in the proof of Lemma 3.8 to the tails (z;f”) j=n shrinking the bonds z(Jf’) >

(n)

Zmax + &, ] > N, and deleting particles Xit if Z;") < Zmin» J = N, so that

gsurf((zfly))jZN) = gsurf((Z(jn))ij)-

In the first case we simply set Z™ = z™. Since j, — oo in the second case, we
still have 7™ — z pointwise.
By (3.7) with k = N — 1 we have

N—1

1) = Y (G, 20, ) —eo) + TGN EN s )
i
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From the decay properties of v and zif” > rpe > 0 it is easy to see that, for any

je N,h(z;f”, z(jf‘j_l, ...)converges to h(zj, Zj+1, ...). Since [ (z™) < cand I > 0,
from Assumption 3 we also get z; > ryc for j =1,..., N — 1. So
N N

-1 -1
Z (hG) 20, ) —eo) — Z (h(zj, zj+15 ) = €0).
Jj=1 Jj=1

In particular, I((Z(/f”)ij) < Cand soLemma3.7 implies thatz € Dand 7" —z —
0 in £ by coercivity and hence that

lim inf (@) j=n) = 1((z))j=N)

by convexity. Summarizing we obtain
N—1
1 3 (n) . . — =
liminf 7(z") > z:l (h(zj.zj41.--) —e0) + I @n. 2Nl --) = 1(2).
j:

Suppose, conversely, that a lower semi-continuous / : RI}: — R U {+o0}
satisfies (3.6) withmin/ = 0 and I (z) = o0 if z; < ryc for some j. We first note
that, since / > 0, for any z with /(z) < 0o one has

k

supZ (h(zj, 2j41....) —€g) < 00
keszl

by (3.7) and so z € D by Lemma 3.10. It thus suffices to show that

1(z) = Euf(2) +1(a,a,...) (3.10)

forall z € D.
If z € D, then Eyur(z) is indeed finite by Lemma 3.5. We have
limg s o0 Zl;zl (h(zj, e Zjm—1) — 60) = Esurf(z) by Lemma 3.10. Since the

sequence of shifts ((z;)j>«)ren converges to (a, a,...) pointwise as k — oo,
taking the lim inf in (3.7) yields

k
I(z) = li h(Zj, Zj41,s--.) — liminf / , e
(2) kl)rgozl((zj Zjtls--) eo)+1krgloré (k15 k425 -+ 2)
j=

> Eut(@) +1(a,a,...).

Note that, as I # oo, this inequality also shows that I (a, a, ...) < o0.

For the reverse inequality, by choosing k large enough in (3.7) we first see that
(3.10) holds true for all z € Dy. We denote by z) the truncation with zE.N) = z; for
j < N and zE.N) =afor j > N + 1. Since zN) — z pointwise and zV) — z — 0
in €2 as N — oo, lower semi-continuity of I and strong continuity of g (see
Lemma 3.6) give

1(z) < liminf I (z"™) = liminf Eu ™M) + I (a,a, ...) = Eut @) + 1 (a, a, . ..),
N—oo N—oo

where we have used that zN) e D, for all N. O
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We now restrict to the case m < oco. Letd = m — 1. By (3.7) with k = d we
have

d
gsurf((zj)jeN) = Z (h(Zj, ceey Zj+d) - eO) + Esurt (Zd+15 Za+2, -+ +)
j=1
=E&ir1(21, ..., 2q0) —deo + W (21, ..., 2d; Zd+1s - - - » 22d)
+gsurf((zj)jzd+l)y

(3.11)

for any (z;) jen € D, where

Wzt ..., zd; Zd+1, - - - 22d) = Z v(zi +...+2)).
I<i<d<j<2d
j—i<d
Taking the infimum over (z;) jen € Do, with fixed zy, ..., z4, setting
u(x) = inf {Eur((zj)jen) | (z))jen € Do, (21, ..., 24) = x}
= inf {Eurt ((2)) jen) | (zj)jen € D, (21, ..., 24) = x}

(recall Lemma 3.6) and using (3.11) we obtain

u(x) = inf (Eq41()+ Wixs y) — deo + u(y)).

yveRg
In Chapter 6 we will need the following estimate:

Lemma 3.11. Set A; = [Zmin, Zmax + e]d and B, = R‘_f_ \ A;. Then, for any ¢ > 0
there exists a 6 > 0 such that

Jf (€100 + W y) = deo +u(y) = ux) +5

forall x € Ag.

Proof. Suppose (z;) jen € Dy is such that (z1,...,2z4) € Ag, in particular, z; >
Zmin for j =1, ...,d. If (zg+1, Za+2, - --) & [Zmin> Zmax + E]N we construct a new
configuration (z/j) jeN € Dy without changing the first d spacings similarly as in
the proofs of Lemmas 3.1 and 3.8.

If z; > Zmax +¢, we define (Z/j)jgN by setting z/j = zj for j #iandz} = Zmax.
Then

Esurt (Z)) jen) = Esurt ((2)) jeN) + V(Zmax) — V(Zmax + &) (3.12)

Now assume b = min{zj1, 2442, - .-} < Zmin. We chooseani > d+1withz; = b
and define (z;.)jeN by setting z;. = zj for j < i,z; = min{z; + zi11, Zmax} and
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z; = zj41 for j > i. As in Lemmas 3.1 and 3.8 (in particular using that ¢y < 0),
we see that

Exurt (@) jer) = Enurt () 7en) — (v(B) + V(aman) = 201 Y (b))

n=2 (3.13)

< Eaurt (@) jen) =201 Y (nZmin) .

n=m+1

The estimates (3.12) and (3.13) show that, for any (z;)jen € Dy with
(z1y---,24) € Ag and (zg41,...,224) € B there is a (Z/j)jeN € Dy with

(2} -2y = (21, ..., zq) such that

gsurf((z/j)jeN) = Esurf((zj)jeN) -4,

where § = min {v(zmax+€) =V (Zmax)s 201 D pe st (MZmin) *} > 0. Using (3.11)
we arrive at

(@i, ..., zq) + 6 <Ey1(z1, ..., 2a) —deo + W(z1, ..., 2d; 2d+1, - - -5 22d)
+ gsurf((Zj)jzd+l)-
The claim now follows by taking the infimum over (z;) jen with fixed (z1, ..., zq)
conditioned on (Z4+1, ..., 224) € Bs. O

A simpler proof gives the following estimate that will also be needed in Chapter 6.

Lemma 3.12. For any ¢ > 0 there exists a § > 0 such that Eyyk(z) > 8 for all
ze€DT \ [Zmin, Zmax + 8]Z-

Proof. By continuity we may assume thatz = (z;) jez € D(J{ \ [Zmins Zmax —i—e]Z. If
Zi > Zmax + &, we define 2’ = () jez by setting 2, = z; for j # i and z = Zmax.
Then

0 < Euk (@) < Epuik (2) + V(Zmax) — V(Zmax + €)-
If b = min{z; : j € Z} < Zmin. We choose the smallest i with z; = b and define

z = (z})jenby settingz; = z; for j <i,z; = min{z; +zi41, Zmax} and 2; = zj41
for j > i. Asin (3.13) we get

o0
0 < &k () < Epuik(z) — 20 Z (nZmin) .

n=m+1

This concludes the proof. O
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4. Gibbs Measures for the Infinite and Semi-infinite Chains

Here we prove the existence of vg, g, g(B), gsurf (B) and check that ju g is shift-
invariant and mixing, hence ergodic; the results and methods are fairly standard. In
addition, we provide an a priori estimate on the decay of correlations with explicit
analysis of the f-dependence (Theorem 4.4) which to the best of our knowledge is
new. The results from this section need only very little on the pair potential: we only
use that v has a hard core and that v(r) = O(1/r"), for large r, with s > 2. The
technical assumption of a hard core frees us from superstability estimates [32,45].
The decay of the potential ensures that the infinite volume Gibbs measure is unique,
see for example [23, Chapter 8.3] and [29,37,38].

We follow the classical treatment of one-dimensional systems with transfer
operators. For compactly supported pair potentials with a hard core (or, in our
case, when m is chosen finite), the transfer operators are integral operators in
LQ(R:"f] ,dx) [44, Chapter 5.6], see Section 6. For long-range interactions, the
transfer operator (also known as Ruelle operator or Ruelle—Perron—Frobenius op-
erator) acts instead from the left on functions of infinitely many variables, and from
the right on measures [21,43,46]. The formalism of transfer operators keeps being
developed in the context of dynamical systems and ergodic theory [4,5].

For the decay of correlations, we adapt [40] to the present context of continuous
unbounded spins and carefully track the B-dependence in the bounds. In section 5.3,
transfer operators will also help us investigate the large deviations behavior of the
Gibbs measures; notably the eigenvalue equation from Lemma 4.1 translates into
a fixed point equation for the rate function (see Lemma 5.4).

The results of this section hold for all m € NU{oco}and 8, p > 0; the additional
condition p < p*isnotneeded. Note that, unlike in the previous section, we assume
that 8 < oo.

4.1. Transfer Operator

For j € Zand zj,zj1,... > 0 we abbreviate h; = h(zj, zjy1,...), cf. (2.1)
and (3.5). The transfer operator acts on functions as

o0
Lgf(z1,22,...) = / e P10 f(z0, 21, . . )dzo.
0
The dual action on measures is defined by (El’gv)( f)=v(Lgf) and is given by

£;§l)(ledZ2...) = e P dzv(dzadzs...).

Lemma 4.1. There exist Ao(B) > 0 and a probability measure vg on RI}I_ such that
,C:gvﬂ = Ao(B)vg.

Moreover vg((ric, oo)N) = 1 and the pair (vg, Lo(B)) is unique.
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We will show in Proposition 4.9 that vg is the measure satisfying (2.3). The non-
compactness of (rhe, 00)Y forms an obstacle to the application of a Schauder-
Tychonoff fixed point theorem for the map v > Ezv/ v(Lg1), see for example
[43, Proposition 2]. It might be possible to remove the obstacle using tightness
estimates, but we prefer to follow a different route and exploit the known uniqueness
of infinite volume Gibbs measures [23, Chapter 8.3] instead.

Proof. Let v be a probability measure on RY, A = v(Lgl), and ¥ = )%L',Ev.
We show that if v is a Gibbs measure, then ¥ is a Gibbs measure as well. Let us
first introduce the kernels needed to formulate that v is a Gibbs measure. By [23,
Theorem 1.33] it is enough to look at one-point kernels. Pick k € N. For z; > 0
and z = (zj) jeN € Rﬁ, let

Hi(z; | 2) = pz; + Z v(z§(+ Z z.,'>,

JCN, Jak jeJ\{k}
where sum runs over discrete intervals J = {i, ..., £ — 1} C N. Further define the
kernel
[ BHL(12)
vi(z, A) = / Da(eo oy zr—1s 2gs Ztts - . e PG dZ)
@4)=35 ; ( f f

where A C RJNF and Ni(z) = fooo e_ﬁH"(ZUZ)dz;{. The kernel acts on functions
and measures in the usual way, in particular (yx14)(z) = yx(z, A). Notice that
yk2 f = v f forall f.Indeed y; f yields a function where z;-dependence has been
integrated out, and integrating it against the probability measure y(z, -) does not
change its value. Replacing N with Ny, we define in a completely analogous fashion
conditional energies H,) and kernels y((z,) jen,. B).

Suppose that v is a Gibbs measure, that is vy = v for all k € N. Let f :
RTO — R, be a measurable test function. Treat v = )ﬁlﬁ;‘;v as a measure on
RI}I_O. We check that f)(y,?f) = v(f) for all k € Ny. For k € N, this property is
inherited from the Gibbsianness of v: we have

o0

1 [ 1
=5 /0 v(f o e P Yz = — /0 vy ( £ (o, 9e=PHC0 )dzp,
Set f = ykof. Note f = (yko)f. Therefore
7 (£ (20, 97 0) @) = (1 ) 20, D) x (e PO @)
= ne(Fzo, e C0) 2),

hence V(f) = v( f ) = f)(y,? f). For k = 0, the required property follows from the
definition of v. Notice HO0 = hg and

A CHIENE I5° £z 21,22, . Je PhGoa1-dz)
Y0 ZjljeNg) = fOOO e_ﬂh(z(/)’zl"”)d26
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Let f = Yo O f. Then

5() = 50 / £ o, e P60 dzg) = / Fzo, e P04z,
—5(F) = 500 f).

The previous identities hold for all non-negative test functions f, consequently
\7)/,? = v for all k € Ny and ¥ is a Gibbs measure as well.

By [23, Theorem 8.39], the Gibbs measure v exists and is unique. Treating
v and v both as measures on Ri\i, we must therefore have v = v, that is the
unique Gibbs measure is an eigenmeasure of E;g and in particular, there exists an

eigenmeasure. Conversely, let v = %E* v be an eigenmeasure. Arguments similar
to the investigation of v given above, based on the iterated fixed point equation
V= /\1—,{£7§kv, show that vy; = v forall j = 1,...,k and all k, hence for all .
Every eigenmeasure is a Gibbs measure. Since the latter is unique, the eigenmeasure
is unique as well. Finally, since v(z ,~) = oo for z; < ryc, the eigenmeasure v =

Alkﬁ;ikv must satisfy v(3j € {1,...,k} : z; < rhe) = 0. This holds for all k € N,
hence v((rpc, oo)N) =1. O

Let vg be the probability measure on Ri"’_l’o} obtained by flipping u; = vg,
that is Vg is the image of v; = vg under the map (zx)ken = (21-¢)¢<0- The

measures véﬁ represent equilibrium measures for the left and right half-infinite
chains. Let

Wo=WC(-z-120 | 2122..) = Z v(zj + -+ 2k)

J=0.k=1
|k—jl=m—1

be the total interaction between left and right half-infinite chains, cf. Proposi-
tion 2.3(d). We abbreviate the shifted versions as Wy = W(---z¢ | Zea1---).
Define ¢g(z1, 22, ...) by

vg (exp(—BWD))
vg ® vy (exp(—fW))

p(z1,22,...) = 4.1)

Thus @g(z1, 22, . . .) represents an averaged contribution to the Boltzmann weight
from the left half-infinite chain.

Lemma 4.2. We have Lgppg = ro(B)pp and vg(pg) = 1.

Proof. The normalization is obvious, for the eigenvalue equation let cg = vg @

v; (exp(—BW)p)) and use the eigenvalue equation for v;t

p(z1,22,...)

1
_ —BWC(zolzi-) 3, = ((» .) .
-— | e dv
cs B ((ZJ)/SO)

1
_ —BW(---z0lz1-) o —B(pz0+v(z0)+v(z0+2-1)+") —((7.)
= e e dzodv; ((z _

Cﬁko(ﬂ)/ 07 (€j=-1)
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|

_ —BW(-z-1lz021-) o= B(pz0+v(20)+v(20+21)+) —((r.).

= e e dzodvg ((z)j<—1

CﬂAO(,B) ,B( J1i= )
1

= —Bho d
)»o(ﬂ)/e #p(20- 21 - )dzo

1
= — ([ L 20, ).
ko(ﬂ)( 89p)(21,22,...)

See also [46, section 5.12]. O

Define the operator

Spf:

1
=7
o Brap PO

so that Sg1 = 1 and S5 (¢p v;) = ¢g v;. Let 414 be the probability measure on RZ
given by

d 1
b _ LW, cp=vp ® v;{(efﬂwo)- 4.2)

dvﬂ_ ® v; cp

We will show in Proposition 4.9 that 11 is the measure satisfying (2.4). Notice that
for every bounded measurable function f that depends on right-chain variables
21, 22, - . - only,

ITICAALND!

up(f) =vg (fop). vg(f) = [ (eFWo)

4.3)

Let 7 : RZ — RZ be the shift (t2); = zj41.

Lemma 4.3. (a) ug is shift-invariant.
(b) For all f, g : RIE — Ry and all n € N, we have ug(f(g o)) =
np((Sg )

The proof is standard [46] and therefore omitted. The lemma can be rephrased
as follows: let (Z,),ez be a stochastic process with law g, defined on some
probability space (2, F, P). Then (Z,),e7 is stationary, and

(SZf)(Z,H_l, Zn+2s...) = E[f(Zl, Z2,..) | Zn+1s Zns2, - ] a.s..

Our next task is to show that the process is not only stationary but in fact ergodic
and to estimate the decay of correlations.



Boundary Layers for a Chain of Atoms at Low Temperature 947

4.2. Ergodicity

Bounds on correlations are most conveniently expressed with the help of varia-
tions, semi-norms that quantify how much a function depends on faraway variables.
Notice that vg((rpc, oo)Ny = g (e, 00)%) = 1. Let f: ]R§ — R be a function
and n € N. The nth variation of f on (rhe, 00)Y is

/

var, (f) = sup{| f(2) = f ()| : 2,2 € (rhe, 00)" such that zy = 2, ..., 2y = z),}.

When n = 0 the constraint on initial values is empty, varg(f) is sometimes called
the oscillation of f [23, Equation (8.2)]. The oscillation vanishes if and only f is
constant. Notice that vary (k) decays algebraically: for k € N, as v(r) = O(r %),

i v(zy +~--+Zj)’ = 0(1&%])

j=k+1

vary (h) < 2sup

z

It follows that the variation is summable, Z,fil varg (h) < oo. Set

9]

Cy = Z vary (h) = O<qsl—2)'

k=g+1

Notice that for all ¢ € Ny, C; is independent of 8 and p. In fact the pressure only
enters the oscillation varg(h). By a slight abuse of notation we identify a function
f: Rﬁ — R with the function f : R?_ — Ry, (zj)jez = f((zj)jen) and write
wnp(f) instead of wg(f1). The results of this subsection hold for all p > 0.

Theorem 4.4. Let m € N U {oo} and p > 0. The measure g is mixing with
respect to shifts, that is ug(f(g o t")) — ng(fHup(g) asn — oo, forall f, g €
LY (RZ, pug). Moreover for y (B) = exp(—3BCo) and all bounded f, g : R} — R,
qg.n €N, N > gn,

N 1 3pc,
(5o 7) = Pmp(@)] = (0= yBN* + @ = D)llgllell I

1
+mllglloovarn(f)-

We prove Theorem 4.4 with Pollicott’s method of conditional expectations [40].
For alternative approaches, see [48] and the references therein. The principal idea
is the following: forn € N, f e L'(RY, ppvg) let I, f be the projection

fR§ goﬁ(zlv . ')f(Zlv . ')eiﬁ(hl+‘..+hn)‘)ﬁ(dz”+l .. )

IT e, =
(M, f)(z1 Zn) IRT 0521, - e PIT—Fhya(dz, )

onto the subspace of functions that depend on the first n coordinates only, that is
var, (f) = 0. In terms of the stationary process (Z,),cz With law ug,

(Mu f)(Z1, ... Zy) =E[f(Z))j=D) | Z1,.... Z,] as.
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Notice that

T f = fll = N f = flleo < vary(f) (4.4)
where || - ||1 is the LI(RI}L ppgvg) norm. Let g, n € N. Then

S = (S§" = (Spm7) + (ShI7.

The difference enclosed in parentheses represents a truncation error; it is made
small by choosing n large. On the subspace of mean-zero functions, the truncated
operator S"I1,, satisfies a contraction property uniformly in » (Lemma 4.7), and
(S/’g‘ I1,,)9 goes to zero exponentially fast as g — oo.

Lemma 4.5. We have var, (log pg) < BC, for all g € No and B, p > 0.
Proof. Letq € No, (z)) jez, (2}) jez € (rhe, 00)% such that z; = Zjforall j <gq.
Then
o o
o) = Wo) = 1Y (h=j(@) = h_j () < Y vargars; () = C,
j=0 j=0

and v/; (exp(—BWp)) < exp(B Cq)vﬂ_ (exp(—BW,)). The claim then follows from
the definition (4.1) of the invariant function. O

Lemma 4.6. Let f : RE — R be a bounded function. Then n, k € Ny,
varg(Sg f) < var i (f) + 11 flloo € = 1).
Proof. Letg = Z?:] hj — B! log[)»g(ﬂ)fpﬁ]—i-ﬂ*] log g o t” on (e, o0)N and

g =ooon RE \ (rhe, 00) so that

ng(Zn+la Znd2,s-.0) = / efﬁg(m,zz,...)f(zh z2,...)dzy...dz,.
R}

Pick z, 7 € (rhe, 00) so that z; = Zifor j=1,....n+k. Then

e 1) = e PO )| < PO @) = £ + £ @O — 7]
= e (var, s () + (1 /1] (e — 1)),

We integrate out z1, ..., z,, observe fexp(—ﬁg)dzl ---dz, = Sgl = 1, and
deduce

varg(S" f) < vatuk (f) + | f oo (e? V¥+k (&) — 1),

To conclude, we note
n—1
1
varga(g) < Y varyij(h) + E(varn+k(log @) + varg (log )
j=0
< Cy + Cpsk + Cr < 3Ck. 4.5)
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Lemma4.7. Let f € LI(RT, pvp) such that vg(fep) = 0. Then for all n > 1
and y (B) = exp(—=3BCy)

ISETL flI1 < (1 =y (B)II fI1-

Proof. We adapt [43, Proposition 3]. Consider first a non-negative function f that
depends on z1, ..., z, only, that is var,(f) = 0. Letk > 0 z, z’ such that z; = z’j
forj=1,...,nand g(z1, 22, .. .) as in the proof of Lemma 4.6. Then

(SE@nt1, 2ns2, - ) = /efﬂg(“"“)f(zl, s zp)dzy - dzy

< efram(® / e P £ 2 )dg) - d2)
— eﬂvarn(g)(sgf)(zil_i_l, Ty )

By Inequality (4.5) with k = 0 we have var,(g) < 3Cop, uniformly in n. Thus
ng(z) < exp(—3,6Co)(S’/§f)(z/) for all z,7’ € (re, o). For non-negative f
with f = I, f we have by Lemma 4.3

infSyf =y (B)supSif = y(BupSif) =y Bup(lfD.
Next let f with var, (f) = 0and ug(f) =0. Then ug(fy) = ug(f-) and

IS5f1 < (SEfv — v (Bus(f+) + (Sgf~ — v (Bug(f-))
= S(f++ f2) =y Bup(fr + f2) = SEIf1 =y Bup( fD.

We integrate against . use ps(Sl f1) = es(|f1) = [ £1l1. and find [|S} fl1 <
(L—=y (BNl fIl1. This holds for every local function var, (/) = 0 with ug(f) = 0.
For general f, we may apply the bound to I, f and use g (I1, f) = ug(f) =0
and pg (|11, 1) < ug(l f1), and we are done. O

Lemma 4.8. Let f € L' (RY, @pvg) be a bounded map with vg(feg) = 0. Then
forallg,n € N,

1 1
S f — (ShT,)Y —— (@ — D[ flloo + —— var,(f).
1S5 f — (S )fllliy(ﬂ)(e VAl +V(ﬂ)var(f)

Proof. A telescope summation, the triangle inequality, and Lemma 4.7 yield

g—1
ISEY £ — (SETLY fll < D IISETLD (ST, — SE)SHT £l
k=0
g—1
<Y =y BN I(SET, — SE)SHT £l
k=0
g—1
<Y =B, —id)(SHF f L

k=0
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where in the second step we use that v ((Sj I1,)’ (Sg I, — Sg)(Sg)q_k—l fop) =
vg(fep) = O0fori = 1,...,k by Lemma 4.3 and the third step follows from
|3g(n,, — id)(Sg)q—k—lﬂ < Sg|(Hn — id)(Sg)q—k—lﬂ and Lemma 4.3. By
equation (4.4) and Lemma 4.6, this can be further estimated as

qg—1
Y =y B vary (S5 )

k=0
q—1
< 3=y (€ = DIl flloo +varug ()
k=0
1 38C 1
— @ = DI flloe + —— vary (f).
< @ = DIl + s van () 0

Proof of Theorem 4.4. Let f, g : RE — R be bounded functions and g, n € N,
N > gn. Using equation (4.2) and Lemmas 4.7 and 4.8, we get

lp(f(got™) — mp(Hrp@)| = s ((SE g) — up(Hp@]
< (18|85 (f — up(HID]) = 118lloo 1S (f — up(HHDII
< llglloo ISF" (f = p(HDIN

q 1 3BCy
< (=B + s @ = D)lgleellf = (Dl +

1

V(B) [1glloo var, (f)

since ||Sg||1 < 1. The explicit estimate on the decay of correlations follows. That
g is mixing then follows from standard approximation arguments. O

Proof of Theorem 2.9. The estimate for infinite m is an immediate consequence of
Theorem 2.9. For finite m and n = m — 1, the truncation error in Lemma 4.8 for
a function f : R — R actually vanishes since var,(f) = 0 and C, = 0. The
bound simplifies accordingly. O

4.3. Thermodynamic Limit

Proposition 4.9. Let m € NU {oo} and p > 0.

(a) The Gibbs free energy and its surface correction defined by the limits (2.7)
exist and are given by

1 1
§B) == logho(B). guri(B) = —g(B) — 5 log (™).

(b) Equations (2.3) and (2.4) hold true.
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Proof. We compute

vﬂ(eﬂW(Zln‘zn‘Zle)) _ ( 1 L5 )(eﬂW(ZIMZ“z”Hm))

YT

1 n

— BW (i znlznst ) a=B 2 iz )

- )\O(ﬁ)n [e ! o e =1 /dZ1 danVﬁ(Zn+lZn+2...)
1

= —BEnt1 @) gy ...

T (B /e o dzy - dzpdvgZptizn42 - - )

1
=——0, . 4.6
By )] (4.6)

Let Won = 3_ <0 Dkzn+1 V(@) + -+ + 2k). We note
W(zr-zn | Zn1-+2) = Wa — Won.

and with (4.3) deduce

1 1 (exp(ﬂ[WO + Wn - W()n]))
— BW (i znlznt1)y — EB
ro(py Q1P =vnte ) 1L (Eexp(BW0)

Now Wy, = O(n_(s_2)) — 0 uniformly on (rhc,oo)Z. By Theorem 4.4,

g Exp(BIWVo + Wul)) = ug(f(f o) — up(f)* where f = exp(BW).
Consequently as n — 00

log Qu11(B) = (n + 1) log Ao(B) — log 1o(B) + log 11 (PY0) + o (1),

from which part (a) of the lemma follows. A computation analogous to equa-
tion (4.6) shows that for every local test function f € Cp, (R]i),

Mng (f exp(IB[WO + Wi — Woul)
Mng (exp(B[Wo + Wh — Wonl) .

Part (b) of the lemma then follows from Theorem 4.4. O

QL () =

5. Large Deviations as § — oo

Here we analyze the behavior of the bulk and surface Gibbs measures g
and vg and of the energies g(B) and gsu(B). The large deviations result for the
surface measure vg is a consequence of the eigenvalue equation from Lemma 4.1,
exponential tightness, and the uniqueness of the solution to the fixed point equation
in Proposition 3.9. Since the bulk measure is absolutely continuous with respect
to the product measure of two independent half-infinite chains (Equation (4.2) and
Proposition 4.9(b)), we may go from the surface to the bulk measure with the help of
Varadhan’s integral lemma [17, Chapter 4.3]. The asymptotic behavior of egyf(8)
is based on the representation from Proposition 4.9(a). Throughout we assume that
the pressure p is a positive constant. This is a crucial ingredient in the proof of
Lemma 5.1 as it prevents the chain from breaking into several pieces. As alluded
to at the end of Section 2, if p vanishes one expects fracture due to occasional
extremely large interparticle distances, cf. also [28].
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5.1. A Tightness Estimate

The following estimate will help us prove that the infinite-volume measure
vg is exponentially tight (see the proof of Lemma 5.3) which enters the proof of
Theorem 2.4.

Lemma S5.1. Forall B, p >0, N e N ke {l,...,N — 1}, andr > 0, we have
Q¥ (fz € RY ™ | 2k = zmax + 7)) < exp(—Bpr).

Proof. Fixk e Nandr > 0.Forz = (z1,...,2N-1) € Rﬁfl with zx > Zmax + 7
we define a new configuration z’ by setting z; = zx — r and leaving all other
spacings unchanged. This decreases the Gibbs energy by an amount at least

En(@) = EN(D) = pzi — pzx = pr-.
A change of variables thus yields
1

%)({Z | 2k = Zmax + 7)) = OnB) Jan e_ﬂSN(Z)l[zmaerr,oo)(Zk)dZ
+
1 _ _ /
= QN(:B) RN-1 e ﬂpre 'BgN(Z)l[ZmastO)(Z;c)dz/
+
<e P,
and the proof of the lemma is easily concluded. O

5.2. Gibbs Free Energy in the Bulk

Lemma 5.2. Let B — oo at fixed p > 0. Then

1
g(B) = -3 log A0(B) = e + O(B~ " log B).

Proof of Lemma 5.2. The relation between g(8) and Ag(8) has been proven in
Proposition 4.9. We proceed with an upper bound for Qy(8) and io(B). For
z = (z1,...,2n—1), define z’ by z/j = min(zZmax, Z;). Revisiting the proof of
Lemma 3.1, we see that

N-1 N-1
EN(2) = En() + ) min(p(zj — Zmax), 0) = En + Y pmin((z; — Zmax), 0).

j=1 j=1
It follows that

N—1 00
QN(ﬂ) < e_ﬁEN l_[ (Zmax + / e—ﬁp(Zj _ZmaX)de)

j=1 Zmax

and

1
logAo(B) < —Bep + log(zmax + 5),
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whence B~ 'logio(B) < —e9 + O(B™'). For a lower bound, we let

7 € [Zmin, Zmax] ~! be the minimizer of Ey and choose 0 < & < @ — Zmin SO
small that by Lemma 3.3

N—-1
EN@) SEN+C D (zj 7))
j=1

for every z € x;y:_ll[zj — 6,7 +¢]. We get

Zj—¢ —&

N-1 ozite _ & ) N—1
onp) = e PP T / e P dg;) = e EN(/ e Plas)
j=17%
This yields

log Ao(B) = —Beg + log</8 e—Cﬂdes)

= —fBeg — log,/ % + 10g<1 _ \/Z/ e—xz/zdx)
i T JeyaCp
and B~ log Ao (B) = —eo + O (B~ log ). o

5.3. Large Deviations Principles for vg and g
Here we prove Theorem 2.4.

Lemma 5.3. Every sequence Bj — o0 has a subsequence along which (vg;) jen
satisfies a large deviations principle with speed B and some good rate function.

Remark. The following proof crucially depends on the pressure being bounded
formbelow. If p = pg — 0, we lose exponential tightness and only know that every
sequence (vg;) has a subsequence along which it satisfies a weak large deviations
principle [17, Lemma 4.1.23], which means that the upper bound in (2.6) is required
to hold for compact sets rather than closed sets.

Proof. The lemma is a consequence of exponential tightness. Let n € Ny. Define
K, = x;?°:1[0, Zmax + 71 + jl. K, is compact in the product topology. Passing to
the limit N — oo in Lemma 5.1, we find

vp(lz € RY | 2k > zmax + 7)) < e PP

for all k € N and r > 0. Therefore

o
vp(Ks) <> vp({z € RY | 2k > zmax + k + 1))

>~
—

o—Bpktn) _ exp(—Bp(n + 1))
1 —exp(—Bp)

=

M2

k=1
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It follows that the family of measures (vg)g>1 is exponentially tight, that is for every
M > 0,wecan find acompactsubset K C RE such thatlim supg_, o % logvg(K€) <

—M. R§ endowed with the product topology is separable and metrizable and there-
fore has a countable base. Lemma 4.1.23 in [17] applies and yields the claim. O

Lemma 5.4. Suppose that Assumption 3 holds true and assume that along some
subsequence (B;) the measure vg; satisfies a large deviations principle with good
rate function 1(z1, 22, ...). Then I satisfies

I(z1,22,..) = (h(z1,22,...) —e0) + 1 (22,23, ...).

on RT_. In particular, 1((z) jen) = 00 if zj < ryc for some j € N.

Proof. Write 8 instead of 8;. We will see that the fixed point equation for / follows
from the eigenvalue equation in Lemma 4.1 and the asymptotics of the principal
eigenvalue provided in Lemma 5.2. According to these,

dvg(z1z2...) = e Pt th=neotoMlqy 7 dvg(zuqs ... 5.1

for any n € N where the o(1)-term comes from log Aj(8) = —fB[neg + o(1)] and
is independent of (z;) jen.

We first show that I can only be finite on (rpc, oo)N. Fixn € Nand fore > 0
consider the open set O, = {z € RV | 0 < z,, < rpe + €}. A repeated application
of Lemma 4.1 and Lemma 5.2 give

v(0;) = / eiﬂ[h'+"'+h"7n80+0(1)]dzl .dzpdvg(zpgr -0
Osm(rhc,OO)N

Let —C be a lower bound for —ey + v(Zmax) + Z/?iz v(z1 4+ 4 2x) on (Fhe, 00)N.
Then

vg(O¢) 5/ e—ﬂ[P(11+-~+zn_1)—C(n—1)+0(1)]dZ1 dze
(Fhe,00)"~1

y / e—Blpzt)—Clg,
(FhesThe+€)

and

logvg(O;) < B(C +o(1)(n—1) +loge — B inf ](ps + v(s)).

SE€(rhe,Thete

Hence

—irO1fI <Cn—-1— inf l(ps +v(s) = —f(e).

SE€(rhe,thet+€

It follows that

inf{7(2) | 2n < e} = lim f(e) = oo.
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Since n was arbitrary we have shown that / = 0o on R \ (ric, 00). In particular,
as vg satisfies a large deviations principle on Rl}l with rate function 7, the same
large deviations principle holds on (rhe, 00).

We now establish another (weak) large deviations principle on (rpc, oo)N. Let
K C (rhe, oo)N be a (relatively) closed setand [«, b] C (7, 00) acompact interval.
Then (5.1) with n = 1 yields

b
vg(la, b] x K) =/ (/ efﬂ[h(z"ZZ"“)*eM"(l)]dvﬁ(zz, 73, .. .))dzl.
K

o
Write fg(z1; K) for the inner integral. As / is bounded from below and for every
fixed z1 > rhe, (22,23,...) = h(z1,z2,...) is continuous on (1, 00)N with
respect to the product topology, we deduce from Varadhan’s lemma [17, Chapter
4.3] that

1
limsupglogf,g(zl; K)<— inf (h(z1,22,...) —eo+1(22,23,...))

B—>00 (zj)j=2€

(5.2)

for all z; € [a, b]. Next we note that for all (z;)jen € (Fhc, oo)N, z’] > rhe, and
suitable C > 0,

lh(z1, 22, ...) — (2}, 22, .. )] < Jv(z1) —v(E@D|+ Clzi — 2.

For z1, z} bounded away from r,. we may exploit that the derivative of v is bounded
and drop the first term, making C larger if need be. Plugging these estimates into
the definition of fg(z1, K), we find that for some Cy, > O and all 8 > 0,

1 1
EIngﬁ(ZH K) — Elogfﬂ(z’l; K)‘ < Cylzi — 2}l (21,2] > @ > rhe).

It follows that the upper bound (5.2) is uniform on compact subsets of (7, 00) and

1
limsupglogv,g([oe,b] x K) < — inf (h(zl,zg,.l.) — e +I(zZ,z3,...)).

B—00 z€la,b]xK

(5.3)

A similar argument shows that for all b > « > rpc and all (relatively) open subsets
0 - (rhCa OO)N,

1
liminf —1 ,b) x 0) > — inf  (h(z1,22,...) — I(z2,23,...)).
it log (D) 002 = I ez ) —eo+ 1Ga..)
(5.4)

Taking monotone limits, the latter inequality is seen to extend to o« = rpc and b =
oo. It follows that (vg), as a family of probability measures on (rpc, oo)N, satisfies
a weak large deviations principle with rate function J = hy —eg + 1 (z2, ...). (Itis
indeed sufficient to consider product sets. This is easy to see for the lower bound:
If U C (rpe, 0o)Y is open, then for any ¢ > 0 one finds z € (¢, b) x O C U with
h(Zi,Z2,..)—eo+1(Z2,23,...)—¢ < inf.cy(h(z1, 22, .. ) —eo+1 (22, 23, .. ),
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from which it follows that (5.4) holds for U instead of («, b) x O. The upper
bound for a general compact V' C (ry, oo)N is obtained by covering, for given
e>0,V C Ugvzgl(otxi,bxi) x Bgx;)(xi), where for each x € V, by > oy > rpc
and 6(x) > O are chosen such that h(x1,x2,...) —eo + [(x2,x3,...) —¢& <
infze(ax,bx)xga(x)(x)(h(z1, z2,...)—eo+ 1(z2,23, .. .)). This is possible since I is
lower semicontinuous. With the help of (5.3) we can now deduce that (5.3) holds
for V instead of [«, b] x K.)

Since (rpe, oo)N is a Polish space, the rate function in a weak large deviations
principle is uniquely defined [17, Chapter 4.1], hence J = [ on (ry, oo)N. To
finish the proof it remains to observe that also J = I on ]1@ \ ("he, oo)N because
both I and 4 are equal to oo on that set. O

Proof of Theorem 2.4. The large deviations principle for vg with good rate func-
tion Esurf — min &gy 1S an immediate consequence of Lemmas 5.3 and 5.4 and
Proposition 3.9. As a consequence, Vg ® v;' satisfies a deviations principle with

good rate function (z;) jez Eaurt (21,22, -+ ) + Esurf (205 221, - - ) — 2 min Equrp
on R% and on [rpc, 00)”, The large deviations principle for g thus follows from

equation (4.2), Lemmas 4.3.4 and 4.3.6 in [17], min Ebulk = 0 and
Eouk (21, 22, -+ ) = Esurt (21, 22, -+ ) + Esurt (20, 21, - ) + Wol---20 | 21+ ++)

by Proposition 2.3, and the observation that V) is continuous on [rc, oo)Z . O

5.4. Surface Corrections to the Gibbs Free Energy

Proof of Theorem 2.5. The statements about g(8) have already been proven in
Lemma 5.2. For ggut(8), we start from the formula in Proposition 4.9(a), to which
we apply Lemma 5.2, Theorem 2.4 and Varadhan’s lemma. This yields

/31i_>néo gsurf(B) = —eo + inf (Epurk — Wh),

but now, for (z;) with Zjez(Zj —a)? < o0,

ok —Wo =D Y (v(zj + -+ 2j4x1) — v(ka) + Sup(zj — a))
JEZ k=1

— Y (@i + ) — v =+ Da)) = Y (k= Dvika)
k=1

j=<0.e=1
6=jl<m~1

= Esurt (21,22, -+ ) + Esurf (205 2-1, .. .) + €clamp + eo,

o0
with eclamp := —pa — Y_ kv(ka), so
k=1

inf (Epuik — W) — eo = 2inf Esur + €clamp = €surf- [
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6. Gaussian Approximation

Here we prove Theorems 2.7 and 2.8 on the Gaussian approximation to the bulk
measure (g when m is finite. We start from a standard idea, namely perturbation
theory for transfer operators [24], however we need to put some work into a good
choice of transfer operator as the standard symmetrized choice (6.2) does not work
well. This aspect is explained in more detail in section 6.1. Throughout this section
m satisfies 2 < m < 0o. Remember thatd = m — 1.

6.1. Decomposition of the Energy. Choice of Transfer Operator

For finite m, the treatment with transfer operators from section 4.1 can be
considerably simplified: instead of an operator that acts on functions of infinitely
many variables, the transfer operator becomes an integral operator in L?(R?) (L?
space with respect to Lebesgue measure). There are several possible choices, cor-

responding each to an additive decomposition of the energy. Let V(z1, ..., zq4) =
En(zi, ..., zq) and
W(Zl,...,Zd;Zd+1,...,z2d)= Z U(Zi+"'+Zj).
l<i<d<j<2d
li—jl=d

Let us block variables as x; = (zgj+1, ..., 2dj+d). Then for (zj)jez € Dar we
have

Enuk(z))jez) = Y (V) + Wxj, xj11) — deo) (6.1)

JEZ

with only finitely many non-zero summands. By Proposition 2.3 the sum extends to
DT by continuity. The transfer operator associated with the representation (6.1) is
the integral operator with kernel exp(—B[V (x) + W (x; y)]); it is clearly related to
the d-th power of the transfer operator Lg from section 4.1. The analysis is simpler
for a symmetrized operator with kernel

Tp(x.y) = n(,hc,oo)d(x)exp(—ﬁ[y(x) F W0 y) + %V(y)])n(,hc,oo)d(y),
6.2)

which has the advantage of being Hilbert-Schmidt: The pressure term present in
V(x) and V (y) ensures that Tg(x, y) decays exponentially fast when |x| + |y| —
oo so that fRZd Tg(x, y)2dxdy < oo. The transfer operator Tg corresponds to a
rewriting of (6.1):

Eouk(z))jez) = D (3V () + W(xj. xj41) + 3V (xj41) — deo).
JEL

For the analysis of the limit 8 — oo, we would like to have a transfer operator that
concentrates in some sense around the optimal spacings so that we may approximate
it with a Gaussian operator. When m > 3, unfortunately, the function (x, y) —
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%V(x) + Wi(x;y) + %V(y) need not have its minimum at (x, y) = (a, a), with
a=a,... a) € R4 ThereforeAwe introduce yet another variant of the transfer
operator: we look for a function H (x, y) such that

Eouik ((z)) jez) = Z H(xj, xj41)
JEZ

and H (x,y) > H (a, a) = 0, and work with the kernel
Kp(x, y) i= Ty, ooyt (%) exp<—ﬂﬁ(x, y)> T, 00y (9)-
By a slight abuse of notation we use the same letter for the integral operator
(K f)(x) = /Rd Kpg(x,y) f(y)dy

in L2(R%). The function H is defined as follows. Set

Hxy) = inf {Eoan(())je2) | () jez € (e, 00)™ 5 (12200 = (0 )
w) = inf {Eun((@)jez) | @))jez € (he. 0% & (2, oo 2a) = x)
and

H(x,y) = H(x,y) — fwx) — fw().

Remember that

u(x) = inf{Eurt () jen) | (2))jez € (Phe, ) & (21, -+, 2a) = x).

Lemma 6.1. Assume 2 < m < oo, p € [0, p*), and rye > 0. Then

(a) Forall x, y € (rne, 00)%, we have H(x, y) > H(a,a) = 0.
(b) The function g(x) := %[u (x) — u(ox)] is bounded, and we have

Aer,y) = —g@) + (3@ + W, ») + 1V () —deo) +30).

(¢) H(x,y) = H(oy,0x) forall x, y € (rhe, 00)°.
Proof. One easily checks that

wkx)= inf H(x,y), w(l)= inf H(x,y),

YE(rhe,00)¢ X€(rpe,00)?
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which yields

H(x,y) — 3w — Jw) = J[H, y) —w@)] + $[H(x, y) — w(y)] = 0.
(6.3)

For x = y = a, we have H(a, a) = w(a) hence ﬁ(a, a) = 0. This proves part (a)
of the lemma. The symmetry in part (c) is immediate from the reversal symmetry
of Epuk. For (b), we note that

H(x,y) =u(ox) + W(x,y) +u(y), wx) =u(ox)+ux)—V(x)+deo,
the formula for H follows. Because of
u(x) = iry1f(V(x) + W(x,y) —deo +u(y))
and V(ox) = V(x),C := SUP (¢ y)e(rpe 0002 |W (X, y) =W(owx, y)| < o0, we have
ux) < iI;f(V(ax) + W(ox,y)+ C —dey + u(y)) =u(ox)+ C.

The roles of x and o x can be exchanged, hence u(x) — u(ox) is bounded. O

6.2. Some Properties of the Transfer Operator

Lemma 6.2. Assume 2 < m < oo, p € (0, p*), and and rpc > 0. Then

(a) The kernels Kg and Tg are related as follows:
Kg(x,y) = eﬁdeo+%ﬁ[u(x)—u(zm)]T/3 (x y)e—%ﬂ[u(y)—u(ay)]'

(b) The operator Kg is a Hilbert-Schmidt operator in L*(RY), and the kernel
has the symmetry Kg(x,y) = Kg(oy, ox).

The lemma follows from Lemma 6.1, the elementary proofs are omitted.

By the Krein—Rutman theorem [31], [16, Chapter 6], the operator norm || K g|| =:
Ao(B) is a simple eigenvalue of K g, the associated eigenfunction ¢4 can be chosen
strictly positive on (rpe, 00)¢, and the other eigenvalues of K g have absolute value
strictly smaller than Ag(8), that is

A1(B) = sup{|A| : Aeigenvalue of Kg, A # Ao(B)} < Ao(B).

By Lemma 6.2(b), the function ¢g o o is a left eigenfunction of Kg:

/R B30 Kp(x, y)dx = Ao(B)pp (o).

Let g be the rank-one projection in L%(R?) given by

(f. ¢p00)
I = (3.
Bl = s 05007
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Then KgIlg = Ao(B)T1g = I1gKg and an induction over n € N shows

1 1 n
— _Kk"-m :(—K —n) . (6.4)
AoBy PP T AP

Since A1(B) is nothing else but the spectral radius of Kg — Ao(B)I1g, it follows

that

| o . NB)
tim sup | Ao(#) " Kj Mgl = 20 < 1

The spectral properties of Kz are related to the Gibbs free energy and the Gibbs
measure as follows.

(6.5)

Lemma 6.3. Assume 2 < m < oo, p € (0, p*), and rpc > 0. Then

(a) The Gibbs free energy is given by g(B) = ey — }% log Ao(B).
(b) The nd-dimensional marginals of the bulk Gibbs measure |1 g have probability
density function

1 o
;¢ﬁ(GX1) (H mlfﬁ(xz‘, xi+l))¢ﬁ (xn)
i=1

with ¢ = (¢g, pg 0 0).

(c) For all ¢ > 0 and all bounded f, g : RY - R, writing fo((zj)jez) =
[z, ... s za—1) and g,((z) jez) := 8 @nj, - - - » Znj+d—1), we have

Ar(B)
Ao(B)

with some constant C.(B) that does not depend on f, g, orn. If m = 2, we
can pick e = 0and Cy = 1.

(1—&)n
g Cfogn) = meCfonpten| = CB (T2 25) 1fllooligllos

Proof of Lemma 6.3. For N = nd + 1, the partition function Qy(8) is given by

Qna+1(B) = (e PV12 Ty~ e PV/2)
— e—(n—l)ﬂdeo <e—,BV/2—/3[u—uoo]/2’ Kg—le—ﬁV/2+ﬁ[u—uoa]/2>'
For the second identity we have used Lemma 6.2(a). The function u — u o o is
bounded by Lemma 6.1(b) and exp(—pV) is integrable because V (z1, ..., 24) =
En(z1, ..., zq) grows linearly when |z ;| — oo. Therefore Fg := exp(—8V /2 —
Blu —uool/2) and Fg oo are in L%(R%), and as n — oo,
(Fp, Ky~ Fgoo) = Mo(B)" ™' (Fp, ¢p)° + O(A1()" ).

It follows that

. 1 1
gB) = —nlglgo Bnd 1) log Qna+1(B) =eo — Bd log Ao(B),

which proves part (a) of the lemma. The standard proof of part (b) is omitted
(compare [24, Chapter 4]). For (c), we use the formula for the (4 1)d- dimensional
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marginal provided by (b). Let us choose multiplicative constants in such a way that
¢ = (¢pg, ppoo)=1.Then

mp(fogn) — mp(fo)up(gn) = (f(Pgoo), ——— A(ﬂ)" Ky (g9p))

—(f(¢poo0),dp)(dp o0, ghp)

1
= (7@ 00, (577 Kb~ Tls ) s69))

equation (6.4) yields

1 n
6 ogn) = s odrap(en| < 1555 Ko = Tig) 111F @3 0 @)l gl
where || - || refers to the L2-norm for functions and the operator norm for the
operator. We further bound [|gpgl| < [Igllooll®pll and || f(¢poo)ll < || flleoll@pll
and conclude with (6.5). If m = 2, the operators are symmetric, hence the operator
norm is the same as the spectral radius and the estimates simplify accordingly. O

Remark (Associated Markov chain). Define the kernel

Pg(x,dy) := )dy (6.6)

1
— Kj(x,
Ao () P10

on (e, oo)d. Then Pg is a Markov kernel with invariant measure pg(x)dx where

1
pp(x) = Z¢ﬂ((7x)¢ﬂ(x)~

If in the bulk Gibbs measure g we group spacing in blocks as
Xn = (Zdn, - - - » Zdn+d—1), We obtain a probability measure on (rpc, oo)d . This mea-
sure is exactly the distribution of the two-sided stationary Markov chain (X ;) jez
with state space R4, transition kernel Pg, and initial law £(Xo) = pg(x)dx.

6.3. Gaussian Transfer Operator

Here we introduce the Gaussian counterpart to the transfer operator Kg and
study its spectral properties. We start from the quadratic approximation to the
bulk energy Eyyik. The differentiability of Eyyk in a neighborhood of the constant
sequence z; = a is checked in Lemma 6.11 below, for the definition of the Gaus-
sian transfer operator we only need the infinite matrix of partial derivatives at

(...,a,a,...).

In the following we block variables as x; = (24, . .., Zdj+a—1) forz = (zj) jez
and&; = (L4j, ..., Cdj+a—1) for & = (¢;) jez. Remember the decomposition (6.1).
Seta=(a,...,a) e R and define the d x d matrices

A:=Wy(a,a)+ Vic(a) + Wyr(a,a), B:=—-W,(a,a). (6.7)
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We note the following relations:
Wyy(@) = o Wyc(@)o, BT =oBo, oAc = A. (6.8)

The Hessian D25bu1k at (...,a,a,...)is a doubly infinite, band-diagonal matrix
with block form

—-BT A -B

_BT A _B (6.9)

Note that Lemma 3.3 implies that D2€bu1k (...,a,a,...) is positive definite. We
look for a quadratic form Q(x, y) on R24 that is positive-definite and satisfies

Eouk ((z)) jez) = %Z Q(xj —a,xjt1 —a) +0<Z |x —a|2).

JEZ JEZ
One candidate choice could be
Q(x, y) = $(x, Ax) — 2(x, BY') + 3(y. Ay) (x'.y e RY),

but it is not easily related to H (x, ¥). We make a different choice which mimicks
the definition of H (x, y) and show later that this amounts to picking the Hessian
of f—f(x, y) (see Lemma 6.12 below).

We introduce the quadratic counterparts to the functions H (x, y), w(x), and
ﬁ(x, y) from section 6.2. Remember the bulk Hessian from (6.9). Since it is
positive-definite, there exist uniquely defined positive-definite matrices M e R>¢*24
and N € R?*4 such that

<(;‘> M (;C>> — inf{(z, D*Eouic (@, a, .. )2) | 2 € C2(D), (21, -+, 220) = (x, V)
(6.10)
(x, Nx) = inf{(z, D*Epui (@, a, .. )Z) | z € £2(Z), (21, ..., 24) = x}
6.11)

forall x,y € R4, The quadratic forms associated with M and N are the Gaussian
counterparts to the functions H (x, y) and w(x), respectively. Finally set

1

~ In 0

M::M—<2 . ) (6.12)
0 1IN

and
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We will see in the p{gof of Lemma 6.12 that M, N and M are the Hessians Qf H at
(a,a), w ata and H at (a, a), respectively. The relation between Q and Q(x, y)
is clarified in Lemma 6.7 below. We are going to work with the kernel

Gg(x,y) = exp(—%ﬂ@(x—a,y—a)) (x,y € RY)

and the associated integral operator (Gg f)(x) = fRd Gp(x,y) f(y)dy. In sec-
tion 6.4 we show that Gg is a good approximation for Kg, here we study the
operator G on its own. Clearly it is enough to understand the integral operator G
with kernel

G(x,y) = exp(—10(x, y)),

since G and Gp are related by the change of variables x — /B(x — a), see
equation (6.21) below.

Lemma 6.4. Assuﬁze 2 <m < oo, p € [0,p*). Then the quadratic form @ is
positive-definite: Q(x, y) > e(|x|> + |y|?) for some ¢ > 0 and all (x, y) € R*.

Proof. First we show that M is positive semi-definite, by an argument similar to

Lemma 62(3.) Define
F(x = * M ) .

Clearly
(x, Nx) = inf F(x,y) (y,Ny)= inf F(x,y),
yeRd xeRd
hence
~ 1 1
<(’;> M (;‘)> = 5(Fe) = e Vx) + 5 (F ) = (3.Vy)) 2 0

(6.13)

forall (x, y) € R xR? and Mis positive semi-definite. Next let (xg, yo) € R x R4
be a zero of the quadratic form associated with M. Then by (6.13), the function
y + F(xo, y) must be minimal at y = yo, hence V, F(xg, y) = 0. Similarly,
the function y — F(x, yp) must be minimal at x = xg, hence V, F (xg, yo) = 0.
Thus (xo, yo) is a critical point of F'. But F is strictly convex because M is positive-
definite, therefore the critical Roint (x0, ¥0) is a global minimizer of F which yields
(x0, y0) = 0. It follows that M is positive-definite. O

It follows from Lemma 6.4 that fRZd G(x, y)zdxdy < 00, hence G is Hilbert-
Schmidt with strictly positive integral kernel and Krein—Rutman theorem is appli-
cable. So we may ask for its principal eigenvalue and eigenvector and its spectral
gap. It is natural to look for a Gaussian eigenfunction.

Lemma 6.5. Let F be a positive-definite, symmetric d x d matrix. Then the follow-
ing two statements are equivalent:
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() p(x) := exp(— (x, Fx)) is an eigenfunction of G.
(ii) The function x — (x, Fx) satisfies the quadratic Bellman equation

(x, Fx) = inf (Q(x, y) + (y, Fy)). (6.14)
yeRd
Proof. The proof is by a straightforward completion of squares: write
- My M,
M= <MT M3>
with d x d -matrices M The diagonal blocks M, and Mj are positive-definite
because M is positive- deﬁmte therefore M3 + F is positive-definite as well. Then

O(x, y) + (y, Fy) =(x, Mix) +2(x, May) + (y, (M3 + F)y)
=(x, Mlx) — {x, M2(M3 + F)71A72Tx)
+ v+ (M3 + F)"'MI x, (M3 + F)(y + (M3 + F)"' M x)).
It follows that

inf (Q(x. )+ (v, Fy)) = (x, (M = Ma(Ms + F) ™ M;)x)
ye

and
G0)) = | O ey, 01y — Fhatily + ) ).
det(M3 + F) 2
(6.15)
Therefore (i) and (ii) hold true if and only if F solves
F =M — My(Ms+ F)"' M7 .
In particular, (i) and (ii) are equivalent. O
In Lemma 6.7 below we check that M is of the form
M= (igi _CB ) (6.16)

for some positive-definite d x d matrix C.

Lemma 6.6. The principal eigenvalue of G is v/(2mw)?/det C and the principal
eigenfunction is exp(—%(x, %Nx)) (up to scalar multiples).

Proof. A close look at our definitions shows that F' := %N solves (6.14) (it is
positive-definite because N is). Indeed, by the definition of Q, M, we have

— S 1
nf (9, )+ (v, N)) = —x, V) + it <<y>,M(y>>—<x,2Nx>.

Therefore, by Lemma 6.5, the function ¢ (x) = exp(—}‘ (x, Nx)) is an eigenfunc-
tion of G. The matrix M3 + F in (6.15) is equal to (C — %N) + F = C, and we

find that the principal eigenvalue of G is v/(27)4/ det C. O
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In order to identify the block C in (6.16), we introduce the quadratic analogue
to the function u(x). Let A and B be the d x d matrices from (6.7) and A =
Vix(@)+ W,y (@, a). The infinite matrix (9;0;Esu (@, a, . . .));, jeN is band-diagonal
with block structure

Ay —B 0
) —-BT A —-B 0
D°&ut(a,a,..) =1 o —BT A —B 0

The matrix differs from the bulk Hessian (6.9) by the upper left corner A;: we have
A=A+ Wy (a,a). (6.17)

By a reasoning similar to Lemma 3.3, the Hessian of &yt is positive-definite.
Therefore there is a uniquely defined positive-definite d x d-matrix D such that

(x, Dx) = inf{{z, D*Eut (@, a, .. )z) | z € 2N, (z1,...,24) = X}

for all x € RY. (Analogous arguments as in the proof of Lemma 6.12 show that D
is the Hessian of u at a.) Set

C: =D+ Wy(a,a) (6.18)
and
J =D+ Wyy(a,a) —ocDo — Wyi(a,a) =C —oCo
(remember the symmetries (6.8)).
Lemma 6.7. The matrix C solves
C=A-BC'BT

and equation (6.16) holds true. Moreover

o~

Q(-x7 y) = —()C, JX> + Q(X, y) + (y, J)’>
Proof. Clearly

(v, Dx) = inf ((x, A1) = (x, BY) = (BTx,y) + (y. (Wyy(a,a) + D)y))
yeRA

hence
D = Ay — B(Wyy(a,a) + D)"'B” (6.19)

by a completion of squares similar to the proof of Lemma 6.5. We add Wy, (a, a)
to both sides, remember (6.17), and obtain the equation for C. It is easy to see that

M= oDo + Wyy(a, a) —B _(oCo —B
- —-BT Wyy(a,a)+ D) \-BT C
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which proves (6.16). Furthermore,

. X X . X X
(x, Nx) = y‘;’ﬂ{J(y) M <y)>, (3. Ny) = x‘é’ﬂ{ﬁ(y) M (y>>,

hence,
N=0Co—BC'BT, N=c-B"(Co)™'B.

Letus check that the two expressions for N are indeed identical, and thato No = N.
Combining with (6.17) and (6.19), the two expressions for N become

N =0Do + Wy (a,a) — (A — Wyy(a,a) — D) = D+ 0 Do + Wy (a, a)
+Wyy(a,a) — A
and
N =D+ Wyy(a,a) — (T(A - Wyy(a,a) - D)o =D+ oDo + Wy(a,a)
+Wyy(a,a) — A.

The two expressions are indeed equal, and from the end formula and (6.8) we read
off that c No = N. Actually

N =D+ ocDoc — V. (a),

which is the analogue of w(x) = u(x) + u(ox) — V(x).
Now we compute M. The off-diagonal blocks of M are the same as those of
M. The upper left diagonal block is

My — AN =0Do + Wyr(a,a) — (D + 0 Do + Wy (a, a) + Wyy(a, a) — A)
= 1A+ 3(0Do + Wix(a,a)) — 5(D + Wyy(a. ).
A similar computation yields the lower right block. Altogether we find
1
= _(3(A=J) -B )
M=|2
( —BT  J(A+J)

and the lemma follows. O

Finally we come back to the 8-dependent operator Gg.

Proposition 6.8. Assume 2 < m < oo and p € [0, p*). The principal eigenvalue

of Gg is
Gauss _ (zn)d
Ao (B = \ B detC

and the normalized, positive principal eigenfunction is

pe det(AN)

d

¢,3Gauss(x) = ( )1/4 exp(—%ﬂ(x —a, %N (x — a))).
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Proof. Let Ug : L>(R%) — L*(R?) be the unitary operator given by
WUpNH(x) =B fla+ p~'x). (6.20)
We have
(UpGpf) ) = B~*(Gpfria+p~"*x")
=g /R Gpla+p~' 2" a+ 712 fla+ 712y~ 2y’
=57 [ 66 WY
hence
Gp =B PU;GUg (6.21)

and the principal eigenvalue and eigenfunction of G4 are obtained from those of
G in Lemma 6.6 by straightforward transformations. O

Remark. When m = 2, all eigenvalues and eigenfunctions of G (hence Gg) can
be computed explicitly, and the eigenfunctions are expressed with Hermite poly-
nomials. See [24, section 5.2] on the harmonic Kac operator.

6.4. Perturbation Theory

Remember the unitary operator Ug from (6.20) and the relation
Gg = B~42U ;GU . The main technical result of this section is

Proposition 6.9. Assume 2 < m < oo, p € (0, p*), and rnc > 0. We have
||ﬁd/2(K/3 —Gpll=1IG _ﬂd/zUﬂKﬂU/;H — 0as B — oo.

Before we come to the proof of the proposition, we state a corollary on the principal
eigenvalue and eigenfunction. Remember the quantities Ao(8), A1(B), ¢ defined

before Lemma 6.3. We choose multiplicative constants so that ||¢g|| = 1. Let
AJG““SS, j € Np, be an enumeration of the eigenvalues of G with Agauss = ||G]| and
Gauss
Gauss _ 1oy M j | )
j#0 )\Gauss

Corollary 6.10. Under the assumptions of Proposition 6.9: Let AGauSS(,B) and
¢Gauss (x) be as in Proposition 6.8. Then, as 8 — oo,

Ao(B) = (1+0(D) AT (B), fR 19800 — g (0 Pdx — 0,

and

Ay (,3) Gauss

im < 1.
p—oo Ao(B)
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The corollary follows from Proposition 6.9 and standard perturbation theory for
compact operators [42]. The proof of Proposition 6.9 builds on several lemmas.
First we show that Eqy is C 2ina neighborhood of its global minimizer.

Lemma 6.11. The mapping Eyx is C2 in some open neighborhood in DT of the
constant sequence (. ..,a,a,...).

Proof. Note that

d
V@i za) WG 2ds 2asts -0 22a) —deo = Y h(ziy . 2agi)
i=1
defines a C? function in a neighborhood of (a, ..., a) € R4 x R? which vanishes
for (z1,...,224) = (a,...,a). Moreover, using that (..., a,a,...) minimizes

Ebulk ON Da' and so 8xj5bu1k(. ..,a,a,...) =0, we see that also
Vila,...,a)+Wy(a,...,a) + Wy(a,...,a) =0.

Forall z € D(‘)" the derivative of Epyik at z is given by

D ()¢ = (Valxj) + Wi (xj, xj51) + Wy(x1, x)))&;
JEL

for all ¢ € £%(Z) with ¢ ;7 = 0 for all but finitely many j. So

D&puik (2) = (Vi (x)) + Wi (xj, xj41) + Wy(xj_1, X)) (6.22)

JEZL®
Since

DIV + Welxj, x40 + Wylxj o1, ) = Va(x})
JjEZ
= We(x, X)) = Wy x )P

2
<CY @y xj.xj) — (L xGxG DP = Cllz = 2l
JEZ
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for z, z/ € Dt in a neighborhood of (..., a, a, ...) with a uniform constant C, the
right hand side of (6.22) extends to a uniformly continuous function there. Writing

1
Eoulk (z + &) = Epuik(2) +/O D&puik (z +1£)¢ dt

forz, z/ € D, astandard approximation argument shows that indeed Epyi is C! in
aneighborhood of (..., a,a,...) alsoin DT with D&y given by (6.22). In fact,
Epulk is even CZ on a neighborhood of (..., a, a,...)in D" and

D?Epuik ()¢ =((Viex (x)) + Wi (x;, Xj41) + Wyy (xj—1, X)E;

(6.23)

+ Wy (xj, xj+1)Ej41 + ny(xj—l»xj)gj—l)jez-
This follows similarly as above by extending the derivative of D&y, where we now
use that the mappings R? x R x R? — R, (x, x’, x”) = Vi (x))+ W (X', x) +
Wyy(x, x")and RY x R? — R, (x, x') = Wyy(x, x”) are uniformly continuous in a

neighborhood of x = x’ = x” = (a, ..., a) and so D*&Epyi extends to a continuous
mapping from a neighborhood of (..., a,a,...)to L(£%(Z)) (the space of bounded
linear operators on 2(7)) given by (6.23). O

Next we show that M is in fact the Hessian of H.

I:Pmma 6.12. Assume2 < m < oo, p € [0, p*), and rpc > 0. We have ﬁ(x, y) >
H(a,a) =0forallx,y € R4, moreover as X,y —a,

Hx,y) =39k —a,y —a) +o(lx —al* + |y —a).
The lemma leaves open whether (a, a) is the unique global minimizer of H.

Proof. The first part of the lemma has already been proven in Lemma 6.2(a). With
M e R2x2d N ¢ RIxd a4 in (6.10) and (6.11) we let M as in (6.12). It remains
to show that D2H (a,a) = M. Since, for a suitable ¢ > 0, Epyk iS convex on
DT N [Zmins Zmax + S]Z , see (the proof of) Proposition 2.3, Lemma 3.12 shows that
there is a unique function on a neighborhood of (a, @) in R? x R¢ with values in
RN xRN, (x,y) = 7= (z_, 24) = (z—(x, y), 2+ (x, y)) such that

H(x7 y) = gbulk(Z—(x’ y): Xy Y, Z-‘r(-xv Y))

As D2Epui(. .., a,a,...)is positive definite, the implicit function theorem shows
that this mapping is C! and satisfies

D: &k (z—, -, -, 24) =0
as well as

. -1
D yyz = (Dggbulk(Z—, v 24)) " D,yD:&pui (2=, -, - 24)-
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The latter identity implies
Dx,y)H = Dx,y)Ebuik (z—, 5+ 24),
so that H is indeed C? near (...,a,a,...)and
D%x,y)H = [D%x,y)gbulk — Dy, y)zEbuik (Dggbulk)ilD(x,y)Zgbulk](Z—, Gy T
In particular, since z(a,a) = (..., a,a,...),
D’H(a,a) = [D%x,y)fbulk - D(x,y)igbulk(Dggbulk)_lD(x,y)Zgbulk](~ ..,a,a,...).

The same analysis applied to the quadratic approximation ¢>(Z) — R, z >
%(Z, D2&u(. .., a, a,...)z) leads to

-1
M = [D%xyy)gbulk - D(x,y)ngulk(Dggbulk) Dx,yzouk (- v a.a, ..,

too. So we have D’°H(a,a) = M. A completely analogous reasoning gives
D% w(a, ...,a) = N and it follows that D’H (a, a) = M. O
Lemma 6.13. Assume 2 < m < oo. For some ¢y > 0 and all (zy, ...,20q4) €
(rth OO)Zd)

2d

ﬁ((zl,...,Zd), (Zd41s -+ 220)) = %PZZI' —c.

i=1

Proof. Since the pair potential v is bounded from below, we have for some constant
c>0

d
V@, ... 2a) = p;zj —e inf W) = —c.
1=
In combination with Lemma 6.1 this yields the claim. O

In order to estimate ||Kg — Ggl|, we split the configuration space into a neighbor-
hood A D Bs(a) of a and its complement B = R? \ A and treat blocks separately.
For U C R?, we write 1y for the multiplication operator with the indicator function
1y.

Lemma 6.14. Suppose that A c R? is compact, contains an open neighborhood
of a, and is such that H(x, y) > 0 forall (x,y) € A x A\ {(a, a)}. Then

lim [|14 8%*(Kg — Gp)1 4|l = 0.
B—00
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Proof. By Lemma 6.12, for every & > 0, thereis a8 > 0 such that for all 5, r € R?
with |s| < § and |t]| < §, we have

11 —e)Qs,n <H@+s,a+1 <11 +0G, 1.

Choosing § > 0 small enough we may assume without loss of generality that
Bs(a) C A. We estimate

fB P 1K8 G0 = Gpl, y)Pdxdy
s(a

< / B¢ PeQ6n) _ l)ze_‘g@(”)dsdt
Bs(0)?

- / B (e PI-29Q06:1) _ 9o =000 | ¢=85:0) g qy
R4

_( 1 2 +1)(2n)d “
020 (-0 e

for some k > 0. On A2 \ Bs(a)?, the function H stays bounded away from 0,
therefore

L B Py = e
Bs(a

A similar estimate clearly holds true for G as well. Hence

limsup/ ﬁdlKﬂ(x, y) — Gg(x, y)[*dxdy < ke.
AZ

B—o00

This holds true for every ¢ > 0, so the left-hand side converges to zero. Since
operator norms are bounded by Hilbert—Schmidt norms, the lemma follows. O

Lemma 6.15. Assume that B C RY is such that dist(a, B) > 0 and B is invariant
under reversals, o (B) = B. Then ||[15Kglg|| = 0(e P — 0.

Proof. We may view K g = 15Kl as an operator in L%(B, dx). The Krein—
Rutman theorem is applicable and shows that A = ||K g || is a simple eigenvalue

and there exists an eigenfunction v that is strictly positive on BN (rpc, 00)?. Because
of the symmetry H(oy, ox) = H(x, y), the function i o o is a left eigenfunction.
Moreover for all f, g € LZ(B, dx), we have
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so for all strictly positive functions f, g € L*(B, dx),
A= lim<f(K ) )
n—0o0

We choose f(y) = exp(—ﬁﬁ(a, y)) and g(x) = exp(—ﬂﬁ(x, a)). The scalar
product becomes

<f, (KE)"g) = é efﬁ Z?I(; ﬁ(xivxi-f-l)d_xl e dxn+1

with xo = x,42 = a. By Lemma 6.1(b) , remembering u(a) = 0, we have

n+l n+l1
Y H(xioxi) = —(n+2)deg — V(@) + »_ V(x) + Z W (xi, Xit1)-
i=0 i=0 i=1

Define (z1,...,2m+1)d) = (X1,...,X,41) and for j € Z \ {l,..., (n + 1)d},
z;j = a. Then we recognize

n+1
> H(xio1. %) = Eouk((z)) jez) + const
i=0
where the constant depends on e, d, and V(a) alone. As zi,...,Z(+1)q Stay

bounded away from a, we obtain

n+1

Y Hxio1.x) =8+ d —c

i=0
for some §,¢ > Oand all n € N and xy, ..., x,41 € B. It follows that ||KE|| =
A <e P O

Lemma 6.16. Suppose that A C R? and B = R? \ A are such that
Vx)+ W(x,y) —dey+u(y) > u(x)+46 (6.24)

for some § > 0 and all x € A, y € B. Assume also that A is invariant under
reversals, o (A) = A. Then

lim (114K 15l + 115K pLall) =
B—o00
Proof. Revisiting the proof of Lemma 6.1, we see that

Hx,y) —wx)=V&x)+ W, y) —dey + u(y) — u(x). (6.25)
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Equations (6.25), (6.3) and (6.24) show that ﬁ(x, y) > §/2 for all x € A and
y € B. This estimate together with the growth estimate from Lemma 6.13 shows

. 1 2 1
lim supElog</AXB |[Kg(x,y)l dxdy) <-—56<0

B—00

hence ||1 4K g13|| — 0. The estimate on ||[15Kg1 4| follows from the symmetry
Kg(oy,ox) = Kg(x, y). O

Proof of Proposition 6.9. Let ¢ > 0, As := [Zmin, Zmax + ¢]4, and B = R? \ A.
The sets A and B are clearly invariant under reversals, moreover zmin < @ < Zmax
by Theorem 2.1(b), so a is in the interior of .A and bounded away from B. Thus
A and B satisfy the assumptions of Lemmas 6.14 and 6.15. By Lemma 3.11, they
also satisfy the condition (6.24) from Lemma 6.16. By the triangle inequality,

1K — Gpll = [11a(Kp — Gp)lall + 1|Kp — 1aKplall +[IGp —14Gplall.

The first term on the right-hand side, multiplied by /2, goes to zero by Lemma 6.14.
For the second term, we estimate

IKp — 1aKplall < [15Kp15Il + (I11aKp15Il + [115Kp1 411)

and conclude from Lemmas 6.15 and 6.16 that d ﬂd/2||K,3 — 14Kglyll — 0.
Bounding Hilbert—Schmidt norms, it is straightforward to check that 11B4/%(G B —
14Ggl4)|| — 0 as well, and the proof is complete. O

6.5. Proof of Theorems 2.7, 2.8 and 2.11

Proof of Theorem 2.8. Combining Lemma 6.3(a) and Corollary 6.10, we obtain

_ 11 21 1 -
8(5»P)—€0—E og W‘i‘O(ﬂ ).

Proof of Theorem 2.11. The theorem is an immediate consequence of Lemma 6.3(c)
and Corollary 6.10. O

For the proof of Theorem 2.7, we first express the marginals of 152" in terms

of the matrices A and B from equation (6.7) and the matrix C from (6.18). We
group variables in blocks x; € RY as usual and view 1929 as a measure on (R)Z.

Proposition 6.17. Under the assumptions of Theorem 2.7, the distributions of xo =
(20, - - - 2d—1), (x0,x1), and (xq, ..., x,) (n > 2) under O have probability
density functions proportional to

(a) exp(—3B(x0, (6Co — BC™' BT )xp)),

(b) exp(— 2% Bl(ax0, Coxo) — 2{xg, Bxy) + (x1, Cx1)]),

(c) exp(—3 ((ox0, (C— 3 A)axo)+ Y 1=g Qi xig 1)+ (X1, (C— 5 A)xn-1)))

respectively.
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Proof. We recall a standard fact on marginals of multivariate Gaussians and Schur
complements. Suppose we are given a positive-definite (n + k) x (n + k)-matrix

in block form
(M1 H>
"= <H2T H3)

where Hy, Ho, Hz are n X n, n X k and k x k matrices, respectively. Think of H as
the Hessian of the energy. Consider the Gaussian measure on R"** with covariance
matrix ! and probability density function

det’H 1 X X n &
plx,y) = /Wexp(—§(<y>,7-[(y>)) (x eR", y e RY).

Then for all x € R",

det M 1
A;{k ple oy =[5 exp(—§<x,/\/tx>) (6.26)

with M = Hy —HoHy 1H2T the Schur complement of 3 in H. The inverse M ™!
is equal to the upper left block of ~!. Another characterization is provided by a
completion of squares, similar to the proof of Lemma 6.5: we have

. X X
(x, Mx) = ylélﬂgk(<y> JH <y>).

Now let H = (H;});, jez be the Hessian of Epyik at (..., a, a, .. .). By definition of
uGa“SS, the distribution of (z1, ..., z,) is Gaussian with mean zero and covariance
matrix (H~1); =1, . Let M = (M;)0<i j<n—1 be the n x n-matrix defined by
M= (H_l)ofi, j<n—1. Itis not difficult to check that the considerations above
generalize to the infinite matrices at hand, hence for all zg, ..., z,—1 € R,

n—1

. ! / 2 R /
Z Mijzizj = mf{ Z Hijz;z; ’ (@) jez € (D) 2 25 =20, .-, Zp_1 = z,,_l}.
i.j=0 ijeL

6.27)

equation (6.27) provides a variational description of the covariance matrix M ™!
of the n-dimensional marginal of %% For n = 2d = 2(m — 1), with xg =
(z0y - --»,2d—1) and x; = (zq, - - -, 224—1), equation (6.27) shows M = M, by the
definition (6.10) of M. Combining with (6.16) we get

oCo —B

This proves part (b) of the lemma. The proof of (c) is similar. Part (a) follows from
(b) and a relation similar to (6.26). O
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Proof of Theorem 2.7. Itis enough to treat the nd-dimensional marginals with n >
2. Let ¢g be the principal eigenfunction of Kz, with multiplicative constant chosen

so that (¢ o 0, pg) = 1. Set pp(x) := Uppp(x) = V4 pp(a + B~'/%x) and

Kp(x,y) = ———(UpKpUp) (x, y) = + B 2xa+ 712y

1 1
——K
Ao(B) Ao(p) @

By Lemma 6.3, the probability density pnﬁ ) for (x1, ..., x,) € R satisfies

P ) = B0l B ak BT

n—1
= Qsﬂ(axl)(l_[ Kp(xi, xz‘+1)><13,3(xn)-
i=1
By Proposition 6.17, the analogous representation for the Gaussian density ,oGauss
is

n—1

P @1 X)) = ¢Ga”55(ax1><1'[ G(xi, xi+1>>¢03““(xn)
i=1
with G(x, y) = A§¥)G(x, y) and ¢52(x) o< exp(—4 (x, 3 Nx)) the principal
eigenfunction of G, normalized so that (9 o o, ¢U52%%) = 1. It follows that

/ |i0(ﬁ)(x1 ~~~~~ xn) _)Or?dau“(xl """ X”)|d‘x1 "'an

n—1
< ‘(é‘)ﬁ iy _¢Gauss A Iggiléﬂ” +Z|<¢Gauss oo, Gi(kﬂ _ G)Iggiiiz(];ﬂ”
i=1

+ |(¢Gauss o0, anl((iﬂ _ ¢Gau55)|.

Using Ieﬁéﬁ = <;7>,3 and G* (025 6 ) = pO25 5 o, we get

168 1a = Sl < (11dpllcz + 1165411 2)11ds — 61 12 + 11K — G|
which goes to zero by Proposition 6.9 (see also Corollary 6.10). O

7. A Brascamp-Lieb Type Covariance Estimate for m = oo

Here we prove Proposition 2.10. Key to the proof is a matrix lower bound A for
the Hessian of £y. For Gaussian measures with probability density proportional
to exp(—é(z Az)) and test functions f; = z;, g; = z;, we end up estimating the
covariance C;; = ([BA]™ 1),] We follow [34], see also [36].

Proof of Proposition 2.10. Revisiting the proof of Lemma 3.3, we obtain bounds
on matrix elements of the Hessian. Let N € N, z € [Zmin, zmaX]N L Forl<i<
Jj < N — 1 we have

N-1

0> 99;En@ = Y V'O )= Y. V(zmn#L|#L=n, LD (i j})

Lofi,j} kel n=j—i+l



976 S. JANSEN ET AL.

o
> > =i+ (nzmin) = —Kj
n=j—i+1
with
aon (%)

o0
O<k;_; < E <
=RKj—i = = " R o
. (nzmin)* T2 7 sZSE2(j — i)

(7.1)

For1 <i < N — 1 we also have

o
0PEN() =D 0" (D w) = v Gmax) — ) [V (nzmin)| = p > 0
L>i keL n=2

by Assumption 1(iv). Moreover

00 00
n=p—- ZZKC = U”(Zmax) - Zn2|v”(n1min)| >0
=1 n=2

again by Assumption 1(iv). Let Ay be the (N — 1) x (N — 1)-matrix with diagonal
p and off-diagonal entries —«|;_;|; notice that , k;_;, p do not depend on N. Ay
is symmetric and positive-definite.

The previous estimates together with [34, Remark 2.6] show that the energy Ey
satisfies the assumptions of [34, Theorem 2.3 and Proposition 3.5]. It follows that
for all smooth f, g : Ry — R,

~ (N - ~(N 1 — ~(N 12\ ~ / 1/2
A e = i Uiy (6| = gD (2" () (67)

Let X, X5, ... beii.d. random variables with law
P(X; =) = —L (ezZ\{0}, P(X;=6=0
P—nN

and S, = X1 + --- + X,,. We may decompose Ay as pld plus an off-diagonal
matrix, write a Neumann series for the inverse, and find that fori < j

e¢]

1
Ay < =Y (1= DYpese = j - . (7.2)
P =1 P
Clearly
k
P(Si=j—i) <Y PX, = (j—i)/k, S =j—i). (13)

r=1

By (7.1), we have P(X, = ¢) < C/|£|® for some constant C > 0. Following [34,
Proposition 3.5] we may estimate, for each m € N,

o0
P(Xyzm, Sg=j—i)<) PXo=OPXi+ X3+ +Xy=j—i—10

l=m
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C
<supP(X,=¢) < e

>m
Similar estimates apply to other r. Combining with (7.3), we find that

Cks+1
PSk=j—-1) = ——-
lj —il°

It follows that

o]

Y et -k

Ay < ——
NI pli = IS = p

Notice that the series is convergent. The bound is plugged into the estimate (7.2)
and the proposition follows by passing to the limit N — oo. O
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