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Brownian intersection local times

� p independent Brownian motions W1, . . . ,Wp in Rd , running up to time Ti = ∞ (in
d ≥ 3) or until the exit time Ti from a given large ball, respectively.

� Intersection of the motion paths:

S =
p⋂

i=1
Wi([0,Ti)).

� Classical: S is nonempty⇐⇒ p(d−2)< d.

� Natural measure on S: intersection local time (ISLT)

`(A) =
∫

A
dy

p

∏
i=1

∫ Ti

0
dsδy(Wi(s)), A⊂ Rd mb.

� Three classical constructions:
local time analysis, renormalization of measure on sausages, Hausdorff
measure.

� Main goal today: Describe how the motions achieve a high amount of
intersections in a given set U ⊂ Rd .
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Some questions

Fix an open bounded set U ⊂ Rd . We fix d = 2 and p ∈ N or d = 3 and p = 2.

� upper tails: P(`(U)> a)≈??? as a→ ∞.

� law of large masses: `/`(U)≈??? on {`(U)> a} as a→ ∞.

� Hausdorff dimension spectrum: Find a gauge function ϕ such that

0 < sup
x∈S

limsup
r↓0

`(Br(x))
ϕ(r)

< ∞

and determine the Hausdorff dimension of the set of thick points,

f (a) = dim
{

x ∈ S : limsup
r↓0

`(Br(x))
ϕ(r)

= a
}
.

� stretched-exponential moments: Find criteria for nonnegative bounded functions
φ1, . . . ,φn such that

E
[

exp
{ n

∑
j=1
〈φ j, `〉1/p

}]
< ∞.
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Upper tails (1)

How do we find the asymptotics of P(`(U)> a) for a→ ∞?

Via polynomial moments! For any positive variable X ,

lim
k→∞

1
k

logE
[ Xk

k!p

]
= κ ⇐⇒ lim

a→∞
a−1/p logP(X > a) =−peκ/p.

How do we find E[`(U)k]? Here is a recipe:

� Explicitly write out the k-th moments of `(U) by using the heuristic mentioned
formula

`(U) =
∫

U
dy

p

∏
i=1

∫ Ti

0
dsδy(Wi(s))

� summarize and transform the arising multi-integrals over space dy1 . . .dyk and
time ds(i)1 . . .ds(i)k as far as possible,

� bring all the times into chronological order and use Markov property to express it
in terms of products of transition probabilities,

� integrate out over the times to write it in terms of Green functions,
� use integrability of the p-th power of the Green function around its singularity.
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Upper tails (2)

By G(x,y) = c|x− y|d−2 we denote Green’s function, and by Ah(x) =
∫
U G(x,y)h(y)dy

the Green operator.

Upper tails of `(U), [K.&M. 2002]

lim
a→∞

1
a1/p

logP(`(U)> a) =− p
ρ∗

,

where
ρ
∗ = sup

{
〈g2p−1,Ag2p−1〉 : g ∈ L2p(U),‖g‖2p = 1

}

� For p = 1, ρ∗ is just the principal eigenvalue of A.
� Maximiser(s) exist and satisfy 1

2 ∆g =− 1
ρ∗ g2p−1 in U .

� Uniqueness is unknown in general.
� Alternative formula [K.&M. 2006]:

1
ρ∗

= inf
{1

2
‖∇ψ‖2

2 : ψ ∈ H1
0 ,‖ψ‖2p = 1

}
.
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Hausdorff dimension spectrum

Thick points in d = 2, p ∈ N [DEMBO, PERES, ROSEN, ZEITOUNI 2001-2]

sup
x∈S

limsup
r↓0

`(Br(x))
r2[logr]2p =

( 2
p

)p
,

and

dim
{

x ∈ Rd : limsup
r↓0

`(Br(x))
r2[log1/r]2p = a

}
=
[
2− pa1/p]

+
, a≥ 0.

Here, many intersections come mainly from many returns.

Thick points in d = 3, p = 2 [K.&M. 2002]

sup
x∈S

limsup
r↓0

`(Br(x))
r[log1/r]2

=
(

ρ∗(B1(0))
2

)2
,

and

dim
{

x ∈ Rd : limsup
r↓0

`(Br(x))
r[log1/r]2

= a
}
=
[
1−
√

a
2

ρ∗(B1(0))

]
+
, a≥ 0.

Here, many intersections come from finitely many, very long stays.
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Law of large masses

Next goal: Large deviation principle for `/`(U) on {`(U)> a} as a→ ∞.

In particular: `/`(U) should converge towards the set of maximisers.

Idea: More detailed test functions for describing mixed k-th moments.

Mixed stretched-exponential moments, [K.&M. 2006]

For any nonnegative bounded functions φ1, . . . ,φn,

E
[

exp
{ n

∑
j=1
〈φ 2p

j , `〉1/p
}]{< ∞ if Θ(φ)> 1,

= ∞ if Θ(φ)< 1,
where

Θ(φ) = inf
{ p

2
‖∇ψ‖2

2 :
n

∑
j=1
‖φ jψ‖2

2p = 1
}
.

Law of large masses [K.&M. 2006]

If M denotes the set of minimisers ψ2p, then

lim
a→∞

P
(
d( `

`(U)
,M)> ε|`(U)> a

)
= 0, ε > 0.
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Comments

� Derivation of high k-th moments via the lemma

lim
k→∞

1
k

logE
[ 1

k!p Xkp
]
=−p log

Θ

p
=⇒ E[eX ]

{
< ∞ if Θ > 1,

= ∞ if Θ < 1.

� However, approach with k-th moments not suitable for deriving large-deviations
principle (via the Gärtner-Ellis lemma)!

� Reason: Limiting functional of k-moments not Gâteaux-differentiable in the test
functions in any sense.

� Reason: True rate function not convex. =⇒ Different approaches necessary.
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Large-deviations principle

New setting: deterministic time→ ∞, motions restricted to staying in a compact set.

Introduce the occupation measures `(i)t =
∫ t

0 dsδWi(s) and the ISLT

`tb(A) =
∫

A
dy

p

∏
i=1

`tbi(dy), b = (b1, . . . ,bp) ∈ (0,∞)p.

LDP, [K.&Mukherjee 2013]

Under P(·∩
⋂p

i=1{τi > tbi}), as t→ ∞, the tuple( `tb

t p ∏
p
i=1 bi

;
`(1)

tb1
, . . . ,

`(p)

tbp

)
satisfies an LDP on the set M ×M p

1 with speed t and rate function

Ib

( p

∏
i=1

ψ
2
i ;ψ

2
1 , . . . ,ψ

2
p

)
=

1
2

p

∑
i=1

bi‖∇ψi‖2
2.
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Comments

� Contains the famous Donsker-Varadhan-Gärtner LDP as a special case.
� Gives a rigorous meaning to the above formula for the ISLT in the high-density

limit.
� Also `/`(U) satisfies an LDP under {`(U)> a} with speed a1/p and rate function

ψ
2p 7→ inf

{1
2

p

∑
i=1
‖∇ψ‖2

2 : ψ
2p =

p

∏
i=1

ψ
2
i

}
.

� Proof steps:
(1) LDP for an ε-smoothed version (easy)
(2) Γ-convergence of the rate function (more work)
(3) tightness of exponential approximation (very heavy).
In (3) we use k-th moments for difference of integrals against continuous
bounded test functions f :

E(tb)
[∣∣〈`tb− `tb,ε , f 〉

∣∣k]≤ k!pCk
ε , k ∈ N, t ∈ (0,∞),

with limε↓0 Cε = 0.
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Analogous results for random walks

The method of high polynomial moments was also fruitful in the spatially discrete
setting:
(1) for self-intersections of a single random walk and
(2) for mutual intersection local time of several walks in the super-critical dimensions:

Rescaled Self-ISLT, [VAN DER HOFSTAD/K./M. 2006]

Let (St)t∈[0,∞) denote a continuous-time simple random walk in Zd with local times

`t(z) =
∫ t

0 dr δz(Sr) with p > 0 small enough, then for any 1� αt � t1/(d+1),

E
(
‖`t‖pk

p 1l{S[0,t] ⊂ BLαt}
)
≤ kkpCk

α
k[d+(2−d)p]
t , k ≥ t

α2
t
.

ISLT in super-critical dimensions, [CHEN/M. 2009]

The (mutual) intersection local time I of p random walks in Zd with d > 2p
p−1 satisfies

lim
a→∞

a−1/p logP(I > a) =−pχd,p,
where

χd,p = inf
{1

2
‖∇(d)g‖2

2 : g ∈ `2p(Zd),‖g2‖p = 1
}
.

� Elegant compactification in terms of periodisation of the Green function.
� I suppressed many other people’s works ...
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