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We consider branching particle processes on discrete structures like the hyper-
cube in a random fitness landscape (i.e., random branching/killing rates). The
main question is about the location where the main part of the population sits
at a late time, if the state space is large. For answering this, we take the ex-
pectation with respect to the migration (mutation) and the branching/killing
(selection) mechanisms, for fixed rates. This is intimately connected with the
parabolic Anderson model, the heat equation with random potential, a model
that is of interest in mathematical physics because of the observed prominent
effect of intermittency (local concentration of the mass of the solution in small
islands). We present several advances in the investigation of this effect, also
related to questions inspired from biology.
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1. Introduction

In this chapter we study a topic that is of interest both in mathematics and in mathematical
population biology: branching random walks on a graph that either models the space in which
we live or a space of genotypes. That is, the particles are under the influence of three random
mechanisms: movement, branching and killing. In the case of genotypes, the movement can
be understood as mutation, and the killing as selection, hence such models belong to the
cornerstones of the mathematical description of random population processes. We introduce
this mathematical model in Section 2 and explain its biological interpretation in Section 2.2.

The main point that we are interested in here is the situation where both the branching rates
and the killing rates may depend on the state that they are attached to, and that these rates are
taken as random, typically independent and identically distributed. In this case, the expected
number of particles in all the sites at a given time is the solution to the heat equation with
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potential, which is now random. This model is called the parabolic Anderson model (PAM)
and has high physical significance also in other parts of applied mathematics because of the
interesting effect of a high concentration property called intermittency . All this is explained in
Section 2.

In Section 3 we introduce a time-discrete version of the model that has two state spaces: one
describes the location, the other describes the type of the particles. We develop a version of a
Feynman–Kac formula in this setting and derive the large-time asymptotics for the expected
total mass of the branching process for a particular disctribution of the fitness variables. The
formulas that describe these asymptotics contain interesting information about the counterplay
of the two state spaces; mostly we are interested in the description of the limiting structures
that the main part of the particles is sitting in.

A slightly different question is investigated in Section 4: For a particularly simple fitness
distribution on a finite but large graph, how much time is needed for the main part of the
population to move to the fittest site?

In Section 5, we extend the setting of the parabolic Anderson model (which describes the
first moment of the number of particles) to a Feynman–Kac type formula for all the moments of
the number of particles, taken over migration, branching and killing, valid for all choices of the
branching/killing rates. This formula is employed afterwards to derive a large-time asymptotics
for the high moments, for a particular potential distribution.

In Section 6 we mention and motivate future work on extensions of the study of branching
random walks in random environment, like the study of the high-moment asymptotics, the
parabolic Anderson model on random tree-like graphs and the effect coming from inserting a
mutually repellent force between the particles.

2. Spatial branching random walks in random environment

We introduce the basic model in Section 2.1, explain its interpretation for evolutionary ap-
plications in Section 2.2, its relation with the parabolic Anderson model in Section 2.3 and give
a brief account on the types of limiting statements available in the literature in Section 2.4.

2.1. The model. Let X be some graph and X = (Xt)t∈[0,∞) be a Markov process in continuous
time on X , which is most often taken as the simple random walk. The main examples for the
state space X are the infinite space Zd or the finite hypercube X = {1, . . . , K}n for some
K,n ∈ N. Let ξ+ = (ξ+(x))x∈X and ξ− = (ξ−(x))x∈X be two collections of nonnegative
numbers, attached to the sites of the state space. Now the spatial branching random walk with
potential (ξ+, ξ−) is introduced as follows. Starting with a single particle at time zero at the
origin O ∈ X , the particle runs like a copy of X through X . Furthermore, when located at
x, the particle splits into two particles with rate ξ+(x) and dies (is removed from the system)
with rate ξ−(x). Hence ξ+(x) is the branching rate at x, and ξ−(x) is the killing rate. The two
newborn copies proceed independently in the same way as the initial particle.

This is one of the basic models for the time-evolution of a population in a space with several
random mechanisms: migration, branching and killing. The fields of rates, ξ+ and ξ−, intro-
duce disorder in the latter two mechanisms; indeed we will consider them here often as being
random and independent and identically distributed. Areas with high values of ξ+ will produce
many offspring over large time, and areas with high values of ξ− will contain fewer particles
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over long time. Since the ξ+(x) are rates, the number of particles at x at time t is likely to
grow exponentially fast with rate ξ+(x) (neglecting the killing mechanism), but the migration
mechanism diminishes this effect, since the many newborn particles have the tendency to move
away from this site (but may return later). See [6] for more explanations about random walks
with branching and killing in a random medium, in particular in connection with equations of
the type that we will be examining in Sections 2.2 and 2.3.

The space X is often taken as (a discrete version of) the real space in which we live, i.e., the
Euclidean space Z3, and many investigations of the model concentrate on this interpretation.
However, from the viewpoint of evolution of a population in a biological sense, it is also highly
interesting to view X as a space of genotypes, i.e., as a space of more abstract, biological
properties of the particles. One particularly descriptive example is the choice of X as the set of
gene sequences, representing each particle by its genome, which is a sequence composed of four
or, for simplicity, two alleles. Here the hypercube X = {−1, 1}N is the most canonical choice.
In Section 2.2 we explain the interpretation of our model from the viewpoint of biological
evolution.

The standard reflex of a probabilist is to choose the migration mechanism as the nearest-
neighbour simple random walk, where two gene sequences are considered neighbours if they
differ in precisely one allele. We will consider this in Section 6.2, but let us note that there
are more biologically inspired migration mechanisms that respect the way in which mutation
and selection of gene sequences really happen [3]. A mathematical investigation of the above
branching model with this type of random motion is widely open and would be rather interesting
and well-motivated.

A spatial branching process model (called the logistic branching random walk) without ran-
domness in the birth rates, but a kind of birth control in the case of a local overpopulation
is considered in [5, Section 3] in this volume. Here the birth rate in a given site is bounded,
and is small (possibly zero) if the current number of individuals in a neighbourhood is large.
The main results reported there are criteria for survival and for long-time distributional con-
vergence to equilibrium, conditioned on survival. Proofs are based on a comparison technique
using coupling.

2.2. The heat equation and a mutation-selection population model. The model of
branching random walks introduced in Section 2 on the hypercube X = {−1, 1}N with random
branching rates has a profound interpretation in terms of a mutation-selection population model
in a random fitness landscape. (See [14] for theoretical background about the notion of fitness
in biological context and about the numbers and lengths of paths between sites of different
fitnesses.) In [2], this is described as follows.

The mutation-selection model is given by the solution vN(t, ·, y) of the partial differential
equation (PDE)

vN(t, x, y) =
1

N
∆vN(t, x, y) + [ξ(x)− ξ(t)] vN(t, x, y), t ∈ [0,∞), x ∈ {−1, 1}N , (2.1)

with the localised initial condition vN(t, ·, y) = δy(·). The potential ξ = ξ+ − ξ− is interpreted
as a fitness landscape, and the mean fitness is given by

ξ(t) =
∑

x∈{−1,1}N
vN(t, x, y)ξ(x). (2.2)
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Here ∆ is the Laplace operator defined by

∆f(x) =
∑

y∈X : y∼x

(
f(y)− f(x)

)
. (2.3)

Now, (2.1) is not a particle model, but a PDE; however, let us already note that such types of
PDEs are very suitable for describing the expectation of the number of particles in a spatial
branching process for fixed branching rates. This will be explained in a broader perspective in
Section 2.5.

Let us briefly explain the biological meaning of (2.1). Haploid genotypes are identified with
linear arrangement of N sites x = (x(1), . . . , x(N)) with each site taking values −1 or +1. In
the multilocus context, sites correspond to loci and the variables x(i) to alleles. In the context
of molecular evolution, x corresponds to a DNA (or RNA) sequence, where the nucleotides are
lumped into purines (say, +1) and pyrimidines (say,−1). In the biology literature, the hypercube
is usually called the sequence space. Then the mutation-selection model in (2.1) describes the
evolution of an infinite population of haploids that experience only mutation and selection.
The population evolves in continuous time (non-overlapping generations) with mutation and
selection occurring independently (in parallel). ξ(x) is the Malthusian fitness of type x and
the ξ(x) form a fitness landscape, which in our case is random. Site mutations happen with
rate 1/N (hence, at a total rate of one). From (2.2) it follows that

∑
x vN(t, x, y) = 1, and

vN(t, x, y) corresponds to the frequency of type x under this evolution. Finally, note that the
localised initial condition means that initially the population consists of only type y.

The competition between diffusion and potential in the PAM translates into a competition
between mutation and selection, two driving forces of Darwinian evolution. We refer to the
classical book [7] for an introduction to population genetics and to [9] for an excellent survey
that involves the statistical physics methods used to solve mutation-selection models for a wide
range of landscapes.

In the following, we will concentrate on the situation where the fitness landscape is random.
The motivation for this is the following. Realistic landscapes are expected to be complex with
structures such as valleys and hills. Random fitness landscapes naturally form a class of complex
landscapes. The first obvious choice, that is, an i.i.d. landscape, is also known as the house of
cards model.

Let us also mention that it is well-known [15] that

vN(t, x, y) =
uN(t, x, y)

uN(t, x)
, (2.4)

where uN is the solution to (2.1) with ξ replaced by zero, which is called the heat equation that
we are going to introduce in Section 2.3. In a way, uN(t, x, y) can be thought of as an absolute
frequency.

2.3. The parabolic Anderson model. Let us return to the branching random walk model
introduced in Section 2.1 with fixed branching rates ξ+(x) and killing rates ξ−(x). We want
to explain this model from the viewpoint of PDEs, like in (2.1). For the time being, it is
inessential that the rates are random. By η(t, x) we denote the number of particles at time t
at site x, and by u(t, x) its expectation with respect to migration, branching and killing. Note
that the expectation of η(t, x) does not depend on ξ+ and ξ−, but only on the difference field
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ξ = ξ+− ξ−, since the branching and killing balances out in the expectation. We can therefore
view u(t, ·) as a time-dependent field that depends on ξ = (ξ(x))x∈X .

As a matter of fact, the time-dependent field u(t, ·) satisfies the heat equation with potential
ξ = ξ+ − ξ−, which is the equation

∂tu(t, x) = ∆u(t, x) + ξ(x)u(t, x), x ∈ X , t ∈ (0,∞),

u(0, x) = 10(x), x ∈ X .
(2.5)

Here ∆ is the generator of the Markov process X, i.e., in case of a simple random walk on the
graph X , it is the Laplace operator defined in (2.3).

The solution theory for the heat equation is rather rich and explicit. Indeed, the solution u
to (2.5) can be represented in terms of the Feynman–Kac formula

u(t, x) = EO
[
e
∫ t
0 ξ(Xs) ds1{Xt = x}

]
, (2.6)

and in terms of an eigenvalue expansion for the eigenvalues λ1 > λ2 ≥ λ3 ≥ . . . of the operator
∆ + ξ,

u(t, x) =
∑
k

etλkφk(O)φk(x), (2.7)

where (φk)k is an orthonormal sequence of corresponding eigenfunctions.

So far, the field ξ of differences of branching and killing rates collects just the coefficients of
the PDE in (2.5), and their randomness is inessential for the above. But let us turn now to the
case that ξ is a random collection of numbers, which we then call a random potential. In this
case, the operator ∆ + ξ and its spectrum are also random; it is called the Anderson operator
and plays an important role in mathematical physics; in particular the famous phenomenon of
Anderson localisation has kept the interest in the description of its spectrum awake for decades.
The heat equation with random potential in (2.5) is then called the parabolic Anderson model .

As we are interested in the behaviour of u(t, ·) for large t, we will be concerned only with
the boundary part of the spectrum, mostly only with the principal eigenvalue λ1 (this is easily
seen from (2.7)). Anderson localisation is, roughly speaking, the phenomenon that all the
eigenfunctions of the Anderson operator ∆ + ξ, at least the ones corresponding to eigenvalues
close to the boundary of the spectrum, are highly concentrated in small areas that are randomly
located. The principal eigenvalue is included in this statement. Again looking at (2.7), we can
guess that this concentration property is inherited by the random function u(t, ·). This has been
shown to be true in some generality, and this is the basis of a detailed understanding of the
large-time behaviour of the entire branching process in a random potential of branching/killing
rates.

The main assumption on the random potential ξ is that it is a collection of independent,
identically distributed (i.i.d.) random variables. Many distributions can be considered, and
for many applications there is no canonical choice. Not even ubiquitous distributions like the
standard normal distribution or the exponential distribution can be considered canonical from
the viewpoint of applications nor from the viewpoint of interesting emerging effects in this
model. Rather, it turned out in the study of the moments of u that the most natural choice in
this respect is perhaps the double-exponential distribution,

Prob
(
ξ(0) > u

)
= e−e

u/%

, u ∈ R, (2.8)
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since it turned out in several investigations that the emerging picture in the long-time behaviour
of the process has a non-trivial and not too complicated structure.

Our main interest here is in the description of the long-time (i.e., large-t) behaviour of the
random field u(t, ·), in particular of its total mass

U(t) =
∑
x∈X

u(t, x). (2.9)

Of particular interest is the question whether u(t, ·) develops some (randomly located) areas
with particularly high values, i.e., particularly high accumulation of particles. Such areas are
often called intermittent islands . Further questions concern the size and the location of these
islands and characterisations of the potential ξ(·) and the solution u(t, ·) inside them.

2.4. Asymptotics. Let us explain some of the fundamental results on the large-t behaviour of
the parabolic Anderson model introduced in Section 2.5. See [12] for a comprehensive survey on
the research until 2016 on the PAM, which was almost exclusively done on the Euclidean space
Rd or Zd. We abstain in this section from giving explicit references to the original literature
and refer to [12] across-the-board.

Here is a fundamental assertion that has been proved about the large-t behaviour of the
PAM: the asymptotics of the moments of the total mass of the solution, 〈U(t)〉 (we write 〈·〉
for expectation with respect to the potential ξ). We present this here only for the double-
exponential distribution, as this is the one that we will consider further. The following is
also the historically first result of this type; together with its proof, it gave guidance to the
analysis of the PAM for many other potential distributions over the last 20 years. Introducing
H(t) = log〈etξ(0)〉, the cumulant generating function of one of the potential variables, we have
the following (see Theorem 3.13 and Remark 3.17 in [12]).

Theorem 2.1 (Moment asymptotics of the PAM). We consider the PAM as in (2.5) on X =
Zd and assume that the random potential ξ = (ξ(x))x∈Zd is i.i.d. and doubly-exponentially
distributed as in (2.8) with parameter ρ ∈ (0,∞). Then there is a number χ = χ(ρ) ∈ [0, 2d]
such that

1

t
log〈U(t)〉 =

H(t)

t
− χ+ o(1), t→∞. (2.10)

Note that H(t) = ρt log t + ρt + o(t) for t → ∞, hence the leading term H(t)/t tends to
infinity, while the second term χ is a constant.

Indeed, the characteristic quantity χ is represented by a certain variational formula that
is interpretable and can be investigated more deeply. The interpretation is that the best
contribution to the expected total mass comes from a localised peak in a certain island in
Zd, called the intermittent island . More precisely, it comes from a pretty small area in which
the potential ξ assumes particularly high values. This area is essentially a centered ball with a
deterministic, fixed radius (not depending on t), which is a special feature that only the double-
exponential distribution shows. We can also argue in terms of the Feynman–Kac formula in
(2.6) that the random walk (Xs)s∈[0,t] spends practically all the time in this island in order to
benefit as much as possible from the high potential values. In terms of the eigenvalue expansion
(2.7), we can argue that the local principal eigenvalue (say, with zero boundary condition) in
that island is enormously large. The leading term H(t)/t expresses the high potential value,
and the second term χ expresses the optimal compromise between the long stay of the random
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walk in the island and the size of the island. (In order to see that the large-t asymptotics may
have anything to do with any kind of optimisation, note that both the Feynman–Kac formula
and the eigenvalue expansion reveal that U(t) is something like a t-th exponential moment, and
recall that, for any random variable Y , the moment E[etY ] runs like et esssupY .)

Another fundamental result is on the almost sure behaviour of the total mass, which reads
as follows in the above special case (see Theorem 5.1 and Remark 3.17 in [12]).

Theorem 2.2 (Almost-sure asympotics of the PAM). Under the same assumptions as in The-
orem 2.1, there is a number χ̃ ∈ [0, 2d] such that

1

t
logU(t) = ht − χ̃+ o(1), t→∞, almost surely, (2.11)

where ht = % log log |Bt|, and |Bt| is the cardinality of the box Bt = [−t, t]d ∩ Zd.

Indeed, ht is the asymptotics of the maximum of all the potential values in Bt, and χ̃ is
another variational formula that describes the optimal principal eigenvalue of the operator
∆ + q under the assumption that the potential q : Zd → R is not too improbable to be realised
under ξ. The explanation is that, in a box of some radius rt around the starting site 0, one
searches for a local region in which the local principal eigenvalue of ∆+ξ is as large as possible.
Then the path in the Feynman–Kac formula runs quickly to that place (which is typically ≈ rt
away) and stays in that island for the remaining time until t. Here the radius rt is chosen in
such a way that an optimal compromise is reached between the probabilistic costs to reach
that remote place in a short time and to have enough time left to benefit from that favourable
potential. As a deeper investigation in [4] has shown, the optimal choice is rt = %t/ log t log3 t
(with logk t the k-fold iteration of log), and the time that is used for getting there is of the
order t/ log t log2 t log3 t.

Like for the moments, it is characteristic for the double-exponential distribution in (2.8) that
the size of the intermittent island does not depend on t. Other potential distributions lead to
different sizes of the intermittent islands. As a rule, the heavier the upper tails of the potential
variable is, the smaller the island is. E.g., for standard normal, the Weibull or the Pareto
distribution, one obtains single-site islands, while for bounded random variables the islands
depend on t and grow unboundedly.

3. Multitype branching random walk in random potential

In this section, we review the results of [11] about a version of the spatial branching walk
model defined in Section 2.1 with the additional feature that we give two categories of properties
to each particle, a spatial information and information about its type. We now interpret X
as the location space and take some Markov chain on it as a basis, and concerning the type,
we introduce an additional discrete set T , the type space. We will let the rates depend on the
types of the particle and of the offspring. Mathematically, there are certainly possibilities to
conceive X ×T as one state space, but we are interested in the effect coming from the difference
between the two components, since there are different modeling ideas behind X and T .

We consider a natural and flexible discrete-time version. Denote the transition matrix of the
Markov chain on X by P = (Pxy)x,y∈X . We equip T with a set A of directed edges (i, j) ∈ T ×T
and obtain a directed finite graph G = (T ,A). We assume that each directed edge appears at
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most once in A, and for each i ∈ T , there is at least one j ∈ T such that (i, j) ∈ A. Self-edges
(i, i) may appear in A. To each y ∈ X we attach a matrix Fy = (F (i,j)

y )(i,j)∈A of probability
distributions on N0, the environment. Given F = (Fy)y∈X , we define a discrete-time Markov
process (ηn)n∈N0 on NT ×X0 , where ηn(i, x) is the number of particles of type i at site x at time n.
The environment F does not depend on time and is fixed throughout the evolution of particles.
We specify the transition mechanism of (ηn)n∈N0 as follows: for a given state η, during the time
interval (n, n+ 1), given that the configuration is equal to η at time n,

(1) A particle of type i located at site y ∈ X produces, independently for j ∈ T such that
(i, j) ∈ A, precisely k particles of type j at the same site y with probability F (i,j)

y (k),
for any k ∈ N0. This offspring production is independent over all the particles in X and
over the time n ∈ N0.

(2) Immediately after creation, each new particle at x independently chooses a site y with
probability Pxy and moves there.

(3) The resulting particle configuration is ηn+1.

Fix a site y ∈ X and type j ∈ T as starting sites. We start the Markov chain (ηn)n with
the initial configuration η0(i, x) = δj(i)δy(x), and by Pj,y and Ej,y we denote its distribution
and expectation, respectively. Note that the Markov chain depends on the realisation of the
environment F . We are interested in the expectation of the global population size, |ηn| :=∑

i∈T ,x∈X ηn(i, x),

un(i, x) := Ei,x[|ηn|], n ∈ N0, x ∈ X , i ∈ T . (3.1)

As the first main result, we develop two formulas for un: as the n-th power of a certain
X ×T -matrix, and as an expectation of a multiplicative functional over n steps of a particular
Markov chain on that set. These two formulas are extensions of well-known representations of
the expected number of particles of multitype branching processes without space; we like the
fact that one can see these formulas from the viewpoint of a Feynman–Kac formula.

To formulate this, we need to introduce a Markov chain T = (Tn)n∈N0 on the type space T
with transition probabilities

pij =
1{(i, j) ∈ A}

deg(i)
, i, j ∈ T , (3.2)

where deg(i) = |{k ∈ T : (i, k) ∈ A}| is the outdegree of i. We define T and X independently
on a common probability space and write P(T,X)

i,x and E(T,X)

i,x for probability and expectation,
respectively, where T starts from i and X from x. We denote by mij(y) =

∑
k∈N0

kF (i,j)
y (k) the

expectation of F (i,j)
y (the offspring expectation) and collect these random numbers in the matrix

M(y) := (mij(y))i,j∈T , where we put mij(y) = 0 if (i, j) /∈ A. The following is [11, Proposition
1].

Proposition 3.1 (Representations for un). For any i ∈ T and any x ∈ X and any n ∈ N0,

un(i, x) = E(T,X)

i,x

[ n∏
l=1

(
mTl−1Tl

(Xl−1)deg(Tl−1)
)]
, (3.3)

un(i, x) = Bn
1(i, x) =

∑
j∈T

, y ∈ XBn
(i,x),(j,y), (3.4)
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where B is the (T × X )× (T × X ) matrix with coefficients

B(i,x),(j,y) = mij(x)Pxy1{(i, j) ∈ A}. (3.5)

The equation in (3.4) easily follows from (3.3) by writing out explicitly the expectation over
the Markov chain and the n-fold matrix product. The interpretation of (3.3) is as follows.
Every n-step path ((X0, T0), . . . , (Xn, Tn)), together with the product over the mTl−1Tl(Xl−1),
stands for the union of all n-step branching subtrees that produce, in the l-th step, for any
l ∈ {1, . . . , n}, from a particle of type Tl−1 located at Xl−1 a particle of type Tl that makes a
step to Xl immediately after creation. The product over the PXl−1Xl

pTl−1Tl , together will the
product over the deg(Tl−1) (note the partial canceling of terms), summarises the probabilities
of all the jumps in the state space. In this way, we encounter a discrete-time version of a
Feynman–Kac formula for the Markov chain (T,X) on T × X , however with an interesting
difference: the potential logmi,j(x) depends on the vertices of the space X and on the edges of
the type space T .

So far, the environment F was fixed, but let us now turn to the case of a random environment,
and let us describe our assumptions. We assume that the collection of all distributions F (i,j)

y

with y ∈ X and (i, j) ∈ A is independent. Their distribution depends on (i, j), but not on
y. We call F = (Fy)y∈X the random environment and denote by Prob and 〈·〉 probability and
expectation with respect to F , respectively. Since we are only interested in the expectation of
the global number of particles here, we will make our assumptions on the environment only in
terms of the quantities mij(y) =

∑
k∈N0

kF (i,j)
y (k). In particular, we assume that the collection

of the mij(y) is stochastically independent over y ∈ X and i, j ∈ T (but of course not identically
distributed).

We will study the case where the upper tails of mij(y) lie in the vicinity of the Weibull
distribution, with parameter 1/ρij ∈ (0,∞), i.e.,

Prob(mij(y) > r) ≈ exp{−r1/ρij}, r →∞. (3.6)

Hence, logmij(y) lies in the vicinity of the double-exponential distribution defined in (2.8) with
parameter ρij. Let Hij(t) := log〈mij(y)t〉 denote the logarithm of the moment generating func-
tion. For (i, j) ∈ T 2 \ A, we put ρij = 0. Hence, our environment distribution is characterised
by the matrix-valued parameter ρ = (ρij)i,j∈T . The larger ρij is, the thicker are the tails of
mij(y), i.e., the easier it is for mij(y) to achieve extremely high values.

The second main result of [11] is a formula for the large-n asymptotics for the expectation
of the Feynman–Kac formula from (3.3). This formula is in the spirit of (2.10), however, it
has some pecularities and some novelties. Let us first mention that there are basically two
possible lines of proof for deriving the result: one about the large deviations for the empirical
pair measure of the underlying Markov chain, and one using Frobenius eigenvalue theory. We
decided to carry out only the former one. For any discrete set S, we denote by M1(S) the set
of probability measures on S and byM(s)

1 (S2) the set of probability measures on S2 with equal
marginals. The first quantity of interest is

λ(ρ) = sup
{
〈µ, ρ〉 : µ ∈M(s)

1 (T 2)
}
, where 〈µ, ρ〉 =

∑
(i,j)∈A

µ(i, j)ρij, (3.7)

and the set of the corresponding maximisers:

Λ(ρ) :=
{
µ ∈M(s)

1 (T 2) : 〈µ, ρ〉 = λ(ρ)
}
. (3.8)
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We introduce some notation. Each measure ν ∈ M(s)

1 ((T × X )2) has a number of marginal
measures that are defined on different spaces, but in order to keep the notation simple, we
denote by ν all these marginals, namely,

ν(i, j, x) =
∑
y∈X

ν((i, x), (j, y)), ν(i, x) =
∑
j∈T

ν(i, j, x),

ν(i, j) =
∑
x∈X

ν(i, j, x), ν(i) =
∑
j∈T

ν(i, j).
(3.9)

To describe the second term in the asymptotics, we need to introduce two functionals on
probability measures ν ∈M(s)

1 ((T ×X )2), an energy functional S and an entropy functional I.
Indeed, define

S(ν) :=
∑

(i,j)∈A

ρij
∑
x∈X

ν(i, j, x) log ν(i, j, x) +
∑

(i,j)∈A

ν(i, j)ρij log ρij,

I(ν) :=
∑

(i,j)∈A

∑
x,y∈X

ν
(
(i, x), (j, y)

)
log

ν
(
(i, x), (j, y)

)
ν(i, x)Pxy

.

We set I(ν) =∞ if ν is not absolutely continuous with respect to the measure ((i, x), (j, y)) 7→
ν(i, x)Pxy1{(i, j) ∈ A}. Then I(ν) is equal to the relative entropy of ν with respect to this
measure, up to the missing normalisation; note that the reference measure is not normalised,
but has mass equal to

∑
i∈T ν(i) deg(i).

Now we can state our main result, [11, Theorem 3]:

Theorem 3.2. For any i ∈ T and x ∈ X , as n→∞,

〈un(i, x)〉 = (n!)λ(ρ)e−nχ(ρ)eo(n) = exp
(
λ(ρ)n log

n

e
− nχ(ρ) + o(n)

)
, (3.10)

where
χ(ρ) = inf

{
I(ν)− S(ν) : ν ∈M(s)

1

(
(T × X )2

)
, ν ∈ Λ(ρ)

}
. (3.11)

The central object in the proof and in the understanding of this result is the empirical pair
measure

νn =
1

n

n∑
l=1

δ((Tl−1,Xl−1),(Tl,Xl))
. (3.12)

In terms of the space-time random walk (X,T ), the number nνn((i, x), (j, y)) is equal to the
number of j-type offspring of any i-type particle located at x by time n that makes a step to y
right after creation. Hence, νn stands for the union of all n-step paths ((X0, T0), . . . , (Xn, Tn))
that make precisely nνn((i, x), (j, y)) steps (i, x)→ (j, y) for every i, j ∈ T and every x, y ∈ X .
The term I(ν) is the negative exponential rate of the probability of this union under the
Markov chain X, together with the combinatorial complexity of the trajectories of types, and
S(ν), together with the leading term λ(ρ), is the one under the expectation w.r.t. the random
environment.

Theorem 3.2 in particular shows that the main contribution to the annealed moments of the
numbers of particles, λ(ρ), comes from those n-step branching process subtrees that produce,
for some µ ∈ Λ(ρ), at approximately nµ(i, j) of the n steps a number of j-type particles from one
or more i-type particles, for any i, j ∈ T . Then the value 〈µ, ρ〉 gives the leading contribution
on the scale n log n

e
. It is interesting to note that the optimality of the leading term has nothing
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to do with the spatial part of the branching process, but only with the creation of particles.
The reason is that all the probabilities of spatial actions, i.e., of the random walk X, are on the
scale n, but the values of the offspring expectations mij(x) are typically on the scale eO(logn).

In this light, let us analyse the leading term λ(ρ) a bit more closely. A simple cycle on G is a
path γ = (i1, . . . , il) in T , with steps (im, im+1) in A, that begins and ends at the same vertex
i1 = im+1, but otherwise has no repeated vertices or edges. We write (i, j) ∈ γ if the directed
edge (i, j) belongs to γ, that is, if (i, j) = (im, im+1) for some m ∈ {1, . . . , l}. We call |γ| = l
its length. We denote by Γl the set of all simple cycles of length l and by Γ the set of all simple
cycles. We define the uniform measure on the edges of a simple cycle γ,

µγ(i, j) =

{
1/|γ| if (i, j) ∈ γ,
0 otherwise.

(3.13)

It is clear that µγ ∈ M(s)

1 (T 2) for any γ ∈ Γ. Simple cycles are important for the asymptotics
of the annealed moments because the set of extreme points ofM(s)

1 (T 2) consists exactly of the
µγ’s with γ the simple cycles of the graph G. The following is [11, Lemma 1].

Lemma 3.3. The set of extreme points of the convex set M(s)

1 (T 2) is equal to {µγ : γ ∈ Γ}.

Since the optimisation problem in (3.7) is a linear optimisation problem on the convex,
compact setM(s)

1 (T 2), the Krein-Milman theorem and Lemma 3.3 imply the following charac-
terisation of the leading term in (3.10). The following is [11, Lemma 2].

Lemma 3.4.

λ(ρ) = max
{
〈νPγ , ρ〉 : γ ∈ Γ

}
= max

{ 1

|γ|

|γ|∑
m=1

ρim−1im
: (i1, . . . , i|γ|) ∈ Γ

}
.

The interpretation of Lemma 3.4 is that the leading contribution to the expected population
size comes from optimal cycles (i1, . . . , i|γ|) ∈ Γ|γ|. In terms of branching process trees, they
are considered optimal if they produce only im+1-type particles from im-type particles for any
m ∈ {1, . . . , |γ|} (with i|γ|+1 = i1), but no other offspring.

4. The PAM on finite graphs

Another, more biologically inspired, direction in the investigation of the PAM, is the PAM
on some finite graph (like the full graph or the hypercube) and the concentration on the
question about the amount of time that one has to give to the branching process such that the
overwhelming part of the population has found the way to the “fittest” site. Here we rely on
the interpretation that we explained in Section 2.2, and the question is investigated in the limit
of a large (but finite) graph and late times, and the relation of the growths of time and space is
crucial. In order to make a mathematical treatment feasable without too many technicalities,
one typically assumes the random potential (the “fitness landscape”) to be i.i.d. exponentially
distributed times a growth parameter, such that one is in the regime where the intermittent
islands (in the understanding of Section 2.4) are singletons.

The first work on the PAM on a finite graph X was — to the best of our knowledge —
[8], which considered the complete graph with N nodes and an exponentially distributed i.i.d.
random potential ξ. However, instead of ∆ in (2.5), the rescaled Laplace operator 1

N
∆ is
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considered. This is mathematically equivalent to (2.5) with graph-size dependent potential
Nξ; the large prefactor N supports a strong concentration of the mass of branching particles
in small intermittent islands; actually here we are concerned with single sites.

In that work, the initial condition was taken to be localised in the site of the k-th largest of
the potential values, and the question was raised, for what choices of t = tN , in the large-N
limit, the main mass of the particle system travels to the site of the largest potential value, and
for what choices it stays at the initial site by time t. The authors found the leading scale and the
criterion for the answer, and they derived the first term in the asymptotics for the expectation
of the total mass with this initial condition. We do not go deeper into these details.

In [2], the same question was raised for the hypercupe {−1, 1}N with an i.i.d. potential, the
assumptions of which are formulated by requiring that 2N i.i.d. copies of the potential variables
leave gaps of order one between their consecutive leading order statistics, asymptotically as
N → ∞. According to standard extreme-value statistics, this includes the case of centred
Gaussians with variance N . The main result is the following (see [2, Theorem 1.2]).

Theorem 4.1. Assume that UN(t) is the total mass of the solution to the PAM in (2.5) on
X = {−1, 1}N with ∆ replaced by 1

N
∆ and with an i.i.d. random potential ξ on X such that

their leading order statistics maxX ξ = ξ1,2N > ξ2,2N > ξ3,2N > . . . leaves gaps of order one
between its consecutive values, asymptotically as N →∞. We assume that the initial condition
in (2.5) is the delta-measure in the site of X in which ξk,2N sits with a fixed integer k > 1. Fix
ε > 0. If tN ≥ (1 + ε)(N logN)/2(ξ1,2N − ξk,2N ), then, almost surely,

UN(t) = exp
{

(ξ1,2N − 1)tN +
1

2
(1 + o(1))N logN

}
, N →∞.

In contrast, if tN ≤ (1− ε)(N logN)/2(ξ1,2N − ξk,2N ), then, almost surely,

UN(t) = exp{(ξk,2N − 1)tN}
(
1 + o(1)

)
, N →∞.

The interpretation is that the main mass has, in the first case of a large time horizon, enough
time to move to the site of the maximal potential value, ξ1,2N , while in the second case (small
time horizon), it stays in the initial site.

5. Higher moments of the numbers of particles

As we mentioned in Section 2.3, the first moment (the expectation) u(t, x) of the number
of particles in the branching random walk system at time t in the site x, satisfies the heat
equation with random potential in (2.5), which is rather amenable to a deeper analysis, due
to the Feynman–Kac formula in (2.6) and the eigenvalue expansion in (2.7). However, this
concerns only the first moment, and this is quite short of a deeper understanding of the entire
particle system. Substantially more information is contained in the n-th moments of the particle
number at time t at site x for n ∈ N, i.e., in the expectation of η(t, x)n, again taken only over
the migration, branching and killing mechanisms with fixed branching/killing rates. In this
section, we are going to report on the work [10] on this aspect. To keep things simple in this
survey, we only consider here Un(t), the expectation of (

∑
x∈X η(t, x))n. Hence, the case n = 1

is the one that we handled before. Again, like in Section 3, we will present two main results:
An explicit formula of Feynman–Kac type for Un(t) for fixed branching/killing rates, and the
identification of the large-t asymptotics of the expectation of Un(t), taken with respect to a
particular choice of the distribution of these random rates.
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One of our motivations to study Un(t) is that asymptotic knowledge on the behaviour of
〈Un(t)〉 might be able to tell something about the distributional behaviour of the total number
of particles, as in the general theorem where (under some technical conditions) the convergence
of all the n-th moments of a random variable implies its weak convergence towards a random
variable whose n-th moments are equal to the limits.

Meanwhile, also deep investigations have been carried out directly on the branching particle
system in the spirit of the PAM and using a great deal of the results and methods specific for the
PAM [16], but this concerned only the simplest potential distribution (the Pareto distribution)
and was technically enormously cumbersome.

The method of choice to analyse Un(t) is to derive a similar equation as the heat equation
with random potential and to try to employ the techniques that were helpful in the analysis
of the PAM. In earlier work [1], a recursive equation was derived for un(t, x) (defined as the
expectation of η(t, x)n) in terms of all the functions u1, . . . , un−1. This formula was explicit
enough to derive, for a particular potential distribution that leads to single-site islands, the
first term in the large-t asymptotics of the moments of un(t, ·). However, this is obviously
unsatisfactory for several reasons. Instead, in [10], a direct formula for the expectation of
un (in fact, for its p-th moment for any p ∈ N) is derived, and this is so explicit that, for
the double-exponential distribution in (2.8), the two main terms could be derived in terms of
a variational formula that admits an interpretation and further analysis. The main tool for
deriving the direct formula is the many-to-one formula from the theory of branching processes,
derived via spine techniques.

Unlike in the case n = 1 of the first moment, the n-th moment is not just a function of the
difference ξ = ξ+ − ξ−, but we need to keep track of both the splitting rate ξ+ = ξ2 and the
killing rate ξ− = ξ0.

Let us state the formula from [10, Theorem 2.1] in the special case n = 2.

Theorem 5.1 (Feynman–Kac-like formula for U2). Let Un(t) denote the n-th moment of the

total number of particles, for any n ∈ N. Then, in the case n = 2, we have U2 = U1 + Ũ2, where

Ũ2(t) =

∫ t

0

EO
[
e
∫ s
0 ξ(Xr) dre

∫ t
s ξ(X

′
r) dre

∫ t
s ξ(X

′′
r ) dr2ξ2(Xs)

]
ds, (5.1)

where (Xr)r∈[0,s], (X ′r)r∈[s,t] and (X ′′r )r∈[s,t] are three independent simple random walks, condi-
tioned on X0 = O and X ′s = X ′′s = Xs.

In other words, the right-hand side of (5.1) is the expectation over a branching random walk
with precisely one splitting event in the time interval [0, t], namely at time s. The first term

in the representation U2 = U1 + Ũ2 corresponds to absence of splitting, the second to exactly
one splitting. For general n, the formula for Un is similar (one has to sum over all numbers of
splitting events in {0, . . . , n− 1}), but much more cumbersome, since combinatorial prefactors
are involved and multiple powers of ξ2-values at the splitting locations. The formula in (5.1) is
the main result of [10] about a representation of the n-th moments of the number of particles,
for fixed branching/killing rates, in the special case n = 2.

Now we turn to the second question. For the analysis of the large-t asymptotics of the expec-

tation of Ũ2(t) and for its intuitive understanding, the formula in (5.1) is well suitable, at least
for the case that both random fields ξ2 and ξ0 are i.i.d. sequences of double-exponentially dis-
tributed variables as in (2.8) and are independent. The first observation is that the term 2ξ2(Xs)
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should hardly have any influence, and this is indeed true under some technical assumption that
forbids too thick upper tails of the random variable ξ2(0).

The second observation is that, as we are considering the case that the potential can assume
very large (positive) values, it should be giving particularly large values if the splitting time s
is as early as possible, since it is then two independent random walks that can contribute to
the random-potential expectation: it is indeed the expectation of a square of the Feynman–
Kac formula, since each of the two copies contributes independently like one total mass. This
reasoning can be done already when considering the leading terms of the expectation: Since
we have three random walks with running time s, t− s and t− s, one should expect that the
leading logarithmic term is roughly equal to H(s + (t − s) + (t − s)) = H(2t − s), which is
maximal if s is minimal, since we assume that 1

t
H(t) → ∞ (as ξ is unbounded). Hence, the

first term in the asymptotics for 1
t

log〈Ũ2(t)〉 should be H(2t), and the second one should be
−2χ(p) in the notation of (2.10). The same picture is true for the higher moments, i.e., for the
moment asymptotics of Un(t), with 2 replaced by n at both occurrences. This has indeed been
proved as the second main result of [10] in Theorem 1.3 there:

Theorem 5.2 (Moment asymptotics for the branching random walk in random environment).
Let the random potentials ξ2 = (ξ2(x))x∈Zd and ξ0 = (ξ0(x))x∈Zd be independent and i.i.d. and
double-exponentially distributed as in (2.8) with parameter ρ ∈ (0,∞). Denote by Un(t) the
n-th moment of the total number of particles in the branching random walk in the random
environment (ξ0, ξ2). Then, for any n, p ∈ N,

〈Un(t)p〉 = exp
{
H(npt)− nptχ+ o(t)

}
, t→∞,

where χ ∈ [0, 2d] is the number appearing in Theorem 2.1.

The most important conclusion is that, at least for the potential double-exponentially dis-
tributed, the main contribution to the expected p-th power of the total mass of the n-th moment
comes from early splittings in the moment formula. This implies that

〈Un(t)p〉 = 〈U(t)np〉eo(t) = 〈U(tnp)〉eo(t), t→∞.
Recall that we believe that this phenomenon comes from the unboundedness of the branching
rates ξ(0), more precisely from the super-linear behaviour of the leading term, the logarithmic
moment generating function H(t). If the potential random variable ξ(0) is not positive, but
attains only strictly negative values, then we expect that the opposite behaviour is crucial,
i.e., a very late splitting, and the result should be that 〈Un(t)〉 = 〈U1(t)〉eo(t) as t → ∞. If
the essential supremum of the potential is zero, then we expect that deeper investigations are
necessary and that, in some cases, richer pictures may appear.

6. Further perspectives

6.1. High-moment asymptotics. In ongoing work, we are currently deriving the large-n
asymptotics of the n-th moment (taken over all randomnesses: migration, branching, killing,
and all the rates) of the number of particles in the branching random walk model of Section
2.1 on a finite time interval in Zd, i.e., the asymptotics of 〈Un(1)〉. This will say something
about the most probable way of the branching particle system to produce as much offspring
as possible over a finite time interval, i.e., about the questions how high the potential values
should be, how often and how quickly after each other the splitting of the particles occurs, and
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how many steps all the many paths make. For deriving this, we are exploiting the moment
formula that we explained in Section 5.

6.2. Branching random walks on (random) graphs. As we explained in Section 4, an
investigation of the PAM on (possibly finite) graphs is biologically sound, but has not been
done yet on a broad front; we are actually aware only of the two works [8] and [2]. In another
ongoing investigation, the state space X is taken as a random graph that is locally tree-like. The
main examples are a Galton–Watson tree with bounded degrees and the configuration model.
The main goal is — for the random potential double-exponentially distributed as in (2.8) — to
find the large-t asymptotics for the total mass U(t) of the solution with high probability and
to describe the structure of the parts of the random graphs that give the main contribution,
i.e., of the intermittent islands. The two main interests here are to understand in general the
influence (1) of the exponential structure of the tree, i.e., the fact that the volume of a ball
with diameter r runs exponentially fast in r, and (2) of the randomness of the graph structure.

In the long-term, we hope to answer also the questions that are answered in the case of the
state space X = {−1, 1}N in Theorem 4.1, but the infiniteness of the state space, its randomness
and the fact that the intermittent islands are not single sites, but have some structure make
the question about the location and the shape of the intermittent islands a big enterprise.

6.3. Self-repellent random walk in random potential. As described in Section 2.4, the
Feynman–Kac formula that represents the total mass of the solution to the PAM actually
displays a random walk in random potential, and the large-time asymptotics are carried by
those random walk paths that find their way to an optimal local region in the potential. The
random walk in random potential feels an attractive force towards the extremal regions of the
potential.

In another ongoing work, we are investigating the effect of an additional counter force: some
additional self-interaction that suppresses self-intersections of the random walk until time t. In
other words, we replace the free walk by the well-known weakly self-avoiding or self-repellent
walk, which is given by an exponential weight of the form

1

ZT,β
exp

{
− β

∫ T

0

∫ T

0

1{Xs = Xt} dsdt
}
,

where β ∈ (0,∞) is a parameter, and ZT,β is the normalising constant. In this model, the
path in the Feynman–Kac formula cannot spend too much time anymore in single sites, the
intermittent islands. The goal is to describe what it does instead. If the underlying state
space is the lattice Zd, then the most obvious conjecture is that it will visit not only one of
the intermittent islands, but several ones after each other, even though they are far away from
each other. This is a random strategy, depending via an opimisation problem on the limiting
spatial extreme-value order statistics of the potential. We think that this strategy is indeed
optimal for most values of the thickness parameter of the potential distribution, but for some
values this does not seem to be true, and we currently have no clue how to decribe the typical
behaviour of the path properly.
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