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A prediction of 1924

� In 1924, the unknown young physicist SATYENDRA NATH BOSE asked the famous ALBERT

EINSTEIN to help him publishing his latest achievement in Zeitschrift für Physik.

� Einstein translated the manuscript into German and had published it there for Bose.

� He stressed that the new method is suitable for explaining the quantum mechanics of the

ideal gas. He extended the idea to atoms in a second paper: he predicted the existence of

a previously unknown state of matter, now known as the Bose–Einstein condensate.

ALBERT EINSTEIN (1879-1955) in 1921 SATYENDRA NATH BOSE (1894-1974) in 1925

� An experimental realisation had to wait until 1995, where some ten thousands of atoms

appeared in that condensate at a temperature of 10−9 K. =⇒ Nobel Prize in 2001
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Bose’s work from 1924
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Einstein’s work from 1925

https://www.lorentz.leidenuniv.nl/history/Einstein_archive/

Einstein_1925_publication/
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Einstein’s explanation

End of Bose’s work:
Translator’s note: Bose’s derivation of Planck’s formula represents an important

progress in my opinion. The method used here also provides the quantum theory

of the ideal gas, as I will explain elsewhere.

Page 3 in the own work:

From (18b) it follows that the number of molecules in such a gas cannot be greater

than V for a given volume

n =
(2πmκT )3/2V

h3

∞∑
s

τ−3/2.

Page 4:

I claim that [with increasing density] a number of molecules, increasing with the to-

tal density, pass into the I. quantum state (state without kinetic energy), while the

remaining molecules are distributed according to the parameter value λ = 1.

...

Hence we obtain the theorem:

According to the developed equation of state of the ideal gas, there is a maximum

density of molecules in agitation at any temperature.
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Early scepticism

The degeneracy of the Bose–Einstein gas has rather got the reputation of having only

a purely imaginary existence.

(London 1938)

The densities are so high and the temperatures so low that the van der Waals cor-

rections are bound to coalesce with the possible effects of degeneration, and there is

little prospect of ever being able to separate the two kinds of effect.

(Schrödinger 1946)

Can one prove with mathematical rigor [...] that a gas with given intermolecular forces

will condense at sufficiently low temperature at a sharply defined density [...]? It may

seem strange now that there could be any doubt that this would be possible but

[...] in 1937 one wasn’t so sure and I remember that Debye, for instance, doubted

it. In my opinion, the liberating word was spoken by Kramers. He remarked that a

phase transition (such as condensation) could mathematically only be understood as

a limiting property of the partition function. Only in the limit, where the number of

molecules N and the volume V go to infinity such that N/V remains finite (one calls

this now the thermodynamic limit) can one expect the two discontinuities [...].

(Uhlenbeck 1974))
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Importance

� Justification of quantum statistics:

Description of a macroscopic system with many microscopic identical (indistinguishable)

particles with the help of location probabilities (=⇒ wave functions)

� Quantum mechanical peculiarities due to symmetry conditions: bosons (PAUL DIRAC) (in

contrast to fermions)

� ”fifth state of aggregation”: purely quantum mechanical phase transition in which

interactions no longer play a role and all atoms have the same physical properties.

Condensate as a ”superatom”.

� Driving force to the practical

� realization of low temperatures (cooling by laser and by evaporation, i.e. removal of

the most energetic particles),

� trapping of atoms by a magnetic trap,

� Handling small groups of atoms.

And for me as a mathematician:

� driving force for many mathematical ansatzes, in particular probabilistic ones.
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Mathematics in the 20th century

� In the 1950s BELJAVSKI, BOGOLJUBOV, GROSS, PITAEVSKI, HARTREE introduced

simplified models for rarefied interacting gases. The interaction was expressed by the

scattering length, the free energy was approximated with the BORN approximation

� Functionalanalytic ansatz: large-N behaviour of the trace of the symmetrisation of an

interacting N -particle Hamilton operator (=⇒ later). The wave functions have a

probabilistic interpretation as the joint location densities of the N particles.

� Probabilistic ansatz: This trace was translated in the 1950s by JEAN GINIBRE and

RICHARD FEYNMAN into a system of interacting Brownian motions, using the

Feynman–Kac formula (=⇒ later).

� RICHARD FEYNMAN suggested in 1953 to consider the Brownian cycles in the Bose gas

(=⇒ later) that appear as a result of the symmetrization as an important order parameter

and to examine their limiting behaviour as a criterion for BEC. They are now called

Feynman cycles.

� Various authors showed that the occurrence of ”long Feynman cycles” in the ideal (=

non-interacting) gas and in mean-field approximations is characteristic for BEC.

� The only known proof for BEC in an interacting model exploits ”hard” repulsion and

symmetry in a Zd system (FREEMAN DYSON et al. 1978).

A probabilistic view at the interacting Bose gas · Chaos and Contingency, 27 Oct. 22 · Page 8 (15)



Mathematics in the 20th century

� In the 1950s BELJAVSKI, BOGOLJUBOV, GROSS, PITAEVSKI, HARTREE introduced

simplified models for rarefied interacting gases. The interaction was expressed by the

scattering length, the free energy was approximated with the BORN approximation

� Functionalanalytic ansatz: large-N behaviour of the trace of the symmetrisation of an

interacting N -particle Hamilton operator (=⇒ later). The wave functions have a

probabilistic interpretation as the joint location densities of the N particles.

� Probabilistic ansatz: This trace was translated in the 1950s by JEAN GINIBRE and

RICHARD FEYNMAN into a system of interacting Brownian motions, using the

Feynman–Kac formula (=⇒ later).

� RICHARD FEYNMAN suggested in 1953 to consider the Brownian cycles in the Bose gas

(=⇒ later) that appear as a result of the symmetrization as an important order parameter

and to examine their limiting behaviour as a criterion for BEC. They are now called

Feynman cycles.

� Various authors showed that the occurrence of ”long Feynman cycles” in the ideal (=

non-interacting) gas and in mean-field approximations is characteristic for BEC.

� The only known proof for BEC in an interacting model exploits ”hard” repulsion and

symmetry in a Zd system (FREEMAN DYSON et al. 1978).

A probabilistic view at the interacting Bose gas · Chaos and Contingency, 27 Oct. 22 · Page 8 (15)



Mathematics in the 20th century

� In the 1950s BELJAVSKI, BOGOLJUBOV, GROSS, PITAEVSKI, HARTREE introduced

simplified models for rarefied interacting gases. The interaction was expressed by the

scattering length, the free energy was approximated with the BORN approximation

� Functionalanalytic ansatz: large-N behaviour of the trace of the symmetrisation of an

interacting N -particle Hamilton operator (=⇒ later). The wave functions have a

probabilistic interpretation as the joint location densities of the N particles.

� Probabilistic ansatz: This trace was translated in the 1950s by JEAN GINIBRE and

RICHARD FEYNMAN into a system of interacting Brownian motions, using the

Feynman–Kac formula (=⇒ later).

� RICHARD FEYNMAN suggested in 1953 to consider the Brownian cycles in the Bose gas

(=⇒ later) that appear as a result of the symmetrization as an important order parameter

and to examine their limiting behaviour as a criterion for BEC. They are now called

Feynman cycles.

� Various authors showed that the occurrence of ”long Feynman cycles” in the ideal (=

non-interacting) gas and in mean-field approximations is characteristic for BEC.

� The only known proof for BEC in an interacting model exploits ”hard” repulsion and

symmetry in a Zd system (FREEMAN DYSON et al. 1978).

A probabilistic view at the interacting Bose gas · Chaos and Contingency, 27 Oct. 22 · Page 8 (15)



Mathematics in the 20th century

� In the 1950s BELJAVSKI, BOGOLJUBOV, GROSS, PITAEVSKI, HARTREE introduced

simplified models for rarefied interacting gases. The interaction was expressed by the

scattering length, the free energy was approximated with the BORN approximation

� Functionalanalytic ansatz: large-N behaviour of the trace of the symmetrisation of an

interacting N -particle Hamilton operator (=⇒ later). The wave functions have a

probabilistic interpretation as the joint location densities of the N particles.

� Probabilistic ansatz: This trace was translated in the 1950s by JEAN GINIBRE and

RICHARD FEYNMAN into a system of interacting Brownian motions, using the

Feynman–Kac formula (=⇒ later).

� RICHARD FEYNMAN suggested in 1953 to consider the Brownian cycles in the Bose gas

(=⇒ later) that appear as a result of the symmetrization as an important order parameter

and to examine their limiting behaviour as a criterion for BEC. They are now called

Feynman cycles.

� Various authors showed that the occurrence of ”long Feynman cycles” in the ideal (=

non-interacting) gas and in mean-field approximations is characteristic for BEC.

� The only known proof for BEC in an interacting model exploits ”hard” repulsion and

symmetry in a Zd system (FREEMAN DYSON et al. 1978).

A probabilistic view at the interacting Bose gas · Chaos and Contingency, 27 Oct. 22 · Page 8 (15)



Mathematics in the 20th century

� In the 1950s BELJAVSKI, BOGOLJUBOV, GROSS, PITAEVSKI, HARTREE introduced

simplified models for rarefied interacting gases. The interaction was expressed by the

scattering length, the free energy was approximated with the BORN approximation

� Functionalanalytic ansatz: large-N behaviour of the trace of the symmetrisation of an

interacting N -particle Hamilton operator (=⇒ later). The wave functions have a

probabilistic interpretation as the joint location densities of the N particles.

� Probabilistic ansatz: This trace was translated in the 1950s by JEAN GINIBRE and

RICHARD FEYNMAN into a system of interacting Brownian motions, using the

Feynman–Kac formula (=⇒ later).

� RICHARD FEYNMAN suggested in 1953 to consider the Brownian cycles in the Bose gas

(=⇒ later) that appear as a result of the symmetrization as an important order parameter

and to examine their limiting behaviour as a criterion for BEC. They are now called

Feynman cycles.

� Various authors showed that the occurrence of ”long Feynman cycles” in the ideal (=

non-interacting) gas and in mean-field approximations is characteristic for BEC.

� The only known proof for BEC in an interacting model exploits ”hard” repulsion and

symmetry in a Zd system (FREEMAN DYSON et al. 1978).

A probabilistic view at the interacting Bose gas · Chaos and Contingency, 27 Oct. 22 · Page 8 (15)



Experiments

� Hunt for experimental realization from 1985, when sufficiently low temperatures came

within reach. 10−6 Kelvin was reached in 1992 =⇒ Nobel Prize 1997.

� Difficulty: At such low temperatures almost every substance is solid (not gaseous).

Dilute solution: heavily and cool quickly, holding particles together with a magnetic trap.

� The group of ERIC A. CORNELL and CARL E. WIEMAN succeeded in 1995 at the Joint

Institute for Laboratory Astrophysics in Boulder (USA) in a gas of several thousand

rubidium atoms at a temperature of about 10−9 Kelvin.

� Four months later, the group around WOLFGANG KETTERLE at the Massachusetts

Institute of Technology also succeeded in doing this with sodium.

� All three scientists were awarded the Nobel Prize in Physics in 2001 for this achievement.
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Mathematical modelling: the Hamilton operator

We have N particles in a box Λ ⊂ Rd.

Each particle has three attributes:

� kinetic energy (in the form of the Laplace operator ∆),

� a (soft or hard) trap energy,

� interaction energy with every other particle.

The system is described with the help of a Hamiltonian for N particles at the locations

x1, . . . , xN in a box Λ ⊂ Rd, subject to a pair interaction via a symmetric pair potential

v : Rd → [0,∞]:

H(Λ)

N = −
N∑
i=1

∆i +
∑

1≤i<j≤N

v
(
xi − xj

)
, x1, . . . , xN ∈ Λ.

� H(Λ)

N is applied to wave functions φ : ΛN → R.

� |φ(x1, . . . , xN )|2 = probability density for N particles at the locations x1, . . . , xN .

� Clear: |φ(x1, . . . , xN )|2 is symmetric (= invariant under permutations).

� Boson system (Quantum mechanics!): also φ(x1, . . . , xN ) is symmetric.
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Positive temperature 1/β – Brownian cycles

� Main object:

symmetrised trace ZN (β,Λ) = Tr+

(
exp{−βH(Λ)

N }
)
.

� Physics⇐⇒ Mathematics:

temperature ⇐⇒ 1/β

kinetic energy ⇐⇒ eβ∆ ⇐⇒ Brownian motion on [0, β]

interaction ⇐⇒ e−v(xi−xj)

averaging over random particles ⇐⇒ trace

symmetrisation ⇐⇒ random permutation

� Feynman–Kac formula:

ZN (β,Λ) =

∫
Λ

dx1· · ·
∫

Λ

dxN︸ ︷︷ ︸
N points in Λ

random permutation︷ ︸︸ ︷
1

N !

∑
σ∈SN

N⊗
i=1

µ(β)
xi,xσ(i)︸ ︷︷ ︸

N Brownian bridges

[ interaction︷ ︸︸ ︷
e−

∑
1≤i<j≤N Vβ(B(i),B(j))

]
.
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Illustration

Bose gas consisting of 14 particles, organised in three Brownian cycles, assigned to three

Poisson points. The red cycle contains six particles, the green and the blue each four.
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Remarks

� We consider here the canonical ensemble, where the number N of particles is fixed. If N

is random and Poisson-distributed, we look at the grandcanonical system.

� The interacting Bose gas is an ensemble of interacting Brownian cycles with various

lengths in a large box. A cycle of length k (i.e., with time interval [0, βk]) accomodates

precisely k particles. Altogether, the system has N =
∑∞
k=1 kNk paticles (if Nk is the

number of cycles of length k).

The BEC Question Does a macroscopic part of the N particles lie in ”very long” cycles?

� Philosophical question: What is the right box size?

thermodynamic limit |ΛN | = N/ρ or dilute limit |ΛN | � N ?

� Answer by Kramers in 1937: the thermodynamic limit!

Free energy in the thermodynamic limit (d.h. |ΛN | = N/ρ):

f(β, ρ) = − lim
N→∞

1

|ΛN |
logZN (β,ΛN ).
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Illustration of condensate phase transition

Subcritical (low ρ) Bose gas

without condensate

Supercritical (large ρ) Bose gas

with additional condensate (red)
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Situation and outlook

� Proof for phase transition in the thermodynamic limit widely open; considered very deep.

� Many simplified models and regimes have been settled.

� Feynman–Kac formula is by far not the only ansatz.

� Interacting Brownian cycles triggered much probabilistic research and will continue to do

so.

� Experimentally, BEC could not obtained at sginificantly higher temperatures than in 1995,

but for many more different substances.

� Applications are not in sight, but it is tremendously fascinating!
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