
ParMooN – a modernized program package based on
mapped finite elements

Ulrich Wilbrandta, Clemens Bartscha, Naveed Ahmeda, Najib Aliaa,1, Felix
Ankera,2, Laura Blanka, Alfonso Caiazzoa, Sashikumaar Ganesanb,3, Swetlana

Gierea, Gunar Matthiesc, Raviteja Meesalab, Abdus Shamimb, Jagannath
Venkatesanb, Volker Johna,d,4,∗

aWeierstrass Institute for Applied Analysis and Stochastics, Leibniz Institute in
Forschungsverbund Berlin e. V. (WIAS), Mohrenstr. 39, 10117 Berlin, Germany
bDepartment of Computational and Data Sciences, Indian Institute of Science,

Bangalore - 560012, India
c Department of Mathematics, Institute of Numerical Mathematics, TU Dresden,

01062 Dresden Germany
dFree University of Berlin, Department of Mathematics and Computer Science, Arnimallee

6, 14195 Berlin, Germany

Abstract

ParMooN is a program package for the numerical solution of elliptic and
parabolic partial differential equations. It inherits the distinct features of its
predecessor MooNMD [28]: strict decoupling of geometry and finite element
spaces, implementation of mapped finite elements as their definition can be
found in textbooks, and a geometric multigrid preconditioner with the option
to use different finite element spaces on different levels of the multigrid hierar-
chy. After having presented some thoughts about in-house research codes, this
paper focuses on aspects of the parallelization for a distributed memory environ-

∗Corresponding author.
Email addresses: ulrich.wilbrandt@wias-berlin.de (Ulrich Wilbrandt),

clemens.bartsch@wias-berlin.de (Clemens Bartsch), naveed.ahmed@wias-berlin.de
(Naveed Ahmed), najib.alia@wias-berlin.de (Najib Alia), felix.anker@wias-berlin.de
(Felix Anker), laura.blank@wias-berlin.de (Laura Blank),
alfonso.caiazzo@wias-berlin.de (Alfonso Caiazzo), sashi@cds.iisc.ac.in (Sashikumaar
Ganesan), swetlana.giere@wias-berlin.de (Swetlana Giere),
gunar.matthies@tu-dresden.de (Gunar Matthies), raviteja@cmg.cds.iisc.ac.in (Raviteja
Meesala), shamim@cmg.cds.iisc.ac.in (Abdus Shamim), jagan@cmg.cds.iisc.ac.in
(Jagannath Venkatesan), volker.john@wias-berlin.de (Volker John)

1The work of Najib Alia has been supported by a funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant
agreement No. 675715 (MIMESIS).

2The work of Felix Anker has been supported by grant Jo329/10-2 within the DFG priority
programme 1679: Dynamic simulation of interconnected solids processes.

3The work of Sashikumaar Ganesan has partially been supported by the Naval Research
Board, DRDO, India through the grant NRB/4003/PG/368.

4The work of Volker John has partially been supported by grant Jo329/10-2 within the
DFG priority programme 1679: Dynamic simulation of interconnected solids processes.

Preprint submitted to Elsevier December 23, 2016

ment, which is the main novelty of ParMooN. Numerical studies, performed
on compute servers, assess the efficiency of the parallelized geometric multigrid
preconditioner in comparison with some parallel solvers that are available in
the library PETSc. The results of these studies give a first indication whether
the cumbersome implementation of the parallelized geometric multigrid method
was worthwhile or not.

Keywords: Mapped finite elements; Geometric multigrid method;
Parallelization;

1. Introduction

MooNMD, a C++ program package for the numerical solution of elliptic
and parabolic partial differential equations based on mapped finite elements, is
described in [28]. A modernized version of this package, called ParMooN, has
recently been developed to be used as a research code in the future.

The core of MooNMD was designed more than 15 years ago and this code
has been successfully used in many scientific studies. There are almost 90 re-
search articles citing MooNMD via [28], see [37]. Recent advances in computing
hardware and language standards necessitate a re-design and re-implementation
of some of the core routines. With the new core and the new features, the code
was renamed to ParMooN (Parallel Mathematics and object-oriented Numer-
ics).

The general aims of this paper are to report on the development of the exist-
ing research code towards the new package ParMooN in order to accomplish
the desired features of an in-house research code that will be formulated in
Section 2 and to assess the parallelized geometric multigrid method by compar-
ing it with solvers that are available in an external library. The original code
possesses some distinct features that should be transferred to ParMooN, like
the strict decoupling of geometry and finite element spaces, the implementation
of mapped finite elements as their definition can be found in textbooks, and a
multiple discretization multilevel (MDML) preconditioner. This paper focuses
on the most relevant aspect concerning the development of ParMooN, namely
the distributed memory parallelization. In particular, the technically most cum-
bersome part, the parallelization of the geometric multigrid, is discussed.

A main contribution of this paper is a first assessment of the resulting par-
allel geometric multigrid method in comparison with parallel solvers for linear
systems of equations that can be called from the library PETSc. The numerical
studies were performed on compute servers as the available in-house hardware.
We think that this assessment is also of interest for other groups who develop
their own codes in order to get an impression whether it is worthwhile to im-
plement a parallelized geometric multigrid method or not. Two main problem
classes supported in ParMooN are considered in the numerical studies: scalar
convection-diffusion-reaction equations and the incompressible Navier–Stokes
equations.

2

The paper is organized as follows. Section 2 contains an exposition of our
thoughts about in-house research codes, in particular about their advantages and
their goals. Mapped finite elements, as they are used in MooNMD/ParMooN,
are described in Section 3. Section 4 presents main aspects of the parallelization
and the parallelization of the geometric multigrid method is briefly discussed in
Section 5. Numerical studies that compare this method with solvers available
in PETSc are presented in Section 6. The paper concludes with a summary.

2. Some Considerations about In-House Research Codes

Nowadays, several academic software packages for solving partial differential
equations exist in the research community. They are usually developed and
supported by research groups for whom software development is one of the
main scientific tasks. Such software packages include, among others, deal.II
[10], FEniCS [2], DUNE [15, 11], OpenFOAM [32], or FreeFem++ [19].
These packages have advanced functionality and support features like adaptive
mesh refinement, parallelism, etc.

Naturally, a research code developed in-house possesses less functionality
than these large packages. In view of their availability, the following questions
arise: Why is it worth to develop an own research code? In particular, is
it worth to develop a code within a research group that focuses primarily on
numerical analysis? In the following, some arguments, mainly based on our own
experience, are presented.

In-depth knowledge of details of the software. The first key aspect of working
with a code developed and maintained within the research group is the detailed
knowledge of the software structure. In fact, applied mathematicians often
work at the development of numerical methods. These methods have to be
implemented, assessed, and compared with popular state-of-the-art methods for
the same problem. A meaningful assessment requires the usage of the methods
in the same code. In this respect, it is important to have access to a code where
one knows and can control every detail.

For brevity, just one example will be mentioned to show the importance of
knowing the details of a software package. This example concerns the clar-
ification of appropriate interface conditions in subdomain iterations for the
Stokes–Darcy problem, see [13]. Standard Neumann interface conditions can
be used only for viscosity and permeability coefficients that are unrealistically
large. For realistic coefficients, appropriate Robin boundary conditions have to
be used. The implementation of the Robin interface conditions was performed
in a straightforward way in MooNMD/ParMooN.

Flexibility. Further advantages of an own research code are the possibility of
controlling its core parts and flexibility. In particular, for our research it is very
important that the code supports the use of different discretization strategies.
As an example, MooNMD was designed for finite element methods. But for
the investigation of discretizations of time-dependent convection-diffusion equa-
tions in [29], finite difference methods were implemented as well. Because these

3

methods performed very well, they were later used in the context of simulating
population balance systems defined in tensor-product domains, e.g., see [36].

Testing of numerical methods. MooNMD was used in the definition of
benchmark problems in [23]. The list of examples could be extended. In addi-
tion, a number of numerical methods have been developed and implemented in
our research code which turned out to be not (yet) competitive, like the opti-
mization of stabilization parameters in SUPG methods in [27]. Having a known
and flexible research code at disposal allows to test and support methods that,
at the time of the implementation, have not been benchmarked in detail.

Certainly, also the large packages mentioned above allow the implementa-
tion of different methods and discretization strategies. However, we think that
a successful implementation often requires a very close interaction with core
developers of the packages. This effort might not be feasible for both the user
and the developer. Therefore, an own code might reduce the time from the
development to the assessment of numerical methods.

Benefits for students. A further aspect, related to the interaction of the core
development team, concerns the students and the PhD students who are involved
in the development and in the usage of the code. Since the core developers of
an own research code are readily available and they are experts in the focused
research topics of the group, these students can be supported efficiently. In
addition, students working at the code stated several positive effects: the work
at details of the implementation facilitates the insight into the methods and
algorithms, which is important for analyzing their properties, and it enhances
the skills in software design and management.

Of course, incorporating students into code development requires that there
is an easy use of the code and an easy access to basic routines, such as, in the
case of a finite element solver, assembling of matrices and solving linear systems
of equations. This issue touches already the next question: What should be
expected from an own research code?

Easy usage. In order to support students starting to work with the code, an
easy installation and basic testing setup are essential. There are even successful
attempts for designing complex codes that can be used for teaching students
in basic courses on numerical methods for partial differential equations, like
the so-called computational laboratory for Investigating Incompressible Flow
Problems (IFISS), see [16], which uses Matlab, and the open source software
FreeFem++ [19], which is based on an own language.

Modularity. The code should be modular. In particular, there should be a
general core and individual projects are attached to this core. Of course, the
projects use routines from the core. But using an own code, it seems to be easier
than with a large package, which is developed somewhere else, to incorporate
contributions from the projects into the core.

Stability. With respect to the required stability of the code, there are, in
our opinion, no fundamental differences between own research codes and large
packages.

Efficiency. However, there are different expectations with respect to the
efficiency. A research code should be flexible in many respects, since its main

4

tasks include supporting the development of numerical methods and results
from numerical analysis. For instance, in the code MooNMD/ParMooN, the
concept of mapped finite elements is implemented, see Section 3. In this way,
the code supports currently around 170 finite elements in two dimensions and 75
finite elements in three dimensions. Consequently, all routines are implemented
for the general situation. For certain finite elements, this might be less efficient
than using tailored routines. However, also for a research code, efficiency is a key
property that should not be neglected. For instance, the simulation of standard
academic benchmark problems for turbulent incompressible flows requires the
computation of large time intervals to collect temporal averages of statistics of
interest. In our opinion, an own research code should be reasonably efficient
on the available in-house hardware, which, in our case, are usually laptops,
compute servers, or small clusters.

3. Mapped Finite Element Spaces

The implementation of finite element methods in MooNMD/ParMooN
is based on a rather abstract definition of a finite element space and on the
mapping of each mesh cell to a reference cell.

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain and let T h be an admissible
triangulation of Ω consisting of compact, simply connected mesh cells. For
each mesh cell K, a local finite element space P (K) ⊂ Cs(K), s ≥ 0, is given
by some finite-dimensional space of functions spanned by a basis {φK,i}NK

i=1.

Furthermore, a set of local linear functionals {ΦK,i}NK
i=1 is given. The space

P (K) is unisolvent with respect to the functionals. Often, a so-called local
basis is chosen, i.e., a basis that satisfies ΦK,i(φK,j) = δij for i, j = 1, . . . , NK .
The local linear functionals might be values of the functions or their derivatives
in certain points, integrals on K or on faces of K.

Let Φ1, . . . ,ΦN : Cs(Ω) → R be given continuous linear functionals. The
restriction of each functional to Cs(K) defines the set of local functionals. The
union of all mesh cells Kj , for which there is a p ∈ P (Kj) with Φi(p) 6= 0, will
be denoted by ωi. Now, the global finite element space is defined as follows. A
function v(x) defined on Ω with v|K ∈ P (K) for all K ∈ T h is called continuous
with respect to the functional Φi if Φi(v|K1

) = Φi(v|K2
) for all K1,K2 ∈ ωi.

The space

S =
{
v ∈ L∞(Ω) : v|K ∈ P (K) and v is continuous with respect to

Φi, i = 1, . . . , N
}

is called finite element space. The global basis {φj}Nj=1 of S is defined by the
conditions φj ∈ S with Φi(φj) = δij for i, j = 1, . . . , N .

Using this definition for the implementation of a finite element space requires
1.) the definition of the local basis and linear functionals for each K,
2.) the implementation of a method that assures continuity with respect to

the functionals stated in the definition of S.

5

The first requirement can be achieved in two different ways, via a mapped
or an unmapped implementation. In the unmapped approach, the local basis
and linear functionals are defined directly on K. In contrast, mapped finite
elements are closely connected to a standard way of analyzing finite element
discretizations. This analysis consists of three steps:
• Map an arbitrary mesh cell K to a compact reference mesh cell K̂.
• Prove the desired properties on K̂, which is the core of the analysis.
• Map the reference mesh cell K̂ back to K to get the final result.

Hence, this approach has two main features:
• All considerations have to be done on K̂ only.
• Information about neighbor mesh cells ofK is neither available nor needed.

Mapped and unmapped finite element methods possess the same analytical
properties if the reference map FK : K̂ → K is affine for every mesh cell K of
the given triangulation, e.g., compare [14, Chap. 2.3]. In the case of non-affine
maps, occurring, e.g., for a triangulation consisting of arbitrary quadrilateral or
hexahedral mesh cells, mapped and unmapped finite element spaces might be
different. In MooNMD/ ParMooN, the concept of mapped finite elements is
implemented in the following way. Reference mesh cells are the unit simplices,
e.g., in two dimensions with the vertices (0, 0), (1, 0), (0, 1), and the unit cubes
K̂ = [−1, 1]d. Affine maps are available for all reference mesh cells. To account
for arbitrary quadrilaterals and hexahedra, d-linear maps are also implemented
for the unit cubes. Based on the different reference cells, local spaces on K̂,
linear functionals, and reference maps, MooNMD/ParMooN currently sup-
ports about 170 finite elements in two dimensions and 75 finite elements in three
dimensions.

The use of mapped finite element spaces essentially requires the implementa-
tion of finite elements on the reference cells. The quadrature rules for numerical
integration have to be implemented only on these cells, since the integrals on
physical cells are transformed to integrals on the reference cells. Note that the
same strategy works also for the handling of cell faces, which are mapped onto
lower-dimensional reference cells by corresponding reference maps.

Concerning requirement 2.) above, a finite element space S is represented
by a map F called d.o.f.-manager which maps local, i. e., within a cell, indices
of degrees of freedom (d.o.f.) to global ones. For this purpose define M(K) to
be the set of local d.o.f.s denoted by (K, i) on the cell K. Then define the set
of all local degrees of freedom

M :=
⋃

K∈T h

M(K).

The local-to-global map F now surjectively maps M to {1, . . . , N} such that
F((K, i)) = F((K ′, j)) whenever the local degrees of freedom (K, i) and (K ′, j)
belong to the same global degree of freedom. The number N ≤ |M | is then the
number of global degrees of freedom. In other words, F describes a partition P
of the set M (i. e., an equivalence relation) together with a global numbering.
Computing such a map F is done via Algorithm 1 in ParMooN.

6

Algorithm 1: Computation of F that maps local degrees of freedom to global ones. The input
is a mesh T h whose cells K are ordered by increasing integers id(K).

1 P ← finest partition of M

2 for all mesh cells K ∈ T h

3 determine M(K)
4 for all neighbors K′ of K with id(K) < id(K′)
5 determine M(K′)
6 find local partition Ploc of M(K) ∪M(K′)
7 P ← finest partition coarser than P and Ploc

8 assign increasing integers to each subset in the partition P

A B

C D

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

F

A B

C D

1 2

3 4

2 5

4 6

3 4

7 8

4 6

8 9

Figure 1: A 2× 2 mesh with Q1 finite elements. Left: Local degrees of freedom in each cell.
Right: Global degrees of freedom after the application of algorithm 1.

Initially the partition is set to be the finest partition of the set M , i. e., it
consists of disjoint single-element subsets, so that no two degrees of freedom in
M are identified yet. Step 6 in Algorithm 1 consists of finding identical degrees
of freedom in two neighboring cells K and K ′, i e., a local partition Ploc of
M(K)∪M(K ′). This step is done using the information of positions of degrees
of freedom in the reference cell and tailored mapper classes. Step 7 updates the
partition P such that all sets in the previous set P and in Ploc are contained
in one set in the updated partition P . Finally, to each set of the resulting
partition of M , a unique integer is assigned that will serve as (the index of) the
global degree of freedom. Steps 6 and 7 are explained in detail in the following
example.

Example 1: Consider a 2 × 2 mesh T h consisting of four cells A, B, C, and
D, each associated with a Q1-finite element, see Figure 1. The set of all local
degrees of freedom is therefore M = {(A, 1), . . . , (A, 4)} ∪ {(B, 1), . . . , (B, 4)} ∪
{(C, 1), . . . , (C, 4)} ∪ {(D, 1), . . . , (D, 4)}. Algorithm 1 modifies a partition P ,
which is initialized to be the finest partition of M . During the algorithm, the
condition id(K) < id(K ′) is true exactly four times and steps 6 and 7 are
depicted in Figure 2.

(i) K = A, K ′ = B: Identify (A, 2), (B, 1) (red) and (A, 4), (B, 3) (green).

7

A B C D

A B C D
(i)

A B C D
(ii)

A B C D
(iii)

A B C D
(iv)

Figure 2: The partition P of M during the four relevant steps in Algorithm 1. Each cell
corresponds to one local degree of freedom. Cells with the same color/pattern are considered
equal, only empty (white) cells are not equal to each other.

(ii) K = A, K ′ = C: Identify (A, 3), (C, 1) (blue) and (A, 4), (C, 2) (green).

(iii) K = B, K ′ = D: Identify (B, 3), (D, 1) (green) and (B, 4), (D, 2) (yellow).

(iv) K = C, K ′ = D: Identity (C, 2), (D, 1) (green) and (C, 4), (D, 3) (teal).

Now the set P defines a partition with nine sets, each describing one global
degree of freedom. The map F identifies M with its image space {1, . . . , 9}:

F(A, 1) = 1, F(A, 2) = F(B, 1) = 2,

F(A, 3) = F(C, 1) = 3, F(A, 4) = F(B, 3) = F(C, 2) = F(D, 1) = 4,

F(B, 2) = 5, F(B, 4) = F(D, 2) = 6,

F(C, 3) = 7, F(C, 4) = F(D, 3) = 8,

F(D, 4) = 9.

The image of F is illustrated in Figure 1 on the right.

The implementation of the concepts described in this section have been
adapted from MooNMD to ParMooN in a straightforward way. It is clear that
the definition of the local basis and functionals is completely local and therefore
not affected by the parallelization. The required continuity in the definition
of finite element spaces is performed in ParMooN on each process separately.
The computed results are visualized with the software package ParaView [1,
6] that does not require global numbers for the d.o.f.s. However, if needed,
global numbers for d.o.f.s across all processes can be assigned, compare [18].
Altogether, the used concepts turned out to be applicable in the same way for
the sequential as well as for the parallel code.

4. Parallel Data Structures in ParMooN

In this chapter, the main steps in our approach to parallelize a finite ele-
ment code are described. ParMooN supports a single program, multiple data
(SPMD) approach on parallelism using the Message Passing Interface (MPI)
standard [31]. It relies on a decomposition of the domain, which is the standard
for parallelized finite element codes. Decomposing the computational domain
and distributing it among the processes naturally leads to a parallelization of

8

1

1

1

1

1

1

1 1

1

2 2 2

2 2

2 2 2

2

0 0 0

0 0 0

0 0 0

0

0

0

3

3

3

3

3

3

3

3

3

3 3 32

1

1

1

1

1

1

1 1

1

0 0 0

0 0 0

0 0 0

1

1

1

2 2 2 3

On process 0:

Independent Cells

Dependent Cells

Halo Cells

On process 1:

Independent Cells

Dependent Cells

Halo Cells

Cells distributed among
four processes

{Own {Own

Figure 3: Different cell types due to a domain decomposition.

matrix-vector operations. The local aspect of the finite element method, which
is reflected in the sparsity of the arising matrices, limits the communication
overhead.

The main steps to be described in this section are domain decomposition,
d.o.f. classification, consistency levels for distributed vectors, and technical
details on the implementation of communication.

4.1. Decomposing the Domain - Own Cells and Halo Cells

In order to distribute the domain among the participating MPI processes,
ParMooN makes use of the METIS graph partitioning tool [30]. At program
start, all processes read the same geometry and perform the same initial domain
refinement steps. Upon reaching the first refinement level on which computa-
tions will be performed, the root process (process number 0) calls the METIS
library to compute a disjoint domain decomposition, i.e., to determine which
process is going to be in charge of which mesh cells.

Root then communicates the METIS output to the other processes. Each
process is informed about the cells it will be responsible for. These cells are
called own cells of the process. Each process then keeps only its own cells plus
those cells that share a boundary face, edge, or vertex with an own cell. In
domain decomposition methods these cells are commonly referred to as halo
cells. The sketches in Figure 3 clarify that expression – the halo cells form a
one-layer thick halo around the set of own cells. Each process P deletes all cells
which are neither own nor halo cells of P .

The own cells are further divided into dependent and independent cells.
Therefore one defines the interface as the set of those faces, edges and ver-
tices which are shared by own cells and halo cells. All own cells that contain a
piece of interface are called dependent cells, while the remaining own cells are
called independent cells.

9

The requirements on an efficient domain decomposition are twofold: the
computational load must be balanced, i.e., there should be a comparable number
of cells on each process, and the needed amount of communication must be small,
i.e., the interfaces should be as small as possible. Due to the deletion of cells,
each process stores only a part of the entire problem, but all processes execute
the same program code. This was initially referred to as the single program,
multiple data approach.

With its domain reduced to own cells plus halo cells, each process sets up a
finite element space and performs all further computations only on its part of
the domain.

4.2. Types of Degrees of Freedom

In the case of parallelized finite element methods, communication is neces-
sary to transmit values of d.o.f.s across processes. This section describes the
classification of d.o.f.s which is applied for this purpose.

A d.o.f. with index i is defined by the finite element basis function φi and
the associated global linear functional Φi. It is represented, e.g., by the i-th
entry in the vectors for the solution and the right-hand side. Each process is
responsible for the classification of its d.o.f.s. The class to which a certain d.o.f.
i belongs to depends on its location and on the classes of those d.o.f.s with
which it is coupled. That is to say, two degrees of freedom of a finite element in
d dimensions are said to be coupled if the supports of the corresponding basis
functions intersect on a set of non-zero d-dimensional measure. Note that, with
this definition, coupling only occurs for d.o.f.s that are located in the same mesh
cell. This notion of coupling transfers directly to a property of the finite element
matrix A: the coupling of d.o.f. i and j will (potentially) lead to non-zero entries
aij and aji, and the needed memory for these entries has to be allocated.

In the following, the classes handling d.o.f.s in ParMooN will be described
shortly. All d.o.f.s that are localized in a own cell known to process P are
called known d.o.f.s and their set will be denoted by DP

known (DP
∗ stands in the

following for the set of d.o.f.s on P of type ∗). This set is then divided into
masters and slaves, i.e.,

DP
known = DP

master

·∪DP
slave,

where
·∪ denotes the disjoint union. A d.o.f. i is said to be a master on P if P is

responsible for the value of i, in a way that will be clarified in Section 4.3. All
known d.o.f.s which are not master on P are called slaves. It is worth noting
that every d.o.f. in the entire problem is a master on exactly one process. In
contrast, a d.o.f. can be slave on more than one process.

An even finer classification of DP
master and DP

slave will be used in the following.
Note that the names for the classes correspond only loosely to the types of
cells they are located in. Care must be taken of those d.o.f.s that lie on the
intersection of different cell types. The classes are:

10

• Independent d.o.f., i.e., all d.o.f.s which lie in P ’s own cells but not in
its dependent cells. All P ’s independent d.o.f.s are set as masters, since
they are not even known to any other process. They only couple to other
masters of P .

• Dependent d.o.f., i.e., those d.o.f.s lying in P ’s dependent cells, but not
in its halo cells. Process P is the master of all its dependent d.o.f.s.
The notation is motivated by the fact that the dependent d.o.f.s are in a
vicinity to the domain interface and therefore possess a certain dependency
on other processes.

• Interface d.o.f., i.e., all d.o.f.s that lie on the intersection of dependent
cells and halo cells. These d.o.f.s are known to all adjacent processes
as interface d.o.f.s, too. Only one of these processes will take master
responsibility for each interface d.o.f. In particular, on a process P , one
distinguishes between master interface d.o.f.s (the interface d.o.f.s which
are master on P) and slave interface d.o.f.s (all others d.o.f.s, for each of
which a neighboring process takes master responsibility).

• Halo d.o.f., i.e., all d.o.f.s which lie in halo cells but not on the interface.
Since all of them are dependent d.o.f.s to neighboring processes, one of
these will take master responsibility for them. On P all halo d.o.f.s are
slaves.

Hence, the sets of masters and slaves can be divided as

DP
master = DP

independent

·∪DP
dependent

·∪DP
interface master ,

DP
slave = DP

interface slave

·∪DP
halo.

Moreover, it is convenient to further refine the d.o.f. classification in order
to reduce the communication overhead, see Section 4.3. To this aim, the halo
and the dependent d.o.f.s of P are further divided into Halo(α) and Halo(β),
and Dependent(α) and Dependent(β), respectively:
• Halo(α) and Halo(β) d.o.f.s.: The Halo(α) d.o.f.s are those that are cou-

pled with at least one (interface) master of P , while Halo(β) d.o.f.s are
coupled solely with other slaves, i.e., with interface slave d.o.f.s and other
halo d.o.f.s.

• Dependent(α) and Dependent(β) d.o.f.s.: Dependent(α) d.o.f.s are those
connected to at least one (interface) slave, while Dependent(β) d.o.f.s are
all those that are connected to masters only, i.e., to interface master, other
dependent, or independent d.o.f.s. Note that all Dependent(β) d.o.f.s of
process P will be Halo(β) on all other processes where they are known.
For Dependent(α) d.o.f.s the situation is not as simple. Each of them is
Halo(α) to at least one neighboring process, but can be Halo(β) to others.

In general, the d.o.f. classification depends on the finite element spaces
and the decomposition of the domain. Figure 4 sketches the different types for
two-dimensional Q2 finite elements at the interface between two processes.

11

process 1

Independent

Dependent(α)

Dependent(β)

Interface Master

Interface Slave

Halo(α)

Halo(β)

D.o.f. types:

I

M

S

Hα

Hβ

Dα

Dβ

process 0

M

M

M

S

S

I

I

I

I

I

I

I

I

I

I

Dβ

Dβ

Dα

Dα

Dα

Dβ

Dβ

Dα

Dα

Dα

Hα

Hα

Hα

Hα

Hα

Hα

Hα

Hα

Hα

Hα

I

I

I

I

I

I

I

I

I

I

Dα

Dα

Dα

Dα

Dα

Dα

Dα

Dα

Dα

Dα

S

S

S

M

M

Hβ

Hβ

Hα

Hα

Hα

Hβ

Hβ

Hα

Hα

Hα

Figure 4: Types of d.o.f.s at the interface for two-dimensional Q2 finite elements, from the
point of view of process 0 and process 1, where only the named d.o.f.s are known to the
respective process.

4.3. Consistency Levels

In parallel computations, values and information, e.g., finite element vectors,
can be stored either in a consistent way or in an additive way. In the case of a
finite element vector, which is of major interest here, consistent storage means
that all processes have the same and correct value at all respective d.o.f.s as in
the sequential environment. If the vector is present in additive storage, each
global value is the sum of the values over all processes where it is known. In
ParMooN, certain concepts of weakened consistent storage of finite element
vectors and matrices are used.

A finite element vector belongs to one of the following four levels of consis-
tency.
• Level-0-consistent. Consistency holds only with regard to master degrees

of freedom. Each master on each process holds the same value as it would
be in a sequential computation. The values of slaves are in an undefined
storage state. In the implementation of operations care must be taken not
to lose Level-0-consistency – all master values must be kept as they would
be in a sequential execution.

• Level-1-consistent. All masters and all interface slave d.o.f.s are stored
consistently. The values of all halo d.o.f.s are in an undefined storage
state.

• Level-2-consistent. Consistency is established for all but Halo(β) d.o.f.s.
The values of Halo(β) d.o.f.s. are in an undefined storage state while all
other values are consistent.

12

• Level-3-consistent. All d.o.f.s are stored consistently. This situation is
called the “real” consistent storage.

The main motivations behind introducing this classification are that different
operations require a different state of consistency of their input data and that
restoring a certain state of consistency requires a certain amount of communica-
tion – the lower the required state of consistency, the lower the required amount
of communication.

After the domain has been decomposed, each process P assembles a finite
element matrix on all its known cells. The use of halo cells assures that all
information to assemble the rows belonging to masters is available on P . The
finite element matrix assembled in this way will have the property that all rows
and columns which belong to masters are correctly assembled, i.e., consistent.
A matrix with this property is called Level-0-consistent, too. In fact, even
the rows belonging to interface slave d.o.f.s are correct, but this is only a by-
product. Hence, the finite element matrix is even Level-1-consistent. Note that
it is not possible to extend this concept to Level-2- or even Level-3-consistency
of a matrix. The reason is that some of the d.o.f.s which would be needed to
store the entire matrix row associated with a halo d.o.f. are not in DP

known.
Regarding operations, multiplication of a Level-0-consistent matrix with a

Level-2-consistent vector gives a Level-0-consistent vector. Level-3-consistency
of the input vector is not needed. If the input is Level-3-consistent, together
with the matrix being Level-1-consistent, the result will be Level-1-consistent.

Multiplying a vector with a constant scalar will maintain the current con-
sistency level, as will vector-vector addition. In the latter case, vectors with
different consistency level might be added and the result has the lower consis-
tency level. Scalar products require Level-0-consistency of both vectors, where
all slaves will be skipped, and a globally additive reduce operation is required
to get a consistent result.

Level-3-consistency of a finite element vector in ParMooN is only enforced
if operations require knowledge of the represented finite element function even
on the halo cells. Such operations include the matrix assembling with an input
finite element function, e.g., for the convective term of the Navier–Stokes equa-
tions, interpolating initial conditions in a time-dependent problem, or gradient
recovery by averaging gradients over a patch of mesh cells.

Enforcing certain consistency levels is a matter of communication. For each
d.o.f. which needs an update, the responsible master process communicates its
value to all processes where it is slave. These processes simply reset its value
to the received value. The required infrastructure for this communication is set
up just once for a certain finite element space and can be reused whenever an
update is necessary.

4.4. Organizing Communication

When setting up the communication structure, one has to find, for each
non-independent master i, all those slaves on other processes that are globally
identical to i. Certain master types match with certain slave types, see Ta-

13

Table 1: Master-slave relationship of d.o.f. types.

Relation (shorthand) Master type updates Slave type
Interface (IMS) Interface Master −→ Interface Slave
Dependent(α)–Halo(α) (DHα) Dependent(α) −→ Halo(α)
Dependent(β)–Halo(β) (DHβ) Dependent(β) −→ Halo(β)

ble 1, forming three distinct pairs of master-slave relations. To restore a certain
consistency level, at least one of these relations requires an update.

Note that it is generally not possible to immediately identify the global
number of a d.o.f., since each process creates finite element spaces only on its
known (own and halo) cells and it numbers its d.o.f.s locally, unaware of the
other processes. In ParMooN, the global identification of a d.o.f. is defined
according to the global number of the mesh cell in which the d.o.f. is located.
These global cell numbers are assigned to each cell before decomposing the
domain. Performing only uniform refinements after domain decomposition, such
a globally unique cell number can easily be given to children cells, too. Hence,
the global cell number and a consistent local numbering of the d.o.f.s within
each cell enable to identify each d.o.f. globally.

The communication structure is stored in a class called ParFEMapper, while
the communication itself is performed by a class named ParFECommunicator.
Setting up the ParFEMapper and ParFECommunicator requires some com-
munication itself, and a detailed description of this task is presented in [18]. In
what follows, only an overview of it is given, including a short description of
those data fields of ParFEMapper that are relevant when updating the d.o.f.s
of a certain master-slave relation, see Table 1. The interface (IMS) relation is
presented as an example. For the two other relations, the data fields are defined
in a similar way.

For the IMS update, the ParFECommunicator wraps a call to the MPI
function MPI Alltoallv, where every process may send a different set of val-
ues of the same type (MPI DOUBLE in this case) to each other process. To
control the MPI Alltoallv call, the ParFEMapper stores the following data,
where mpi size is the total number of processes and nInterfaceSlaves is
the number of interface slaves local to process P .
• int* sendBufIMS is the send buffer, filled with the values of all interface

masters, each one possibly appearing more than once, which will then be
sent to the other processes. Its total length equals the sum over all values
of sendCountsIMS.

• int* sendCountsIMS is an array of size mpi size. It lists how many
values P has to send to each process.

• int* sendDisplIMS is the send displacement, an array of size mpi size.
It stores where in the array sendBufIMS the message for a certain process
starts. In ParMooN there are neither overlaps nor gaps, so sendDis-

14

plIMS[i] holds the sum of sendCountsIMS[0] to sendCountsIMS[i-
1].

• int* recvBufIMS is the receive buffer, which will be filled with sent
values from the other processes in the communication routine. Its size
equals nInterfaceSlaves.

• int* recvCountsIMS is an array of size mpi size. It lists how many
values are to be received from each process. The sum of its values is
nInterfaceSlaves.

• int* recvDisplIMS is the receive displacement. Like for int* send-
DisplIMS there are neither gaps nor overlaps.

Besides the data, which is needed in the immediate control of MPI Alltoallv,
the ParFEMapper contains two arrays that allow to interpret the sent and
received data, by mapping between send- or receive buffer and the local d.o.f.s:
• int* sentDofIMS interprets sentDofIMS[i]= d as: The i-th place

in sendBufIMS has to be filled with the value of the local d.o.f. i.
• int* rcvdDofIMS interprets rcvdDofIMS[i]= d as: The i-th value

in recvBufIMS should update the local d.o.f. i.
To change a vector from Level-0-consistency to Level-1-consistency, only an

IMS update is required. For restoring Level-2-consistency, additionally a DHα
update is necessary, while Level-3-consistency requires even a DHβ update on
top.

5. The Parallel Geometric Multigrid Method

Geometric multigrid methods are an appealing option to be used as precon-
ditioners in problems where the necessary hierarchy of grids can be provided.
These methods have been used in the simulations performed with MooNMD in
particular for three-dimensional problems and for linear saddle point problems
arising in the linearization and discretization of equations modeling incompress-
ible flow problems [25].

The components of a geometric multigrid method are the following: func-
tion prolongation, defect restriction, function restriction, smoother, and coarse
grid solver. Concerning details of the algorithms and implementation of the
first three components in MooNMD/ParMooN, it will be referred to [28] for
details. It shall be only noted that multilevel methods are supported that allow
different finite element spaces on different levels of the multigrid hierarchy. In
particular, the so-called multiple discretization multilevel (MDML) method for
higher order discretizations can be used. This method possesses the higher order
discretization on the highest multigrid level and a low order discretization on
all coarser levels, where more multigrid levels might be defined than geometric
levels exist. The motivation for this approach is the experience that multigrid
methods often work very efficiently for low order discretizations. Numerical
studies of the efficiency of the MDML method can be found, e.g., in [24]. The
grid transfer operations are performed with a local operator, taking values only
on the mesh cells of the current level, proposed in [35], that can handle different

15

finite element spaces on different levels of the grid hierarchy, see [25, 28] for
details.

The implementation and parallelization of geometric multigrid methods re-
quire a considerable amount of work. The geometric data structures need to be
equipped with parent-child information and the grid transfer operations have
to be implemented. In the current version of ParMooN, each process is re-
sponsible for a part of the coarsest grid, compare Section 4.1, and refines this
part uniformly. Consequently, all parent-child information is available on the
process. More technical details on constructing the grid hierarchy can be found
in [18].

As usual in parallel geometric multigrid methods, block-Jacobi smoothers are
applied, where the blocks correspond to the master and interface slave degrees
of freedom of a process. Within the blocks, the actual smoother, like SSOR
or the Vanka smoother, is used. After each smoothing iteration, the values at
the interface are updated by computing their arithmetic average. As already
mentioned above, the grid transfer operators need as potential input all values
that are connected to a mesh cell. Since it is sufficient to perform the grid
transfer only on own cells, the input vectors for the grid transfer have to be
Level-1-consistent.

6. Numerical Studies

The performed numerical studies are a first step of assessing the efficiency of
the parallelized geometric multigrid method in comparison with parallel solvers
that can be used by linking an external library to the code. The underlying
question is whether it was worthwhile to perform the complex parallelization
of this method. We think that this question arises also in other groups that
maintain an in-house research code.

In this paper, the numerical studies concentrate on the standard multigrid
method (same number of geometric and multigrid levels, same discretization on
each level) since we think that this method is of most interest for the community.
It was used as preconditioner in the flexible GMRES (FGMRES) method [33].
The system on the coarsest grid was solved with a sparse direct solver. Moreover,
the V-cycle was applied because of its better efficiency on parallel computers
compared with the more stable F- and W-cycle (the F-cycle is our standard
approach in sequential simulations). The V-cycle approaches less often coarser
grids, which possess an unfavorable ratio of computational work and necessary
communications, than the other cycles.

The efficiency of the geometric multigrid preconditioner has been compared
with the efficiency of the sparse direct solver MUMPS [3, 4] and the FGMRES
method preconditioned with SSOR (for scalar problems), the BoomerAMG [21]
(for scalar problems), or the LSC preconditioner [17] (for linear saddle point
problems). These solvers were used as they are provided in the library PETSc,
version 3.7.2, [7, 8, 9]. The restart parameter in FGMRES was set to be 50.

The numerical studies were performed on a hardware platform that can be
usually found in universities and academic institutes, in our case, on compute

16

Figure 5: Example 2, numerical solution (left) and initial grid (level 0, right). The color
bar shows that the numerical solution computed with the SUPG method possesses under-
and overshoots. These spurious oscillations occur in particular in a vicinity of the cylinder,
compare [27, Fig. 14] for the two-dimensional situation.

servers HP BL460c Gen9 2xXeon, Fourteen-Core 2600MHz. We think that the
performance on a hardware platform that is widely available is of interest for
the community. The results will consider only the computing times for the
different solvers of the linear systems of equations. We could observe some
variations of these times for the same code and input parameters but different
runs. To reduce the influence of these variations, all simulations were performed
five times, the fastest and the slowest computing time were neglected and the
average of the remaining three times is presented below.

Example 2: Steady-state convection-diffusion equation. This example is a
three-dimensional extension of a benchmark problem for two-dimensional convection-
diffusion equations – the so-called Hemker example [5, 20]. The domain is de-
fined by

Ω =
{
{(−3, 9)× (−3, 3)} \

{
(x, y) : x2 + y2 ≤ 1

}}
× (0, 6)

and the equation is given by

−ε∆u+ b · ∇u = 0 in Ω,

with ε = 10−6 and b = (1, 0, 0)T . Dirichlet boundary conditions u = 0 were
prescribed at the inlet plane {x = −3} and u = 1 at the cylinder. At all other
boundaries, homogeneous Neumann boundary conditions were imposed. This
example models, e.g., the heat transport from the cylinder. The solution exhibits
boundary layers at the cylinder and internal layers downwind the cylinder, see
Figure 5.

It is well known that stabilized discretizations have to be employed in the
presence of dominant convection. In the numerical studies, the popular streamline-
upwind Petrov–Galerkin (SUPG) method [12, 22] was used with the standard
parameter choice given in [26, Eqs. (5) – (7)]. Simulations were performed with
Q1 finite elements. The initial grid is depicted in Figure 5.

17

2 4 8 12 16 20 24

processors

0

500

1000

1500

2000

2500

3000

3500
so
lv
e
r
ti
m
e
 i
n
 s
e
c.

FGMRES + SSOR (PETSc)

FGMRES + AMG (PETSc)

FGMRES + MG (ParMooN)

MUMPS

2 4 8 12 16 20 24

processors

10

20

30

40

50

60

70

80

90

so
lv
e
r
ti
m
e
 i
n
 s
e
c.

FGMRES + SSOR (PETSc)

FGMRES + AMG (PETSc)

FGMRES + MG (ParMooN)

Figure 6: Example 2, solver times on refinement level 4.

2 4 8 12 16 20 24

processors

100

200

300

400

500

600

so
lv
e
r
ti
m
e
 i
n
 s
e
c.

FGMRES + SSOR (PETSc)

FGMRES + MG (ParMooN)

Figure 7: Example 2, solver times on refinement level 5. PETSc FGMRES with BoomerAMG
converged only with two processors (1519 sec.).

Computational results are presented in Figures 6 and 7 for refinement lev-
els 4 (1 297 375 d.o.f.s) and 5 (10 388 032 d.o.f.s). The PETSc solvers were
called with the flags -ksp type fgmres -pc type sor and -ksp type fgmres

-pc type hypre -pc hypre type boomeramg, respectively. For the geometric
multigrid preconditioner, the V(2,2)-cycle was used and the overrelaxation pa-
rameter of the SSOR smoother within the block-Jacobi method was set to be
ω = 1. This approach is certainly not optimal since with an increasing number
of processes the number of blocks of the block-Jacobi method increases, which
in turn makes it advantageous to apply some damping, i.e., a somewhat smaller
overrelaxation parameter. In order not to increase the complexity of the numer-
ical studies, we decided to fix a constant overrelaxation parameter that worked
reasonably well for the whole range of processor numbers which was used. The
iterative solvers were stopped if the Euclidean norm of the residual vector was
less than 10−10. Parameters like the stopping criterion, the overrelaxation fac-
tor, and the restart parameter were the same in all iterative methods.

18

It can be seen in Figure 6 that the sparse direct solver performed less effi-
cient by around two orders of magnitude than the other solvers. This behav-
ior was observed for all studied scalar problems and no further results with
this solver for scalar problems will be presented. Among the iterative solvers,
PETSc FGMRES with SSOR preconditioner and ParMooN FGMRES with
geometric multigrid preconditioner (MG) performed notably more efficient than
PETSc FGMRES with BoomerAMG. The latter solver did not even converge
on the finer grid in the simulations on more than two processors. With re-
spect to the computing times and the stability, similar results were obtained by
applying two V(1,1) BoomerAMG cycles (-pc hypre boomeramg max iter 2).
With the V(2,2) cycle (-pc hypre boomeramg grid sweeps all 2), the solver
did not converge. FGMRES with SSOR required considerably more iterations
than ParMooN FGMRES with MG: around 125 vs. 25 on level 4 and 320
vs. 45 on level 5. A notable decrease of the computing time for the iterative
solvers on the coarser grid can be observed only until 8 processors. On this grid,
PETSc FGMRES with SSOR was a little bit faster than ParMooN FGMRES
with MG. On the finer grid, a decrease of the computing times occurred until
16 processors and ParMooN FGMRES with MG was often a little bit more
efficient.

Example 3: Time-dependent convection-diffusion-reaction equation. This ex-
ample can be found also in the literature, e.g., in [29], and it models a typical
situation which is encountered in applications. A species enters the domain
Ω = (0, 1)3 at the inlet Γin = {0} × (5/8, 6/8)× (5/8, 6/8) and it is transported
through the domain to the outlet Γout = {1} × (3/8, 4/8) × (4/8, 5/8). In ad-
dition, the species is diffused somewhat and in the subregion where the species
is transported, also a reaction occurs. The ratio of diffusion and convection is
typical for many applications.

The underlying model is given by

∂tu− ε∆u+ b · ∇u+ cu = 0 in (0, 3)× Ω,

u = uin in (0, 3)× Γin,

ε
∂u

∂n
= 0 on (0, 3)× ΓN,

u = 0 on (0, 3)× (∂Ω \ (ΓN ∪ Γin)) ,

u(0, ·) = u0 in Ω.

The diffusion parameter is given by ε = 10−6, the convection field is defined by
b = (1,−1/4,−1/8)T , and the reaction by

c(x) =

{
1 if dist(x, g) ≤ 0.1,

0 else,

where g is the line through the center of the inlet and the center of the outlet
and dist(x, g) denotes the Euclidean distance of the point x to the line g. The

19

2 4 8 12 16 20 24

processors

500

1000

1500

2000
so
lv
e
r
ti
m
e
 i
n
 s
e
c.

FGMRES + SSOR (PETSc)

FGMRES + AMG (PETSc)

FGMRES + MG (ParMooN)

2 4 8 12 16 20 24

processors

40

60

80

100

120

140

so
lv
e
r
ti
m
e
 i
n
 s
e
c.

FGMRES + SSOR (PETSc)

FGMRES + MG (ParMooN)

Figure 8: Example 3, solver times on the 643 cubed mesh.

boundary condition at the inlet is prescribed by

uin =

sin(πt/2) if t ∈ [0, 1],

1 if t ∈ (1, 2],

sin(π(t− 1)/2) if t ∈ (2, 3].

The initial condition is set to be u0(x) = 0. Initially, in the time interval [0, 1],
the inflow increases and the injected species is transported towards the outlet.
Then, there is a constant inflow in the time interval (1, 2] and the species reaches
the outlet. At t = 2, there is almost a steady-state solution. Finally, the inflow
decreases in the time interval (2, 3], compare [29].

The SUPG stabilization of the Q1 finite element method was used and as
temporal discretization, the Crank–Nicolson scheme with the equidistant time
step ∆t = 10−2 was applied. Simulations were performed on grids with 643 and
1283 cubic mesh cells. The coarsest grid for the geometric multigrid method
possessed 43 cubic mesh cells. The SSOR method was applied with the over-
relaxation parameter ω = 1.25. As initial guess for the iterative solvers, the
solution from the previous discrete time was used. The availability of a good
initial guess and the dominance of the system matrix by the mass matrix are
the main differences to the steady-state case.

Computing times for the iterative solvers are presented in Figures 8 and 9.
On the coarser grid, a speed-up can be observed only until 8 processors and
on the finer grid until 12 to 16 processors. With respect to the efficiency of
the iterative solvers, the same observations can be made as in the steady-state
Example 2. Using the V(2,2) cycle or two V(1,1) cycles in the BoomerAMG
gave the same order of computing times as the presented times of the V(1,1)
cycle. The same statement holds true for the number of iterations per time step,
e.g., on the finer grid there were up to 45 for PETSc FGMRES with SSOR and
around 1-3 for PETSc FGMRES with BoomerAMG and ParMooN FGMRES
with MG.

Example 4: Steady-state incompressible Navier–Stokes equations. This exam-

20

2 4 8 12 16 20 24

processors

5000

10000

15000

20000

so
lv
e
r
ti
m
e
 i
n
 s
e
c.

FGMRES + SSOR (PETSc)

FGMRES + AMG (PETSc)

FGMRES + MG (ParMooN)

2 4 8 12 16 20 24

processors

400

600

800

1000

1200

1400

1600

so
lv
e
r
ti
m
e
 i
n
 s
e
c.

FGMRES + SSOR (PETSc)

FGMRES + MG (ParMooN)

Figure 9: Example 3, solver times on the 1283 cubed mesh.

ple considers the benchmark problem of the flow around a cylinder defined in
[34]. The steady-state Navier–Stokes equations are given by

−ν∆u + (u · ∇)u +∇p = 0 in Ω,
∇ · u = 0 in Ω,

where u is the velocity, p the pressure, ν = 10−3 is the dimensionless viscosity,
and Ω is the domain given by

Ω =
{

(0, 2.55)× (0, 0.41) \
{

(x− 0.5)2 + (y − 0.2)2 ≤ 0.052
}}
× (0, 0.41).

At the inlet x = 0, the velocity was prescribed by

u =

(
7.2

0.414
yz(0.41− y)(0.41− z), 0, 0

)T

,

at the outlet x = 2.55, the do-nothing boundary condition was imposed and on
all other boundaries, the no-slip boundary condition was used. The flow field
exhibits vortices behind the cylinder.

The Navier–Stokes equations were discretized with the popular Q2/P
disc
1

(continuous piecewise triquadratic velocity, discontinuous piecewise linear pres-
sure) pair of finite element spaces on a hexahedral grid, see Figure 10 for the
initial grid. Simulations were performed on level 2 (776 160 velocity d.o.f.s,
122 800 pressure d.o.f.s) and level 3 (6 052 800 velocity d.o.f.s, 983 040 pressure
d.o.f.s). The nonlinear problem was linearized with a Picard iteration (fixed
point iteration). In each step of this iteration, the iterative solvers reduced the
Euclidean norm of the residual vector by at least the factor 10 before performing
the next Picard iteration. The Picard iteration was stopped if the Euclidean
norm of the residual vector was less than 10−8.

In the geometric multigrid preconditioner, the so-called mesh-cell oriented
Vanka smoother was used, e.g., see [24, 25]. This smoother is a block Gauss–
Seidel method that solves a local system in each mesh cell. The multigrid
preconditioner was applied with the V(2,2)-cycle.

21

Figure 10: Example 4, initial grid (level 0).

2 4 8 12 16 20 24

processors

0

10000

20000

30000

40000

50000

so
lv
e
r
ti
m
e
 i
n
 s
e
c.

FGMRES + LSC (PETSc)

FGMRES + MG (ParMooN)

MUMPS

2 4 8 12 16 20 24

processors

50

100

150

200

250

300

350

so
lv
e
r
ti
m
e
 i
n
 s
e
c.

FGMRES + MG (ParMooN)

Figure 11: Example 4, solver times on refinement level 2.

The linearization and used discretization of the incompressible Navier–Stokes
equations require the solution of a linear saddle point problem in each Picard
iteration. We tried several options for calling an iterative solver from PETSc
for such problems, as well based on the coupled system as on Schur complement
approaches. Only with a Schur complement approach and the least square
commutator (LSC) preconditioner (-ksp type fgmres -pc type fieldsplit

-pc fieldsplit type schur -pc fieldsplit schur factorization type upper

-fieldsplit 1 pc type lsc -fieldsplit 1 lsc pc type lu -fieldsplit 0 ksp type

preonly -fieldsplit 0 pc type lu), reasonable computing times could be
obtained, at least for the coarser grid, see Figure 11. Like for the scalar prob-
lems, the sparse direct solver performed by far the least efficient. The solver
with the geometric multigrid method was more efficient by around a factor of
20 compared with the iterative solver called from PETSc. For the finer grid,
the numerical studies were restricted to the geometric multigrid preconditioner,
see Figure 12. It can be observed that increasing the number of processors from
2 to 20 reduces the computing time by a factor of around 6.6.

22

2 4 8 12 16 20 24

processors

500

1000

1500

2000
so

lv
e
r
ti
m

e
 i
n
 s

e
c.

FGMRES + MG (ParMooN)

2 4 8 12 16 20 24

processors

0.5

0.6

0.7

0.8

0.9

1.0

sc
a
lin

g

Figure 12: Example 4, solver times and scaling on refinement level 3. The scaling is computed
by 2 · t2/(p · tp), where p is the number of processors and tp the corresponding time from the
left picture.

7. Summary

This paper presented some aspects of the remanufacturing of an existing re-
search code, in particular with respect to its parallelization. All distinct features
of the predecessor code could be incorporated in a straightforward way into the
modernized code ParMooN. The efficiency of the most complex method in the
parallel implementation, the geometric multigrid method, was assessed against
some parallel solvers that are available in external libraries. The major con-
clusions of this assessment are twofold. For scalar convection-diffusion-reaction
equations, the geometric multigrid preconditioner was similarly efficient as an
iterative solver from the PETSc library. The larger the problems became, the
better was its efficiency in comparison with the external solver. For linear saddle
point problems, arising in the simulation of the incompressible Navier–Stokes
equations, we could not find so far any external solver that proved to be nearly
as efficient as the geometric multigrid preconditioner.

On the one hand, we keep on working at improving the efficiency of the ge-
ometric multigrid preconditioner. On the other hand, we continue to assess ex-
ternal libraries with respect to efficient solvers for linear saddle point problems,
which can be used in situations where a multigrid hierarchy is not available. In
addition, an assessment as presented in this paper on another widely available
hardware platform, namely small clusters of processors, is planned.

References

[1] James Ahrens, Berk Geveci, and Charles Law. ParaView: An End-User
Tool for Large Data Visualization. Visualization Handbook. Elsevier, 2005.

[2] Martin Alns, Jan Blechta, Johan Hake, August Johansson, Benjamin
Kehlet, Anders Logg, Chris Richardson, Johannes Ring, Marie Rognes,

23

and Garth Wells. The fenics project version 1.5. Archive of Numerical
Software, 3(100), 2015.

[3] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster.
A fully asynchronous multifrontal solver using distributed dynamic schedul-
ing. SIAM J. Matrix Anal. Appl., 23(1):15–41 (electronic), 2001.

[4] Patrick R. Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, and
Stéphane Pralet. Hybrid scheduling for the parallel solution of linear sys-
tems. Parallel Comput., 32(2):136–156, 2006.

[5] Matthias Augustin, Alfonso Caiazzo, André Fiebach, Jürgen Fuhrmann,
Volker John, Alexander Linke, and Rudolf Umla. An assessment of dis-
cretizations for convection-dominated convection-diffusion equations. Com-
put. Methods Appl. Mech. Engrg., 200(47-48):3395–3409, 2011.

[6] Utkarsh Ayachit. The ParaView Guide: A Parallel Visualization Applica-
tion. Kitware, Inc., 2015.

[7] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D.
Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Karl
Rupp, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang.
PETSc Web page. http://www.mcs.anl.gov/petsc, 2016.

[8] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D.
Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Karl
Rupp, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang.
PETSc users manual. Technical Report ANL-95/11 - Revision 3.7, Argonne
National Laboratory, 2016.

[9] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F.
Smith. Efficient management of parallelism in object oriented numerical
software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors,
Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser
Press, 1997.

[10] W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kron-
bichler, M. Maier, B. Turcksin, and D. Wells. The deal.II library, version
8.4. Journal of Numerical Mathematics, 24, 2016.

[11] Markus Blatt, Ansgar Burchardt, Andreas Dedner, Christian Engwer, Jor-
rit Fahlke, Bernd Flemisch, Christoph Gersbacher, Carsten Gräser, Felix
Gruber, Christoph Grüninger, Dominic Kempf, Robert Klöfkorn, Tobias
Malkmus, Steffen Müthing, Martin Nolte, Marian Piatkowski, and Oliver
Sander. The distributed and unified numerics environment, version 2.4.
Archive of Numerical Software, 4(100):13–29, 2016.

24

http://www.mcs.anl.gov/petsc

[12] Alexander N. Brooks and Thomas J. R. Hughes. Streamline
upwind/Petrov-Galerkin formulations for convection dominated flows with
particular emphasis on the incompressible Navier-Stokes equations. Com-
put. Methods Appl. Mech. Engrg., 32(1-3):199–259, 1982.

[13] Alfonso Caiazzo, Volker John, and Ulrich Wilbrandt. On classical itera-
tive subdomain methods for the Stokes-Darcy problem. Comput. Geosci.,
18(5):711–728, 2014.

[14] Philippe G. Ciarlet. The finite element method for elliptic problems. North-
Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its
Applications, Vol. 4.

[15] Andreas Dedner, Robert Klöfkorn, Martin Nolte, and Mario Ohlberger. A
generic interface for parallel and adaptive discretization schemes: abstrac-
tion principles and the DUNE-FEM module. Computing, 90(3-4):165–196,
2010.

[16] Howard C. Elman, Alison Ramage, and David J. Silvester. IFISS: a compu-
tational laboratory for investigating incompressible flow problems. SIAM
Rev., 56(2):261–273, 2014.

[17] Howard C. Elman, David J. Silvester, and Andrew J. Wathen. Finite
elements and fast iterative solvers: with applications in incompressible fluid
dynamics. Numerical Mathematics and Scientific Computation. Oxford
University Press, Oxford, second edition, 2014.

[18] S. Ganesan, V. John, G. Matthies, R. Meesala, S. Abdus, and U. Wilbrandt.
An object oriented parallel finite element scheme for computing pdes: De-
sign and implementation. In IEEE 23rd International Conference on High
Performance Computing Workshops (HiPCW) Hyderabad, pages 106–115.
IEEE, 2016.

[19] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–
265, 2012.

[20] P. W. Hemker. A singularly perturbed model problem for numerical com-
putation. J. Comput. Appl. Math., 76(1-2):277–285, 1996.

[21] Van Emden Henson and Ulrike Meier Yang. BoomerAMG: a parallel alge-
braic multigrid solver and preconditioner. Appl. Numer. Math., 41(1):155–
177, 2002.

[22] T. J. R. Hughes and A. Brooks. A multidimensional upwind scheme with
no crosswind diffusion. In Finite element methods for convection dominated
flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York,
1979), volume 34 of AMD, pages 19–35. Amer. Soc. Mech. Engrs. (ASME),
New York, 1979.

25

[23] S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan,
and L. Tobiska. Quantitative benchmark computations of two-dimensional
bubble dynamics. Internat. J. Numer. Methods Fluids, 60(11):1259–1288,
2009.

[24] Volker John. Higher order finite element methods and multigrid solvers
in a benchmark problem for the 3D Navier-Stokes equations. Internat. J.
Numer. Methods Fluids, 40(6):775–798, 2002.

[25] Volker John. Finite Element Methods for Incompressible Flow Problems,
volume 51 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, 2016.

[26] Volker John and Petr Knobloch. On spurious oscillations at layers di-
minishing (SOLD) methods for convection-diffusion equations. I. A review.
Comput. Methods Appl. Mech. Engrg., 196(17-20):2197–2215, 2007.

[27] Volker John, Petr Knobloch, and Simona B. Savescu. A posteriori op-
timization of parameters in stabilized methods for convection-diffusion
problems—Part I. Comput. Methods Appl. Mech. Engrg., 200(41-44):2916–
2929, 2011.

[28] Volker John and Gunar Matthies. MooNMD—a program package based on
mapped finite element methods. Comput. Vis. Sci., 6(2-3):163–169, 2004.

[29] Volker John and Julia Novo. On (essentially) non-oscillatory discretiza-
tions of evolutionary convection-diffusion equations. J. Comput. Phys.,
231(4):1570–1586, 2012.

[30] George Karypis and Vipin Kumar. MeTis: Unstructured Graph Partition-
ing and Sparse Matrix Ordering System, Version 4.0. http://www.cs.umn.
edu/~metis, 2009.

[31] MPI-Forum. Mpi: A message-passing interface standard, version 3.1. Tech-
nical report, University of Tennessee, Knoxville, Tennessee, June 2015.

[32] OpenFOAM. OpenFOAM Web page. http://openfoam.org/, 2016.

[33] Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm.
SIAM J. Sci. Comput., 14(2):461–469, 1993.

[34] M. Schäfer and S. Turek. Benchmark computations of laminar flow around
a cylinder. (With support by F. Durst, E. Krause and R. Rannacher). In
Flow simulation with high-performance computers II. DFG priority research
programme results 1993 - 1995, pages 547–566. Wiesbaden: Vieweg, 1996.

[35] F. Schieweck. A general transfer operator for arbitrary finite element
spaces. Preprint 00-25, Fakultät für Mathematik, Otto-von-Guericke-
Universität Magdeburg, 2000.

26

http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://openfoam.org/

[36] Ellen Schmeyer, Róbert Bordás, Dominique Thévenin, and Volker John.
Numerical simulations and measurements of a droplet size distribution in
a turbulent vortex street. Meteorol. Z., 23(4):387–396, 09 2014.

[37] Scopus. https://www.scopus.com/record/display.uri?src=s&origin=cto
&ctoId=CTODS 701493876&stateKey=CTOF 701493878&eid=2-s2.0-
7444244347. accessed 13.09.2016.

27

	Introduction
	Some Considerations about In-House Research Codes
	Mapped Finite Element Spaces
	Parallel Data Structures in ParMooN
	Decomposing the Domain - Own Cells and Halo Cells
	Types of Degrees of Freedom
	Consistency Levels
	Organizing Communication

	The Parallel Geometric Multigrid Method
	Numerical Studies
	Summary

