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Abstract

This paper studies non inf-sup stable finite element approximations to the evolutionary
Navier–Stokes equations. Several local projection stabilization (LPS) methods correspond-
ing to different stabilization terms are analyzed, thereby separately studying the effects of the
different stabilization terms. Error estimates are derived in which the constants are indepen-
dent of inverse powers of the viscosity. For one of the methods, using velocity and pressure
finite elements of degree l, it will be proved that the velocity error in L∞(0, T ;L2(Ω)) decays
with rate l + 1/2 in the case that ν ≤ h, with ν being the dimensionless viscosity and h
the mesh width. In the analysis of another method, it was observed that the convective
term can be bounded in an optimal way with the LPS stabilization of the pressure gradient.
Numerical studies confirm the analytical results.

1 Introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with polyhedral and Lipschitz boundary ∂Ω.
The incompressible Navier–Stokes equations model the conservation of linear momentum
and the conservation of mass (continuity equation) by

∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω, (1)

u(0, ·) = u0(·) in Ω,

where u is the velocity field, p the kinematic pressure, ν > 0 the kinematic viscosity coef-
ficient, u0 a given initial velocity, and f represents the external body accelerations acting
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on the fluid. The Navier–Stokes equations (1) must be complemented with boundary con-
ditions. Although different choices are possible, for simplicity, only homogeneous Dirichlet
boundary conditions u = 0 on ∂Ω will be considered in the present paper.

This paper studies approximations to the Navier–Stokes equations (1) with non inf-sup
stable mixed finite elements in space and the implicit Euler method in time (the error
analysis with the Crank-Nicolson scheme can be found in the appendix). We use the so-
called local projection stabilization (LPS) method to stabilize the pressure (since non inf-sup
stable elements are used) plus other stabilization terms which aim at allowing to derive error
estimates where the constants do not depend explicitly on inverse powers of the viscosity
but only implicitly through norms of the solution of (1). This kind of bounds are called
semi-robust or quasi-robust in the literature, see for example [?]. An alternative to LPS is
the continuous interior penalty (CIP) stabilization, for which in [?] semi-robust error bounds
are derived.

In the literature, one can find already investigations of LPS methods for approximating
the solution of (1). A method with LPS stabilization of the convective term and a standard
grad-div stabilization term was analyzed in [?]. Assuming a certain compatibility between
the local velocity space and the projection space, an error bound for the continuous-in-time
situation was derived whose constant does not depend on inverse powers of ν. One-level
LPS methods with enriched velocity spaces and carefully chosen pressure spaces satisfy this
compatibility condition. The same type of method was studied in [?] for the Oberbeck-
Boussinesq model. In [?], the authors consider non inf-sup stable mixed finite elements
with LPS stabilization. The so called term-by-term stabilization is applied, see [?]. This
method is a particular type of a LPS method that is based on continuous functions, it does
not need enriched finite element spaces, and an interpolation operator replaces the standard
projection operator of the classical LPS methods. As in the present paper, a fully discrete
scheme with the implicit Euler method as time integrator is considered. A fully discrete LPS
method for inf-sup stable pairs of finite element spaces and a pressure-projection scheme is
analyzed in [?].

Our analysis starts as in [?], but there are several major differences in the formulation of
the discrete problem as well as in the obtained results. First of all, as an important result
which was not achieved in [?], we are able to derive error bounds in which the constants
do not depend on inverse powers of the diffusion parameter. Also, contrary to [?], where
only one method is analyzed (with LPS stabilizations of the pressure, the divergence, and
the convective term), we consider several methods, because our aim is to study separately
the effects of the different stabilization terms. For all of them, error bounds with con-
stants independent of inverse powers of the viscosity parameter are achieved combining LPS
stabilization for the pressure with only either grad-div stabilization or velocity gradient sta-
bilization so that the number of stabilization terms (two in all the methods) is the smallest
possible that allows us to prove bounds independent of ν−1. Also, in contrast to [?], only
moderate assumptions on the smallness of the time step ∆t are needed, like ∆t ≤ Chd/2 in
the error analysis of the pressure, while in [?] the smallness assumption on the mesh width
Ch ≤ ∆t is required.

Section 3 considers a method with LPS stabilization for the pressure and a global grad-
div stabilization term. The global grad-div stabilization term was proposed to reduce the
violation of mass conservation of finite element methods, but there are already investigations
which show that this term also stabilizes dominant convection. In [?], semi-robust error
estimates are proved for the standard Galerkin method plus grad-div stabilization in the case
of inf-sup stable elements, both for the continuous-in-time case and for the fully discrete case.
Paper [?] considers both, the regular case and the situation in which nonlocal compatibility
conditions for the solution are not assumed. The results of Section 3 can be seen as an
extension of some of the results from [?] to the case of non inf-sup stable elements and also
as an improvement of the results from [?]. Error bounds of order O(hs) are obtained for a
sufficiently smooth solution, where 2 ≤ s ≤ l, s being the regularity index of the solution and
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l being the degree of the polynomials used. The error is bounded in a norm that includes
the L2 norm of the velocity at the final time step and the L2 norm of the divergence. This
rate of convergence is the same as obtained in [?] for a similar norm and also the same as
proved in [?]. However, as we pointed out above, in [?] more terms are included in the
method, the bound depends explicitly on ν−1, and the restriction Ch ≤ ∆t is assumed. For
the error bound of the pressure, we get the optimal order O(hs). However, following the
ideas of [?], we are able to bound the error of the L2 norm of a discrete in time primitive
of the pressure instead of the stronger discrete in time L2 norm of the pressure. Although
Section 3 studies the term-by-term stabilization, the analysis also holds for the standard
one-level LPS method, see [?, ?], with slight modifications.

In Section 4, we analyze a method with LPS stabilization for the pressure and LPS
stabilization with control of the fluctuations of the velocity gradient. For this section, the
use of term-by-term stabilization is necessary since in the error analysis we need to have
the same polynomial spaces for the velocity and the pressure. A key ingredient in the error
analysis is the application of [?, Theorem 2.2]. This result was already applied in the error
analysis in [?], where the authors proved semi-robust error bounds for the evolutionary
Navier–Stokes equations and a continuous interior penalty (CIP) method in space assuming
enough regularity of the solution. For the method studied in Section 4, the convective term
is estimated in an optimal way (with constants independent of inverse powers of the diffusion
parameter) with the help of the LPS stabilization of the gradient of the pressure. This LPS
term was introduced in [?] to account for the violation of the discrete inf-sup condition by
the used pair of finite elements.

Following the analysis of the previous section, Section 5 presents analogous error bounds
for a method with both LPS stabilization for the pressure and the divergence.

For the methods analyzed in Sections 3 – 5, error estimates with constants independent
of inverse powers of the diffusion parameter are derived with the help of stabilization terms
that were not proposed for stabilizing dominant convection but to account for the non-
satisfaction of the discrete inf-sup condition or the violation of the mass conservation (note
that the LPS term of the velocity gradient of the method from Section 4 was not utilized for
estimating the convective term). The deeper reasons for this behavior are not yet understood
and their explanation is formulated as an open problem in [?].

In Section 6, it is shown that the rate of decay of the velocity error in the situation
ν ≤ h can be improved for the method from Section 4 by choosing different values of the
stabilization parameters and increasing the regularity assumption for the pressure. Con-
cretely, a bound of order O(hs+1/2) is proved for an error which contains the L2 error of the
velocity. This is the same order that was obtained for the CIP method in [?] under the same
regularity assumptions. We are not aware of any other paper where this order is proved and
it is still an open question whether the optimal expected order O(hs+1) for the L2 error of
the velocity can be achieved or not, see [?].

Finally, Section 7 presents numerical studies that confirm the analytical results.

2 Preliminaries and notation

Throughout the paper, W s,p(D) will denote the Sobolev space of real-valued functions
defined on the domain D ⊂ Rd with distributional derivatives of order up to s in Lp(D).
These spaces are endowed with the usual norm denoted by ‖ · ‖Ws,p(D). If s is not a positive
integer, W s,p(D) is defined by interpolation [?]. In the case s = 0 it is W 0,p(D) = Lp(D).
As it is standard, W s,p(D)d will be endowed with the product norm and, since no confusion
can arise, it will be denoted again by ‖ · ‖Ws,p(D). The case p = 2 will be distinguished by
using Hs(D) to denote the space W s,2(D). The space H1

0 (D) is the closure in H1(D) of
the set of infinitely differentiable functions with compact support in D. For simplicity, ‖ · ‖s
(resp. | · |s) is used to denote the norm (resp. semi norm) both in Hs(Ω) or Hs(Ω)d. The
exact meaning will be clear by the context. The inner product of L2(Ω) or L2(Ω)d will be
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denoted by (·, ·) and the corresponding norm by ‖ · ‖0 so that in general D is skipped in the
notation for the norm when D = Ω. For vector-valued functions, the same conventions will
be used as before. The norm of the dual space H−1(Ω) of H1

0 (Ω) is denoted by ‖ · ‖−1. As
usual, L2(Ω) is always identified with its dual, so one has H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) with
compact injection. The following Sobolev’s embedding [?] will be used in the analysis: For
1 ≤ p < d/s let q be such that 1

q
= 1

p
− s

d
. There exists a positive constant C, independent

of s, such that

‖v‖Lq′ (Ω) ≤ C‖v‖Ws,p(Ω),
1

q′
≥ 1

q
, v ∈W s,p(Ω). (2)

If p > d/s the above relation is valid for q′ =∞. A similar embedding inequality holds for
vector-valued functions.

Using the function spaces

V = H1
0 (Ω)d, Q = L2

0(Ω) =
{
q ∈ L2(Ω) : (q, 1) = 0

}
,

the weak formulation of problem (1) is as follows: Find (u, p) : (0, T ] → V × Q such that
for all (v, q) ∈ V ×Q,

(∂tu,v) + ν(∇u,∇v) + ((u · ∇)u,v)− (∇ · v, p) + (∇ · u, q) = (f ,v), (3)

and u(0, ·) = u0(·) ∈ Hdiv. The Hilbert space

Hdiv = {u ∈ L2(Ω)d | L2(Ω) 3 ∇ · u = 0, u · n|∂Ω = 0}

will be endowed with the inner product of L2(Ω)d and the space

V div = {u ∈ V | ∇ · u = 0}

with the inner product of V . In (3), ∂tu must be understood in the sense of distributions
(e.g., see [?, Lemma 3.1] for equivalent definitions). Notice however that the regularity we
assume on the solution of (3) in the results of the present paper implies that u is indeed
differentiable with respect to time and that u0 ∈ Hs(Ω)d ∩ V with s ≥ 2.

In the error analysis, the Poincaré–Friedrichs inequality

‖v‖0 ≤ CPF ‖∇v‖0 ∀v ∈ V (4)

will be used.

3 Local projection stabilization with global grad-
div stabilization.

Let Th be a family of triangulations of Ω formed by simplicial mesh cells in which no cell
has all its nodes on the boundary of Ω. Given an integer l ≥ 0 and a mesh cell K ∈ Th
we denote by Pl(K) the space of polynomials of degree less or equal to l. We consider the
following finite element spaces

Y lh =
{
vh ∈ C0(Ω) | vh|K ∈ Pl(K), ∀K ∈ Th

}
, l ≥ 1,

Y l
h = (Y lh)d, Xh = Y l

h ∩ (H1
0 (Ω))d,

Qh = Y lh ∩ L2
0(Ω).

It will be assumed that the family of meshes is shape-regular so that the following inverse
inequality holds for each vh ∈ Y lh, e.g., see [?, Theorem 3.2.6],

‖vh‖Wm,p(K) ≤ Cinvh
n−m−d

(
1
q
− 1
p

)
K ‖vh‖Wn,q(K), (5)
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where 0 ≤ n ≤ m ≤ 1, 1 ≤ q ≤ p ≤ ∞, and hK is the size (diameter) of the mesh cell
K ∈ Th.

We consider the approximation of (1) with the implicit Euler method in time and a LPS
method with grad-div stabilization in space. Given u0

h an approximation to u0 in Xh find
(un+1

h , pn+1
h ) ∈Xh ×Qh such that for n ≥ 0(
un+1
h − unh

∆t
,vh

)
+ ν(∇un+1

h ,∇vh) + b(un+1
h ,un+1

h ,vh)− (pn+1
h ,∇ · vh)

+Sh(un+1
h ,vh) = (fn+1,vh) ∀vh ∈Xh, (6)

(∇ · un+1
h , qh) + spres(p

n+1
h , qh) = 0 ∀qh ∈ Qh,

where

Sh(u,v) = µ(∇ · u,∇ · v),

b(u,v,w) = (B(u,v),w) ∀u,v,w ∈ H1
0 (Ω)d,

B(u,v) = (u · ∇)v +
1

2
(∇ · u)v ∀u,v ∈ H1

0 (Ω)d,

spres(p
n+1
h , qh) =

∑
K∈Th

τp,K(σ∗h(∇pn+1
h ), σ∗h(∇qh))K ,

and µ and τp,K are the grad-div and pressure stabilization parameters, respectively. In
addition, σ∗h = Id − σl−1

h , where σjh is a locally stable projection or interpolation operator
from L2(Ω)d on Y j

h, that is, there exists a constant C > 0 such that for any K ∈ Th

‖σjh(v)‖L2(K) ≤ C‖v‖L2(ωK), ∀v ∈ L2(Ω)
d
, (7)

where ωK is the union of all mesh cells whose intersection with K is not empty. It will
be assumed that the number of mesh cells in each set ωK is bounded independently of the
triangulation and of K. From (7), also the L2 stability of σ∗h follows. The operator σjh can
be chosen as a Bernardi–Girault [?], Girault–Lions [?], or the Scott–Zhang [?] interpolation
operator in the space Y j

h (for a proof of (7) in the case of the last two operators see [?]).
The following bound holds for v ∈ Hs(Ω)d,

‖v − σjh(v)‖L2(K) ≤ Ch
s
K‖v‖Hs(ωK), 1 ≤ s ≤ j + 1 (8)

from which it can be deduced that

‖v − σjh(v)‖0 ≤ Chs|v|s, 1 ≤ s ≤ j + 1 (9)

see [?, ?, ?]. Bounds (8) and (9) will be applied for j ∈ {l − 1, l}.
For the initial data one can take for example u0

h = σlhu
0 although other choices are

possible.
Let us observe that by definition of the method it has sense from l ≥ 2 since σl−1

h is a
projection onto a space of piecewise continuous polynomials. For this reason, as in [?], the
error analysis of this paper is valid for higher than linear approximations to the velocity and
pressure.

The used form of the convective term has the well-know property

b(u,v,w) = −b(u,w,v), ∀u,v,w ∈ V, (10)

such that, in particular, b(u,v,v) = 0 for all u,v ∈ V . We note that this last property
and (10), which both considerably simplify the analysis in the present paper, hold for func-
tions satisfying homogeneous boundary conditions, but they are not necessarily true for
other kinds of boundary conditions.
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In the sequel, we will assume that

α1h
2
K ≤ τp,K ≤ α2h

2
K (11)

for some positive constants α1, α2 independent of h. In addition, the notations

(f, g)τp =
∑
K∈Th

τp,K(f, g)K , ‖f‖τp = (f, f)1/2
τp (12)

are used.
The following discrete inf-sup condition holds (see [?, Lemma 4.2]).

Lemma 1 The following discrete inf-sup condition holds

‖qh‖0 ≤ β0

(
sup

vh∈Xh

(∇ · vh, qh)

‖∇vh‖0
+ ‖σ∗h(∇qh)‖τp

)
∀qh ∈ Qh.

Along the paper we will use the following discrete Gronwall inequality whose proof can be
found in [?].

Lemma 2 Let k,B, aj , bj , cj , γj be nonnegative numbers such that

an + k

n∑
j=0

bj ≤ k
n∑
j=0

γjaj + k

n∑
j=0

cj +B, for n ≥ 0.

Suppose that kγj < 1, for all j, and set σj = (1− kγj)−1. Then

an + k

n∑
j=0

bj ≤ exp

(
k

n∑
j=0

σjγj

){
k

n∑
j=0

cj +B

}
, for n ≥ 0.

3.1 Error bound for the velocity

Let us denote by un = u(·, tn) and by pn = p(·, tn). Following [?, ?], we consider an
approximation ûnh = Rhu

n ∈Xh ⊂ Y l
h satisfying

(un − ûnh,vh) = 0, ∀vh ∈ Y l−1
h , n = 0, 1, . . . , N. (13)

Such an interpolant exists and satisfies optimal approximation properties, see [?]: there
exists a constant C > 0 such that

‖un − ûnh‖Wm,p ≤ Chs+1−m+d/p−d/2|un|s+1, n = 0, 1, . . . , N, (14)

for m = 0, 1, p ∈ [1,∞], 1 ≤ s ≤ l. Let us observe that the definition of ûh can be applied
for any time t so that we can consider that ûh is continuous in the t variable.

Following [?], let us decompose Ω into a finite union of macroelements Oi, Ω = ∪Ri=1Oi,
that for simplicity will be chosen as the support of the piecewise linear basis functions.
Then, the following bound holds for i = 1, · · · , R,

‖un − ûnh‖Wm,p(Oi) ≤ Ch
s+1−m+d/p−d/2
i |un|Hs+1(Oi), n = 0, 1, . . . , N, (15)

where hi = max {hK , K ⊂ Oi}.
Let p̂nh = Thp

n ∈ Qh with Th being the interpolation operator Th : Hs(Ω)∩L2
0(Ω)→ Qh

that is obtained by subtracting from the standard Lagrange interpolant its mean. There
exists a constant C > 0 such that for 1 ≤ s ≤ l + 1

‖pn − p̂nh‖Wm,p ≤ Chs−m+d/p−d/2|pn|s, n = 0, 1, . . . , N, m = 0, 1, (16)

see [?].
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Let us denote

ênh = ûnh − un, enh = ûnh − unh, λ̂nh = p̂nh − pn, λnh = p̂nh − pnh. (17)

Subtracting the discrete problem (6) from the continuous problem (3) yields the error equa-
tion (

en+1
h − enh

∆t
,vh

)
+ ν(∇en+1

h ,∇vh) + b(ûn+1
h , ûn+1

h ,vh)− b(un+1
h ,un+1

h ,vh)

−(λn+1
h ,∇ · vh) + (∇ · en+1

h , qh) + spres(λ
n+1
h , qh) + Sh(en+1

h ,vh) (18)

= (ξn+1
vh

,vh) + (ξn+1
qh

, qh) + ν(∇ên+1
h ,∇vh) + spres(p̂

n+1
h , qh)

+Sh(ûn+1
h ,vh)− (λ̂n+1

h ,∇ · vh),

for all vh ∈Xh and qh ∈ Qh. In (18), ξn+1
vh

and ξn+1
ph

are defined as follows

ξn+1
vh

= ξn+1
vh,1

+ ξn+1
vh,2

, (19)

(ξn+1
vh,1

,vh) = −
(
∂tu

n+1 −
ûn+1
h − ûnh

∆t
,vh

)
, (20)

(ξn+1
vh,2

,vh) = −b(un+1,un+1,vh) + b(ûn+1
h , ûn+1

h ,vh), (21)

(ξn+1
qh

, qh) = (∇ · ên+1
h , qh).

Remark 1 Note that the error equation (18) holds even for (vh, qh) = (0, qh) with qh ∈ Y lh,
since both (3) and (6) are satisfied for q = 1, respectively qh = 1,

(∇ · en+1
h , qh) + spres(λ

n+1
h , qh) = (∇ · ên+1

h , qh) + spres(p̂
n+1
h , qh) ∀ qh ∈ Y lh.

Setting (vh, qh) = (en+1
h , λn+1

h ), rearranging terms, and using the Cauchy–Schwarz in-
equality and Young’s inequality gives

‖en+1
h ‖20
2∆t

− ‖e
n
h‖20

2∆t
+
‖en+1
h − enh‖20

2∆t
+
ν

2
‖∇en+1

h ‖20 + ‖σ∗h(∇λn+1
h )‖2τp

+Sh(en+1
h , en+1

h )

≤
∣∣b(un+1

h ,un+1
h , en+1

h )− b(ûn+1
h , ûn+1

h , en+1
h )

∣∣+
‖ξn+1
vh
‖20

2
+
‖en+1
h ‖20
2

(22)

+
∣∣(ξn+1

qh
, λn+1
h )

∣∣+
ν

2
‖∇ên+1

h ‖0 +
∣∣spres(p̂

n+1
h , λn+1

h )
∣∣

+
∣∣Sh(ûn+1

h , en+1
h )

∣∣+
∣∣∣(λ̂n+1

h ,∇ · en+1
h )

∣∣∣ .
Now, the terms on the right-hand side of (22) will be bounded. We start with the last

two terms. Applying the Cauchy–Schwarz inequality, Young’s inequality, and (14) yields∣∣Sh(ûn+1
h , en+1

h )
∣∣ = µ

∣∣(∇ · ûn+1
h ,∇ · en+1

h )
∣∣ ≤ µ

8
‖∇ · en+1

h ‖20 + 2µ‖∇ · ên+1
h ‖20

≤ 1

8
Sh(en+1

h en+1
h ) + Cµh2s‖u‖2L∞(Hs+1). (23)

Similarly, we obtain∣∣∣(λ̂n+1
h ,∇ · en+1

h )
∣∣∣ ≤ µ

8
‖∇·en+1

h ‖20+
2

µ
‖λ̂n+1

h ‖20 ≤
1

8
Sh(en+1

h , en+1
h )+

C

µ
h2s‖p‖2L∞(Hs), (24)

where in the last inequality (16) was applied. The nonlinear term in (22) can be bounded as
in [?], noticing that the term |b(un+1

h , en+1
h , en+1

h )| below vanishes due to the skew-symmetric
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property (10) of b(·, ·, ·),

|b(un+1
h ,un+1

h , en+1
h )− b(ûn+1

h , ûn+1
h , en+1

h )|
≤ |b(en+1

h , ûn+1
h , en+1

h )|+ |b(un+1
h , en+1

h , en+1
h )|

≤ ‖∇ûn+1
h ‖L∞‖en+1

h ‖20 +
1

2
‖∇ · en+1

h ‖0‖ûn+1
h ‖L∞‖en+1

h ‖0

≤
(
‖∇ûn+1

h ‖L∞ +
‖ûn+1

h ‖2L∞
4µ

)
‖en+1
h ‖20 +

µ

4
‖∇ · en+1

h ‖20. (25)

For the fourth term on the right-hand side of (22), integrating by parts and using (13), (11),
and (15) gives

|(ξn+1
qh

, λn+1
h )| = |(ên+1

h ,∇λn+1
h )| = |(ên+1

h , σ∗h(∇λn+1
h ))|

≤
∑
K∈Th

‖ên+1
h ‖2L2(K)

τp,K
+

1

4
‖σ∗h(∇λn+1

h )‖2τp

≤ Ch2s‖u‖2L∞(Hs+1) +
1

4
‖σ∗h(∇λn+1

h )‖2τp . (26)

Let us observe that in the above inequality we have bounded ‖ên+1
h ‖2L2(K) by ‖ên+1

h ‖2L2(Oi),

K ⊂ Oi, and we have applied h−1
K hi ≤ C, with C independent of h, that holds true since

we are assuming the family of meshes to be shape-regular, see [?, (21)].
For the fifth term, we use (14) to get

ν

2
‖∇ên+1

h ‖20 ≤ Cνh2s‖u‖2L∞(Hs+1). (27)

To bound the sixth term, the usual inequalities, the definition (12) of ‖ · ‖τp , (9), and (16)
are utilized∣∣spres(p̂

n+1
h , λn+1

h )
∣∣ ≤ ‖σ∗h(∇p̂n+1

h )‖2τp +
1

4
‖σ∗h(∇λn+1

h )‖2τp

≤ 2‖σ∗h(∇λ̂n+1
h )‖2τp + 2‖σ∗h(∇pn+1)‖2τp +

1

4
‖σ∗h(∇λn+1

h )‖2τp

≤ Ch2‖∇λ̂n+1
h ‖20 + Ch2‖σ∗h(∇pn+1)‖20 +

1

4
‖σ∗h(∇λn+1

h )‖2τp

≤ Ch2s‖p‖2L∞(Hs) +
1

4
‖σ∗h(∇λn+1

h )‖2τp . (28)

Multiplying (22) by 2∆t and inserting (23) – (28) yields

‖en+1
h ‖20 − ‖enh‖20 + ∆tν‖∇en+1

h ‖20 + ∆t‖σ∗h(∇λn+1
h )‖2τp + µ∆t‖∇ · en+1

h ‖20

≤ ∆t

(
1 + 2‖∇ûn+1

h ‖L∞ +
‖ûn+1

h ‖2L∞
2µ

)
‖en+1
h ‖20 + ∆t‖ξn+1

vh
‖20 (29)

+C∆th2s
(

(1 + ν + µ)‖u‖2L∞(Hs+1) +
(
1 + µ−1) ‖p‖2L∞(Hs)

)
,

such that summing over the discrete times leads to

‖enh‖20 + ∆tν

n∑
j=1

‖∇ejh‖
2
0 + ∆t

n∑
j=1

‖σ∗h(∇λjh)‖2τp + ∆tµ

n∑
j=1

‖∇ · ejh‖
2
0

≤ ‖e0
h‖20 +

n∑
j=1

∆t

(
1 + 2‖∇ûjh‖L∞ +

‖ûjh‖
2
L∞

2µ

)
‖ejh‖

2
0 + ∆t

n∑
j=1

‖ξjvh‖
2
0 (30)

+CTh2s
(

(1 + ν + µ)‖u‖2L∞(Hs+1) + (1 + µ−1)‖p‖2L∞(Hs)

)
.
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Let us bound ‖ûjh‖L∞ and ‖∇ûjh‖L∞ , 1 ≤ j ≤ n. For the first term, applying (2) and (14)
we have

‖ûjh‖L∞ ≤ ‖uj‖L∞ + ‖uj − ûjh‖L∞ ≤ C‖u
j‖2 + Ch2−d/2‖uj‖2

≤ C‖u‖L∞(H2). (31)

Using the same argument for the second term, we reach

‖∇ûjh‖L∞ ≤ ‖∇uj‖L∞ + ‖∇uj −∇ûjh‖L∞ ≤ C‖u
j‖3 + Ch2−d/2‖uj‖3

≤ C‖u‖L∞(H3). (32)

From (31) and (32) we deduce

1 + 2‖∇ûjh‖L∞ +
‖ûjh‖

2
L∞

2µ
≤ M̂u, M̂u = 1 + C

(
2‖u‖L∞(H3) +

‖u‖2L∞(H2)

2µ

)
. (33)

Let us assume

∆tM̂u ≤
1

2
. (34)

Applying the Gronwall lemma, Lemma 2, we get

‖enh‖20 + ∆tν
n∑
j=1

‖∇ejh‖
2
0 + ∆t

n∑
j=1

‖σ∗h(∇λjh)‖2τp + ∆tµ

n∑
j=1

‖∇ · ejh‖
2
0

≤ e2TM̂u

(
‖e0
h‖20 + ∆t

n∑
j=1

‖ξjvh‖
2
0

)
(35)

+Ce2TM̂u
(
Th2s

(
(1 + ν + µ)‖u‖2L∞(Hs+1) + (1 + µ−1)‖p‖2L∞(Hs)

))
.

To conclude the bound we are left with the task of getting a bound for the second term
on the right-hand-side of (35). For the first term in the truncation error we write

∂tu
j −

ûjh − û
j−1
h

∆t
=

(
∂tu

j − u
j − uj−1

∆t

)
+

(
uj − uj−1

∆t
−
ûjh − û

j−1
h

∆t

)
(36)

=
1

∆t

∫ tj

tj−1

(t− tj−1)∂ttu(t) dt+
1

∆t

∫ tj

tj−1

∂t(u− ûh)(t) dt.

Applying (14) and the Cauchy-Schwarz inequality, we reach∥∥∥∥∥∂tuj − ûjh − ûj−1
h

∆t

∥∥∥∥∥
2

0

≤ C∆t

∫ tj

tj−1

‖∂ttu‖20 dt+
h2s

∆t

∫ tj

tj−1

‖∂tu(t)‖2s dt. (37)

For the second term in the truncation error (21), we apply [?, Lemma 2] to get

sup
φ∈L2(Ω)d, ‖φ‖0=1

∣∣∣b(uj ,uj ,φ)− b(ûjh, û
j
h,φ)

∣∣∣
≤ C

(
‖ûjh‖L∞ + ‖∇ · ûjh‖L2d/(d−1) + ‖uj‖2

)
‖uj − ûjh‖1. (38)

To bound ‖∇ · ûjh‖L2d/(d−1) we use (2) and (14)

‖∇ · ûjh‖L2d/(d−1) ≤ ‖∇ · uj‖L2d/(d−1) + ‖∇ · (ûjh − u
j)‖L2d/(d−1)

≤ C‖uj‖2 + Ch1/2‖uj‖2
≤ C‖u‖L∞(H2). (39)
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Inserting (31) and (39) in (38) gives

sup
φ∈L2, ‖φ‖0=1

∣∣∣b(uj ,uj ,φ)− b(ûjh, û
j
h,φ)

∣∣∣ ≤ C‖u‖L∞(H2)‖u
j − ûjh‖1. (40)

Then from (37), (40), and (14) we get

∆t

n∑
j=1

‖ξjvh‖
2
0 ≤ CTh2s

(
‖u‖2L∞(H2)‖u‖

2
L∞(Hs+1) + ‖∂tu‖2L∞(Hs)

)
+C(∆t)2

∫ tn

t0

‖∂ttu‖20 dt.

Inserting this inequality in (35) and applying the triangle inequality to the splitting of the
error (17) finishes the proof of the error estimate for the velocity.
Remark 2 Observe that on going from (22) to (29), the first three terms on the left-hand
side of (22), after multiplying them by 2∆t, have been bounded below as

‖en+1
h ‖20 + ‖en+1

h − enh‖20 − ‖enh‖20 ≥ ‖en+1
h ‖20 − ‖enh‖20,

which are the first two terms on the left-hand side of (29), while the rest of the terms
in (29) have been obtained from those in (22) from the fourth onwards. This observation
will become useful in the analysis of the Crank–Nicolson method.

Theorem 1 Let the solution of (3) be sufficiently smooth in space and time, such that all
norms appearing in the formulation of this theorem are well defined, and let the time step be
sufficiently small such that (34) holds. Then, the following error bound holds for 2 ≤ s ≤ l:

‖un − unh‖20 + ∆tν

n∑
j=1

‖∇(uj − ujh)‖20 + ∆t

n∑
j=1

‖σ∗h(∇(pj − pjh))‖2τp

+∆tµ

n∑
j=1

‖∇ · ujh‖
2
0 (41)

≤ Ce2TM̂u

(
‖e0
h‖20 + TK̂u,ph

2s + (∆t)2

∫ tn

t0

‖∂ttu‖20 dt
)
,

where M̂u is defined in (33) and

K̂u,p =
(

(1 + ‖u‖2L∞(H2) + ν + µ)‖u‖2L∞(Hs+1) + ‖∂tu‖2L∞(Hs) + (1 + µ−1)‖p‖2L∞(Hs)

)
.

Note that neither M̂u nor K̂u,p depend explicitly on negative powers of ν. The error
bound (41) can be summarized in the form

errors on the left-hand side of (41) ≤ C(u, ∂tu, ∂ttu, p, T, µ, µ
−1)

(
‖e0
h‖0 + hs + ∆t

)
.

3.2 Error bound for the pressure

We will derive now a bound for the error in the pressure. Let us denote

Λnh = ∆t

n∑
j=1

λjh, Λ̂nh = ∆t

n∑
j=1

λ̂jh.

Setting qh = 0 in the error equation (18) yields

(Λnh,∇ · vh) = (enh − e0
h,vh) + ∆tν

n∑
j=1

(∇(uj − ujh),∇vh)

+∆t

n∑
j=1

(
b(uj ,uj ,vh)− b(ujh,u

j
h,vh)

)
+ ∆tµ

n∑
j=1

(∇ · (uj − ujh),∇ · vh)

+(Λ̂nh,∇ · vh) + ∆t

n∑
j=1

(
∂tu

j −
ûjh − û

j−1
h

∆t
,vh

)
. (42)
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Applying Lemma 1 we obtain

‖Λnh‖0 ≤ β0

(
sup

vh∈Xh

(Λnh,∇ · vh)

‖∇vh‖0
+ ‖σ∗h(∇Λnh)‖τp

)
. (43)

Let us bound the first term on the right-hand side of (43). From (42) we get with the triangle
inequality, the Poincaré–Friedrichs inequality (4), and the estimate for the dual pairing

sup
vh∈Xh

(Λnh,∇ · vh)

‖∇vh‖0
≤ ‖enh‖−1 + ‖e0

h‖−1 + ∆tν

n∑
j=1

‖∇(uj − ujh)‖0

+∆t

n∑
j=1

‖B(uj ,uj)−B(ujh,u
j
h)‖−1 + ∆tµ

n∑
j=1

‖∇ · ujh‖0

+∆t

n∑
j=1

‖λ̂jh‖0 + ∆t

n∑
j=1

∥∥∥∥∥∂tuj − ûjh − ûj−1
h

∆t

∥∥∥∥∥
−1

. (44)

Note that, since ‖ · ‖−1 ≤ C‖ · ‖0, the first term on the right-hand side of (44) was already
bounded in the derivation of the velocity error bound. To bound the third and fifth term
on the right-hand side of (44), we use the fact that for any sequence {αj}∞j=1 of nonnegative
real numbers and n ≤ T/∆t by the Cauchy–Schwarz inequality holds

∆t

n∑
j=1

αj ≤ T 1/2

(
∆t

n∑
j=1

α2
j

)1/2

. (45)

With this estimate and the velocity error bound (41), an estimate for the third and fifth
term is obtained. Using (45) and (37), the bound of the last term on the right-hand side
of (44) follows. For the sixth term, we apply (16) to get

∆t

n∑
j=1

‖λ̂jh‖0 ≤ CTh
s‖p‖L∞(Hs).

We are left with the fourth term on the right-hand side of (44). Arguing as in [?], we obtain

∆t

n∑
j=1

‖B(uj ,uj)−B(ujh,u
j
h)‖−1

≤ C∆t
n∑
j=1

(
‖ujh‖L∞ + ‖∇ · ujh‖L2d/(d−1) + ‖uj‖2

)
‖uj − ujh‖0

+C∆t

n∑
j=1

‖uj‖1‖∇ · (uj − ujh)‖0

≤ CT

(
max

1≤j≤n
(‖ujh‖L∞ + ‖uj‖2)

)
max

1≤j≤n
‖uj − ujh‖0

+CT 1/2

(
∆t

n∑
j=1

‖∇ · ujh‖
2
L2d/(d−1)

)1/2

max
1≤j≤n

‖uj − ujh‖0

+CT 1/2‖u‖L∞(H1)

(
∆t

n∑
j=1

‖∇ · (uj − ujh)‖20

)1/2

.
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To bound the norms involving ujh, we will assume that the family of meshes is quasi-uniform.
Then, the inverse inequality (5), the Sobolev embedding (2) and (31) are used to get

‖ujh‖L∞ ≤ ‖ejh‖L∞ + ‖ûjh‖L∞ ≤ Ch
−d/2‖ejh‖0 + ‖ûjh‖L∞

≤ Ch−d/2‖ejh‖0 + ‖uj − ûjh‖L∞ + ‖uj‖L∞

≤ Ch−d/2‖ejh‖0 + Ch2−d/2‖u‖2 + C‖u‖2
≤ Ch−d/2‖ejh‖0 + C‖u‖L∞(H2). (46)

The term ‖ejh‖0 was already bounded during the derivation of the velocity error estimate.
Applying the inverse estimate (5) gives(

∆t

n∑
j=1

‖∇ · ujh‖
2
L2d/(d−1)

)1/2

≤ Ch−1/2

(
∆t

n∑
j=1

‖∇ · ujh‖
2
0

)1/2

, (47)

where the term on the right-hand side is already bounded in (41). Using (46), (47) and
assuming

‖e0
h‖0 = O(hd/2) and ∆t ≤ Chd/2, (48)

we finally reach

∆t
n∑
j=1

‖B(uj ,uj)−B(ujh,u
j
h)‖−1

≤ C(u, ∂tu, ∂ttu, p, T, µ, µ
−1)

 max
1≤j≤n

‖uj − ujh‖0 +

(
∆t

n∑
j=1

‖∇ · (uj − ujh)‖20

)1/2
 .

The bound of this term is finished by applying (41).
Inserting the derived inequalities in (44) and going back to (43) yields

‖Λnh‖0 ≤ β0C(u, ∂tu, ∂ttu, p, T, µ, µ
−1)

(
‖e0
h‖0 + hs + ∆t

)
+ β0‖σ∗h(∇Λnh)‖τp .

The last term was already bounded in the derivation of the velocity error estimate, since it
is by the Cauchy–Schwarz inequality

‖σ∗h(∇Λnh)‖2τp =

∥∥∥∥∥∆t

n∑
j=1

σ∗h(∇λjh)

∥∥∥∥∥
2

τp

≤ n(∆t)2
n∑
j=1

‖σ∗h(∇λjh)‖2τp

= T∆t

n∑
j=1

‖σ∗h(∇λjh)‖2τp ,

which is a term on the left-hand side of estimate (35). The estimate for the pressure error
is obtained by applying finally the triangle inequality to the splitting pj − pjh = λjh− λ̂

j
h and

using (16).

Theorem 2 Let the assumption of Theorem 1 and the assumptions (48) be satisfied, then
the following error estimate holds∥∥∥∥∥∆t

n∑
j=1

(pj − pjh)

∥∥∥∥∥
0

≤ β0C(u, ∂tu, ∂ttu, p, T, µ
−1)

(
‖u0 − u0

h‖0 + hs + ∆t
)
.

Let us observe that in the proof of Theorem 2 we have assumed that the family of meshes
is quasi-uniform while for the proof of Theorem 1 we only needed the assumption of having
shape-regular meshes. From now on, for simplicity, it will be assumed that the family of
meshes is both shape-regular and quasi-uniform.
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4 Local projection stabilization with control of the
fluctuation of the velocity gradient

In this part we will concentrate on the LPS method based on the stabilization of the gradient.
The stabilization term Sh is defined by

Sh(uh,vh) :=
∑
K∈Th

τν,K (σ∗h(∇uh), σ∗h(∇vh))K , (49)

where τν,K , K ∈ Th, are non-negative constants. This kind of LPS method gives additional
control on the fluctuation of the gradient. In the sequel, we will use also the notation (12)
with τp replaced by τν . For the stabilization parameter we will take τν,K ∼ 1. The same
finite element spaces are used as in Section 3.

Let us observe that the velocity and pressure spaces Y h and Yh, respectively, are based
on piecewise polynomials of the same degree l and are the same space (apart from the
fact that the velocity space has d components). This property is essential for applying the
following lemma. This lemma can be deduced from [?, Theorem 2.2].

Lemma 3 Let σjh : L2(Ω)d → Y j
h be the interpolation operator defined in Section 3 and

let u ∈W 1,∞(Ω)d and vh ∈ Y j
h. Then, it holds

‖(I − σjh)(u · vh)‖0 ≤ Ch‖u‖W1,∞‖vh‖0,
‖(I − σjh)(u · vh)‖1 ≤ C‖u‖W1,∞‖vh‖0. (50)

Lemma 3 will be applied for j ∈ {l − 1, l}.
Remark 3 Lemma 3 holds true for vh ∈ Y j

h with several components or vh ∈ Y jh with
only one component.

Remark 4 In this section, in order to apply Lemma 3, we need that the velocity and
pressure spaces are the same. Then, the analysis holds for the LPS method based on the
term-by-term stabilization introduced in [?]. On the contrary, the analysis of the previous
section also holds for the standard one-level LPS method over triangular or quadrilateral
elements [?, ?] with slight modifications.

4.1 Error bound for the velocity

We consider the approximation of (3) with the implicit Euler method in time and a LPS
method with LPS stabilization for the gradient of the velocity (49) and for the pressure.
Given u0

h = Ihu0, find (un+1
h , pn+1

h ) ∈ (Xh, Qh), n ≥ 0, satisfying (6).
We will keep the notation ûnh for the function defined in Section 3.1 satisfying (13) and

(14) and we will denote p̂nh = Rhp
n, taking into account that Rh as defined Section 3.1 can

also be applied to scalar functions. The property analogous to(13) reads

(pn −Rhpn, qh) = 0 ∀ qh ∈ Y l−1
h . (51)

Applying (51) with qh = 1 and taking into account (pn, 1) = 0 we deduce that p̂nh ∈ Qh.
With the notation (17), it is easy to see that (enh, λ

n
h) satisfies the same equation (18)

as in Section 3.1 and, consequently, (22). In the present analysis, the first term on the
right-hand side of (22) and the last three ones will be treated differently.

Starting as for deriving (25) yields

|b(un+1
h ,un+1

h , en+1
h )− b(ûn+1

h , ûn+1
h , en+1

h )|

≤ ‖∇ûn+1
h ‖L∞‖en+1

h ‖20 +
1

2
((∇ · en+1

h )ûn+1
h , en+1

h ). (52)
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To bound the second term on the right-hand side of (52), we decompose

((∇ · en+1
h )ûn+1

h , en+1
h ) (53)

=
(

(∇ · en+1
h ), σlh(ûn+1

h · en+1
h )

)
+
(

(∇ · en+1
h ), (I − σlh)(ûn+1

h · en+1
h )

)
.

Using the error equation (18) with (vh, qh) =
(
0, σlh(ûn+1

h · en+1
h )

)
gives for the first term

on the right-hand side of (53)(
(∇ · en+1

h ), σlh(ûn+1
h · en+1

h )
)

= spres(p
n+1
h , σlh(ûn+1

h · en+1
h )) + (∇ · ên+1

h , σlh(ûn+1
h · en+1

h )). (54)

For the first term on the right-hand side in (54), arguing as in (28), we have

spres(p
n+1
h , σlh(ûn+1

h · en+1
h ))

≤ Ch2s‖p‖2L∞(Hs) +
1

8
‖σ∗h(∇λn+1

h )‖2τp + Ch2‖σ∗h(∇σlh(ûn+1
h · en+1

h ))‖20.

For the last term above, applying (14), the inverse estimate (5), and (7), it follows that

h2‖σ∗h(∇σlh(ûn+1
h · en+1

h ))‖20 ≤ Ch2‖∇σlh(ûn+1
h · en+1

h )‖20
≤ Ch2h−2‖σlh(ûn+1

h · en+1
h )‖20

≤ C‖ûn+1
h ‖2L∞‖en+1

h ‖20,

so that

spres(p
n+1
h , σlh(ûn+1

h · en+1
h ))

≤ Ch2s‖p‖2L∞(Hs) +
1

8
‖σ∗h(∇λn+1

h )‖2τp + C‖ûn+1
h ‖2L∞‖en+1

h ‖20. (55)

To bound the second term on the right-hand side of (54), we get with (14) and (7)

(∇ · ên+1
h , σlh(ûn+1

h · en+1
h )) ≤ Ch2s‖u‖2L∞(Hs+1) + C‖ûn+1

h ‖2L∞‖en+1
h ‖20.

For the second term on the right-hand side of (53), we apply Lemma 3 and the inverse
inequality (5) to obtain(

(∇ · en+1
h ), (I − σlh)(ûn+1

h · en+1
h )

)
≤ Ch‖∇ · en+1

h ‖0‖ûn+1
h ‖W1,∞‖en+1

h ‖0

≤ C‖ûn+1
h ‖W1,∞‖en+1

h ‖20.

Collecting all estimates, we reach∣∣b(un+1
h ,un+1

h , en+1
h )− b(ûn+1

h , ûn+1
h , en+1

h )
∣∣

≤ C
(
‖ûn+1

h ‖W1,∞ + ‖ûn+1
h ‖2L∞

)
‖en+1
h ‖20 + Ch2s

(
‖p‖2L∞(Hs) + ‖u‖2L∞(Hs+1)

)
+

1

8
‖σ∗h(∇λn+1

h )‖2τp . (56)

Remark 5 We like to emphasize the aspect that the only stabilization that was used to
derive the optimal estimate (56) of the convective term (in which the constants do not depend
on inverse powers of the diffusion parameter) was the LPS stabilization of the pressure – a
stabilization term whose proposal does not possess any connection with dominant convection.
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The last three terms on the right-hand side of (22) will be bounded next. The term
spres(p̂

n+1
h , λn+1

h ) can be bounded as in (28), using (14) instead of (16), and replacing the
factor 1/4 multiplying the last term in (28) by 1/8. Also, arguing similarly to (23) we have

Sh(ûn+1
h , en+1

h ) = (σ∗h(∇ûn+1
h ), σ∗h(∇en+1

h ))τν

≤ 1

4
‖σ∗h(∇en+1

h )‖2τν + ‖σ∗h(∇ûn+1
h )‖2τν

=
1

4
Sh(en+1

h , en+1
h ) + ‖σ∗h(∇ûn+1

h )‖2τν .

Then, applying the L2 stability of σ∗h, (9), and (14) yields

‖σ∗h(∇ûn+1
h )‖2τν ≤ ‖σ∗h∇(ûn+1

h − un+1)‖2τν + ‖σ∗h(∇un+1)‖2τν
≤ C‖∇(ûn+1

h − un+1)‖20 + Ch2s‖u‖2L∞(Hs+1)

≤ Ch2s‖u‖2L∞(Hs+1),

so that

Sh(ûn+1
h , en+1

h ) ≤ 1

4
Sh(en+1

h , en+1
h ) + Ch2s‖u‖2L∞(Hs+1). (57)

Finally, to bound the last term on the right-hand side of (22), we use the orthogonality
condition of the pressure interpolation operator (51), that the norm of the gradient contains
all terms of the norm of the divergence and ‖σ∗h(∇ · en+1

h )‖τν ≤
√
d‖σ∗h(∇en+1

h )‖τν holds,
that τν,K ∼ 1, and (14) to get

(λ̂n+1
h ,∇ · en+1

h ) = −(pn+1 − p̂n+1,∇ · en+1
h ) = −(pn+1 − p̂n+1, σ∗h(∇ · en+1

h ))

≤ ‖pn+1 − p̂n+1‖
τ−1
ν
‖σ∗h(∇ · en+1

h )‖τν
≤
√
d‖pn+1 − p̂n+1‖

τ−1
ν
‖σ∗h(∇en+1

h )‖τν

≤ C‖pn+1 − p̂n+1‖20 +
1

4
‖σ∗h(∇en+1

h )‖2τν

≤ Ch2s‖p‖2L∞(Hs) +
1

4
Sh(en+1

h , en+1
h ). (58)

Collecting all the estimates we reach

‖en+1
h ‖20 − ‖enh‖20 + ∆tν‖∇en+1

h ‖20 + ∆t‖σ∗h(∇λn+1
h )‖2τp + ‖σ∗h(∇en+1

h )‖2τν
≤ C∆t

(
1 + ‖∇ûn+1

h ‖L∞ + ‖ûn+1
h ‖2L∞

)
‖en+1
h ‖20 + ∆t‖ξn+1

vh
‖20

+C∆th2s
(

(1 + ν)‖u‖2L∞(Hs+1) + ‖p‖2L∞(Hs)

)
.

From (31) and (32) we deduce

1 + ‖∇ûjh‖L∞ + ‖ûjh‖
2
L∞ ≤ M̃u, M̃u = 1 + C

(
‖u‖L∞(H3) + ‖u‖2L∞(H2)

)
. (59)

Summing up the terms, assuming that

∆tM̃u ≤
1

2
, (60)

and applying Lemma 2 (Gronwall) leads to

‖enh‖20 + ∆tν

n∑
j=1

‖∇ejh‖
2
0 + ∆t

n∑
j=1

‖σ∗h(∇λjh)‖2τp + ∆t

n∑
j=1

‖σ∗h(∇ejh)‖2τν (61)

≤ e2TM̃u

(
‖e0
h‖20 + ∆t

n∑
j=1

‖ξjvh‖
2
0 + CTh2s

(
(1 + ν)‖u‖2L∞(Hs+1) + ‖p‖2L∞(Hs)

))
.
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Now, we can argue exactly as in Section 3.1 to conclude

‖enh‖20 + ∆tν

n∑
j=1

‖∇ejh‖
2
0 + ∆t

n∑
j=1

‖σ∗h(∇λjh)‖2τp + ∆t

n∑
j=1

‖σ∗h(∇ejh)‖2τν

≤ e2TM̃u

(
‖e0
h‖20 + CTK̃u,ph

2s + C(∆t)2

∫ tn

t0

‖∂ttu‖20
)
, (62)

with

K̃u,p =
(

(1 + ‖u‖2L∞(H2) + ν)‖u‖2L∞(Hs+1) + ‖∂tu‖2L∞(Hs) + ‖p‖2L∞(Hs)

)
. (63)

The triangle inequality finishes the proof of the velocity error estimate.

Theorem 3 Let the solution of (3) be sufficiently smooth in space and time and let the
time step be sufficiently small such that (60) holds. Then, the following error bound holds
for 2 ≤ s ≤ l

‖un − unh‖20 + ∆tν

n∑
j=1

‖∇(uj − ujh)‖20 + ∆t

n∑
j=1

‖σ∗h(∇(pj − pjh))‖2τp

+∆t

n∑
j=1

‖σ∗h(∇(uj − ujh))‖2τν (64)

≤ Ce2TM̃u

(
‖e0
h‖20 + TK̃u,ph

2s + (∆t)2

∫ tn

t0

‖∂ttu‖20 dt
)
,

where the constants on the right-hand side are defined in (59) and (63).

4.2 Error bound for the pressure

The bound for the pressure follows the lines of Section 3.2 with the exception of the bound
of the nonlinear term that can be handled as follows

‖B(un,un)−B(unh,u
n
h)‖−1 ≤ sup

‖φ‖1=1

|b(un,un − unh, φ)|+ sup
‖φ‖1=1

|b(un − unh,unh, φ)|.

Arguing as before and recalling that ∇ · u = 0, we can prove

‖B(un,un)−B(unh,u
n
h)‖−1 ≤ (‖un‖L∞ + ‖unh‖L∞) ‖un − unh‖0 + sup

‖φ‖1=1

|((∇ · unh)φ,unh)|.

The last term can be decomposed as follows

((∇ · unh)φ,unh) = (∇ · unh, σlh(φ · unh)) + (∇ · unh, (I − σlh)(φ · unh)). (65)

Since σlh(φ · unh)) ∈ Y l
h, one can use the error equation (18) for estimating the first term in

(65). Applying in addition the definition (12) of ‖ · ‖τp , the choice (11) of the stabilization
parameter, the stability (7) of the projection, and the inverse inequality (5) yields

(∇ · unh, σlh(φ · unh)) ≤ |spres(λ
n
h, σ

l
h(φ · unh))|+ |spres(p̂

n
h, σ

l
h(φ · unh))| (66)

≤ Ch
(
‖σ∗h(∇λnh)‖τp + ‖σ∗h(∇p̂nh)‖τp

)
‖σ∗h(∇σlh(φ · unh))‖0

≤ C
(
‖σ∗h(∇λnh)‖τp + ‖σ∗h(∇p̂nh)‖τp

)
‖φ · unh‖0.

Applying Hölder’s and Sobolev’s inequality, we have

‖φ · unh‖0 ≤ ‖φ‖L2d‖unh‖L2d/(d−1) ≤ C‖φ‖1‖unh‖L2d/(d−1) ,
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so that

sup
‖φ‖1=1

(∇ · unh, σlh(φ · unh)) ≤ C‖unh‖L2d/(d−1)

(
‖σ∗h(∇λnh)‖τp + Chs‖p‖L∞(Hs)

)
.

With the decomposition
unh − un = enh + ûnh − un, (67)

the inverse estimate (5), (14), and (9), one obtains for the second term on the right-hand
side of (65)

(∇ · unh, (I − σlh)(φ · unh)) ≤ Ch
(
h−1‖enh‖0 + hs‖un‖s+1

)
|unhφ|1. (68)

The product rule and a Sobolev embedding gives

|unh · φ|1 ≤ C (‖unh‖L∞ |φ|1 + ‖∇unh‖L2d/(d−1)‖φ‖L2d)

≤ C (‖unh‖L∞ + ‖∇unh‖L2d/(d−1)) ‖φ‖1.

Now, adding and subtracting un, using decomposition (67) and applying the inverse in-
equality (5), (62), (14), and a Sobolev embedding we get

‖∇unh‖L2d/(d−1) ≤ C

[
eTM̃u

h3/2

(
‖e0
h‖20 + TK̃u,ph

2s + (∆t)2

∫ tn

t0

‖∂ttu‖20
)1/2

+ ‖u‖L∞(H2)

]
.

Assuming that s ≥ 3/2,

‖e0
h‖0 = O(h3/2) and ∆t ≤ Ch3/2 (69)

gives ‖∇unh‖L2d/(d−1) ≤ L̃u, where

L̃u = CeTM̃u
(
‖u‖2L∞(H2) + TK̃u,p +

∫ tn

t0

‖∂ttu‖20
)1/2

+ C‖u‖L∞(H2). (70)

Arguing as in (46), it follows that ‖unh‖L∞ ≤ L̃u whenever ‖e0
h‖0 = O(hd/2) and ∆t ≤

Chd/2, which coincides with (69) in the case d = 3 and is weaker than (69) in the case
d = 2. Inserting the estimates in (68) leads to

sup
‖φ‖1=1

(∇ · unh, (I − σlh)(φ · unh)) ≤ L̃u
(
‖enh‖0 + hs+1‖un‖s+1

)
.

Collecting all estimates and taking into account that ‖un−unh‖0 ≤ ‖enh‖0 +Chs+1‖un‖s+1

yields

‖B(un,un)−B(unh,u
n
h)‖−1

≤ L̃u
[
‖enh‖0 + ‖σ∗h(∇λnh)‖τp + hs

(
‖p‖L∞(Hs) + h‖u‖L∞(Hs+1)

) ]
,

and using (45) gives

n∑
j=0

∆t‖B(uj ,uj)−B(ujh,u
j
h)‖−1

≤ L̃u

[
T

(
max

1≤j≤n
‖ejh‖0 + hs

(
‖p‖L∞(Hs) + h‖u‖L∞(Hs+1)

))

+T 1/2

(
n∑
j=1

∆t‖σ∗h(∇λjh)‖2τp

)1/2 ]
.

Now, the bound for the pressure concludes as the bound of Section 3.2.

Theorem 4 Let the assumption of Theorem 3 and condition (69) be satisfied, then it holds∥∥∥∥∥∆t

n∑
j=1

(pj − pjh)

∥∥∥∥∥
0

≤ β0C(u, ∂tu, ∂ttu, p, T )
(
‖u0 − u0

h‖0 + hs + ∆t
)
.
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5 Local projection stabilization with control of the
fluctuation of the divergence

In this section, a LPS method is briefly studied, under the same assumptions as in Section 4,
that uses instead of the stabilizing term (49) a corresponding term with the divergence

Sh(uh,vh) :=
∑
K∈Th

τµ,K (σ∗h(∇ · uh), σ∗h(∇ · vh))K , (71)

with τµ,K ∼ 1, i.e., a local projection stabilization of the grad-div term is applied.
In Section 4, the stabilization with respect to the velocity enters the error analysis in

(57) and (58). It can be readily checked that an estimate of form (57) can be derived also
for (71). With respect to the other term, one applies similar steps as for deriving (58) to
obtain

(λ̂n+1
h ,∇ · en+1

h ) ≤ ‖pn+1 − p̂n+1‖
τ−1
µ
‖σ∗h(∇ · en+1

h )‖τµ

≤ C‖pn+1 − p̂n+1‖20 +
1

4
‖σ∗h(∇ · en+1

h )‖2τµ .

Altogether, the formulations of Theorems 3 and 4 apply literally also to the LPS method
with the local grad-div stabilization (71):

Theorem 5 Let the solution of (3) be sufficiently smooth in space and time and let the
time step be sufficiently small such that (60) holds. Then, the following error bound holds
for the solution of (6) with Sh defined in (71) for 2 ≤ s ≤ l

‖un − unh‖20 + ∆tν

n∑
j=1

‖∇(uj − ujh)‖20 + ∆t

n∑
j=1

‖σ∗h(∇(pj − pjh))‖2τp

+∆t

n∑
j=1

‖σ∗h(∇(uj − ujh))‖2τν

≤ Ce2TM̃u

(
‖e0
h‖20 + TK̃u,ph

2s + (∆t)2

∫ tn

t0

‖∂ttu‖20 dt
)
,

where the constants on the right-hand side are defined in (59) and (63).

Theorem 6 Let the assumption of Theorem 5 and condition (69) be satisfied, then it holds∥∥∥∥∥∆t

n∑
j=1

(pj − pjh)

∥∥∥∥∥
0

≤ β0C(u, ∂tu, ∂ttu, p, T )
(
‖u0 − u0

h‖0 + hs + ∆t
)
.

Remark 6 Let us observe that assuming p ∈ Hs+1(Ω) instead of p ∈ Hs(Ω) we can write

(λ̂n+1
h ,∇ · en+1

h ) = −(∇λ̂n+1
h , en+1

h )

≤ ‖λ̂n+1
h ‖1‖en+1

h ‖0 (72)

and then the first term is O(hs) for p ∈ Hs+1(Ω) and the second one goes to the Gronwall
lemma. This means that for equal order elements only the stabilization of the pressure gives
the same rate of convergence as, for example, Galerkin plus grad-div, assuming enough
regularity for the pressure.

Let us also observe that assuming p ∈ Hs+1(Ω) for the method of Section 3, i.e., global
grad-div stabilization plus LPS stabilization for the pressure, one can argue as in Section 4
and then apply (56) instead of (25) to get:∣∣b(un+1

h ,un+1
h , en+1

h )− b(ûn+1
h , ûn+1

h , en+1
h )

∣∣
≤ C

(
‖ûn+1

h ‖W1,∞ + ‖ûn+1
h ‖2L∞

)
‖en+1
h ‖20 + Ch2s

(
‖p‖2L∞(Hs) + ‖u‖2L∞(Hs+1)

)
+

1

8
‖σ∗h(∇λn+1

h )‖2τp .
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Then, applying (72) instead of (24) the factor µ−1 disappears from (35):

‖enh‖20 + ∆tν

n∑
j=1

‖∇ejh‖
2
0 + ∆t

n∑
j=1

‖σ∗h(∇λjh)‖2τp + ∆tµ

n∑
j=1

‖∇ · ejh‖
2
0

≤ e2TM̂u

(
‖e0
h‖20 + ∆t

n∑
j=1

‖ξjvh‖
2
0

)

+Ce2TM̂u
(
Th2s

(
(1 + ν + µ)‖u‖2L∞(Hs+1) + ‖p‖2L∞(Hs+1)

))
.

As a consequence, µ ∼ O(h) is a possible option for the stabilization parameter since
with this choice (41) holds with K̂u,p replaced by

K̂u,p =
(

(1 + ‖u‖2L∞(H2) + ν + µ)‖u‖2L∞(Hs+1) + ‖∂tu‖2L∞(Hs) + ‖p‖2L∞(Hs+1)

)
.

Let us finally point out that in view of (41) the choice µ ∼ O(h) compared with µ ∼ O(1)
gives the same rate of convergence for the L2 norm of the velocity error but reduces the rate
of convergence for the divergence by half an order.

6 A method with rate of decay s+1/2 of the velocity
error for ν ≤ h

This section considers the method from Section 4, which adds a stabilization term that gives
control over the fluctuation of the gradient of the velocity and the standard LPS term for
the pressure in the situation that ν ≤ h. It is shown that with a different choice of the
stabilization parameters and by assuming a higher regularity of the solution, both issues
compared with Section 4, the rate of the error decay for the left-hand side of (64) can be
increased to s+ 1/2.

We follow the analysis of Section 4. Instead of choosing the LPS parameter for the
pressure as in (11), it will be assumed that

α1hK ≤ τp,K ≤ α2hK , (73)

and instead of taking τν,K ∼ 1, it will be assumed that

c1hK ≤ τν,K ≤ c2hK , (74)

with nonnegative constants α1, α2, c1, c2. In the sequel, the assumptions for the spatial
regularity of the solutions are p ∈ Hs+1(Ω) and u, ∂tu ∈ Hs+1(Ω)d at almost every time for
s ≥ 2.

The analysis starts with a different estimate of the truncation error ξn+1
vh

, defined in
(19)–(21). In (22), the estimate of the term coming from this error is replaced by

‖ξn+1
vh,1
‖20 +

‖en+1
h ‖20
4

+ (ξn+1
vh,2

, en+1
h ).

Then, instead of (22) we get

‖en+1
h ‖20
2∆t

− ‖e
n
h‖20

2∆t
+
‖en+1
h − enh‖20

2∆t
+
ν

2
‖∇en+1

h ‖20 + ‖σ∗h(∇λn+1
h )‖2τp

+Sh(en+1
h , en+1

h )

≤
∣∣b(un+1

h ,un+1
h , en+1

h )− b(ûn+1
h , ûn+1

h , en+1
h )

∣∣+ ‖ξn+1
vh,1
‖20 +

‖en+1
h ‖20
4

+ (ξn+1
vh,2

, en+1
h )

+
∣∣(ξn+1

qh
, λn+1
h )

∣∣+
ν

2
‖∇ên+1

h ‖0 +
∣∣spres(p̂

n+1
h , λn+1

h )
∣∣

+
∣∣Sh(ûn+1

h , en+1
h )

∣∣+
∣∣∣(λ̂n+1

h ,∇ · en+1
h )

∣∣∣ .
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The term (ξn+1
vh,2

, en+1
h ) can be decomposed in the form

|b(un+1,un+1, en+1
h )− b(ûn+1

h , ûn+1
h , en+1

h )|

≤ |((ûn+1
h · ∇)(ûn+1

h − un+1), en+1
h )|+ 1

2
|((∇ · ûn+1

h )(ûn+1
h − un+1), en+1

h )|

+|(((ûn+1
h − un+1) · ∇)un+1, en+1

h ) +
1

2
|(∇ · (ûn+1

h − un+1)un+1, en+1
h )|. (75)

Since ‖∇un+1‖L∞ is bounded by the regularity assumption and ‖∇ · ûn+1
h ‖L∞ is bounded

in (32), the second and third terms in (75) can be bounded by

C‖u‖L∞(H3)‖û
n+1
h − un+1‖0‖en+1

h ‖0.

Thus, we only need to bound the first and the last term in (75). Using integration by parts
gives the decomposition

(ûn+1
h · ∇(ûn+1

h − un+1), en+1
h ) = −((∇ · ûn+1

h )(ûn+1
h − un+1), en+1

h )

−(ûn+1
h · ∇en+1

h , ûn+1
h − un+1).

Again, the first term can be bounded by C‖u‖L∞(H3)‖ûn+1
h − un+1‖0‖en+1

h ‖0, so we only

need to bound the second one. Using that the range of σl−1
h is Y l−1

h and the definition (13)
of ûn+1

h yields

(ûn+1
h · ∇en+1

h , ûn+1
h − un+1)

= (σ∗h(ûn+1
h · ∇en+1

h ), ûn+1
h − un+1) (76)

= (σ∗h(ûn+1
h · σl−1

h ∇e
n+1
h ), ûn+1

h − un+1) + (σ∗h(ûn+1
h · σ∗h∇en+1

h ), ûn+1
h − un+1).

We apply Lemma 3 to the first term to obtain

|(σ∗h(ûn+1
h · σl−1

h ∇e
n+1
h ), ûn+1

h − un+1)|
≤ Ch‖ûn+1

h ‖W1,∞‖σl−1
h ∇e

n+1
h ‖0‖ûn+1

h − un+1‖0
≤ C‖ûn+1

h ‖W1,∞‖en+1
h ‖0‖ûn+1

h − un+1‖0,

where in the last inequality we have applied the L2 stability of σl−1
h (7) and the inverse

inequality (5). For the second term of (76), we get with (7)

|(σ∗h(ûn+1
h · σ∗h∇en+1

h ), ûn+1
h − un+1)|

≤ C
∑
K∈Th

‖ûn+1
h · σ∗h∇en+1

h ‖L2(ωK)‖û
n+1
h − un+1‖L2(K)

≤ C
∑
K∈Th

‖ûn+1
h ‖L∞(ωK)‖σ∗h∇en+1

h ‖L2(ωK)‖û
n+1
h − un+1‖L2(K)

≤ C‖ûn+1
h ‖2L∞

∑
K∈Th

max
K′⊂ωK

τ−1
ν,K′‖û

n+1
h − un+1‖2L2(K) +

1

8

∑
K∈Th

τν,K‖σ∗h∇en+1
h ‖2L2(K).

This bound concludes the estimate of the first term on the right-hand side of (75). To bound
the last term on the right-hand side of (75), integration by parts and (13) are applied

|∇ · (ûn+1
h − un+1)un+1, en+1

h )|
= | − (ûn+1

h − un+1, σ∗h∇(un+1 · en+1
h ))|

≤ |(ûn+1
h − un+1, σ∗h((∇un+1)Ten+1

h ))|+ |(ûn+1
h − un+1, σ∗h((∇en+1

h )Tun+1))|
≤ ‖ûn+1

h − un+1‖0‖∇un+1‖L∞‖en+1
h ‖0 + |(ûn+1

h − un+1, σ∗h((∇en+1
h )Tun+1))|.
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The last term can be bounded arguing exactly as in (76). Thus, collecting all estimates and
using (31) to bound ‖ûn+1

h ‖L∞ ≤ C‖u‖L∞(H2) yields

|b(un+1,un+1, en+1
h )− b(ûn+1

h , ûn+1
h , en+1

h )|
≤ C‖u‖L∞(H3)‖u

n+1 − ûn+1
h ‖0‖en+1

h ‖0

+C‖u‖2L∞(H2)

∑
K∈Th

max
K′⊂ωK

τ−1
ν,K′‖û

n+1
h − un+1‖2L2(K) +

1

4

∑
K∈Th

τν,K‖σ∗h∇en+1
h ‖2L2(K)

≤ C‖u‖2L∞(H3)‖u
n+1 − ûn+1

h ‖20 + C‖u‖2L∞(H2)

∑
K∈Th

max
K′⊂ωK

τ−1
ν,K′‖û

n+1
h − un+1‖2L2(K)

+
1

4
‖en+1
h ‖20 +

1

4

∑
K∈Th

τν,K‖σ∗h∇en+1
h ‖2L2(K)

≤ C‖u‖2L∞(H3)

(
max
K∈Th

τ−1
ν,K

)
‖un+1 − ûn+1

h ‖20 +
1

4
‖en+1
h ‖20 +

1

4
Sh(en+1

h , en+1
h ), (77)

where we have bounded

min
K∈Th

{τν,K}‖u‖2L∞(H3) + ‖u‖2L∞(H2) ≤ C‖u‖
2
L∞(H3) + ‖u‖2L∞(H2) ≤ C‖u‖

2
L∞(H3).

Thus, in the present case, instead of (22), we have

‖en+1
h ‖20
2∆t

− ‖e
n
h‖20

2∆t
+
‖en+1
h − enh‖20

2∆t
+
ν

2
‖∇en+1

h ‖20 + ‖σ∗h(∇λn+1
h )‖2τp

+
3

4
Sh(en+1

h , en+1
h )

≤
∣∣b(un+1

h ,un+1
h , en+1

h )− b(ûn+1
h , ûn+1

h , en+1
h )

∣∣+ ‖ξn+1
vh,1
‖20 +

‖en+1
h ‖20
2

(78)

+
∣∣(ξn+1

qh
, λn+1
h )

∣∣+
ν

2
‖∇ên+1

h ‖0 +
∣∣spres(p̂

n+1
h , λn+1

h )
∣∣

+C‖u‖2L∞(H3)

(
max
K∈Th

τ−1
ν,K

)
‖ên+1
h ‖20 +

∣∣Sh(ûn+1
h , en+1

h )
∣∣+
∣∣∣(λ̂n+1

h ,∇ · eh)
∣∣∣ .

Next, we argue as in Section 4 and apply (52), (53), and (54) as starting point for estimating
the first term on the right-hand side of (78). To bound the first term on the right-hand side
of (54), a similar approach as in (55) is applied, taking into account the different stabilization
parameter and regularity of the solution,

spres(p
n+1
h , σlh(ûn+1

h · en+1
h )) (79)

≤ Ch2s+1‖p‖2L∞(Hs+1) +
1

8
‖σ∗h(∇λn+1

h )‖2τp + 4

(
max
K∈Th

τp,K

)
‖σ∗h(∇σlh(ûn+1

h · en+1
h ))‖20.

Now, the bound of the last term of (79) becomes different as in Section 4 since the application
of the inverse inequality gives rise to a term with factor h−1, compare (55). The triangle
inequality gives

‖σ∗h(∇σlh(ûn+1
h · en+1

h ))‖20 ≤ 2‖σ∗h(∇(ûn+1
h · en+1

h ))‖20
+2‖σ∗h(∇(I − σlh)(ûn+1

h · en+1
h ))‖20. (80)

For the second term on the right-hand side of (80), we apply the L2 stability (7) of σ∗h and
(50) to get

‖σ∗h(∇(I − σlh)(ûn+1
h · en+1

h ))‖20 ≤ C‖∇(I − σlh)(ûn+1
h · en+1

h )‖20
≤ C‖ûn+1

h ‖2W1,∞‖en+1
h ‖20. (81)
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Utilizing the product rule, the triangle inequality, and (7) gives for the first term on the
right-hand side of (80)

‖σ∗h(∇(ûn+1
h · en+1

h ))‖0 ≤ C‖∇ûn+1
h ‖L∞‖en+1

h ‖0 + ‖σ∗h(∇en+1
h ûn+1

h )‖0. (82)

For the second term on the right-hand side of (82), we use the decomposition ∇en+1
h =

σl−1
h ∇e

n+1
h + σ∗∇en+1

h , Lemma 3, (7), and the inverse estimate (5) to obtain

‖σ∗h(∇en+1
h ûn+1

h )‖0 ≤ Ch‖ûn+1
h ‖W1,∞‖σl−1

h ∇e
n+1
h ‖0 + ‖σ∗h((σ∗h∇en+1

h )ûn+1
h )‖0

≤ C‖ûn+1
h ‖W1,∞‖en+1

h ‖0 + C‖(σ∗h∇en+1
h )ûn+1

h ‖0. (83)

For the second term on the right-hand-side of (83) we get

‖(σ∗h∇en+1
h )ûn+1

h ‖20 =
∑
K∈Th

‖(σ∗h∇en+1
h )ûn+1

h ‖2L2(K)

≤
∑
K∈Th

‖ûn+1
h ‖2L∞(K)‖σ∗h∇en+1

h ‖2L2(K)

=
∑
K∈Th

τ−1
ν,K‖û

n+1
h ‖2L∞(K)τν,K‖σ∗h∇en+1

h ‖2L2(K)

≤
(

max
K∈Th

τ−1
ν,K

)
‖ûn+1

h ‖2L∞‖σ∗h(∇en+1
h )‖2τν . (84)

Altogether, we conclude from (82), (83), and (84) that

‖σ∗h(∇(ûn+1
h · en+1

h ))‖20 ≤ C‖ûn+1
h ‖2W1,∞‖en+1

h ‖20 (85)

+C‖ûn+1
h ‖2L∞

(
max
K∈Th

τ−1
ν,K

)
‖σ∗h(∇en+1

h )‖2τν .

Taking into account (80), (81), and (85), we finally obtain for the last term on the right-hand
side of (79)

4

(
max
K∈Th

τp,K

)
‖σ∗h(∇σlh(ûn+1

h · en+1
h ))‖20

≤ Ch‖ûn+1
h ‖2W1,∞‖en+1

h ‖20

+C‖ûn+1
h ‖2L∞

(
max
K∈Th

τp,K

)(
max
K∈Th

τ−1
ν,K

)
‖σ∗h(∇en+1

h )‖2τν . (86)

Thus, assuming

C‖ûn+1
h ‖2L∞

(
max
K∈Th

τp,K

)(
max
K∈Th

τ−1
ν,K

)
≤ 1

16
, (87)

with C being the constant of the last term of (86), estimate (86) gives

4

(
max
K∈Th

τp,K

)
‖σ∗h(∇σlh(ûn+1

h · en+1
h ))‖20

≤ Ch‖ûn+1
h ‖2W1,∞‖en+1

h ‖20 +
1

16
Sh(en+1

h , en+1
h ). (88)

From (79) and (88) we get now

spres(p
n+1
h , σlh(ûn+1

h · en+1
h )) ≤ Ch2s+1‖p‖2L∞(Hs+1) + Ch

∥∥ûn+1
h

∥∥2

W1,∞ ‖e
n+1
h ‖20,

+
1

8
‖σ∗h(∇λn+1

h )‖2τp +
1

16
Sh(en+1

h , en+1
h ). (89)

Observe that (89) is the counterpart of (55).
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To bound the second term on the right-hand side of (54), applying integration by parts,
(13), the Cauchy–Schwarz inequality, and Young’s inequality yields(

(∇ · ên+1
h ), σlh(ûn+1

h · en+1
h )

)
= −

(
ên+1
h , σ∗h(∇σlh(ûn+1

h · en+1
h ))

)
≤
‖ên+1
h ‖20
4εh

+ εh‖σ∗h(∇σlh(ûn+1
h · en+1

h ))‖20 (90)

≤ Cε−1h2s+1‖u‖L∞(Hs+1) + εh‖σ∗h(∇σlh(ûn+1
h · en+1

h ))‖20

with some ε > 0. Now, the second term on the right-hand side can be estimated the same
way as the second term of (79). The parameter ε can be chosen sufficiently small so that

Cεh‖ûn+1
h ‖2L∞

(
max
K∈Th

τ−1
ν,K

)
≤ 1

16
, (91)

and hence, the second term of (90) can be bounded by (88).
Collecting terms and assuming that condition (87) holds, instead of (56), we reach∣∣b(un+1

h ,un+1
h , en+1

h )− b(ûn+1
h , ûn+1

h , en+1
h )

∣∣
≤ C

(
‖∇ûn+1

h ‖L∞ + h‖ûn+1
h ‖2W1,∞

)
‖en+1
h ‖20 +

1

8
‖σ∗h(∇λn+1

h )‖2τp

+
1

8
Sh(en+1

h , en+1
h ) + Ch2s+1

(
‖p‖2L∞(Hs+1) + ε−1‖u‖2L∞(Hs+1)

)
.

Now, we argue as in Section 4, taking into account that p ∈ Hs+1(Ω) and applying (73)
and (74). The estimate of the fourth term on the right-hand side of (78) uses the approach
of (26) and the choice of the stabilization parameter (73). The seventh term is bounded by
(14) and the stabilization parameter (74). To get a higher order of the fifth term of (22),
we have to assume that

ν ≤ h. (92)

Collecting all estimates gives, instead of (61),

‖enh‖20 + ∆tν

n∑
j=1

‖∇ejh‖
2
0 + ∆t

n∑
j=1

‖σ∗h(∇λjh)‖2τp +
∆t

4

n∑
j=1

‖σ∗h(∇ejh)‖2τν

≤ e2TMu

(
‖e0
h‖20 + 2∆t

n∑
j=1

‖ξjvh,1‖
2
0 + CTh2s+1

(
‖u‖2L∞(Hs+1) + ‖p‖2L∞(Hs+1)

))
,

where

1 + C
(
‖∇ûn+1

h ‖L∞ + h‖ûn+1
h ‖2W1,∞

)
≤Mu = 1 + C‖u‖L∞(H3)

(
1 + ‖u‖L∞(H3)

)
. (93)

Note that we apply (36) and (37) under the assumption ∂tu ∈ Hs+1(Ω)d to bound ‖ξjvh,1‖
2
0.

Then, instead of (62), we obtain

‖enh‖20 + ∆tν

n∑
j=1

ν‖∇ejh‖
2
0 + ∆t

n∑
j=1

‖σ∗h(∇λjh)‖2τp + ∆t

n∑
j=1

‖σ∗h(∇ejh)‖2τν

≤ e2TMu

(
‖e0
h‖20 + CTKu,ph

2s+1 + C(∆t)2

∫ tn

t0

‖∂ttu‖20
)
,

with

Ku,p =
((

1 + ε−1 + ‖u‖2L∞(H3)

)
‖u‖2L∞(Hs+1) + ‖∂tu‖2L∞(Hs+1) + ‖p‖2L∞(Hs+1)

)
, (94)

ε being the value in (91). The triangle inequality finishes the proof of the velocity error
estimate.
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Theorem 7 Let the assumptions of Theorem 3 be satisfied, let in particular u, ∂tu ∈
L∞(0, T ;Hs+1(Ω)d) and p ∈ L∞(0, T ;Hs+1(Ω)). Let the stabilization parameters be chosen
such that (87) is satisfied and let condition (92) hold. Then, the following error bound is
valid

‖un − unh‖20 + ∆tν

n∑
j=1

‖∇(uj − ujh)‖20 + ∆t

n∑
j=1

‖σ∗h(∇(pj − pjh))‖2τp

+∆t

n∑
j=1

‖σ∗h(∇(uj − ujh))‖2τν (95)

≤ Ce2TMu

(
‖e0
h‖20 + TKu,ph

2s+1 + (∆t)2

∫ tn

t0

‖∂ttu‖20 dt
)
,

where the constants on the right-hand side are defined in (93) and (94).

Remark 7 The bound for the pressure follows the steps of Section 4.2 with the only
difference that due to the change in the size of the pressure stabilization parameter instead
of (66) we get

(∇ · (unh − un), σlh(φ · unh)) ≤ Ch−1/2 (‖σ∗(∇λnh)‖τp + ‖σ∗h(∇p̂nh)‖τp
)
‖φ · unh‖0,

and

sup
‖φ‖1=1

(∇ · (unh − un), σlh(φ · unh))

≤ C‖unh‖L2d/(d−1)

(
h−1/2‖σ∗h(∇λnh)‖τp + Chs+1/2‖p‖L∞(Hs+1)

)
.

The factor h−1/2 remains during the analysis in front of ‖σ∗h(∇λnh)‖τp such that a higher
rate of error decay for the pressure error cannot be proved with this approach.

The last term in the second line of (66) has the same principal form as the last term
of (79). In contrast to the analysis for the velocity, we did not find a way to replace
the application of the inverse estimate by a more sophisticated approach that leads to an
improvement of the rate of error decay for the pressure.

7 Numerical studies

Numerical studies will be presented for the sake of supporting the analytical results. Simu-
lations were performed at a problem defined in Ω = (0, 1)2 and the time interval (0, 5] with
the prescribed solution

u = cos(t)

(
sin(πx− 0.7) sin(πy + 0.2)
cos(πx− 0.7) cos(πy + 0.2)

)
,

p = cos(t)(sin(x) cos(y) + (cos(1)− 1) sin(1)).

The version of the Scott–Zhang operator proposed in [?] was used for computing the
local projection. The numerical studies were performed with the code MooNMD [?].

The new contributions of this paper are the error bounds with respect to the spatial
discretizations; the first order convergence of the implicit Euler scheme is well known. That’s
why, the numerical studies aim to support only the derived spatial orders of convergence. A
standard approach consists in considering setups where the temporal error is negligible. This
approach requires the use of small time steps. In addition, noting that the actual temporal
discretization does not contribute to the spatial order of convergence, it is advisable to use
a higher order temporal scheme to be able to perform the simulations with a reasonable
number of time steps. As temporal discretization, the second order Crank–Nicolson scheme
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Figure 1: Grid 1 and 2, level 0.

was used, its analysis being included in the Appendix. With the Crank–Nicolson scheme
a small time step ∆t = 0.001 was used. Hence, the temporal error possesses a negligible
impact on the first refinements of the coarsest grids presented in Figure 1. The nonlinear
problems in each discrete time were solved until the Euclidean norm of the residual vector
was less than 10−13.

7.1 LPS with global grad-div stabilization

Here, method (6) analyzed in Section 3, with the Crank–Nicolson scheme instead of the
implicit Euler method, will be studied.

The asymptotic choice of the LPS stabilization parameter is given in (11). From numer-
ical studies, we could see that τp,K = h2

K is an appropriate selection with respect to the
accuracy of the computational results. From the statements of Theorem 1 and 2, it follows
that the grad-div stabilization parameter should be a constant. Numerical tests showed that
µ = 0.1 is a good choice. In addition, since in the considered example the pressure solution
is smooth, it would be possible to obtain in the last term of (24)

C

µ
h2(s+1)‖p‖2L∞(Hs+1),

such that also the choice µ ∼ h is possible without reducing the order of convergence. Thus,
also results for µ = 0.1hK will be presented. Note that µ ∼ h is the choice that is proposed
for the equal-order SUPG/PSPG/grad-div stabilized finite element method of the Oseen
equations, compare [?, Rem. 5.42].

Besides a number of standard errors, an error is monitored that is an approximation of
the left-hand side of (41). The approximation consists in considering instead of the pressure
term, the term

∆t

n∑
j=1

τp‖∇(pj − pjh)‖20, (96)

with τp = h2 and h = h02−l, l being the index of the level with h0 =
√

2 for Grid 1 and
h0 = 1 for Grid 2. Using (7), the pressure term on the left-hand side of (41) can be estimated
from above with (96) times a constant.

Results presented with the P2/P2 pair of finite elements are presented in Figure 2 and
with the P3/P3 pair of spaces in Figure 3. These results agree with the analytical predictions.
Concerning the grad-div stabilization parameter there are only minor differences in the
results. For the P3/P3 pair of spaces, µ = 0.1hK gives a somewhat better approximation of
the pressure. Considering the individual terms, one can observe that the convergence of the
velocity error in ‖(u − uh)(T )‖L2 is generally faster than the convergence of the left-hand
side of (41) and that the L2(0, T ;L2(Ω)) error of the pressure gradient converges slower in
some cases.
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Figure 2: LPS with global grad-div stabilization, P2/P2 pair of finite element spaces, Grid 1
(left) and Grid 2 (right), dotted line: slope for second order convergence.

Figure 4 displays a representative result for the dependency of the errors on the viscosity.
It can be seen that all errors, in particular the approximation of the error on the left-hand
side of (41), are bounded for ν → 0. This behavior coincides with the analytical prediction.

7.2 A method with rate of decay s + 1/2 of the velocity error
for ν ≤ h

Simulations for the method analyzed in Section 6 were performed on the irregular Grid 2,
to prevent any superconvergence effects, for ν = 10−8, such that condition (92) is satisfied,
and for the final time T = 0.5. The remaining setup of the simulations was as described in
Section 7.1.

The methods incorporating the fluctuations of the velocity gradient were implemented as
follows. Generally, the nonlinear problems were solved with a fixed point iteration (Picard
iteration). Since the matrix representing the fluctuations of the gradient possesses a wider
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Figure 3: LPS with global grad-div stabilization, P3/P3 pair of finite element spaces, Grid 1 (left)
and Grid 2 (right), dotted line: slope for third order convergence, same legend as in Figure 2.
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Figure 4: LPS with global grad-div stabilization, P2/P2 pair of finite element spaces, Grid 1,
behavior of errors with respect to ν−1, same legend as in Figure 2.

stencil than all other matrices for the velocity-velocity coupling, we put the term with the
fluctuations of the velocity gradient on the right-hand side in the Picard iteration. In order
to achieve a satisfying rate of convergence of this iteration, numerical tests showed that the
parameters {τν,K} should be rather small. In addition, we could see that increasing these
parameters above a certain value leads to a notable increase of the errors. Altogether, for
the irregular Grid 2, τν,K = 0.01hK turned out to be an appropriate choice. In view of
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Figure 5: A method with rate of decay s + 1/2 of the velocity error for ν ≤ h, computational
results on Grid 2.

condition (87), the LPS parameters for the pressure were chosen to be τp,K = 10−4hK .
An error bound for the considered method was derived in Theorem 7. In the numerical

simulations, the terms with the fluctuations on the left-hand side of (95) were approximated
by

∆t

n∑
j=1

‖σ∗h(∇(Ihp
j − pjh))‖2τp , ∆t

n∑
j=1

‖σ∗h(∇(Ihu
j − ujh))‖2τν ,

where Ih is the Lagrangian interpolant. With the interpolants of the solution, these terms
can be simply computed by matrix-vector operations with the matrix of the fluctuations.

Computational results are presented in Figure 5. One can observe the proposed rates
of decay of the velocity error. Having a detailed look on the individual contributions of
the error, we could see that the L2 error and the fluctuations of the velocity gradient were
dominant.

A Appendix: Analysis of the Crank–Nicolson me-
thod

A.1 Local projection stabilization with global grad-div stabi-
lization.

We now consider the approximation of (1) given by the Crank–Nicolson method, where

given u0
h, we look for approximations (un+1

h , p
n+1/2
h ) ∈ Xh × Qh, n = 0, 1, . . . , N − 1,

satisfying(
un+1
h − unh

∆t
,vh

)
+ ν(∇un+1

h ,∇vh) + b(un+1
h ,un+1

h ,vh)− (p
n+1/2
h ,∇ · vh)

+Sh(un+1
h ,vh) = (fn+1/2,vh) ∀vh ∈Xh,

(∇ · un+1
h , qh) + spres(p

n+1/2
h , qh) = 0 ∀qh ∈ Qh,

where Sh and spres are as in Section 3, and, here and in the sequel, for any sequence (gn)∞n=0,
gk denotes

gn+1 =
gn + gn+1

2
.
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and for for any function g(t) we denote

gn+1/2 = g
( tn + tn+1

2

)
, gn+1 =

g(tn) + g(tn+1)

2
.

Besides the notation in (17), we also denote

ẽnh = ûnh − u
n−1/2, λ̂

n−1/2
h = p̂

n−1/2
h − pn−1/2, λ

n−1/2
h = p̂

n−1/2
h − pn−1/2

h .

Instead of the error equation (18), we now have(
en+1
h − enh

∆t
,vh

)
+ ν(∇en+1

h ,∇vh) + b(ûn+1
h , ûn+1

h ,vh)− b(un+1
h ,un+1

h ,vh)

−(λ
n+1/2
h ,∇ · vh) + (∇ · en+1

h , qh) + spres(λ
n+1/2
h , qh) + Sh(en+1

h ,vh) (97)

= (ξ̃
n+1

vh
,vh) + (ξn+1

qh
, qh) + ν(∇ẽn+1

h ,∇vh) + spres(p̂
n+1/2
h , qh)

+Sh(ûn+1
h ,vh)− (λ̂

n+1/2
h ,∇ · vh),

where

ξ̃
n+1

vh
= ξ̃

n+1

vh,1
+ ξ̃

n+1

vh,2
,

(ξ̃
n+1

vh,1
,vh) = −

(
∂tu

n+1/2 −
ûn+1
h − ûnh

∆t
,vh

)
− b(un+1/2,un+1/2,vh) + b(un+1,un+1,vh),

(ξ̃
n+1

vh,2
,vh) = −b(un+1,un+1,vh) + b(ûn+1

h , ûn+1
h ,vh).

Observe that the first term in (97) coincides with that in (18), and the only difference
between the rest of the terms in both formulae is that in (97) they have either an underscore,
or a tilde, or a superscript n+ 1/2 instead of n+ 1. Consequently, except for the first term
of (97), we will repeat the arguments we used for (18) in Section 3.

Now, for the first term of (97), notice that taking vh = en+1
h , we have(

en+1
h − enh

∆t
, en+1
h

)
=
‖en+1
h ‖20
2∆t

− ‖e
n
h‖20

2∆t
,

which are exactly the first two terms on the right-hand side of (22). Thus setting (vh, qh) =

(en+1
h , λ

n+1/2
h ), instead of (22), we get

‖en+1
h ‖20
2∆t

− ‖e
n
h‖20

2∆t
+
ν

2
‖∇en+1

h ‖20 + ‖σ∗h(∇λn+1/2
h )‖2τp + Sh(en+1

h , en+1
h )

≤
∣∣b(un+1

h ,un+1
h , en+1

h )− b(ûn+1
h , ûn+1

h , en+1
h )

∣∣+
‖ξ̃n+1

vh
‖20

2
+
‖en+1
h ‖20
2

(98)

+
∣∣∣(ξn+1

qh
, λ
n+1/2
h )

∣∣∣+
ν

2
‖∇ẽn+1

h ‖0 +
∣∣∣spres(p̂

n+1/2
h , λn+12

h )
∣∣∣

+
∣∣Sh(ûn+1

h , en+1
h )

∣∣+
∣∣∣(λ̂n+1/2

h ,∇ · en+1
h )

∣∣∣ .
Observe that

ẽn+1
h = ên+1

h + un+1 − un+1/2.

Applying a Taylor series expansion gives

un+1 − un+1/2 =

∫ tn+1

tn+1/2

(tn+1 − t)∂ttu(t) dt+

∫ tn+1/2

tn

(t− tn)∂ttu(t) dt,
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so that

‖un+1 − un+1/2‖20 ≤
(∆t)3

24

∫ tn+1

tn

‖∂ttu‖20 dt. (99)

Similar results hold for the spatial derivatives of un+1 − un+1/2. Consequently, instead
of (27), we now have

ν

2
‖∇ẽn+1

h ‖20 ≤ Cνh2s‖u‖2L∞(Hs+1) +
(∆t)3

24

∫ tn+1

tn

ν‖∇∂ttu‖20 dt.

Thus, recalling Remark 2 and repeating the same arguments that lead from (22) to (30) in
Section 3, now from (98) we get

‖enh‖20 + ∆tν

n∑
j=1

‖∇ejh‖
2
0 + ∆t

n∑
j=1

‖σ∗h(∇λj−1/2
h )‖2τp + ∆tµ

n∑
j=1

‖∇ · ejh‖
2
0

≤ ‖e0
h‖20 +

n∑
j=1

∆t

(
1 + 2‖∇ûjh‖L∞ +

‖ûjh‖
2
L∞

2µ

)
‖ejh‖

2
0 + ∆t

n∑
j=1

‖ξ̃jvh‖
2
0

+ CTh2s
(

(1 + ν + µ)‖u‖2L∞(Hs+1) + (1 + µ−1)‖p‖2L∞(Hs)

)
+

(∆t)4

4

∫ tn

0

ν‖∇∂ttu‖20 dt.

For the terms ‖ejh‖
2
0 in the first sum of the right-hand side we notice that

‖ejh‖
2
0 ≤

1

2

(
‖ejh‖

2
0 + ‖ej−1

h ‖20
)
,

so that it follows that

‖enh‖20 + ∆tν

n∑
j=1

‖∇ejh‖
2
0 + ∆t

n∑
j=1

‖σ∗h(∇λj−1/2
h )‖2τp + ∆tµ

n∑
j=1

‖∇ · ejh‖
2
0

≤ e2TM̂u

(
5

4
‖e0
h‖20 + ∆t

n∑
j=1

‖ξ̃jvh‖
2
0 +

(∆t)4

4

∫ tn

0

ν‖∇∂ttu‖20 dt

)

+Ce2TM̂u
(
Th2s

(
(1 + ν + µ)‖u‖2L∞(Hs+1) + (1 + µ−1)‖p‖2L∞(Hs)

))
.

For the truncation error ξ̃
j

vh
= ξ̃

j

vh,1
+ ξ̃

j

vh,2
, we notice that ξ̃

j

vh,2
can be estimated in exactly

the same way as ξjvh,2 in (40). For the first term on the expression of ξ̃
j

vh,1
, a Taylor series

expansion reveals

uj+1 − uj

∆t
− ∂tuj+1/2 =

1

2

∫ tj+1

tj+1/2

(tj+1 − t)2∂tttu(t) dt+
1

2

∫ tj+1/2

tj

(tj − t)2∂tttu(t) dt

so that arguing as in (37) we have∥∥∥∥∥ ûj+1
h − ûjh

∆t
− ∂tuj+1/2

∥∥∥∥∥
2

0

≤ C(∆t)3

∫ tj+1

tj

‖∂tttu‖20 + C
h2s

∆t

∫ tj+1

tj

‖∂tu(t)‖2s dt. (100)

For the rest of the terms in the expression of ξ̃
j

vh,1
, applying [?, Lemma 2], (99), and (2) we

have

sup
φ∈L2(Ω)d, ‖φ‖0=1

∣∣∣b(uj−1/2,uj−1/2,φ)− b(ujh,u
j
h,φ)

∣∣∣
≤ C

(
‖uj‖L∞ + ‖uj‖2

)
‖uj−1/2 − uj‖1

≤ C‖uj‖2
(∫ tj

tj−1

‖∇∂ttu‖20 dt
)1/2

(∆t)3/2.
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Thus, similarly to Section 3, for the Crank–Nicolson method we conclude the following
result.

Theorem 8 Let the solution of (3) be sufficiently smooth in space and time, such that all
norms appearing in the formulation of this theorem are well defined, and let the time step be
sufficiently small such that (34) holds. Then, the following error bound holds for 2 ≤ s ≤ l:

‖un − unh‖20 + ∆tν

n∑
j=1

‖∇(uj − ujh)‖20 + ∆t

n∑
j=1

‖σ∗h(∇(pj−1/2 − pj−1/2
h ))‖2τp

+∆tµ

n∑
j=1

‖∇ · ujh‖
2
0 (101)

≤ Ce2TM̂u

(
‖e0
h‖20 + TK̂u,ph

2s + (∆t)4

∫ tn

t0

(
‖∂tttu‖20 + ‖u‖2L∞(H2)‖∂tt∇u‖

2
0

)
dt

)
,

where M̂u is defined in (33) and K̂u,p is the constant in Theorem 1.

Observe the the left-hand side of (101) differs from that of (41) in that the quantities in
the sums are averaged in (101) and the pressure terms are evaluated at half times. Notice
also that the right-hand sides of (41) and (101) differ only in the o(∆t) terms.

For the pressure, again we follow closely the analysis in Section 3.2. Let us define

Λnh = ∆t

n∑
j=1

λ
j−1/2
h , Λ̂nh = ∆t

n∑
j=1

λ̂
j−1/2
h .

Instead of (42), we now have

(Λnh,∇ · vh) = (enh − e0
h,vh) + ∆tν

n∑
j=1

(∇(uj−1/2 − ujh),∇vh)

+ ∆t

n∑
j=1

(
b(uj−1/2,uj−1/2,vh)− b(ujh,u

j
h,vh)

)
+ ∆tµ

n∑
j=1

(∇ · (uj−1/2 − ujh),∇ · vh)

+ (Λ̂nh,∇ · vh) + ∆t

n∑
j=1

(
∂tu

j−1/2 −
ûjh − û

j−1
h

∆t
,vh

)
. (102)

Observe that (43) also holds now with the new meaning of Λnh, and that in view of (102),
instead of (44), we now have

sup
vh∈Xh

(Λnh,∇ · vh)

‖∇vh‖0
≤ ‖enh‖−1 + ‖e0

h‖−1 + ∆tν

n∑
j=1

‖∇(uj−1/2 − ujh)‖0

+∆t
n∑
j=1

‖B(uj−1/2,uj−1/2)−B(ujh,u
j
h)‖−1 + ∆tµ

n∑
j=1

‖∇ · ujh‖0

+∆t

n∑
j=1

‖λ̂j−1/2
h ‖0 + ∆t

n∑
j=1

∥∥∥∥∥∂tuj−1/2 −
ûjh − û

j−1
h

∆t

∥∥∥∥∥
−1

. (103)

The first and fifth terms on the right-hand side above can be estimated as in Section 3.2,
applying now Theorem 8 instead of Theorem 1. This is also the case of the third and the
fourth terms on the right-hand side of (103) if we write uj−1/2−ujh = uj−1/2−uj+uj−ujh
and apply (99) with u replaced by ∇u when necessary. Also, using (45) and (100), we
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estimate the sixth term on the right-hand side of (103), so that with the same arguments
as in Section 3.2 we obtain

‖Λnh‖0 ≤ β0C(u, ∂ttu, ∂tttu, p, T, µ, µ
−1)

(
‖e0
h‖0 + hs + (∆t)2)+ β0‖σ∗h(∇Λnh)‖τp

and conclude with the following result.

Theorem 9 Let the assumptions of Theorem 8 and the assumptions (48) be satisfied, then
the following error estimate holds∥∥∥∥∥∆t

n∑
j=1

(pj−1/2 − pj−1/2
h )

∥∥∥∥∥
0

≤ β0C(u, ∂ttu, ∂tttu, p, T, µ
−1)

(
‖u0 − u0

h‖0 + hs + (∆t
)2

).

Observe that the main difference between the analysis in the present section and that
in Section 3 is that most errors enh and ênh are replaced by their averages, enh and ênh,

all errors λnh and λ̂nh by their values at mid time levels, λ
n−1/2
h and λ̂

n−1/2
h and that, in

the truncation errors, besides that arising from the temporal discretization, we have the
presence of some extra terms involving quantities un − un−1/2, which are estimated as
in (99). Notice however that the arguments are the same in both sections. This is also the
case if we replace the backward Euler method by the Crank-Nicolson method in Sections 4,
5 and 6. Interested readers will find no difficulty in extending the analysis in these sections
to the Crank-Nicolson method as it is done in the present section.
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