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Abstract The contents of this paper is twofold. First, important recent re-
sults concerning finite element methods for convection-dominated problems
and incompressible flow problems are described that illustrate the activities in
these topics. Second, a number of, in our opinion, important open problems
in these fields are discussed. The exposition concentrates on H1-conforming
finite elements.

1 Introduction

There is a long tradition of using finite element methods for the discretiza-
tion of convection-dominated scalar equations and incompressible flow prob-
lems. For convection-dominated equations, the development of the Streamline-
Upwind Petrov–Galerkin (SUPG) method in [88,41] can be considered as a
major starting point of this tradition and for incompressible flow problems,
the development of the theory of linear saddle point problems and the deriva-
tion of the inf-sup condition in [14,38]. Since then there have been published
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several monographs, e.g., [126,127] about convection-dominated problems and
[74,75,77,112,93] concerning incompressible flow problems. In addition, a large
amount of papers has been published such that it is (nearly?) impossible to
achieve an overview on the existing methods and results from numerical anal-
ysis.

Of course, in this long tradition, many fundamental ideas were developed,
like different approaches for stabilization, and many basic results were proved,
like a priori estimates in natural norms of the problem or the stabilized finite
element scheme. During the last years, there has been the trend that the
results became more special. Along with this trend, our personal observation
is that the numerical analysis becomes longer and more technical. It arises the
question whether this trend is the main direction for the future.

The goal of this paper is twofold. First, a number of recent results will be
surveyed which show that there are still significant basic contributions to the
considered topics. These results include, e.g., the finite element error analysis
of algebraic stabilizations, the derivation of the EMAC form of the nonlin-
ear term of the Navier–Stokes equations, the derivation of pressure-robust
discretizations, and the progress of using and analyzing weakly divergence-
free finite element methods. Considerable progress has been achieved also in
the construction of stabilized methods for the time-dependent Navier–Stokes
equations for which error bounds can be derived where the constant does not
explicitly depend on inverse powers of the viscosity. Second, open problems in
the considered topics are stated, which are important in our opinion. These
problems are indicated with the symbol I. The selection of these problems
inevitably reflects our own personal views and it is certainly not complete.
The sequence of their presentation does not possess any correlation with our
personal opinion on their importance. The discussions in this paper focus on
H1-conforming finite element methods, with a few exceptions concerning tra-
ditional non-conforming methods for incompressible flow problems. Discontin-
uous Galerkin methods and H(div)-conforming methods will not be covered.

The paper is organized as follows. Section 2 considers scalar convection-
diffusion-reaction equations. Incompressible flow problems are discussed in
Section 3, starting with the Stokes equations, followed by the stationary Navier–
Stokes equations, and then finished with the time-dependent Navier–Stokes
equations. Finally, a summary is given.

2 Scalar Convection-Diffusion-Reaction Equations

Let Ω ⊂ Rd, d ∈ {2, 3}, be a domain and T > 0 be a final time. For the
finite element error analysis, it is assumed that Ω is a Lipschitz domain with
polyhedral boundary.

Scalar convection-diffusion-reaction equations are given by

∂tu− ε∆u+ b · ∇u+ cu = f in (0, T ]×Ω, (1)
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where ε > 0 is a constant diffusion coefficient, b is a convective field, and c ≥ 0
is a scalar function describing reactions. For obtaining a well-posed problem,
one has to prescribe appropriate boundary conditions and an initial condition.
Besides (1), also the steady-state version

− ε∆u+ b · ∇u+ cu = f in Ω, (2)

equipped with boundary conditions, is of interest.
Equations of type (1) and (2) model the behavior of scalar quantities,

like temperature, concentrations etc., that are transported in a flow field with
velocity b (convection), that undergo molecular transport (diffusion), and that
might interact (react) with each other. If the flow is incompressible, then it is
∇ · b = 0.

The interesting case in applications is that convection dominates diffusion:
‖b‖L∞(Ω) � ε. In this situation, a characteristic feature of solutions of (1)

and (2) is the appearance of layers. Layers are thin regions where the gradient
of the solution is very large. Depending on the type of layer, exponential or
characteristic, the thickness of the layer region is O(ε) or O(

√
ε), respectively.

From the practical point of view, characteristic layers are of importance. In
applications, it holds generally that

√
ε� h, where h denotes the mesh width,

i.e., it is not possible to resolve the layers on the used grids. This issue causes
the failure of standard discretizations, like the Galerkin finite element method
or the central finite difference scheme, for convection-dominated convection-
diffusion-reaction equations, since such methods try to resolve all important
features of the solution. This failure is expressed in the global appearance of
strong spurious oscillations.

The remedy consists in using so-called stabilized discretizations. These dis-
cretizations introduce numerical diffusion. A milestone in the development
of such discretizations was the proposal of the streamline-upwind Petrov–
Galerkin (SUPG) method in [88,41], which introduces numerical diffusion in
streamline direction. The SUPG method is still a very popular stabilization
technique. It belongs to the class of residual-based stabilizations. Further sta-
bilizations of this type were proposed thereafter. Examples of other types of
stabilized methods are the continuous interior penalty (CIP) method [50] and
the local projection stabilization (LPS) method, see [27] for the first applica-
tion of this method to a convection-dominated equation.

Remark 1 In our opinion, an ideal discretization of a convection-dominated
convection-diffusion-reaction equation should satisfy the following properties:

1. The numerical solution should possess sharp layers.
2. The numerical solution must not exhibit spurious oscillations.
3. There should be an efficient way for computing the numerical solution.

�

The first two properties are connected with the accuracy of the discretiza-
tion and usually correlate with results from the finite element error analysis
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in sufficiently strong norms. Since the layer width is usually smaller than the
mesh width, it follows from Property 1 that it is desirable that the layer of
the numerical solution is not much wider than the mesh width.

Property 2 is connected also with the physical fidelity of the numerical
solution. Of course, spurious oscillations are erroneous, thus they diminish the
accuracy. But even more important, they represent unphysical situations, like
negative concentrations. Such unphysical results are often worthless in prac-
tice. In coupled problems, where components of the solution usually enter as
coefficient in equations of the system, unphysical values might even lead to
a blow-up of the simulation, e.g., as reported in [99]. The non-appearance of
spurious oscillations is closely connected to the Discrete Maximum Principle
(DMP), i.e., the preservation of the Maximum Principle (MP) in the process
of the discretization. The MP is a property of the solution of the continu-
ous problem with a physical meaning. For instance, if c = 0 and f = 0 (no
sources), then the MP states that u takes its minimal and maximal values at
the boundary of the domain Ω or at the time t = 0. This issue is important,
e.g., if u is a concentration. A discretization that satisfies the DMP is also
called monotone.

Properties 1 and 2 are difficult to combine. For the limit case ε = 0, the
famous Godunov Theorem states that a monotone linear discretization is at
most of first order [78]. A similarly rigorous statement for the case ε > 0 does
not seem to exist. But the experience shows that higher order linear methods
for convection-diffusion-reaction equations are not monotone. For this reason,
many nonlinear discretizations, so-called Spurious Oscillations at Layers Di-
minishing (SOLD) methods or shock capturing methods, were proposed, which
try to reduce or remove the spurious oscillations by using stabilization terms
introducing artificial diffusion that depends on the numerical solution, see, e.g.,
[95,96] for a review of such methods. For some of these schemes, results from
finite element analysis, like existence of a solution or convergence, are avail-
able, e.g., in [106,46,120,16]. Nonlinear discretizations require an appropriate
method for the solution of the corresponding nonlinear algebraic problem. This
issue is closely related to Property 3.

Linear stabilized methods, like SUPG, CIP, or LPS, satisfy Properties 1
and 3. Numerical studies with SOLD methods in [13,95,102] showed that
most of these methods do not satisfy Property 2 neither. Also adaptive grid
refinement does not cure this deficiency, see [96], unless the grid becomes so
fine that the layer is resolved. Nevertheless, adaptivity is an important tool
to enhance the sharpness of the layers. One of the most successful first order
approaches for the numerical solution of the steady-state problem (2) was a
nonlinear upwind technique [122,105] which was proved to be a monotone
method. However, difficulties with respect to the convergence of the iteration
for solving the nonlinear problem were reported sometimes, e.g., in [95].

As a result of numerical assessments of stabilized discretizations in [13,
95,102,100], so-called algebraic stabilizations came into the focus of interest.
These schemes are designed to satisfy the DMP by construction and pro-
vide reasonably sharp approximations of layers. In contrast to the methods
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discussed above, which are all based on variational formulations, the idea of
algebraic stabilization is to modify the algebraic system corresponding to a
discrete problem (typically the Galerkin discretization) by means of solution-
dependent flux corrections. Hence, the resulting schemes are again nonlinear.
A drawback of these schemes is that they have been applied successfully only
for lowest order finite elements, which limits the accuracy of the computed
solutions. The basic philosophy of flux correction schemes was formulated al-
ready in the 1970s in [32,141]. Later, the idea was applied in the finite element
context, e.g., in [11,118]. In the last fifteen years, these methods have been
further intensively developed in, e.g., [107,108,109,110,111]. Here, the name
Algebraic Flux Correction (AFC) schemes was also frequently used.

Despite the attractiveness of AFC schemes, there was no rigorous numerical
analysis for this class of methods for a long time. First contributions to the
analysis of AFC schemes for the steady-state problem (2) can be found in
[17,18,19]. These papers are concerned with the solvability of the nonlinear
problems, the validity of the DMP, and the derivation of error estimates. In
particular, [19] introduced the first AFC scheme for a convection-diffusion-
reaction equation that satisfies both the DMP and linearity preservation on
general simplicial meshes.

Although the general error estimate derived in [18] is sharp, numerical
results show that for particular AFC schemes better convergence rates can be
obtained, at least for certain types of meshes.

I The derivation of error estimates for AFC schemes explaining the conver-
gence rates observed in numerical experiments for particular flux correc-
tions is open.

I An error analysis of AFC schemes for time-dependent problems is missing.

However, also for more classical discretization techniques, the error be-
havior is not completely understood. For example, the question of getting an
optimal rate of convergence in L2(Ω) for stabilized methods is still an open
problem even for steady-state problems (2). In [125], the following open ques-
tion is formulated (Question 2.2):

I For general shape-regular meshes of diameter h and a finite element space
V h that includes all polynomials of degree k ≥ 1, can one construct a
finite element method for (2) whose solution uh ∈ V h has the optimal
L2(Ω) error property∥∥u− uh∥∥

L2(Ω)
≤ Chk+1 ‖u‖Hm(Ω)

for some m? At present no such method is known for any value of k.

Most of the papers concerned with error estimates for convection-dominated
problems prove global bounds that depend on norms of the solution of the con-
tinuous problem over the full domain where the equations are defined. Then,
these global estimates are only meaningful for globally smooth solutions. On
the contrary, local estimates indicate that the methods are able to produce
accurate approximations in regions where the solution is locally smooth. More
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precisely, in general, one can choose some maximal subset that excludes all
layers and prove bounds in terms of norms restricted to this subset, by means
of cut-off functions [127, Part III, Theorem 3.41]. Most of the local bounds ex-
isting in the literature are for steady-state problems and even in that case the
results are not complete. In [49], the authors used weighted norms for a CIP
method and obtain local error estimates. For the case of the SUPG method
and steady-state convection-diffusion-reaction problems, a local estimate was
derived for the first time in [123]. In [104,124,143,144], see also [127], a mod-
ified SUPG method that adds artificial crosswind diffusion to the classical
SUPG method is analyzed for linear finite elements. In case of evolutionary
problems, the results are even more scarce. The SUPG method with space-
time finite elements was studied in [123]. In [62], local bounds are obtained
when the SUPG method is combined with the backward Euler scheme. The
arguments used in the proof lead to proposals for the stabilization parameter
that depend on the length of the time step. However, numerical experiments
show that local bounds seem to hold true also with a stabilization parameter
depending only on the spatial mesh width and with other time integrators.
Then, the question of getting local bounds with a stabilization parameter in-
dependent of the length of the time step and the extension to others than the
backward Euler method remain as open problems.

I A further development of techniques for local finite element error analysis
is necessary.

Often, the error in others than the natural norm of the problem or the sta-
bilized discrete problem is of interest, in particular the L∞(Ω) norm. Pointwise
error estimates were obtained in [104] for a modified SUPG method that adds
artificial crosswind diffusion for the steady-state problem (2). In this paper, the
authors assume that the mesh is quasi-uniform and get pointwise accuracy of
almost O(h5/4) for linear finite elements under local smoothness assumptions.
This pointwise estimate is sharpened in [124] to O(h11/8| log h|). In [143], by
orienting the mesh in the streamline direction and imposing a uniformity con-
dition on the mesh, the order of pointwise convergence of the modified SUPG
method based on linear finite elements is increased to O(h2| log h|). By study-
ing a special type of meshes, it is shown in [144] that the same method may
actually converge with any order between 3/2 and 2 depending on properties
of the meshes. All the results mentioned above only apply to the steady-state
problem (2).

I Pointwise estimates for higher order conforming finite element methods are
missing.

I The derivation of pointwise estimates for time-dependent problems seems
to be open.

A posteriori error estimators are used for estimating the accuracy of the
computed solution and for controlling an adaptive grid refinement. In the
case of convection-dominated problems, a posteriori error estimates should be
robust with respect to the ratio of diffusion and convection, i.e., the ratio of
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the error and its estimate should be bounded uniformly from above and below
by positive constants.

Let us consider first the steady-state equation (2). More than 15 years ago,
a competitive study of a number of proposed error estimators for the SUPG so-
lution of convection-dominated convection-diffusion equations [92] came to the
conclusion that none of them is robust and that the quality of the adaptively
refined grids is often not satisfactory. Since then, some contributions concern-
ing new a posteriori error estimators for the considered class of problems and
types of discretization can be found in the literature. In [138], an a posteriori
error bound is presented for the error in the norm (ε‖∇v‖2L2(Ω)+‖v‖2L2(Ω))

1/2,

which is not robust. An extension of the analysis of [138] led in [139] to a ro-
bust error estimator for a norm that adds to the norm of [138] a dual norm
of the convective derivative. The additional term in this norm can be only ap-
proximated. Some error bounds are also proved in [129] in the one-dimensional
case in a norm that includes a semi-norm of the error of order 1/2. Robust a
posteriori error estimators for the L1(Ω) and L2(Ω) norms of the error can be
found in [82,83,84]. Unlike the approaches from, e.g., [138,139], the derivation
of these estimators is based on the variational multiscale theory [87]. It can be
applied to stabilized discretizations since their error distribution is practically
local [91]. The essential part in the derivation consists in computing or ap-
proximating an appropriate norm of a local Green’s function, see [84] for the
P1 and Q1 finite elements in two-dimensional situations, and [83] for higher
order finite elements in one dimension. However, the L1(Ω) and L2(Ω) norms
are comparably weak norms, i.e., spurious oscillations of the numerical solu-
tion contribute generally little to the errors in these norms. In [101], robust
residual-based a posteriori error bounds are derived for the error of the SUPG
finite element approximation. The error bounds are obtained in the norm typ-
ically used in the a priori analysis of this method. The derivation of the upper
bound uses some hypotheses that state essentially that the interpolation error
is smaller than two times the error of the SUPG method. These hypotheses
cannot be proved in practice, however, since the value of the constant in the
hypothesis (i.e., two) is arbitrary and the analysis holds changing (increasing
if needed) that value, one can assume that the hypotheses always hold for a
value of the constant that depends on the concrete example. Because of the
hypotheses, the obtained results are from the mathematical point of view only
slightly less general than, e.g., the results of [139]. However, from the practical
point of view, the derivation of a robust error estimator for the natural norm
of the SUPG method is of interest. A similar situation can be found in [44],
where the derivation of an a posteriori error estimator for the natural norm
of some other stabilized discretization is also based on an assumption (a sat-
uration assumption) that most probably is not satisfied in the worst case. In
[65], essentially the same error estimator as proposed in [101] is proved to be
robust in a dual norm. Robust a posteriori error estimates employing a dual
norm were also derived in [136] for a wide range of stabilized methods. In [67],
an efficient and reliable error estimator is derived for SUPG approximations to
steady-state equation (2), based on the reconstruction of equilibrated fluxes.
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Error estimators of this type provide guaranteed error bounds without further
unknown constants. The robustness of the estimator is obtained again for a
dual norm of the convective term. In summary, there are very recent papers
on the a posteriori error estimation of steady-state problems. However, robust
estimators bound the error using dual norms, which are not very useful in
practice, or, as in the case of [101], they bound the error in standard norms
but requiring some extra hypotheses.

With respect to evolutionary equation (1), in [59] the extension of the error
estimator proposed in [101] is considered. Numerical experiments show that the
estimator works well in practice. However, from the theoretical point of view,
only a one-dimensional proof is included. In [52], some specific assumptions
are made on the convective term that do not hold in general. Essentially the
velocity field is assumed to be decomposable in a coarse scale, slowly varying in
space, and a fine scale, with small amplitude that may have strong spatial vari-
ations. Some a posteriori error bounds for quantities of interest are obtained
and applied to the CIP and the SUPG methods. For the related question of
goal-oriented a posteriori error estimation, the recent work of [132] should be
mentioned. In the introduction of this paper, a comprehensive survey of the
existing references in the literature can be found. In [132], the dual weighted
residual (DWR) method is combined with the SUPG method to control the
error with respect to some output functional. Both the theoretical justification
of the method and some interesting numerical experiments are presented.

I Robust a posteriori error estimators for evolutionary convection-diffusion
equations in general situations and with reasonable assumptions are miss-
ing.

I [125, Question 7.2]: For convection-diffusion problems, using some a poste-
riori error estimator combined with some strategy for mesh refinement (or
for changing the local polynomial degree) can one prove convergence of the
computed solution in some norm, uniformly with respect to the diffusion
parameter?

A comparably new approach for the discretization of partial differential
equations is isogeometric analysis (IGA) [86]. The basic idea of IGA consists in
using as basis functions for the discrete space the same functions that are usu-
ally utilized for the parameterization of complex domains, namely non-uniform
rational B-splines (NURBS). NURBS possess a higher regularity across faces of
mesh cells than continuous piecewise polynomials, which are the standard finite
element basis functions. This property is advocated as a potential advantage of
IGA [86]. A drawback is certainly the higher complexity of implementing IGA.
Meanwhile, the concept of IGA has been applied for the numerical solution of
many classes of problems. However, surprisingly, there are only few studies of
the potential of IGA for convection-diffusion equations, e.g., [24,86,103,134].
All studies are for academic examples, none of them is for the time-dependent
problem (1). Second order NURBS were applied in a time-dependent 3d ap-
plication in [25]. In [86], it is noted that the increased smoothness may lead
to a better capturing of layers and the summary of [103] emphasizes the large
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potential of IGA, in combination with the SUPG method, for the simulation
of scalar convection-diffusion equations.

I Despite these promising initial experiences there seem to be so far no seri-
ous efforts to establish IGA as an alternative to standard H1-conforming
finite elements for the solution of convection-diffusion equations. Will this
situation change in future?

The ultimate open problem for the numerical solution of convection-domi-
nated convection-diffusion-reaction equations is the following:

I Construct methods that satisfy all properties stated in Remark 1.

So far there is no such finite element method available.

3 Incompressible Flow Models

Flows of incompressible Newtonian fluids are modeled by the incompressible
Navier–Stokes equations, given here already in dimensionless form,

∂tu− 2ν∇ · D (u) + (u · ∇)u +∇p = f in (0, T ]×Ω,
∇ · u = 0 in (0, T ]×Ω, (3)

where u is the velocity field, p the pressure, f represents body forces, and
the parameter ν is a dimensionless viscosity. The inverse of ν is usually called
Reynolds number and the velocity deformation tensor is the symmetric part of
the velocity gradient D (u) = (∇u +∇uT )/2. Note that using the divergence
constraint, one obtains

−2ν∇ · D (u) = −ν∆u.

Problem (3) has to be equipped with appropriate boundary conditions and an
initial condition for the velocity. Based on the particular flow to be studied,
also a stationary version of (3) and even a linear version without convective
term, the so-called Stokes equations, can be applied.

Remark 2 The incompressible Navier–Stokes equations possess the following
features that might give rise to difficulties in the analysis, numerical analysis,
or in simulations:

– System (3) is a coupled system of a vector field u and a scalar function p
of saddle point character.

– The Navier–Stokes equations are nonlinear through the convective term
(u · ∇)u.

– In applications, the convective term (u · ∇)u often dominates the viscous
term −2ν∇·D (u). If the dominance is strong, the flow becomes turbulent.

�
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Possible boundary conditions for (3) (on parts of the boundary of Ω) in-
clude Dirichlet boundary conditions (essential boundary conditions), outflow
or do-nothing conditions, directional do-nothing conditions, free slip condi-
tions, slip with friction and penetration conditions, and boundary conditions
on the pressure, see [93, Sect. 2.4] for a detailed description. For academic
purposes, also periodic boundary conditions are used in the analysis.

I The numerical analysis with realistic boundary conditions seems to be a
wide open field for all kinds of incompressible flow problems.

Often just Dirichlet conditions on ∂Ω or periodic boundary conditions are
considered in the numerical analysis. The recent proposal of the directional
do-nothing condition in [36] was motivated by the fact that no analytical
way could be found to control possible inflow in the case of the do-nothing
condition.

3.1 The Stokes Equation

The Stokes equations are given by

−ν∆u +∇p = f in Ω,
∇ · u = 0 in Ω,

(4)

together with appropriate boundary conditions. From the three difficulties in-
herent to the Navier–Stokes equations, only the coupling of u and p is present.
Note that (4) can be scaled with ν−1 such that after having defined a new pres-
sure and a new right-hand side, one obtains an equation without parameter.
However, for illustrating some issues in this section, it is of advantage to discuss
form (4).

Since velocity and pressure are coupled in all incompressible flow models,
the open problems stated in this section are also present for the Navier–Stokes
equations.

To simplify the presentation, from now on the case of homogeneous Dirich-
let boundary conditions

u = 0 on ∂Ω

will be considered. Then, system (4) can be transformed to a weak or varia-
tional formulation: Find (u, p) ∈ V ×Q = H1

0 (Ω)d × L2
0(Ω) such that

(ν∇u,∇v)− (∇ · v, p) = 〈f ,v〉 ∀ v ∈ V,
(∇ · u, q) = 0 ∀ q ∈ Q. (5)

The well-posedness of problem (5) has been well known since the pioneering
works [14,38] on the theory of linear saddle point problems. A key in this
theory is the fact that V and Q satisfy an inf-sup condition

inf
q∈Q\{0}

sup
v∈V \{0}

(∇ · v, q)
‖∇v‖L2(Ω) ‖q‖L2(Ω)

≥ βis > 0.



Finite Elements for CDR Equations and Flow Problems – a Never Ending Story? 11

Let V h and Qh be finite element spaces for velocity and pressure, respec-
tively, that are conforming, i.e., V h ⊂ V and Qh ⊂ Q. The finite element
formulation of these commonly called mixed methods reads as follows: Find
(uh, ph) ∈ V h ×Qh such that

(ν∇uh,∇vh)− (∇ · vh, ph) = 〈f ,vh〉 ∀ vh ∈ V h,
(∇ · uh, qh) = 0 ∀ qh ∈ Qh. (6)

Similarly to the continuous problem, the well-posedness of (6) requires the
satisfaction of a discrete inf-sup condition

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

(∇ · vh, qh)

‖∇vh‖L2(Ω) ‖qh‖L2(Ω)

≥ βhis > 0. (7)

Usually, it is βhis ≤ βis, see [55] and [93, Lem. 3.53]. A notable special case with
βhis = βis is the lowest order non-conforming Crouzeix–Raviart element [57],
compare also [93, Thm. 3.151].

Let

V hdiv =
{
vh ∈ V h : (∇ · vh, qh) = 0 ∀ qh ∈ Qh

}
⊂ V h.

The inverse of βhis enters a general estimate of the best approximation error
in V hdiv by the best approximation error in V h, [93, Lem. 3.60]. An alterna-
tive estimate, based on the construction of a special interpolation operator,
is presented in [76]. The constant in this estimate depends on the inverse of
local discrete inf-sup constants. The approach of [76] cannot be applied to the
Taylor–Hood spaces P2/P1 and Q2/Q1 in three dimensions, which belong to
the most popular pairs of inf-sup stable spaces.

I Clarify whether best approximation errors in V hdiv can be bounded by best
approximation errors in V h with local inf-sup constants for P2/P1 and
Q2/Q1 in three dimensions.

The best approximation error in V hdiv appears in the error bounds obtained
in the finite element analysis. Drawing conclusions from these bounds with
respect to the order of convergence, the estimate with the best approximation
error in V h is applied and in this way, the inverse of the discrete inf-sup
constant (or of local constants) enters the error bounds. Error estimates for the
pressure are based on the discrete inf-sup condition (7) such that an additional
factor (βhis)

−1 appears. It is important for optimal order convergence that βhis
is bounded uniformly away from zero. A couple of papers study whether or not
βhis depends on the aspect ratio, e.g., [4,7,8,9,35,130]. Most of the available
results are in two dimensions.

I Further results concerning the dependency of βhis or local inf-sup constants
on the aspect ratio of mesh cells are needed.

The continuity equation in the weak form (5) has to be satisfied for all
functions from the infinite-dimensional space Q, whereas in the finite element
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formulation (6), its satisfaction is required only for functions from the finite-
dimensional space Qh. In the former case, one speaks of a weakly divergence-
free function (one has ∇ · u = 0 a.e. in Ω) and in the latter case of a
discretely divergence-free function. Obviously, discretely divergence-free is a
weaker property and it turns out that generally the functions in V hdiv are not
weakly divergence-free, i.e., it is generally

∥∥∇ · uh∥∥
L2(Ω)

6= 0. This property

implies, from the practical point of view, that mass is not conserved. The order
of convergence of

∥∥∇ · uh∥∥
L2(Ω)

is generally the same as of
∥∥∇(u− uh)

∥∥
L2(Ω)

,

[93, Cor. 4.24], i.e., it is not very high for popular pairs of inf-sup stable finite
element spaces. An overview, discussing the topic of the violation of the mass
balance for finite element discretizations can be found in [98] and a shorter
introduction in [93, Sec. 4.6]. Of course, there have been attempts to con-
struct finite element pairs with weakly divergence-free velocities, e.g., in [72,
80]. However, most of these spaces are of rather high polynomial degree and
practically not used. The only exception is the class of Scott–Vogelius spaces
Pk/P

disc
k−1, k ≥ d, [133], for the particular case k = d. This class of spaces does

not satisfy the discrete inf-sup condition on general grids [93, Ex. 3.73]. But it
was shown in [133,142] that the discrete inf-sup condition is satisfied on spe-
cial grids, so-called barycentric-refined grids. These grids are constructed from
simplicial grids by connecting each vertex of a simplex with the barycenter of
this simplex. In this way, a simplicial grid is created with possibly very small
and very large angles.

I For the Scott–Vogelius pair of finite element spaces, an analysis of the
impact of these angles on the discrete inf-sup constant and also on the
best approximation errors in V hdiv and Qh is not available.

Numerical studies in [131] show very promising results for the P2/P
disc
1 pair

of finite element spaces at 2d examples, even for the time-dependent Navier–
Stokes equations, such that there is some hope that the extreme angles of
barycentric-refined grids do not possess a dominant impact. Moreover, these
studies illustrate that P2/P

disc
1 works well on anisotropic barycentric-refined

grids. In summary, the only promising weakly divergence-free pair of standard
finite element spaces is Pk/P

disc
k−1, k = d, on barycentric-refined grids.

In the context of IGA there are also proposals for constructing discrete
spaces that allow the computation of weakly divergence-free velocity fields [42,
70,71]. However, for incompressible flow problems there seems to be a similar
situation as described for scalar convection-diffusion equations: compared with
standard finite element methods, only rather few contributions with IGA can
be found in the literature in recent years, e.g., in [85,43].

In [115], a new approach has been started for improving low order mixed
discretizations. A particular goal was the construction of finite element dis-
cretizations where the error bounds for the velocity do not depend on the pres-
sure. For this reason, the new discretizations are called pressure-robust. Clas-
sical mixed methods, as the Taylor–Hood methods, are not pressure-robust.
Starting point of this approach is the following observation for the continu-
ous problem (5). Let f ∈ L2(Ω)d, then f admits a Helmholtz decomposition
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f = Phelmf +∇r with Phelmf ∈ Hdiv(Ω) and ∇r ∈ (Hdiv(Ω))⊥ where

Hdiv(Ω) =
{
v ∈ L2(Ω)d,∇ · v ∈ L2(Ω) : ∇ · v = 0 and v · n = 0 on ∂Ω

in a weak sense} .

Inserting this decomposition in the momentum balance of (5) and applying
integration by parts yields

−(ν∆u,v)− (∇ · v, p) = (Phelmf ,v)− (∇ · v, r) ∀ v ∈ V.

Thus, irrotational forces ∇r are balanced by the pressure and divergence-free
forces by the velocity. Or with other words, if f is changed to f +∇r, then the
solution (u, p) changes to (u, p + r). For inf-sup stable mixed finite elements
that are not weakly divergence-free, this property does not hold since

(∇r,vh) = −(∇ · vh, r)

and if r 6∈ Qh, this term is not completely balanced by the finite element
pressure. One can also state it in such a way that classical mixed methods
relax the Helmholtz decomposition. The idea of [115] was to use an appropriate
reconstruction Ph applied to the test function such that in particular Phv ∈
Hdiv(Ω) for all v ∈ V hdiv. The simplest situation is that V h is the lowest order
Crouzeix–Raviart space and then the image of Ph can be chosen to be the
lowest order Raviart–Thomas space. Using now Phvh as test function on the
right-hand side of (6) gives

(∇r, Phvh) = −(∇ · (Phvh), r).

Taking vh ∈ V hdiv, which makes the pressure term on the left-hand side of (6)
zero, cancels also the contribution of r on the right-hand side. In this way, one
can obtain velocity error bounds that do not depend on the pressure. Changing
the test function introduces a consistency error that has to be analyzed. The
computed finite element velocity is generally not weakly divergence-free, but
a velocity approximation with this property is Phuh. Meanwhile, the basic
idea from [115] is extended to all important pairs of finite element spaces
[116,113]. Thus, this approach seems to be principally understood for the
Stokes equations, but new issues arise for more complicated incompressible
flow problems, see Section 3.3.

Velocity error bounds for non-pressure-robust mixed methods depend on
ν−1, e.g., compare [93, Rem. 4.33]. This dependency is sharp in the worst case,
e.g., for the no-flow problem [98, Ex. 1.1]. However, in many other examples,
a strong dependency of the velocity errors on ν−1 can be observed only on
coarse grids. Then, the error reduction for small values of ν is higher than the
predicted asymptotic rate of convergence until the errors become practically
independent of ν, compare [94] or [93, Ex. 4.34].

I It is not understood in which cases the dependency of the velocity errors
on ν−1 is sharp and in which cases the errors become asymptotically inde-
pendent of ν−1.
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Using inf-sup stable pairs of finite element spaces requires the implementa-
tion of different spaces for velocity and pressure as well as the solution of linear
systems of saddle point type. Since these issues introduce a certain complexity,
it is appealing to develop methods that use the same finite element spaces for
velocity and pressure. Because such pairs of spaces do not satisfy an inf-sup
condition, a stabilization becomes necessary that removes the saddle point
character of the discrete problem and thus the necessity of an inf-sup condi-
tion. There are several proposals of such stabilizations, which can be grouped
in two classes: stabilizations using the residual and stabilizations using only
the pressure, see [93, Sec. 4.5.2] for a brief overview. A general framework for
the first class is given in [31] and this class comprises the pressure-stabilized
Petrov–Galerkin (PSPG) method [90,89], an absolutely stable modification of
this method [31], the Galerkin least squares (GLS) method [89], and the abso-
lutely stable method from Douglas and Wang [64]. A framework for the second
class is presented in [39]. This class contains the Brezzi–Pitkäranta method
[40], a method from Codina and Blasco [56], the LPS method [26], a method
from Dohrmann and Bochev [63], and a method that penalizes the jumps of
the normal derivatives of the pressure across faces [51]. Numerical analysis is
available for each method. However, there seems to be no guideline which ones
should be preferred in practice.

I Systematic assessments of the proposed stabilized methods are missing that
clarify their advantages and drawbacks and give finally proposals which
ones should be preferred in simulations.

Most methods possess parameters whose optimal asymptotic choice is known.
As usual in such a situation, the optimal parameter choice for a concrete prob-
lem is not clear. By construction, the violation of the mass balance is a neces-
sary consequence of inf-sup stabilized methods, such that weakly divergence-
free finite element solutions cannot be expected. However, for the P1/P0 pair
and for certain types of stabilizations, a post-processing was proposed in [20,
21,22] for computing a weakly divergence-free discrete velocity.

Using anisotropic grids is of advantage for the simulation of many flow
problems. In this situation, the impact of the aspect ratio of the mesh cells
on the error analysis is of interest. The literature on the dependency of the
discrete inf-sup constant on the cell aspect ratio was already mentioned. Con-
cerning the finite element error analysis for incompressible flow problems on
anisotropic meshes there are only few contributions. Most of them consider inf-
sup stabilized discretizations, via the GLS method [121], the PSPG method
[6], the LPS method [33], or the Brezzi–Pitkäranta method [114]. An impor-
tant goal of the analysis was the design of appropriate stabilization parameters
with respect to the aspect ratio. Conforming inf-sup stable pairs are consid-
ered in [3] and the non-conforming Crouzeix–Raviart element is studied in [1,
10]. Most of the available analysis for conforming methods is performed for 2d
problems. Only in [6], tensor-product grids in 3d that are refined towards the
boundary are considered.
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I There are only quite few results concerning the impact of the aspect ratio of
anisotropic grid cells in the finite element error analysis of incompressible
flow problems. Most of the available results are for two dimensions.

Error estimates for other quantities than the natural norms of the problem
are important for many applications. Estimates in the L∞(Ω) norm for gen-
eral finite element approximations of the Stokes problem are established on
quasi-uniform meshes for domains with smooth boundary in [54]. The authors
of [81] extended this result to convex polyhedral domains in three dimensions
and the lowest order Taylor–Hood elements, extending also the correspond-
ing two-dimensional result proved in [79]. Further results can be found in
[73], where L∞(Ω) estimates for finite element solutions of the Stokes and
the steady-state Navier–Stokes equations in convex polyhedra are obtained.
In both cases, the viscosity parameter in [73] is taken to be ν = 1. Concerning
quantities of interest, an example for the time-dependent Navier–Stokes equa-
tions shall be already mentioned here. The error of the drag and lift coefficients
for inf-sup stable finite element discretizations, combined with the backward
Euler scheme, is analyzed for flows around a body in [135]. Estimates are de-
rived for errors measured in discrete versions of the norms in L2((0, t);R) and
L∞((0, t);R).

I A priori and a posteriori error analysis for quantities of interest is still a
widely open topic for all kinds of incompressible flow problems.

As for convection-diffusion equations, local finite element error analysis
would be of interest for incompressible flow problems.

I For incompressible flow problems, we are unaware of local bounds proved
in the literature.

3.2 The Steady-State Navier–Stokes Equations

If ν is sufficiently large and if all data of the problem do not depend on time,
then the flow field becomes stationary and it can be modeled by the steady-
state Navier–Stokes equations

−ν∆u + (u · ∇)u +∇p = f in Ω,
∇ · u = 0 in Ω,

(8)

equipped with appropriate boundary conditions. Besides the coupling of ve-
locity and pressure, first item in Remark 2, (8) is nonlinear, which is the
second item in Remark 2. From the practical point of view, the consideration
of the dominance of the convective term is not that much of importance for
the steady-state situation, since uniqueness of a weak solution can be shown
only in the case that the viscous term is sufficiently large compared with both,
the convective term and the forces, e.g., [93, Thm. 6.20]. Otherwise, one has
to consider in practice the time-dependent Navier–Stokes equations.
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For simplicity of presentation, only the case of homogeneous Dirichlet
boundary conditions is discussed in the following. Then, the weak form of
(8) is derived in the usual way: Find (u, p) ∈ V ×Q such that

(ν∇u,∇v) + nconv(u,u,v)− (∇ · v, p) = 〈f ,v〉 ∀ v ∈ V,
(∇ · u, q) = 0 ∀ q ∈ Q,

with
nconv(u,v,w) = ((u · ∇)v,w). (9)

The finite element formulation with conforming methods reads as follows: Find
(uh, ph) ∈ V h ×Qh such that

(ν∇uh,∇vh) + nh(uh,uh,vh)− (∇ · vh, ph) = 〈f ,vh〉 ∀ vh ∈ V h,
(∇ · uh, qh) = 0 ∀ qh ∈ Qh

with some discrete convective term nh(uh,uh,vh).
An important issue is the choice of the term nh(uh,uh,vh). The stability

analysis requires that this term is skew-symmetric, i.e., it has to vanish if the
second and third argument are identical. Choosing nh(·, ·, ·) = nconv(·, ·, ·),
then this property is satisfied only if uh is weakly divergence-free. This situ-
ation is given, e.g., for the Scott–Vogelius pairs on barycentric-refined grids.
Nevertheless, the form (9) is often used in simulations since it is the easiest
form from the point of view of implementation. Skew-symmetric forms for
arbitrary pairs of finite element spaces include

nskew(u,v,w) =
1

2
(nconv(u,v,w)− nconv(u,w,v)), (10)

ndiv(u,v,w) = nconv(u,v,w) +
1

2
((∇ · u)v,w), (11)

nrot(u,v,w) = ((∇× u)× v,w). (12)

The application of nrot(·, ·, ·) requires the use of a modified pressure, the so-
called Bernoulli pressure. The forms (10)–(12) are used as well in the numerical
analysis as in simulations. A recent proposal from [53] is the so-called energy
momentum and angular momentum conserving (EMAC) form

nemac(u,v,w) = (2D (v)u,w) + ((∇ · u)v,w), (13)

which requires also a modification of the pressure. The EMAC form was de-
rived by requiring that the discrete nonlinear term should be chosen such
that the following quantities are conserved: kinetic energy (for ν = 0,f = 0),
momentum (for f with zero linear momentum), and angular momentum (for
f with zero angular momentum). It is shown in [53] that the EMAC form
is the only one that conserves all these quantities. In addition, helicity (for
ν = 0,f = 0), 2d enstrophy, and total vorticity are conserved by the EMAC
form. Numerical studies in [53] show that the EMAC form was always among
the most accurate discretizations of the convective term. Promising numerical
results are also presented in [131].
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I From the theoretical point of view, the new EMAC form offers several at-
tractive features. Further numerical studies are necessary to clarify whether
this form should be preferred also in simulations.

Note that the forms (10), (11), and (13) are identical to (9) if the finite element
velocity solution is weakly divergence-free, e.g., as given for the Scott–Vogelius
pair of spaces on barycentric-refined grids. The numerical analysis might also
profit from this situation since for (9) only one term has to be bounded. For
the time-dependent Navier–Stokes equations there are already results in this
direction, compare [93, Rem. 7.40] and [131].

Using a Newton, quasi Newton, or Picard method for solving the Navier–
Stokes equations requires the solution of a linear saddle point problem in each
iteration. The efficiency of computing this solution is the key for the efficiency
of the whole simulation. Recent numerical studies in [140,2] show that so-
called coupled multigrid methods with Vanka-type smoothers [137] are often
much more efficient than certain one-grid solvers, in particular on fine grids.
However, the geometry in applications might be so complex that only one grid
is available and multigrid methods cannot be applied. Among the one-grid
solvers, sparse direct solvers were particularly inefficient for three-dimensional
problems in [140,2]. The numerical studies in [140,2] considered as one-grid
solver flexible GMRES (FGMRES) [128] with preconditioners of least squares
commutator (LSC) type [68,69]. In three dimensions, this approach worked on
the one hand much more efficient than the used sparse direct solver but on the
other hand much less efficient than FGMRES with coupled multigrid precondi-
tioners. An alternative one-grid approach is the augmented Lagrangian-based
preconditioner proposed in [28,29].

I The construction of more efficient one-grid preconditioners for iterative
solvers of linear saddle point problems arising in the discretization of the
steady-state Navier–Stokes equations than currently available, in partic-
ular for problems in three dimensions with many degrees of freedom, is
necessary.

Note that the situation for time-dependent problems, in particular when dis-
cretized with small time steps, is different. In this case, FGMRES with a LSC-
type preconditioner that uses an iterative solver of the velocity subproblem
proved to be generally much more efficient than all multigrid preconditioners
in the numerical studies in [2].

Next, a posteriori error estimators for convection-dominated flow problems
will be discussed. In [30], an a posteriori error estimator for a generalized Os-
een problem (linearized Navier–Stokes equations) for the SUPG method is
presented, leading to similar results to the ones presented in [139]. A fully
computable a posteriori error estimator for a generalized Oseen problem is in-
troduced in [5], where the solution is approximated with low order conforming
and conforming stabilized finite element methods, and one estimates the error
in the norm (ν‖∇u‖2L2(Ω) + c‖u‖2L2(Ω) + ‖p‖2L2(Ω))

1/2, with c > 0 being the
constant in the zeroth order term. The analysis is based on the solution of
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local Neumann-type problems that required the introduction of suitable equi-
librated fluxes. The constants in the error bounds depend on inverse powers
of the viscosity parameter. As it can be observed in the numerical studies of
[5], the proposed estimator is not robust in the convection-dominated regime.
Some a posteriori error estimators of residual-type for the Oseen problem and
a stabilized scheme are presented in [23]. As in [5], the constants in the bounds
depend on inverse powers of the viscosity parameter. In [45], the Navier–Stokes
equations on the unit square with periodic boundary conditions are consid-
ered. Analogous assumptions to those from [52] were used for the velocity of
the Navier–Stokes equations. While the assumptions of [52] do not hold in
general, those in [45] are even impossible to check in practice. The constants
in [45] depend exponentially on a factor proportional to the L∞(Ω) norm of
the gradient of the large eddies of the exact solution. Some a posteriori error
estimations are obtained for the vorticity in a weak norm.

I Deriving robust a posteriori error estimators in the convection-dominated
regime is an open problem even for the Oseen equations (linearized Navier–
Stokes equations).

Applying Newton’s method for the solution of the Navier–Stokes equations
or having to solve a dual linearized problem to the Navier–Stokes equations
within optimization techniques or for a posteriori error estimation with the
DWR method leads to linear problems of the form

−ν∆u + (w · ∇)u + (u · ∇)w +∇p = g in Ω,
∇ · u = 0 in Ω,

(14)

for given w and g satisfying ∇·w = 0. The zeroth order term (u·∇)w does not
possess any sign such that coercivity of the operator corresponding to a weak
form of (14) cannot be guaranteed. In particular, the available theory for the
Oseen problem, which requires a zeroth order term cu with c ∈ L∞(Ω), c ≥ 0,
is not applicable to (14). There seems to be only little analysis for problems of
type (14). In [66], a post-processing technique for increasing the accuracy of
the Galerkin approximation to the Navier–Stokes equations is proposed that
adds the term cu with an appropriate constant c > 0 to the left-hand side of
(14). Then, the associated bilinear form looks as follows

Bw(u,v) = ν(∇u,∇v) + ((w · ∇)u,v) + ((u · ∇)w,v) + c(u,v) (15)

for u,v ∈ V . For investigating coercivity of (15), the anti-symmetry of the
convective term, implying ((w · ∇)u,u) = 0, and the estimate

|((u · ∇)w,u)| ≤ ‖∇w‖L∞(Ω) ‖u‖
2
L2(Ω)

are used, such that

Bw(u,u) ≥ ν ‖∇u‖2L2(Ω) +
(
c− ‖∇w‖L∞(Ω)

)
‖u‖2L2(Ω) .

Choosing now c ≥ ‖∇w‖L∞(Ω) gives coercivity of Bw(·, ·) with the coercivity
constant ν.
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I The analysis of problems of type (14) is widely open.

Note that a regularity assumption of the form u ∈ W 1,∞(Ω)d is not unusual
for the finite element analysis, in particular in the time-dependent situation,
compare Section 3.3.

3.3 Time-Dependent Navier–Stokes Equations

The numerical analysis of continuous-in-time discretizations and of fully dis-
crete methods that use a fully implicit form of the nonlinear term lead to an
intermediate estimate for which a Gronwall-type lemma is applied. The ap-
plication of this lemma gives an exponential factor in the error bounds whose
argument depends on the length of the time interval, norms of the solution,
and possibly on inverse powers of the viscosity. Depending on the form of the
discrete convective term, the assumptions on the smoothness of the solution,
and the finite element space, different arguments are obtained.

Consider first Galerkin methods, i.e., discretizations without any stabiliza-
tion terms. Using the standard skew-symmetric form of the convective term
(10) and assuming ∇u ∈ L4(0, T ;L2(Ω)d×d), one gets the argument

C

ν3
‖∇u‖4L4(0,t;L2(Ω))

in the exponential, compare [93, Thm. 7.35]. It was proposed in [48,12] to
assume a higher regularity of the velocity, namely ∇u ∈ L1(0, T ;L∞(Ω)d×d)
and u ∈ L2(0, T ;L∞(Ω)d). Then, a different technique can be applied for
estimating the nonlinear term which leads to an exponential with the argument

1

2
‖∇u‖L1(0,T ;L∞(Ω)) +

4

ν
‖u‖2L2(0,T ;L∞(Ω)) ,

e.g., see [93, Rem. 7.39]. Hence, the explicit dependency on the viscosity is
reduced from ν−3 to ν−1. If one considers weakly divergence-free and inf-sup
stable pairs of finite element spaces, like the Scott–Vogelius pair Pk/P

disc
k−1,

k ≥ d, on barycentric-refined grids or weakly divergence-free IGA methods
from [42,70,71], one can use the standard form nconv(·, ·, ·) of the convective
term in the error analysis. That means, one has to bound only one term and
not two terms as in other skew-symmetric formulations of the convective term.
The error analysis uses the assumption∇u ∈ L1(0, T ;L∞(Ω)d×d), which guar-
antees the regularity of a solution of the 3d incompressible Euler equations,
i.e., (3) with ν = 0, e.g., see [15]. It implies that the solutions of the ordinary
differential equation dx

dt = u(t,x) do never intersect and they remain smooth
in [0, T ]. Then, one obtains the argument

‖∇u‖L1(0,T ;L∞(Ω))

in the exponential, e.g., compare [93, Rem. 7.40]. In this special case, the
explicit dependency on inverse powers of the viscosity vanishes. Nevertheless,
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in all cases, the exponential factor becomes usually very large even for short
times. But on the other hand, there is an abundance of practical simulations
which shows that reliable flow simulations over long time intervals can be
performed for flows whose scales in space and time can be resolved on a suitable
mesh. In such situations, the errors are heavily overpredicted by the analytic
bounds such that these bounds are useless.

I The derivation of quantitatively realistic error bounds for the Galerkin
method applied to the discretization of flows whose scales in space and
time can be resolved on a suitable mesh, possibly under some appropriate
assumptions, is an open problem.

Note that examples can be constructed where the worst case, namely the
exponential growth of errors with respect to time, can be observed, e.g., in
[131, Ex. 5.2].

There are only few error bounds in the literature for approximations to
the time-dependent Navier–Stokes equations where the constants are inde-
pendent of explicit inverse powers of ν (apart from the dependency on ν−1

through norms of the exact solution), sometimes called semi-robust, uniform,
or quasi-uniform estimates. Such bounds were derived by applying stabilization
techniques that are also used for convection-diffusion equations, like the CIP
method in [48] and the LPS method applied to the convective term in [12,58].
On the other hand, semi-robust error bounds were obtained for discretizations
with stabilization terms that were proposed for different purposes. Semi-robust
error bounds of the Galerkin discretization with weakly divergence-free finite
elements, even without additional stabilization term, can be found in [131].
The analysis of the Galerkin method with grad-div stabilization, that allows
the use of more general, not necessarily weakly divergence-free, finite elements
can be found in [12,119] under the assumption that the grid is sufficiently fine
(h .

√
ν), in [58] with an assumption on the regularity of the finite element so-

lution, and in [60] without any assumptions of this form. Grad-div stabilization
was proposed for finite element discretizations to improve the approximation
of the conservation of mass. In [60], optimal semi-robust bounds for the L2(Ω)
norm of the divergence of the velocity and the error of the pressure in the
L2(Ω) norm are derived. In [61], LPS stabilized methods are studied. Under
the assumption that each component of the finite element velocity belongs
to the pressure space, a semi-robust estimate is derived for a method with
LPS stabilizations for the velocity gradient and the pressure gradient, and the
convective term is bounded with the pressure gradient LPS stabilization.

I Finite element error analyses show that semi-robust estimates are obtained
with stabilizations that were not proposed to stabilize dominant convec-
tion. The deeper reasons for this behavior are not yet understood.

An alternative way to derive semi-robust a priori and a posteriori error es-
timates was developed in [45] for the 2d Navier–Stokes equations in vorticity-
streamfunction formulation in the space-periodic setting. This approach is
based on a scale separation of the velocity field together with a uniform bound-
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edness assumption for the large scales. However, already in [45] a number of
reasons are given why this approach cannot be extended to the 3d situation.

Standard finite element error analysis of the time-dependent Navier–Stokes
equations derives error bounds for a sum of the velocity error in L2(Ω) at the
final time and a time-space energy error. Considering a family of shape-regular
meshes, a conforming velocity finite element space that includes all piecewise
polynomials of degree k, an appropriate pressure finite element space, and a
sufficiently smooth exact solution, then the proved order of convergence is k.
However, for the L2(Ω) error at the final time, one might expect order k + 1,
which is also supported by numerical studies, e.g., see [93, Ex. 7.41]. A higher
order than k was proved for a CIP stabilized method in [48], namely∥∥u− uh

∥∥
L∞(0,T ;L2(Ω))

≤ Chk+1/2, (16)

where C is independent of explicit negative powers of ν and it depends on
‖u‖Hk+1(Ω) and ‖p‖Hk+1(Ω). Thus, half an order has been achieved with in-

creasing the needed regularity for the pressure from Hk(Ω) to Hk+1(Ω). In
[61], error bounds of type (16) are obtained for a LPS method with non inf-sup
stable elements that adds a control of the fluctuation of the gradient and an
LPS term stabilizing the pressure. As in [48], the pressure is assumed to be
in Hk+1(Ω). An estimate of order k + 1, which is however not semi-robust, is
given in [71] for an IGA method.

I It is open whether optimal and semi-robust L∞(0, T ;L2(Ω)d) error bounds
for the velocity can be proved for some method.

Pressure-robust discretizations for the Stokes equations, which are not
weakly divergence-free, need only a modification of the discrete right-hand
side, compare Section 3.1. However, the development of pressure-robust schemes
for the incompressible Navier–Stokes equations requires additional modifica-
tions of the discretization of the temporal derivative and of the discrete non-
linear convective term, thus leading also to modifications of the matrix. There
are already proposals on how to perform such modifications in practice, e.g.,
in [37,117]. Finite element analysis can be found so far for the steady-state
Navier–Stokes equations and the rotational form of the convective term (12)
in [117].

I The finite element analysis of not weakly divergence-free pressure-robust
discretizations for the time-dependent Navier–Stokes equations has still to
be developed.

Since the behavior of turbulent flows is in some sense chaotic, the compu-
tation of a certain local quantity in time and space is usually not meaningful in
applications. Hence, for turbulent flows, one is usually interested in temporal
or spatio-temporal averages of quantities. So far, there are only very initial
attempts to derive error estimates for such averaged quantities. In [97], few
results for time-averaged errors in standard norms are presented. An a posteri-
ori error estimator and an adaptive algorithm for time-averaged functionals of
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interest for (flow) problems with periodic or quasi-periodic behavior are pro-
posed in [34]. In [47], an error estimate for a time-averaged pressure computed
with a CIP stabilization of the transient Oseen equations is derived.

I The numerical analysis for temporal or spatio-temporal averages of errors
and quantities of interest has to be developed further.

As already mentioned in Section 3.2, in the last decade, one-grid precondi-
tioners for linear algebraic saddle point problems arising in the discretization
and linearization of the time-dependent Navier–Stokes equations have been
developed that work efficiently, at least on serial or small parallel computers,
e.g., in [28,29,68,69].

In many applications, the flow domain depends on time, e.g., if problems
with free surfaces are considered.

I Finite element analysis for the Navier–Stokes equations in time-dependent
domains does not seem to be available.

4 Summary

Finite elements for scalar convection-dominated equations and incompressible
flow problems – a never ending story? We hope that this paper provided the
evidence that the end is not yet reached. In contrast, there are still many
important open problems. Most of them seem to be quite challenging. To work
at their solution requires a profound knowledge of the fields that are addressed
in this paper. And even then, quick solutions, which are accompanied with fast
publications, are rather unlikely. This situation is certainly a reason why fewer
mathematicians than in the previous decades are working in these fields.

We hope that this paper stimulates further research on finite element meth-
ods for convection-dominated problems and incompressible flow problems, in
particular to solve the stated open problems.
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