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Abstract

Nonlinear discretizations are necessary for convection-diffusion equations for obtain-
ing accurate solutions that satisfy the discrete maximum principle. The numerical
solution of the arising nonlinear problems is often difficult. This paper presents
several approaches for solving the nonlinear problems of algebraic flux correction
(AFC) schemes for the Kuzmin limiter and the BJK limiter. Comprehensive nu-
merical studies are performed at examples that model the transport of energy from
a body in a flow field in two and three dimensions. It turns out that the most effi-
cient approach, from the point of view of computing times, is a simple fixed point
iteration, because the iteration matrix possesses properties that can be exploited
by the solvers of the arising linear systems of equations.

Keywords: steady-state convection-diffusion equations, algebraic flux correction
(AFC) schemes, Kuzmin and BJK limiter, mixed fixed point iteration, formal
Newton methods

1. Introduction

Partial differential equations (PDEs) are used to model many processes in nature
and industry. The solutions of these equations should reflect important features of
the modeled process, like mass conservation or the restriction of the values to an
admissible interval. But usually, these solutions cannot be computed analytically
and some numerical method has to be applied to calculate approximations. From
the practical point of view, it is often essential that also the numerical solutions
possess those features which are of importance for the solutions of the PDE. This
property is often of utmost significance for a numerical solution to be accepted by
practitioners. However, many discretizations do not lead to numerical solutions that
respect the important features of the solution of the PDE. As already mentioned,
such solutions might be rejected in practice and therefore it is worthwhile to study
in much detail discretizations that do respect these features.

The PDE considered in this paper is the steady-state convection-diffusion equa-
tion

−ε∆u+ b·∇u = 0 in Ω,
u = ub on ΓD,

−ε∇u · n = 0 on ΓN ,
(1)

where Ω ⊂ Rd, d ∈ {2, 3} is a bounded domain with boundary Γ = ΓD ∪ ΓN ,
ΓD ∩ ΓN = ∅, measd−1(ΓD) > 0, and n being the outward pointing unit normal
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on Γ. Problem (1) models the transport of the scalar quantity u (temperature,
energy). The transport consists of a molecular transport with the constant diffusion
coefficient ε > 0 and a convective transport with a flow field b with∇·b = 0. On ΓD,
Dirichlet boundary conditions are set and on ΓN , Neumann boundary conditions
are prescribed.

An important feature of the solution of (1) is that u satisfies the maximum prin-
ciple (MP), i.e., u takes its minimal and maximal value at the Dirichlet boundary
ΓD. Since there are no sources and sinks in (1), there is no physical mechanism for
obtaining lower or larger values than the extremal values at the Dirichlet bound-
ary. Another feature is that in practice the convective transport is usually much
stronger than the molecular transport, i.e., it is ‖b‖L∞(Ω) � ε, which is called the
convection-dominated regime.

Using standard discretizations for (1) in the convection-dominated regime, like
the central finite difference method or the Galerkin finite element method, on af-
fordable grids leads to numerical solutions that are globally polluted with spurious
oscillations and which are useless in practice. The development of discretizations
for this regime focused on introducing terms for stabilization and often also on
achieving a high order of error reduction in certain norms. The starting point
of this development was the SUPG method (Streamline-Upwind Petrov–Galerkin)
from [11, 6]. Meanwhile, many other approaches have been proposed, see [23] for
a comprehensive overview. However, it turned out that most discretizations do
not satisfy the discrete maximum principle (DMP), which is the analog of the MP.
Other discretizations, like certain upwind schemes, satisfy the DMP, but the nu-
merical solutions are quite inaccurate, in particular the layers of the solution are
heavily smeared. This situation might be inevitable for linear discretizations of (1),
since, in the limit case ε = 0, it is known that a linear discretization leading to
an M-matrix, which is a usual criterion for the satisfaction of the DMP, cannot
possess a local discretization error of second order, see [28, Chap. 4.4]. A similar
mathematical result for small positive ε is not known, but the experience is that
the same situation holds also in this case. At any rate, already in the 1980’s non-
linear discretizations of (1) were proposed, e.g., in [22, 12], to reduce or remove the
spurious oscillations of linear stabilized schemes. The nonlinearity is introduced
by a stabilization parameter that depends on the numerical solution. However, in
comprehensive studies [14, 15], it was shown that only very few of the proposed
nonlinear schemes remove or significantly reduce spurious oscillations. These stud-
ies did not yet include algebraic stabilizations. However, in the subsequent study
[1], the algebraic flux correction (AFC) scheme with Kuzmin limiter, which is also
included in the studies of the present paper, proved to compute numerical solutions
without over- and undershoots in a two-dimensional benchmark problem.

With the nonlinearity, a new issue arises: the efficient solution of the nonlinear
problems. As noted in [16], an ideal discretization of (1) should satisfy the following
properties:

• the numerical solution should be accurate, in particular it should exhibit sharp
layers,

• the numerical solution must not have spurious oscillations,
• the numerical solution has to be computed efficiently.

And as also noted in [16], currently no scheme is known that satisfies all these
properties.

AFC schemes, the topic of this paper, satisfy the first two requirements. How-
ever, as it can be seen in the literature, e.g., in [1, 5], an efficient solver for the
nonlinear problems is not yet available. This paper addresses this issue: several
approaches for solving the nonlinear problems will be presented and studied com-
prehensively. The first steps of this study were already performed in [13]. In this
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paper, two basic fixed point iterations and a basic formal Newton method were
investigated at simple academic examples in two dimensions. From the algorithmic
point of view, the current paper proposes a mixed fixed point iteration, a refine-
ment of the formal Newton method, and it considers a regularized formal Newton
method. Additional algorithmic components included in the studies are Anderson
acceleration [27] and the projection to admissible values [2]. The numerical studies
were performed for examples in two and three dimensions that model flows around
a body and the transport of u from this body in downstream direction. We are
aware of only one rather short presentation of a 3d example in the literature so far
in [5]. In 3d, an iterative solver for the linear problems of equations is used, which
seems to be also a new aspect within the framework of AFC schemes.

Another scheme that satisfies the first two properties, and thus is an alternative
to AFC schemes, is the Mizukami–Hughes method [22] with the improvements from
[19]. However, it is reported [14], where this method is applied to steady-state
convection-diffusion equations, that the solution of the nonlinear problems arising
in this scheme might be also difficult. Thus, the efficient solution of the equations
arising in nonlinear discretizations of (1) seems to be a more general difficulty.

2. Algebraic Flux Correction Schemes

Presentations of AFC schemes can be found already elsewhere in the literature.
However, for this paper to be self-contained, and above all, for the description of
the algorithms for solving the nonlinear problems, we think it inevitable to repeat
a presentation of these schemes here. To be more general, a convection-diffusion
equation is considered where the right-hand side is some function f , instead of the
homogeneous right-hand side in (1).

2.1. General Approach

Applying a conforming Galerkin discretization with P1 or Q1 finite elements for
discretizing the convection-diffusion problem with homogeneous Neumann bound-
ary conditions leads to a linear system of equations Au = f , A = (aij)

n
i,j=1 ∈

Rn×n, u, f ∈ Rn, or in detail

n∑
j=1

aijuj = fi, i = 1, . . . , n. (2)

Now, one defines a symmetric artificial diffusion matrix D = (dij)
n
i,j=1 by

dij = dji = −max{aij , 0, aji} for i 6= j, dii = −
n∑

j=1,j 6=i

dij . (3)

With this matrix, (2) can be written as

(Âu)i = fi + (Du)i, i = 1, . . . , n, with Â = A+D. (4)

By construction, the row sums of D vanish. Hence, it holds

(Du)i =

n∑
j=1

dijuj − ui
n∑
j=1

dij =

n∑
j=1,j 6=i

dij(uj − ui) =

n∑
j=1,j 6=i

fij , i = 1, . . . , n,

where fij= dij(uj − ui) = −fji are the so-called fluxes. The goal of AFC schemes
consists in limiting those fluxes that cause spurious oscillations by introducing
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solution-dependent weights αij = αij(u) = αji(u) ∈ [0, 1] and considering instead
of (4) the nonlinear system of equations

(Âu)i = fi +

n∑
j=1,j 6=i

αijfij , i = 1, . . . , n.

At this point, the Dirichlet boundary conditions are incorporated in the AFC
scheme. Let the entries are ordered such that the (n−m) Dirichlet values, m < n,
are at the end of u, then the system of equations takes the form

n∑
j=1

aijuj +

n∑
j=1

(1− αij)dij(uj − ui) = fi, i = 1, . . . ,m,

ui = ubi , i = m+ 1, . . . , n.

(5)

The symmetry of the limiter is important for the AFC method to be conservative,
see [21], and for proving the existence of a solution of (5), see [3].

By construction, the diagonal entries of Â are positive and the off-diagonal
entries non-positive. After having incorporated the Dirichlet boundary conditions,
the resulting modified matrix Â can be expected to be an irreducibly diagonally
dominant matrix in usual situations. From all these properties, it follows that Â is
an M-matrix, [26].

In the literature concerning algebraic stabilizations for steady-state convection-
diffusion equations, essentially two types of limiters are proposed.

2.2. The Kuzmin Limiter

This limiter, proposed in [20], starts by computing

P+
i =

n∑
j=1

aji≤aij

f+
ij , P

−
i =

n∑
j=1

aji≤aij

f−ij , Q
+
i = −

n∑
j=1

f−ij , Q
−
i = −

n∑
j=1

f+
ij , (6)

i = 1, . . . , n, where f+
ij = max{0, fij} and f−ij = min{0, fij}. Next, one calculates

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
, i = 1, . . . ,m. (7)

If P+
i or P−i is zero, one sets R+

i = 1 or R−i = 1, respectively. At Dirichlet nodes,
one sets

R+
i = 1, R−i = 1, i = m+ 1, . . . , n. (8)

Finally, for any i, j ∈ {1, . . . , n} such that aji ≤ aij , the limiter is defined by

αij =

 R+
i if fij > 0

1 if fij = 0
R−i if fij < 0

, αji = αij . (9)

The Kuzmin limiter can be applied to P1 and Q1 finite elements, see [3] for some de-
tails of its implementation. In [3], the Kuzmin limiter was analyzed for steady-state
convection-diffusion-reaction equations with Dirichlet boundary conditions and P1

finite elements. Existence of a solution of the nonlinear problem and the satisfaction
of the DMP, under the restriction that the mesh is weakly acute, are proved. The
uniqueness of the solution as well as the extension of the analysis to mixed boundary
conditions are open problems. We like to note that for the Galerkin method with
P1 finite elements and diffusion-reaction equations, one can find an analysis of the
DMP in the case of mixed boundary conditions in [18].
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2.3. The BJK Limiter.

This limiter was developed in [4] for P1 finite elements. As first step, one defines
for i = 1, . . . , n

umax
i = max

j∈Si∪{i}
uj , umin

i = min
j∈Si∪{i}

uj , qi = γi
∑
j∈Si

dij , (10)

where γi is a positive constant that was computed for interior nodes as in [4,
Rem. 6.2] and the index set Si was to be chosen as the set of all degrees of freedom
j 6= i for which there is an entry in the sparsity pattern of A, i.e., Si is the set of
all direct neighbor degrees of freedom of i. For nodes on the Neumann boundary,
γi was computed using the same formulas as for interior nodes with the natural
restriction of the patch of mesh cells corresponding to the Neumann node. As next
step, one computes for i = 1, . . . ,m

P+
i =

∑
j∈Si

f+
ij , P

−
i =

∑
j∈Si

f−ij , Q
+
i = qi(ui − umax

i ), Q−i = qi(ui − umin
i ), (11)

and then, one sets

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
, i = 1, . . . ,m.

If P+
i or P−i vanishes, one sets R+

i = 1 or R−i = 1, respectively. Then, (8) is applied
for the Dirichlet nodes and the quantities

ᾱij =

 R+
i if fij > 0

1 if fij = 0
R−i if fij < 0

, i = 1, . . . ,m, j = 1, . . . , n, (12)

are calculated. Finally, one sets

αij = min{ᾱij , ᾱji}, i, j = 1, . . . ,m, (13)

αij = ᾱij , i = 1, . . . ,m, j = m+ 1, . . . , n. (14)

It is proved in [4], in the case of Dirichlet boundary conditions, that a solution of
the AFC method (5) exists, that it satisfies the DMP and it is linearity preserving,
all on arbitrary simplicial grids. The uniqueness of the solution and the study of
mixed boundary conditions are open questions.

3. Nonlinear Iteration Schemes

Consider the nonlinear problem (5) in the form

F (u) = 0 with (15)

Fi(u) =

n∑
j=1

aijuj +

n∑
j=1

(1− αij(u))dij(uj − ui)− fi = 0, i = 1, . . . ,m,

Fi(u) = ui − ubi = 0, i = m+ 1, . . . , n.

Then, a damped iteration for solving (15) is given by

u(ν+1) = u(ν)−ω(ν)B−1F
(
u(ν)

)
, ν = 0, 1, . . . , (16)

where B ∈ Rn×n is a non-singular matrix. A vector u is a solution of the nonlinear
problem (5) if and only if it is a fixed point of (16). The choice of the damping
parameter ω(ν) is briefly discussed in Section 4.1.
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3.1. The Mixed Fixed Point Iteration

Utilizing some kind of simple fixed point iteration is a natural starting point
for the construction of solvers for the nonlinear problem (15). A straightforward
idea consists in using for the construction of the left-hand side of (15) the currently
available values for the limiter, leading in the iteration step (ν+1) to a linear system
of equations of the form

n∑
j=1

aiju
(ν+1)
j +

n∑
j=1

(
1− α(ν)

ij

)
dij

(
u

(ν+1)
j − u(ν+1)

i

)
= fi, i = 1, . . . ,m,

u
(ν+1)
i = ubi , i = m+ 1, . . . , n,

(17)

with α
(ν)
ij = αij

(
u(ν)

)
. This method is called fixed point matrix in [13]. It is shown

in [3, 4] that, in the case of Dirichlet boundary conditions, the linear system (17)
has a unique solution for both the Kuzmin and the BJK limiter.

Another simple fixed point iteration can be derived by using that the row sums
of the matrix D vanish, such that

n∑
j=1

(
1− α(ν)

ij

)
dij

(
u

(ν+1)
j − u(ν+1)

i

)
=

n∑
j=1

diju
(ν+1)
j −

n∑
j=1

α
(ν)
ij dij

(
u

(ν+1)
j − u(ν+1)

i

)
.

Then, a fixed point iteration is given by

n∑
j=1

(aij + dij)u
(ν+1)
j = fi +

n∑
j=1

α
(ν)
ij f

(ν)
ij , i = 1, . . . ,m,

u
(ν+1)
i = ubi , i = m+ 1, . . . , n,

(18)

where f
(ν)
ij is the flux computed with the limiter α

(ν)
ij . In [13], this method is called

fixed point rhs. A distinct feature of fixed point rhs is that the matrix A+D = Â
does not depend on the iterate and thus, in each iteration step, the matrix of the
linear system of equations to be solved is the same. Hence, applying a sparse direct
solver, the whole iteration requires just one matrix factorization in the first iteration
step and in all subsequent iterations, only two triangular systems have to be solved.

Remark 1. The methods fixed point matrix and fixed point rhs were already studied
in [13] at academic examples in two dimensions. In these studies, it could be
observed that both methods behaved often rather differently. The method fixed
point matrix often failed to converge on fine grids. The studies in [13] applied a
sparse direct solver. It turned out that if fixed point rhs did converge, it was by far
more efficient than fixed point matrix .

The numerical studies in Section 5 will consider also examples in three dimen-
sions. In this situation, the sparse factorization of a sparse matrix is much more
involved than in two dimensions, such that the use of iterative solvers for the arising
linear systems of equations becomes necessary. For iterative solvers, it is a priori
not of advantage for fixed point rhs that there is the same matrix in each iteration
step. However, the matrices of fixed point rhs and fixed point matrix are different
and iterative methods might behave differently.

Our expectation before performing the numerical studies of [13] was that the
method fixed point matrix might need generally fewer iterations than fixed point
rhs, because fixed point matrix is a less explicit method since it uses the current
iterate for assembling the matrix and not only for assembling the right-hand side.
However, as indicated in Remark 1, the expectation was not met. But we think
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that a less explicit fixed point iteration than fixed point rhs is worth to be studied.
To this end, we define the mixed fixed point iteration

n∑
j=1

(aij + dij)u
(ν+1)
j − ωfp

n∑
j=1

α
(ν)
ij dij

(
u

(ν+1)
j − u(ν+1)

i

)
= fi + (1− ωfp)

n∑
j=1

α
(ν)
ij f

(ν)
ij , i = 1, . . . ,m,

u
(ν+1)
i = ubi , i = m+ 1, . . . , n,

(19)

with the mixing parameter ωfp ∈ [0, 1]. For ωfp = 0, one gets fixed point rhs and
for ωfp = 1, the method fixed point matrix is obtained. With respect to the fixed
point iteration (16), method (19) uses the matrix B with

B
(
u(ν)

)
ij

=


aij + dij − ωfpα

(ν)
ij dij if i 6= j,

aii + dii + ωfp

n∑
j=1,j 6=i

α
(ν)
ij dij if i = j,

for i = 1, . . . ,m, j = 1, . . . , n. The last n−m rows have just the diagonal entry 1.
Comprehensive numerical studies with the method mixed fixed point(ωfp) from (19)
are presented in Section 5.

3.2. A Formal Newton Method

This section presents a formal Newton method for solving (15). We call this
method formal because, as it will be discussed below, there are situations where the
differentiability requirements for Newton’s method are not satisfied.

3.2.1. Derivation

For Newton’s method, the matrix B in (16) is the Jacobian of F . Consider-
ing (15) for i = 1, . . . ,m, one can compute the Jacobian formally, using standard
calculus, as

DFi(u)[v] =
n∑
j=1

aijvj +
n∑
j=1

(1− αij(u))dij(vj − vi)

−
n∑
j=1

(
m∑
k=1

∂αij
∂uk

(u)vk

)
dij(uj − ui)

=

n∑
j=1

aijvj +

n∑
j=1

(1− αij(u))dijvj −

 n∑
j=1

(1− αij(u))dij

 vi

−
n∑
j=1

(
m∑
k=1

∂αij
∂uk

(u)vk

)
dij(uj − ui).

Hence, the entries of the matrix that has to be inverted in (16) are given by

B
(
u(ν)

)
ij

= DF
(
u(ν)

)
ij

=


aij + dij − α(ν)

ij dij −
n∑
k=1

∂α
(ν)
ik

∂uj
dik

(
u

(ν)
k − u

(ν)
i

)
if i 6= j,

aii + dii +

n∑
k=1,k 6=i

α
(ν)
ik dik −

n∑
k=1

∂α
(ν)
ik

∂ui
dik

(
u

(ν)
k − u

(ν)
i

)
if i = j,

(20)
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for i = 1, . . . ,m, j = 1, . . . , n. The last n−m rows have just the diagonal entry 1.
One can see that in the Jacobian the partial derivatives of the limiter with

respect to the solution vector are contained. The application of Newton’s method
requires smoothness of the limiter such that all terms in (20) are well defined. This
property is not given, neither for the Kuzmin limiter nor for the BJK limiter.

For the presentation of one approach below, it is of advantage to start with a

different representation of the Jacobian. Let β
(ν)
ik = α

(ν)
ik dik

(
u

(ν)
k − u

(ν)
i

)
. Then, it

is

∂β
(ν)
ik

∂uj
=

∂α
(ν)
ik

∂uj
dik

(
u

(ν)
k − u

(ν)
i

)
+ α

(ν)
ik

∂
(
dik

(
u

(ν)
k − u

(ν)
i

))
∂uj

=
∂α

(ν)
ik

∂uj
dik

(
u

(ν)
k − u

(ν)
i

)
+ α

(ν)
ik dik


1 if k = j 6= i,

−1 if i = j 6= k,

0 else.

Now, the entries (20) of the Jacobian are given as follows

B
(
u(ν)

)
ij

= DF
(
u(ν)

)
ij

= aij + dij −
n∑
k=1

∂β
(ν)
ik

∂uj
(21)

for i = 1, . . . ,m, j = 1, . . . , n. The last n − m rows have only an entry on the
diagonal that is 1.

3.2.2. Kuzmin Limiter

The non-smoothness of the Kuzmin limiter is introduced by computing minima
and maxima of two values. For this limiter, we pursued two approaches. In the first
one, the non-smooth situations are treated separately. The second approach uses a
regularization.

Approach with Separate Treatment of the Non-Smooth Points. This approach uses
the representation (20) of the Jacobian. In the minima and maxima contained in the
Kuzmin limiter, one value is always constant. Thus, there is a one-sided derivative
that vanishes. In this approach, the derivative that appears in the Jacobian is set
to be zero in these situations.

Consider first the case aki ≤ aik. Then, the entry of the Jacobian is set to be
zero if (fik > 0)∧R+

i = 1, fik = 0, or (fik < 0)∧R−i = 1. Note that the situations
P+
i = 0 and P−i = 0 are included in these cases.

In all other situations, the limiter is differentiable. With the product rule, one
gets for the case (fik > 0) ∧R+

i < 1

∂αik
∂uj

=

∂Q+
i

∂uj
P+
i −Q

+
i
∂P+

i

∂uj(
P+
i

)2 ,

and for the case (fik < 0) ∧R−i < 1

∂αik
∂uj

=

∂Q−i
∂uj

P−i −Q
−
i
∂P−i
∂uj(

P−i
)2 .

Hence, one has to compute the derivatives of P+
i , P

−
i , Q

+
i , Q

−
i with respect to uj .
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Using (6) and the definition of fik, one obtains, e.g.,

∂Q+
i

∂uj
= − ∂

∂uj

n∑
l=1

f−il = − ∂

∂uj

n∑
l=1

min {0, dil(ul − ui)} ,

=


0 if fij ≥ 0, i 6= j,

−dij if fij < 0, i 6= j,
n∑

l=1,fil<0

dil if i = j,

(22)

and

∂P+
i

∂uj
=



0 if fij ≤ 0, i 6= j,

dij if fij > 0, i 6= j, aji ≤ aij ,
0 if fij > 0, i 6= j, aji > aij ,

−
n∑

l=1,fil>0
ali≤ail

dil if i = j.

In a similar way, the other derivatives can be calculated.
In the case aki > aik, it is αik = αki, compare (9). Now, one can proceed in the

same way as for the other case and one derives the same type of formulas: only the
index i has to be replaced by the index k.

Approach with Regularization of the Non-Smooth Points. For the approximation of
the maximum, a proposal is used that can be found, e.g., in [2]

maxσ(x, y) =
1

2

(
x+ y +

√
(x− y)2 + σ

)
(23)

with some small value σ > 0. Consequently, one has

minσ(x, y) = −maxσ(−x,−y) =
1

2

(
x+ y −

√
(x− y)2 + σ

)
.

In this approach, the formulation (21) of the Jacobian is utilized. In the case
aki ≤ aik, the starting point is the representation

βik = R+
i f

+
ik +R−i f

−
ik,

where the superscript ν is neglected to simplify the notation. Regularizations of
functions will be denoted with a tilde. Then, the following regularization is consid-
ered

β̃ik = minσ

(
Q̃+
i

P̃+
i

, 1

)
maxσ(fik, 0) + minσ

(
Q̃−i
P̃−i

, 1

)
minσ(fik, 0). (24)

A straightforward calculation, using the definitions of the regularized maximum and
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minimum, yields

∂β̃ik
∂uj

=
1

2

1− Q̃+
i /P̃

+
i − 1√(

Q̃+
i /P̃

+
i − 1

)2

+ σ

 ∂

∂uj

(
Q̃+
i

P̃+
i

)
1

2

(
fik +

√
f2
ik + σ

)

+
1

2

(
Q̃+
i

P̃+
i

+ 1−
√(

Q̃+
i /P̃

+
i − 1

)2

+ σ

)
1

2

(
1 +

fik√
f2
ik + σ

)
∂fik
∂uj

+
1

2

1− Q̃−i /P̃
−
i − 1√(

Q̃−i /P̃
−
i − 1

)2

+ σ

 ∂

∂uj

(
Q̃−i
P̃−i

)
1

2

(
fik −

√
f2
ik + σ

)

+
1

2

(
Q̃−i
P̃−i

+ 1−
√(

Q̃−i /P̃
−
i − 1

)2

+ σ

)
1

2

(
1− fik√

f2
ik + σ

)
∂fik
∂uj

. (25)

Note that the first part of each term does not depend on the summation index k.
It holds

∂fik
∂uj

=


−djk = −dik if j = i 6= k,

dij if j = k 6= i,

0 else,

and

∂

∂uj

(
Q̃+
i

P̃+
i

)
=

∂Q̃+
i

∂uj
P̃+
i − Q̃

+
i
∂P̃+

i

∂uj(
P̃+
i

)2 ,
∂

∂uj

(
Q̃−i
P̃−i

)
=

∂Q̃−i
∂uj

P̃−i − Q̃
−
i
∂P̃−i
∂uj(

P̃−i

)2 . (26)

It is f̃+
ik = maxσ(fik, 0) > 0 and hence P̃+

i > 0 because P̃+
i is a sum of f̃+

ik and at

least f̃+
ii appears in this sum. With the same argument, one finds that P̃−i < 0.

One gets

∂Q̃+
i

∂uj
= −

n∑
l=1

∂minσ(fil, 0)

∂uj
= −1

2

n∑
l=1

(
1− fil√

f2
il + σ

)
dil
∂(ul − ui)

∂uj

=


−1

2

1− fij√
f2
ij + σ

 dij if i 6= j,

1

2

n∑
l=1,l 6=i

(
1− fil√

f2
il + σ

)
dil if i = j.

(27)

This expression is compared with the corresponding expression (22) for the approach
without regularization. Consider the case i 6= j. If fij > 0 is sufficiently large, then
the expression in the parentheses in (27) is very close to zero, which holds also
for the value of (27). If fij < 0 is sufficiently small, then the expression in the
parentheses is close to two and the value of (27) is close to −dij . In both cases, the
values of (22) and (27) are practically the same. In the situation fij = 0, the value
of (27) is −dij/2, which is different to the value 0 of (22) if dij 6= 0.

Again, the other derivatives can be computed in the same way.
If aki > aik, one gets with (9) that βik = R+

k f
+
ik +R−k f

−
ik. Now, one can proceed

as in the other case for deriving formulas for the entries of the Jacobian.
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The value of the regularization parameter was chosen similarly as in [2] by
σ = 10−8 · h4, where h is the maximal diameter of the mesh cells of the current
triangulation. In [2], also the limiter itself (shock detector) is regularized if the
regularized Newton method is applied. Thus, strictly speaking, the discretization
depends on the solution method. In our opinion, this situation is unusual and we
decided not to use this approach but to apply the regularized Newton method to
the standard Kuzmin limiter.

3.2.3. BJK Limiter

For the BJK limiter, only a formal Newton method with separate treatment of
the non-smooth points is studied.

Approach with Separate Treatment of the Non-Smooth Points. The principal idea of
this approach is the same as for the Kuzmin limiter. It is based on the representation
(20) of the Jacobian. Again, several entries of this matrix are set to be zero in non-
smooth points. This step is performed in the following cases, compare the definition
of the αik: (fik > 0) ∧R+

i = 1, fik = 0, and (fik < 0) ∧R−i = 1.
Consider now the situation (fik > 0) ∧ R+

i < 1. Since fki < 0, one gets αik =
min{R+

i , R
−
k }. For R+

i ≤ R
−
k , it follows that

∂αik
∂uj

=
∂R+

i

∂uj
=
P+
i
∂Q+

i

∂uj
−Q+

i
∂P+

i

∂uj

(P+
i )2

,

and for R−k < R+
i that

∂αik
∂uj

=
∂R−k
∂uj

=
P−k

∂Q−k
∂uj
−Q−k

∂P−k
∂uj

(P−k )2
.

Using (11) for the definition of Q+
i , one has

∂Q+
i

∂uj
=

∂

∂uj
qi(ui − umax

i ) =



{
−qi if umax

i = uj ,

0 if umax
i 6= uj ,

if i 6= j,{
0 if umax

i = uj ,

qi if umax
i 6= uj ,

if i = j.

In the same way, one gets the derivative of Q−k . The derivative of P+
i and P−i is

obtained in the same way as for the Kuzmin limiter.
The second case that gives contribution to the Jacobian is (fik < 0) ∧ R−i < 1.

This case can be treated analogously to the first one.

3.2.4. The General Iteration, Starting Newton’s Method, Damping the Newton Con-
tribution

A formal Newton method with damping is given by the following matrix in
iteration (16)

B
(
u(ν)

)
ij

=


aij + dij − ωfpα

(ν)
ij dij − ωNewt

n∑
k=1

∂α
(ν)
ik

∂uj
dik

(
u

(ν)
k − u

(ν)
i

)
if i 6= j,

aii + dii + ωfp

n∑
k=1,k 6=i

α
(ν)
ik dik − ωNewt

n∑
k=1

∂α
(ν)
ik

∂ui
dik

(
u

(ν)
k − u

(ν)
i

)
if i = j,

(28)
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with ωfp being the damping parameter already introduced for the mixed fixed point
iteration (19) and ωNewt ∈ [0, 1] being a second damping parameter. The last n−m
rows have just the diagonal entry 1.

Remark 2. Because of the conditions for achieving symmetry of the limiters, usu-
ally terms occur in the sums containing the derivatives of the limiters in (28) that

do not fit into the sparsity pattern of the matrix A. This situation happens if α
(ν)
ik

is defined actually by α
(ν)
ki and if there are nodes that are neighbors of the node k

but not of the node i. All terms in the sums that do not fit into the sparsity pattern
of A were neglected in our simulations.

Remark 3. It is expected that the convergence radius of Newton-type methods
is generally smaller than of simple fixed point iterations. Thus, it is advisable to
start the solution process for the nonlinear problem (15) with a simple fixed point
iteration and then switch to a Newton-type method. This approach was studied in
[13]. It was found that a good criterion was to switch when the Euclidean norm of
the residual vector was below 10−5. Sometimes, one could observe that the norm of
the residual vector increased after having switched to the formal Newton method.
To avoid divergence, it was helpful to switch back to the simple fixed point iteration
whenever the Euclidean norm of the residual vector was larger than 10−3. Exactly
this approach was used in the numerical studies presented in Section 5.

Remark 4. The formal Newton method studied in [13] used the fixed values ωfp = 1
and ωNewt = 1 and applied the strategies from Remarks 2 and 3.

In performing preliminary simulations for the examples considered in Section 5,
we observed that the formal Newton method as used in [13] for simple academic test
problems in two dimensions did often not worked. For this reason, we introduced the
parameter ωNewt. However, we found it sometimes complicated to fix an appropriate
value for this parameter. For this reason, an initial value was chosen and

• ωNewt was increased by the factor 1.001 after an iteration, if the Euclidean norm
of the residual vector decreased at least by the factor 0.99,

• otherwise, ωNewt was decreased by the factor 0.999.

Thus, in our adaptive formal Newton method, the parameter ωfp is fixed (but usually
not equal to 1) and ωNewt changes accordingly to the progress of the iteration.

Concerning the calculation of the entries of the formal Jacobian, we like to note
that computing the sum after the factor ωNewt in (28) is considerably more costly
than evaluating the other terms in (28), because of the many cases that have to be

distinguished for computing the derivatives of α
(ν)
ik .

4. Further Algorithmic Components

4.1. Adaptive Choice of Damping Parameter

It is our experience that an appropriate choice of the damping parameters {ω(ν)}
in (16) is often essential for the convergence of the iterative process and the number
of iterations.

Choosing an appropriate damping parameter depends on a number of factors,
like the problem and its data, the scheme used for discretizing the problem, the
iterative scheme used to solve the system of equations, the grid, and the initial
iterate. An a priori knowledge of all these information is generally not available.
For this reason, an algorithm is desirable that chooses the damping parameter
adaptively, e.g., based on the current behavior of the iterative scheme. Such an
algorithm was proposed in [15], which includes also the rejection of iterates. In the
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numerical studies presented in the current paper, exactly this algorithm was used.
For the sake of brevity, this algorithm is not presented here in detail, but it is just
referred to [15, Fig. 12].

4.2. Anderson Acceleration

Anderson acceleration is a process that tries to extract from the history of a
linear fixed point iteration second order information. To this end, a parameter
κ ≥ 1 is chosen, which will be called here the number of Anderson vectors. The last
κ iterates are stored and then, the new iterate is computed as a linear combination of
the function values corresponding to these iterates, where the weights are computed
by solving a least-squares problem.

The simulations presented in this paper utilized Algorithm AA from [27]. In
the first κ steps, the linear fixed point iteration was performed and only after this,
Anderson acceleration was started. The least-squares problem was solved with the
LAPACK routine dgglse. The crucial parameter of this approach is the number
of Anderson vectors. As already noted in [27], if κ is too small, then there might
not be enough information to speed up the convergence sufficiently. But if κ is too
large, the least-squares problem might be badly conditioned. The numerical studies
in [27] used values in the range κ ∈ [3, 50].

Anderson acceleration was already used for the solution of the nonlinear problem
in AFC methods, e.g., in [1, 5]. In these papers, method (18) was applied and a
constant damping parameter was used. Whereas in [1], a certain improvement
compared with using method (18) with adaptive damping parameter is reported,
the results in [5] show only small differences concerning the number of iterations.
Note that in none of these papers, it was exploited that only one matrix factorization
for the whole iteration is necessary for method (18). In the simulations presented
here, Anderson acceleration was used in combination with the adaptive damping
strategy from [15], but without rejection of steps.

In addition to Algorithm AA from [27], we implemented also the Anderson
acceleration with the new iterate [27, (2.1)]. However, the results obtained with
this approach were unsatisfactory, usually much worse than with Algorithm AA.
For the sake of brevity, the corresponding results are not shown here.

4.3. Projection to Admissible Values

In the literature, the nonlinear problems from AFC discretizations are solved
very accurately. The motivation for this approach is that the favorable properties,
in particular the satisfaction of the DMP, hold only for the solution of the nonlinear
problem.

In [2], it is proposed, for a time-dependent transport equation, to project each
iterate to a space of admissible values. These values are given by a lower and
an upper bound for the function values of the discrete solution. We like to note
that such values are not always available in practice. For instance, in precipitation
processes, particles grow by using the supersaturation of some species that are
dissolved in a fluid. In this case, an upper bound for the concentration of the
dissolution is not known, see [17] for a concrete example.

In the examples presented here, lower and upper admissible values of the solution
are known. Therefore, the idea from [2] can be applied and we utilized exactly the
same approach as in this paper: for each iterate, all values outside the admissible
range are truncated to the closest border of this range before performing the next
iteration step.

It has to be noted that the projection to admissible values only makes sense if it
is clear a priori that the numerical solution satisfies the DMP. We like to recall that
this property can be proved for the Kuzmin limiter only under restrictions on the
mesh, see [3]. This aspect will be discussed for each numerical example in Section 5.
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4.4. Choosing the Initial Condition

In [13], studies concerning the impact of the initial iterate on the number of iter-
ations were performed. Four choices were investigated: choosing zero for all degrees
of freedom, the solution of the Galerkin finite element method, the solution of the
upwind finite element method from [25], and the solution of the SUPG (Streamline-
Upwind Petrov–Galerkin) finite element method from [11, 6]. It was observed that
there was only a minor impact. Generally, the solution of the SUPG finite element
method with the choice of the stabilization parameter as given in [14] was a good
choice. We performed similar studies for the examples considered in Section 5. For
the sake of brevity, these studies are not presented. It turned out that also for these
examples, the SUPG finite element solution was generally an appropriate starting
iterate and it was used in all simulations presented below.

5. Numerical Studies

The numerical studies consider examples that model the transport of energy
(temperature) in a flow field, a process which occurs in many applications. In all
examples, the size of the convection field is of order O(1). A mildly convection-
dominated case, ε = 10−4, and a more strongly convection-dominated case, ε =
10−6, were considered. In these studies, the following methods were involved:

• mixed fixed point(ωfp): mixed fixed point iteration (19) with the parameter
ωfp. Note that mixed fixed point(0) corresponds to the method fixed point rhs
from [13], see also (18), and mixed fixed point(1) to the method fixed point
matrix from [13], compare (17).

• mixed fixed point with Anderson acceleration(ωfp, κ): mixed fixed point(ωfp)
with Anderson acceleration and κ Anderson vectors, see Section 4.2.

• formal Newton with separate treatment of the non-smooth points, as used in
[13], compare Remark 4 for this method,

• formal Newton (ωfp, ωNewt) with separate treatment of the non-smooth points
and adaptive change of ωNewt, see Sections 3.2.2 and 3.2.3,

• formal Newton (ωfp, ωNewt) with regularization and adaptive change of ωNewt

(only for the Kuzmin limiter), see Section 3.2.2.

For all formal Newton methods apply the approaches discussed in Remarks 2 and 3.
Stopping criteria for solving the nonlinear equations were as follows:

• The Euclidean norm of the residual vector was smaller than
√

# dof · tol,
where # dof is the number of degrees of freedom (including Dirichlet nodes)
and tol = 10−10.

• A maximal number of 25000 accepted iterations was performed.

Below, the sum of accepted and rejected iterations is given since a rejected step has
a similar computational cost as an accepted step. For simplicity of presentation, it is
not distinguished in the pictures between simulations that did not converge within
the prescribed maximal number of steps and simulations that diverged (with inf

or nan); both are indicated by markers at 25000 or above. Diverged simulations
are mentioned in the captions of the corresponding figures. The initial damping
parameter was always set to be ω(0) = 1. All simulations were performed with the
code ParMooN [8, 29] at compute servers HP BL460c Gen9 2xXeon, Fourteen-
Core 2600MHz.
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Figure 1: 2d Hemker problem. Solution for ε = 10−6, computed with the BJK limiter, P1, level 6.

Figure 2: 2d Hemker problem. Triangular grid and quadrilateral grid (level 0).

Table 1: 2d Hemker problem. Number of degrees of freedom, including Dirichlet nodes.

level P1 Q1

0 151 219
1 561 806
2 2158 3084
3 8460 12056
4 33496 47664
5 133296 189536
6 531808 755904

5.1. The 2d Hemker Problem

This example, defined in [10], is a standard benchmark problem for steady-state
convection-diffusion equations. It is given by Ω = {(−3, 9) × (−3, 3)} \ {(x, y) :
x2 + y2 ≤ 1}, and b = (1, 0)T in (1). Dirichlet boundary conditions are set at
x = −3, with ub = 0, and at the circular boundary with ub = 1. On all other
boundaries, homogeneous Neumann conditions are prescribed. Reference values for
the solution are available for ε = 10−4. It was reported in [5] that in this case, the
solutions obtained with the BJK limiter are more accurate than with the Kuzmin
limiter, in particular the interior layers are sharper. The solution for ε = 10−6

is illustrated in Figure 1. Simulations were performed on a triangular grid and
a quadrilateral grid, see Figure 2 for the coarsest grids (level 0) and Table 1 for
information on the number of degrees of freedom.

Concerning the satisfaction of the DMP, both grids from Figure 2 are not covered
by the available analysis for the Kuzmin limiter. However, we could observe in
preliminary simulations that the computed solutions with the Kuzmin limiter take
values in [0, 1].

5.1.1. Kuzmin Limiter with P1 Finite Elements

Studies for mixed fixed point(ωfp). First, the behavior of mixed fixed point(ωfp)
for ωfp ∈ {0, 0.05, . . . , 0.95, 1} is illustrated in Figure 3. The simulations were
performed with and without the projection to admissible values as described in
Section 4.3. One can see that there are only small differences with respect to the
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Figure 3: 2d Hemker problem. Results for the method mixed fixed point(ωfp), top: without
projection to admissible values, bottom: with projection to admissible values.

behavior of this method in both cases. A good value for the mixing parameter is
ωfp = 0.85.

We already like to note here that the impact of the projection on the behavior
of the iterative scheme was not always negligible. Usually, we performed simula-
tions with and without projection. In cases where the impact of the projection is
negligible, only the results with projection are presented for this example.

Studies for mixed fixed point(ωfp) with Anderson acceleration. For the best
mixing parameter ωfp = 0.85, the impact of using Anderson acceleration with dif-
ferent numbers of Anderson vectors is presented in Figure 4. For the moderately
convection-dominated case, the use of 20 or 50 Anderson vectors reduces the needed
number of iterations on all levels. However, each iteration requires the solution of
an eigenvalue problem whose dimension equals the number of Anderson vectors.
For ε = 10−6, a reduction of the number of iterations can be seen only on coarse
levels if sufficiently many Anderson vectors are used.

Studies for formal Newton methods. Representative results for several types of
formal Newton methods are displayed in Figure 5. It can be seen that the ap-
proach with fixed damping parameters reduces the number of iterations+rejections
considerably on coarse grids, but it fails to converge on fine grids. The formal
Newton with adaptive parameter ωNewt and separate treatment of the non-smooth
points needed somewhat fewer iterations+rejections than mixed fixed point(0.85).
Using instead the regularized formal Newton method, requires somewhat more it-
erations+rejections. We could observe that the behavior of the formal Newton
methods is quite sensitive to the choice of ωNewt. For instance, using ωNewt = 0.1
increases the number of iterations+rejections such that it is on the two finest grids
higher than for mixed fixed point(0.85). For the sake of brevity, we do not like to
present a detailed study of this topic here. Altogether, one has to conclude that the
application of the formal Newton methods does not significantly reduce the number

16



1000 10000 100000 500000

# dof

50

100

200

500

1000

2000
#
 i
te
ra
ti
o
n
s 
+
 r
e
je
ct
io
n
s

ε=10−4 , Kuzmin limiter, P1

no And.

And. 5

And. 10

And. 20

And. 50

1000 10000 100000 500000

# dof

50

100

200

500

1000

2000

5000

#
 i
te
ra
ti
o
n
s 
+
 r
e
je
ct
io
n
s

ε=10−6 , Kuzmin limiter, P1

no And.

And. 5

And. 10

And. 20

And. 50

Figure 4: 2d Hemker problem. Results for mixed fixed point with Anderson acceleration(0.85, κ),
where κ is the number in the legends, with projection to admissible values.
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Figure 5: 2d Hemker problem. Results for the formal Newton methods, with projection to admis-
sible values. The adaptive methods were used with ωfp = 0.85 and ωNewt = 0.0625.
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Figure 6: 2d Hemker problem. Results for the method mixed fixed point(ωfp), with projection to
admissible values.

of iterations+rejections.

5.1.2. Kuzmin Limiter with Q1 Finite Elements

The observations in this case are similar as for the Kuzmin limiter with P1 finite
elements. Some representative results are shown in Figures 6 and 7, which should
be compared with Figures 3 and 5, respectively.
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Figure 7: 2d Hemker problem. Results for the formal Newton methods, with projection to admis-
sible values. The adaptive methods were used with ωfp = 0.85 and ωNewt = 0.0625.
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Figure 8: 2d Hemker problem. Results for the method mixed fixed point(ωfp), with projection to
admissible values.

5.1.3. BJK Limiter with P1 Finite Elements

Studies for mixed fixed point(ωfp). The results for this method are presented in
Figure 8. In the moderately convection-dominated regime, it can be observed that
choosing ωfp = 0.95 leads always to a comparatively small number of iterations,
whereas the method does not converge for ωfp = 1. To achieve convergence in the
strongly convection-dominated case is much harder. In fact, on level 5, mixed fixed
point(ωfp) does not converge for all used parameters. In case of convergence, an
appropriate parameter is again ωfp = 0.95.

Studies for mixed fixed point(ωfp) with Anderson acceleration. The application
of the Anderson acceleration worsens the convergence for all simulations with the
BJK limiter, compare Figure 9.

Studies for formal Newton methods. Results obtained for formal Newton meth-
ods are presented in Figures 10 and 11. For ε = 10−4, it can be seen that formal
Newton with an adaptive choice of the damping parameter ωNewt needs fewer itera-
tions on all levels than mixed fixed point(0.95) if the projection to admissible values
is not used. With this projection, the method does not converge on fine grids.
The method formal Newton with fixed parameters converges quite well, apart on
the finest level. For the mildly convection-dominated case, we observed that also a
formal Newton method with ωfp = 1, ωNewt = 1, starting from the first iteration
(Newton wo damp. in Figure 11) works quite well, at least on the coarse grids. In
the strongly convection-dominated regime, some formal Newton methods needed
fewer iterations than mixed fixed point(0.95) on coarse grids. Again, some methods
behaved rather differently with and without projection to admissible values.
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Figure 9: 2d Hemker problem. Results for mixed fixed point with Anderson acceleration(0.95, κ),
where κ is the number in the legends, with projection to admissible values.
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Figure 10: 2d Hemker problem. Results for the formal Newton methods, with and without projec-
tion to admissible values. The adaptive methods were used with ωfp = 0.95 and ωNewt = 0.0625.
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Figure 11: 2d Hemker problem. Results for the formal Newton methods, without projection to
admissible values.

5.1.4. Efficiency

As final part of the 2d example, a study with respect to the efficiency, in terms of
computing times, of the methods is presented. To this end, approaches for each type
of method with a small number of iterations+rejections are taken and compared.
The arising linear systems of equations were solved with the sparse direct solver
UMFPACK [7]. All simulations were performed five times, then the fastest and
slowest times were neglected and the average of the remaining three times is shown
in Figure 12.
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Figure 12: 2d Hemker problem. Efficiency of several methods.

Figure 13: 3d Hemker problem. Solution for ε = 10−6, computed with the Kuzmin limiter, P1,
level 4, and sketch of the coarsest grid (level 0).

Figure 12 shows some representative results. For both limiters, fixed point rhs
(= mixed fixed point(0)) is the most efficient method. The advantage of needing
just one matrix factorization for the whole iteration results in a gain of one order
of magnitude concerning the simulation times compared with most of the other
methods. Only Newton’s method without damping for the BJK limiter is similarly
efficient on coarse grids. Note that this method needs much fewer iteration steps
than fixed point rhs for solving the nonlinear problem, e.g., on the grid with around
33000 degrees of freedom 260 iterations vs. 4199 iterations.

5.2. The 3d Hemker Problem

The 3d Hemker problem is a natural extension of the 2d Hemker problem, which
was proposed in [29]. The domain is defined by

Ω =
{
{(−3, 9)× (−3, 3)} \

{
(x, y) : x2 + y2 ≤ 1

}}
× (0, 6)

and the convection vector in (1) is given by b = (1, 0, 0)T . Homogeneous Dirichlet
boundary conditions ub = 0 are prescribed at the inlet plane x = −3 and at the
cylinder, the Dirichlet boundary condition is ub = 1. At all other boundaries,
homogeneous Neumann conditions are imposed. An illustration of the solution is
provided in Figure 13.

Simulations were performed for P1 and Q1 (only Kuzmin limiter) finite elements,
see Figure 13 for the coarsest tetrahedral grid and Table 2 for information on the
number of degrees of freedom. It turned out that the solutions computed with the
Kuzmin limiter on the tetrahedral grids showed small negative values. For example,
on level 1, these values are −2 · 10−6 (ε = 10−4) and −8 · 10−9 (ε = 10−6) and on
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Table 2: 3d Hemker problem. Number of degrees of freedom, including Dirichlet nodes.

level P1

0 490
1 3172
2 22600
3 170128
4 1319200
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Figure 14: 3d Hemker problem. Results for the method mixed fixed point(ωfp), without projection
to admissible values. Diverged iterations: ε = 10−4: level 2 with ωfp = 1, level 3 with ωfp = 1,
level 4 with ωfp ∈ {0.95, 1}; ε = 10−6: level 1 with ωfp = 1, level 2 with ωfp = 1, level 3 with
ωfp = 1, level 4 with ωfp ∈ {0.95, 1}.

level 3 they are −7 · 10−6 (ε = 10−4) and −8 · 10−8 (ε = 10−6). Although negative
oscillations of this size might be still tolerable in applications, they do not allow to
use the projection of the iterates to the admissible interval [0, 1] since the Euclidean
norm of the residual vector stalled at some value larger than the stopping tolerance.
The values of the results obtained with the Kuzmin limiter on the hexahedral grids
and the BJK limiter on the tetrahedral grids were always in [0, 1]. In these cases,
both approaches, with and without projection to admissible values, led usually to a
similar number of iterations. Since in the approach without projection to admissible
values, the results found for Q1 finite elements are also in this example qualitatively
the same as for P1 finite elements, only the investigations for P1 finite elements are
presented below, for the sake of brevity.

5.2.1. Kuzmin Limiter with P1 Finite Elements

Studies for mixed fixed point(ωfp). The results of these studies are displayed in
Figure 14. It can be seen that mixed fixed point(ωfp) converged only for sufficiently
small mixing parameters ωfp. An appropriate mixing parameter for both regimes is
ωfp = 0.7.

If not mentioned otherwise, an iterative solver was used for the arising linear
systems of equations in three dimensions and an inexact solve of these systems was
performed, see Section 5.3.3 for details. Usually, we could not observe a qualitative
difference with respect to the number of iterations+rejections concerning an accu-
rate and an inexact solution of the linear systems. An example is given in Figure 15.
One can see by comparing with Figure 14 that the number of iterations is in all
situations almost the same.

Studies for mixed fixed point(ωfp) with Anderson acceleration. The impact of
using Anderson acceleration is demonstrated in Figure 16. For both convection-
dominated regimes, the application of the Anderson acceleration reduces the needed
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Figure 15: 3d Hemker problem. Results for the method mixed fixed point(ωfp), without projection
to admissible values, with accurate solution of the linear problems. Diverged iterations: ε = 10−4:
level 2 with ωfp = 1, level 3 with ωfp = 1, level 4 with ωfp ∈ {0.95, 1}; ε = 10−6: level 2 with
ωfp = 1, level 3 with ωfp = 1, level 4 with ωfp ∈ {0.95, 1}.
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Figure 16: 3d Hemker problem. Results for mixed fixed point with Anderson acceleration(0.7, κ),
where κ is the number in the legends, without projection to admissible values.
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Figure 17: 3d Hemker problem. Results for the formal Newton methods, without projection to
admissible values. The adaptive methods were used with ωfp = 0.7 and ωNewt = 0.1.

number of iterations+rejections on all levels if the number of Anderson vectors is
chosen to be κ ∈ {10, 20, 50}. For these values, only little differences are observable.

Studies for formal Newton methods. Results for the formal Newton methods, in
comparison with mixed fixed point(0.7), are presented in Figure 17. As can be seen,
the formal Newton method without regularization sometimes reduces the number of
iterations+rejections slightly, but generally do not lead to a notable improvement.
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Figure 18: 3d Hemker problem. Results for the method mixed fixed point(ωfp), with projection
to admissible values. Diverged iterations: ε = 10−4: level 2 with ωfp = 1, level 3 with ωfp = 1,
level 4 with ωfp ∈ {0.95, 1}; ε = 10−6: level 1 with ωfp = 1, level 2 with ωfp = 1, level 3 with
ωfp = 1, level 4 with ωfp ∈ {0.95, 1}.

Figure 19: 3d problem with non-constant convection. Solution for ε = 10−6, isosurface for u =
0.05, computed with the Kuzmin limiter, P1, level 5, and sketch of the coarsest grid (level 0).

5.2.2. BJK Limiter with P1 Finite Elements

Utilizing the method mixed fixed point(ωfp) for the BJK limiter, one finds that
also in this case the method converges only if the mixing parameter is sufficiently
small, compare Figure 18. However, there are situations where the maximal number
of 25000 iteration steps is not sufficient for the convergence of mixed fixed point(ωfp)
with any of the considered parameters: level 3 for both regimes and the finest grid
for the strongly convection-dominated regime.

Without presenting detailed results, we like to note that, similar as for the
2d Hemker problem, the application of Anderson acceleration does not benefit for
mixed fixed point(ωfp) and the BJK limiter. The formal Newton method for this
limiter will be discussed briefly in the next example.

5.3. A 3d Problem with Non-Constant Convection

This example was proposed in [5]. The domain is given by Ω = Ω1 \ Ω2 with
Ω1 = (0, 5) × (0, 2) × (0, 2) and Ω2 = (0.5, 0.8) × (0.8, 1.2) × (0.8, 1.2) and the
convection field by b = (1, l(x), l(x))T with l(x) = (0.19x3 − 1.42x2 + 2.38x)/4.
At the interior cube, the Dirichlet boundary condition ub = 0 is imposed, at the
outlet x = 5 homogeneous Neumann boundary conditions are set, and at all other
boundaries ub = 1 is prescribed. An illustration of the solution is given in Figure 19.
All simulations were performed for P1 finite elements on unstructured tetrahedral
grids, whose coarsest grid was obtained with the mesh generator Gmsh [9], see
Figure 19. Information concerning the degrees of freedom are provided in Table 3.

On the used grids, the BJK limiter computed solutions with values in [0, 1]
whereas the Kuzmin limiter showed small overshoots on levels 3, 4, and 5. In
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Table 3: 3d problem with non-constant convection. Number of degrees of freedom, including
Dirichlet nodes.

level P1

0 86
1 476
2 3078
3 21898
4 164626
5 1275426
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Figure 20: 3d problem with non-constant convection. Results for the method mixed fixed
point(ωfp), without projection to admissible values. Diverged iterations: ε = 10−4: level 4 with
ωfp = 1, level 5 with ωfp = 1; ε = 10−6: level 3 with ωfp = 1, level 4 with ωfp = 1, level 5 with
ωfp ∈ {0.95, 1}.

all situations where the numerical solution had values in [0, 1], it turned out that
the simulations without and with projecting to admissible values as described in
Section 4.3 behaved generally similarly. For the sake of brevity, only results without
projection are presented below.

5.3.1. Kuzmin Limiter with P1 Finite Elements

Studies for mixed fixed point(ωfp). The results of these studies are displayed in
Figure 20. As for the 3d Hemker example, it can be seen that mixed fixed point(ωfp)
converges if ωfp is sufficiently small. The finer the grid, the smaller is the interval
for which the method converges. An appropriate parameter for both regimes and
for all levels is ωfp = 0.6.

Studies for mixed fixed point(ωfp) with Anderson acceleration. Figure 21 shows
the effect of using Anderson acceleration. For sufficiently many Anderson vectors,
κ ∈ {10, 20, 50}, there is generally a notable reduction of the number of itera-
tions+rejections compared with mixed fixed point(0.6).

Studies for formal Newton methods. The results for this approach, displayed
in Figure 22, are similar as for the 3d Hemker problem, Figure 17. Also here, the
formal Newton methods usually do not show a notably better behavior than the
mixed fixed point(0.6) method.

5.3.2. BJK Limiter with P1 Finite Elements

For the BJK limiter, results for the method mixed fixed point(ωfp) are presented
in Figure 23. On the one hand, there is a similar behavior as for the Kuzmin limiter,
because the method converges if the mixing parameter ωfp is sufficiently small. On
the other hand, much more iterations are needed than for the Kuzmin limiter.
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Figure 21: 3d problem with non-constant convection. Results for mixed fixed point with Anderson
acceleration(0.6, κ), where κ is the number in the legends, without projection to admissible values.

1000 104 105 106

# dof

50

100

200

#
 i
te
ra
ti
o
n
s 
+
 r
e
je
ct
io
n
s

ε=10−4 , Kuzmin limiter, P1

mixed fp(0.60)

Newton adapt.

regu. Newton adapt.

1000 104 105 106

# dof

50

100

200

#
 i
te
ra
ti
o
n
s 
+
 r
e
je
ct
io
n
s

ε=10−6 , Kuzmin limiter, P1

mixed fp(0.60)

Newton adapt.

regu. Newton adapt.

Figure 22: 3d problem with non-constant convection. Results for the formal Newton methods,
without projection to admissible values. The adaptive methods were used with ωfp = 0.6 and
ωNewt = 0.1.
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Figure 23: 3d problem with non-constant convection. Results for the method mixed fixed
point(ωfp), without projection to admissible values. Diverged iterations: ε = 10−6: level 1 with
ωfp = 1; ε = 10−4 and ε = 10−6: level 2 with ωfp = 1, level 3 with ωfp = 1, level 4 with ωfp = 1,
level 5 with ωfp ∈ {0.95, 1}.

For this example, the behavior of the formal Newton method without damping,
which behaved quite well for the 2d Hemker problem, is discussed. First of all, we
noticed that the used iterative solver did not work for this method, such that a
sparse direct solver was utilized. With this solver, it was only possible to perform
simulations on coarse grids. Concerning the number of iterations+rejections, the
results are again quite good, e.g., in the strongly convection-dominated case, these
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Figure 24: 3d problem with non-constant convection. Efficiency for several methods.

numbers are for levels 1–3: 171, 401, 598 in comparison with the best numbers from
Figure 23: 706, 1574, 2298. Thus, on levels 2 and 3 there is a considerable reduction
of these numbers.

5.3.3. Efficiency

Again, we selected a method from each approach with a small number of iter-
ations+rejections for comparison. Usually, the arising linear systems of equations
were solved with an iterative solver. To this end, GMRES [24] was used with right
preconditioner. The preconditioner was SSOR with relaxation parameter 1.0. In
our experience, it is generally not necessary to solve the linear systems of equations
very accurately. Accordingly, the GMRES iteration was stopped if the Euclidean
norm of the residual vector was reduced by the factor 100 or after 50 iterations.
A comparison with the use of a much more stronger stopping criterion has been
already provided in Section 5.2.1. For fixed point rhs, also the sparse direct solver
UMFPACK was utilized for solving the linear system of equations, because for this
method, only one factorization is necessary. The determination of the computing
times was performed in the same way as described for the 2d Hemker problem in
Section 5.1.4.

Results are displayed in Figure 24. Like in the 2d case, fixed point rhs (= mixed
fixed point(0)) is the most efficient approach. On coarse grids, both the iterative
or the direct solver can be used, but on finer grids, one has to apply the iterative
solver. Compared with mixed fixed point(0.6) and mixed fixed point with Anderson
acceleration(0.6, 10), the computing times of fixed point rhs are about half an
order of magnitude smaller, even if the number of iterations+rejections is usually
notably larger, e.g., for the strongly convection-dominated case on the finest grid
538 vs. 387 for mixed fixed point(0.6) and 308 for mixed fixed point with Anderson
acceleration(0.6, 10). The reason is that the used iterative solver performed for the
matrix from fixed point rhs, which is just Â = A+D, much more efficient than for
the matrices from the other methods.

6. Summary

This paper presented comprehensive numerical studies for solving the nonlinear
problems arising in AFC discretizations of steady-state convection-diffusion equa-
tions. Compared with the initial study [13], more approaches were considered and
more challenging examples were studied.

Taking the simplest fixed point method fixed point rhs, or equivalently mixed
fixed point(0), as reference method, then the numerical studies showed that it is
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sometimes possible to reduce with advanced methods the number of iterations+re-
jections considerably, e.g., see the numbers given in Sections 5.1.4 and 5.3.2. The
method fixed point rhs has, however, the structural advantage of having the same
matrix in each iteration step. In two dimensions, due to the high efficiency of
sparse direct solvers in 2d, it clearly outperforms all other approaches with respect
to computing times, of course only in the case that fixed point rhs converges. A
sparse direct solver can be applied in 3d only on very coarse grids. Usually, an
iterative solver has to be utilized. However, also in 3d, the method fixed point
rhs was most efficient, since the iterative solver worked much better than for other
methods because of the favorable properties of the iteration matrix.

It was usually much easier to solve the problems for the Kuzmin limiter than
for the BJK limiter. Especially in the strongly convection-dominated regime and
on fine grids, the considered methods often did not converge for the BJK limiter
within the prescribed maximal number of steps.

Whether or not the projection to admissible values as described in Section 4.3
should be performed depends on the example. If the numerical solution does not
possess undershoots or overshoots, often only a minor impact on the behavior of
the solver mixed fixed point(ωfp) for the nonlinear problem could be observed.

In summary, the simplest fixed point iteration is the most efficient approach
in terms of computing times, although it often needs considerably more iterations
than other approaches. The gain of either needing only one matrix factorization in
2d or of the high efficiency of the iterative solver in 3d compensates this drawback
more than enough.
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