Department for Mathematics and Computer Science Free University of Berlin
Prof. Dr. V. John, john@wias-berlin.de
Abhinav Jha, jha@wias-berlin.de

Berlin, 27.05.2019

Numerical Mathematics III - Partial Differential Equations

Exercise Problems 07

Attention: The approach for getting a solution has to be clearly presented. All statements have to be proved, auxiliary calculations have to be written down. Statements given in the lectures can be used without proof.

1. Rational functions in Lebesgue spaces in a ball. Solve the following problems.
i) For which values of $a \in \mathbb{R}$ is the function $f:(-1,1) \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}|x|^{a} & x \neq 0 \\ 0 & x=0\end{cases}
$$

an element of $L^{p}((-1,1))$ with $p \in[1, \infty]$?
ii) Let

$$
B_{1}(\mathbf{0})=\left\{\boldsymbol{x}:\|\boldsymbol{x}\|_{2}<1\right\}
$$

be the d-dimensional unit ball, $d>1$. Find the values $a \in \mathbb{R}$ for which the function $f: B_{1}(\mathbf{0}) \rightarrow \mathbb{R}$ with

$$
f(x)= \begin{cases}\|\boldsymbol{x}\|_{2}^{a} & \boldsymbol{x} \neq \mathbf{0} \\ 0 & \boldsymbol{x}=\mathbf{0}\end{cases}
$$

belongs to $L^{p}\left(B_{1}(\mathbf{0})\right)$ with $p \in[1, \infty]$!
2. Interpolation inequality. Let Ω be a bounded Lipschitz domain and let $u \in$ $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. Prove the interpolation inequality

$$
\|\nabla u\|_{L^{2}(\Omega)}^{2} \leq\|u\|_{L^{2}(\Omega)}\|\Delta u\|_{L^{2}(\Omega)}
$$

3. Poincaré-Friedrichs type inequality. Prove the following inequality of PoincaréFriedrichs type. Let Ω be a bounded domain with Lipschitz boundary and let $\Omega^{\prime} \subset \Omega$ with $\operatorname{meas}_{\mathbb{R}^{d}}\left(\Omega^{\prime}\right)=\int_{\Omega^{\prime}} d \mathbf{x}>0$, then for all $u \in W^{1, p}(\Omega)$ it is

$$
\int_{\Omega}|u(\mathbf{x})|^{p} d \mathbf{x} \leq C\left(\left|\int_{\Omega^{\prime}} u(\mathbf{x}) d \mathbf{x}\right|^{p}+\int_{\Omega}\|\nabla u(\mathbf{x})\|_{2}^{p} d \mathbf{x}\right)
$$

4. Integration by parts. Prove Corollary 3.44: Let the conditions of Theorem 3.42 on the domain Ω be satisfied. Consider $w \in W^{1, p}(\Omega)$ and $v \in W^{1, q}(\Omega)$ with $p \in(1, \infty)$ and $\frac{1}{p}+\frac{1}{q}=1$. Then, it is

$$
\int_{\Omega} \partial_{i} w(\mathbf{x}) v(\mathbf{x}) d \mathbf{x}=\int_{\Gamma} w(\boldsymbol{s}) v(\boldsymbol{s}) \boldsymbol{n}_{i}(\boldsymbol{s}) d \boldsymbol{s}-\int_{\Omega} w(\mathbf{x}) \partial_{i} v(\mathbf{x}) d \mathbf{x}
$$

The exercise problems should be solved in groups of two or three students. The written parts have to be submitted until Thursday, June 06, 2019. The executable codes have to be send by email to A. Jha.

