Department for Mathematics and Computer Science Free University of Berlin Prof. Dr. V. John, john@wias-berlin.de Abhinav Jha, jha@wias-berlin.de

Berlin, 06.05.2019

## Numerical Mathematics III – Partial Differential Equations Exercise Problems 04

Attention: The approach for getting a solution has to be clearly presented. All statements have to be proved, auxiliary calculations have to be written down. Statements given in the lectures can be used without proof.

- 1. Comparison lemma. Prove the comparison lemma (Corollary 2.22).
- 2. An eigenvalue problem connected to the five point stencil. Show that the vector  $v_k = (v_{k,0}, \cdots, v_{k,n})$  with

$$v_{k,0} = v_{k,n} = 0, \quad v_{k,i} = \sqrt{2} \sin(\pi k x_i),$$

solves the eigenvalue problem

$$v_{k,i-1} + (\lambda_k h^2 - 2) v_{k,i} + v_{k,i+1} = 0$$

with

$$\lambda_k = \frac{2}{h^2} \left( 1 - \cos(\pi \, k \, h) \right) = \frac{4}{h^2} \sin^2\left(\frac{\pi \, k \, h}{2}\right).$$

Remind the programming problem from Exercise Problems 03!

The exercise problems should be solved in groups of two or three students. The written parts have to be submitted until **Thursday**, **May 16**, **2019** to A. Jha. The executable codes have to be send by email to A. Jha.