Department for Mathematics and Computer Science
Free University of Berlin
Prof. Dr. V. John, john@wias-berlin.de
Abhinav Jha, jha@wias-berlin.de

Berlin, 06.05.2019

Numerical Mathematics III - Partial Differential Equations

Exercise Problems 04

Attention: The approach for getting a solution has to be clearly presented. All statements have to be proved, auxiliary calculations have to be written down. Statements given in the lectures can be used without proof.

1. Comparison lemma. Prove the comparison lemma (Corollary 2.22).
2. An eigenvalue problem connected to the five point stencil. Show that the vector $v_{k}=\left(v_{k, 0}, \cdots, v_{k, n}\right)$ with

$$
v_{k, 0}=v_{k, n}=0, \quad v_{k, i}=\sqrt{2} \sin \left(\pi k x_{i}\right),
$$

solves the eigenvalue problem

$$
v_{k, i-1}+\left(\lambda_{k} h^{2}-2\right) v_{k, i}+v_{k, i+1}=0
$$

with

$$
\lambda_{k}=\frac{2}{h^{2}}(1-\cos (\pi k h))=\frac{4}{h^{2}} \sin ^{2}\left(\frac{\pi k h}{2}\right) .
$$

Remind the programming problem from Exercise Problems 03!
The exercise problems should be solved in groups of two or three students. The written parts have to be submitted until Thursday, May 16, 2019 to A. Jha. The executable codes have to be send by email to A. Jha.

