2. Local basis of $P_{2}(\hat{K})$. Consider the reference triangle \widehat{K} with the vertices $(0,0),(1,0)$, and $(0,1)$. The space of polynomials of degree two is spanned by

$$
1, \widehat{x}, \widehat{y}, \widehat{x} \widehat{y}, \widehat{x}^{2}, \widehat{y}^{2}
$$

Use as functionals the values of the functions in the vertices and the barycenters of the edges. Compute the local basis with respect to these functionals.

Solution:

Denote the basis given in the problem by $\left\{p_{k}\right\}, k=1, \ldots 6$. For transforming this basis, one uses the ansatz

$$
\phi_{\widehat{K}, j}=\sum_{k=1}^{6} c_{j k} p_{k} \quad j=1, \ldots, 6
$$

From the condition for the local basis, one gets

$$
\begin{equation*}
\Phi_{\widehat{K}, i}\left(\phi_{\widehat{K}, j}\right)=\delta_{i j}=\sum_{k=1}^{6} c_{j k} \Phi_{\widehat{K}, i}\left(p_{k}\right) \quad i, j=1, \ldots 6 . \tag{5.1}
\end{equation*}
$$

The functions of $P_{2}(\hat{K})$ are the values in the nodes $A_{1}=(0,0), A_{2}=(1 / 2,0), A_{3}=$ $(1,0), A_{4}=(0,1 / 2), A_{5}=(1 / 2,1 / 2)$, and $A_{6}=(0,1)$. With this numbering, equation (5.1) leads to a linear system of equations whose matrix can be computed by evaluating $\Phi_{\widehat{K}, i}\left(p_{k}\right)$, where the i-th row corresponds to the i-th functional and the k-th column to the k-th basis function (not vanishing at the k-th node)

$$
\Phi_{\widehat{K}, i}\left(p_{k}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & \frac{1}{2} & 0 & 0 & \frac{1}{4} & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{4} \\
1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

One obtains, for $j=1$, i.e., for the node A_{1},

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & \frac{1}{2} & 0 & 0 & \frac{1}{4} & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{4} \\
1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
c_{11} \\
c_{12} \\
c_{13} \\
c_{14} \\
c_{15} \\
c_{16}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \quad \Longrightarrow \quad c_{1 j}=\left(\begin{array}{c}
1 \\
-3 \\
-3 \\
4 \\
2 \\
2
\end{array}\right) .
$$

For the linear systems of equations for the other nodes, one gets

$$
\begin{aligned}
& c_{2 j}=(0,4,0,-4,-4,0)^{T} \\
& c_{3 j}=(0,-1,0,0,2,0)^{T} \\
& c_{4 j}=(0,0,4,-4,0,-4)^{T} \\
& c_{5 j}=(0,0,0,4,0,0)^{T} \\
& c_{6 j}=(0,0,-1,0,0,2)^{T}
\end{aligned}
$$

Collecting the results, one finds that the local basis has the form

$$
\begin{aligned}
& \phi_{\widehat{K}, 1}=1-3 \widehat{x}-3 \widehat{y}+4 \widehat{x} \widehat{y}+2 \widehat{x}^{2}+2 \widehat{y}^{2}, \\
& \phi_{\widehat{K}, 2}=4 \widehat{x}-4 \widehat{x} \widehat{y}-4 \widehat{x}^{2}, \\
& \phi_{\widehat{K}, 3}=-\widehat{x}+2 \widehat{x}^{2}, \\
& \phi_{\widehat{K}, 4}=4 \widehat{y}-4 \widehat{x} \widehat{y}-4 \widehat{y}^{2}, \\
& \phi_{\widehat{K}, 5}=4 \widehat{x} \widehat{y}, \\
& \phi_{\widehat{K}, 6}=-\widehat{y}+2 \widehat{y}^{2} .
\end{aligned}
$$

3. Local basis of $Q_{1}^{\text {rot }}(\hat{K})$. Consider the reference square $\widehat{K}=[-1,1]^{2}$ and the space that is spanned by the functions

$$
1, \widehat{x}, \widehat{y}, \widehat{x}^{2}-\widehat{y}^{2}
$$

Let the integral mean values on the edges $E_{i}, i=1, \ldots, 4$, of \widehat{K} be the functionals of the finite element

$$
\Phi(v)=\frac{1}{\operatorname{meas}\left(E_{i}\right)} \int_{E_{i}} v(s) d s \quad i=1, \ldots, 4
$$

Compute the local basis with respect to these functionals.

Solution:

The way to solve this problem is analogous to the solution of Problem 2. Numerate the the edges as follows: E_{1} at $y=-1, E_{2}$ at $x=1, E_{3}$ at $y=1$, and E_{4} at $x=-1$. The matrix for the linear systems of equations is given by

$$
\Phi_{\widehat{K}, i}\left(p_{k}\right)=\left(\begin{array}{cccc}
1 & 0 & -1 & -\frac{2}{3} \\
1 & 1 & 0 & \frac{2}{3} \\
1 & 0 & 1 & -\frac{2}{3} \\
1 & -1 & 0 & \frac{2}{3}
\end{array}\right)
$$

The solutions are

$$
\begin{aligned}
& c_{1 j}=\left(\frac{1}{4}, 0,-\frac{1}{2},-\frac{3}{8}\right)^{T}, \\
& c_{2 j}=\left(\frac{1}{4}, \frac{1}{2}, 0, \frac{3}{8}\right)^{T}, \\
& c_{3 j}=\left(\frac{1}{4}, 0, \frac{1}{2},-\frac{3}{8}\right)^{T}, \\
& c_{4 j}=\left(\frac{1}{4},-\frac{1}{2}, 0, \frac{3}{8}\right)^{T},
\end{aligned}
$$

and the local basis has the form

$$
\begin{aligned}
& \phi_{\widehat{K}, 1}=\frac{1}{8}\left(2-4 \widehat{y}-3 \widehat{x}^{2}+3 \widehat{y}^{2}\right), \\
& \phi_{\widehat{K}, 2}=\frac{1}{8}\left(2+4 \widehat{x}+3 \widehat{x}^{2}-3 \widehat{y}^{2}\right), \\
& \phi_{\widehat{K}, 3}=\frac{1}{8}\left(2+4 \widehat{y}-3 \widehat{x}^{2}+3 \widehat{y}^{2}\right), \\
& \phi_{\widehat{K}, 4}=\frac{1}{8}\left(2-4 \widehat{x}+3 \widehat{x}^{2}-3 \widehat{y}^{2}\right) .
\end{aligned}
$$

