
Chapter 4

The Ritz Method and the Galerkin
Method

Remark 4.1. Contents. This chapter studies variational or weak formulations
of boundary value problems of partial differential equations in Hilbert spaces.
The existence and uniqueness of an appropriately defined weak solution will
be discussed. The approximation of this solution with the help of finite-
dimensional spaces is called Ritz method or Galerkin method. Some basic
properties of this method will be proved.

In this chapter, a Hilbert space V will be considered with inner product
a(·, ·) : V × V → R and norm ‖v‖V = a(v, v)1/2. ✷

4.1 The Theorems of Riesz and Lax–Milgram

Theorem 4.2. Representation theorem of Riesz1. Let f ∈ V ′ be a

continuous and linear functional, then there is a uniquely determined u ∈ V

with

a(u, v) = f(v) ∀ v ∈ V. (4.1)

In addition, u is the unique solution of the variational problem

F (v) =
1

2
a(v, v)− f(v) → min ∀ v ∈ V. (4.2)

Proof. First, the existence of a solution u of the variational problem will be proved. Since
f is continuous, it holds

|f(v)| ≤ C ‖v‖V ∀ v ∈ V,

from what follows that

F (v) ≥
1

2
‖v‖2V − C ‖v‖V ≥ −

1

2
C2,

1 Frigyes Riesz (1880 – 1956)
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68 4 The Ritz Method and the Galerkin Method

where in the last estimate the necessary criterion for a local minimum of the expression of
the first estimate,

2

2
‖v‖V − C = 0 ⇐⇒ ‖v‖V = C,

is used. Hence, the function F (·) is bounded from below and

κ = inf
v∈V

F (v)

exists.
Let {vk}k∈N be a sequence with F (vk) → κ for k → ∞. A straightforward calculation

(parallelogram identity in Hilbert spaces) gives

‖vk − vl‖
2
V + ‖vk + vl‖

2
V = 2 ‖vk‖

2
V + 2 ‖vl‖

2
V .

Using the linearity of f(·) and κ ≤ F (v) for all v ∈ V , one obtains

‖vk − vl‖
2
V

= 2 ‖vk‖
2
V + 2 ‖vl‖

2
V − 4

∥
∥
∥
vk + vl

2

∥
∥
∥

2

V
− 4f(vk)− 4f(vl) + 8f

(
vk + vl

2

)

= 4F (vk) + 4F (vl)− 8F
(
vk + vl

2

)

≤ 4F (vk) + 4F (vl)− 8κ → 0

for k, l → ∞. Hence, {vk}k∈N is a Cauchy sequence. Because V is a complete space, there

exists a limit u of this sequence with u ∈ V . Because F (·) is continuous, it is F (u) = κ

and u is a solution of the variational problem.
In the next step, it will be shown that each solution of the variational problem (4.2) is

also a solution of (4.1). It is for arbitrary v ∈ V

Φ(ε) = F (u+ εv) =
1

2
a(u+ εv, u+ εv)− f(u+ εv)

=
1

2
a(u, u) + εa(u, v) +

ε2

2
a(v, v)− f(u)− εf(v).

If u is a minimum of the variational problem, then the function Φ(ε) has in particular a

local minimum at ε = 0. The necessary condition for a local minimum leads to

0 = Φ′(0) = a(u, v)− f(v) for all v ∈ V.

Finally, the uniqueness of the solution will be proved. It is sufficient to prove the unique-

ness of the solution of the equation (4.1). If the solution of (4.1) is unique, then the existence

of two solutions of the variational problem (4.2) would be a contradiction to the fact proved
in the previous step. Let u1 and u2 be two solutions of the equation (4.1). Computing the

difference of both equations gives

a(u1 − u2, v) = 0 for all v ∈ V.

This equation holds, in particular, for v = u1 − u2. Hence, ‖u1 − u2‖V = 0, such that
u1 = u2. �

Definition 4.3. Bounded bilinear form, coercive bilinear form, V -

elliptic bilinear form. Let b(·, ·) : V × V → R be a bilinear form on the
Banach space V . Then, it is bounded if

|b(u, v)| ≤ M ‖u‖V ‖v‖V ∀ u, v ∈ V,M > 0, (4.3)
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where the constant M is independent of u and v. The bilinear form is coercive
or V -elliptic if

b(u, u) ≥ m ‖u‖
2
V ∀ u ∈ V,m > 0, (4.4)

where the constant m is independent of u. ✷

Remark 4.4. Application to an inner product. Let V be a Hilbert space. Then,
the inner product a(·, ·) is a bounded and coercive bilinear form, since by the
Cauchy–Schwarz inequality

|a(u, v)| ≤ ‖u‖V ‖v‖V ∀ u, v ∈ V,

and obviously a(u, u) = ‖u‖
2
V . Hence, the constants can be chosen to be

M = 1 and m = 1.
Next, the representation theorem of Riesz will be generalized to the case

of coercive and bounded bilinear forms. ✷

Theorem 4.5. Theorem of Lax2–Milgram3. Let b(·, ·) : V ×V → R be

a bounded and coercive bilinear form on the Hilbert space V . Then, for each

bounded linear functional f ∈ V ′ there is exactly one u ∈ V with

b(u, v) = f(v) ∀ v ∈ V. (4.5)

Proof. One defines operators T, T ′ : V → V by

a(Tu, v) = b(u, v) ∀ v ∈ V, a(T ′u, v) = b(v, u) ∀ v ∈ V. (4.6)

These operators are linear, e.g., using that b(·, ·) is a bilinear form, one gets

a (T (α1u1 + α2u2), v) = α1b(u1, v) + α2b(u2, v) = a (α1Tu1 + α2Tu2, v) ∀ v ∈ V.

Because this relation holds for all v ∈ V , it is T (α1u1 + α2u2) = α1Tu1 + α2Tu2. Since

b(u, ·) and b(·, u) are continuous linear functionals on V , it follows from Theorem 4.2 that
the elements Tu and T ′u exist and they are defined uniquely. Because the operators satisfy
the relation

a(Tu, v) = b(u, v) = a(T ′v, u) = a(u, T ′v), (4.7)

T ′ is called adjoint operator of T . Setting v = Tu in (4.6) and using the boundedness of
b(·, ·) yields

‖Tu‖2V = a(Tu, Tu) = b(u, Tu) ≤ M ‖u‖V ‖Tu‖V =⇒ ‖Tu‖V ≤ M ‖u‖V

for all u ∈ V . Hence, T is bounded. Since T is linear, it follows that T is continuous. Using
the same argument, one shows that T ′ is also bounded and continuous.

Define the bilinear form

d(u, v) := a(TT ′u, v) = a(T ′u, T ′v) ∀ u, v ∈ V, (4.8)

where (4.7) was used. Hence, this bilinear form is symmetric. Using the coercivity of b(·, ·),
the Cauchy–Schwarz inequality, the definition of ‖·‖V , and (4.8) gives

2 Peter Lax, born 1926
3 Arthur Norton Milgram (1912 – 1961)
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m2 ‖v‖4V ≤ b(v, v)2 = a(T ′v, v)2 ≤ ‖v‖2V
∥
∥T ′v

∥
∥2

V
= ‖v‖2V a(T ′v, T ′v) = ‖v‖2V d(v, v).

Applying now the boundedness of a(·, ·) and of T ′ yields

m2 ‖v‖2V ≤ d(v, v) = a(T ′v, T ′v) =
∥
∥T ′v

∥
∥2

V
≤ M ‖v‖2V . (4.9)

Hence, d(·, ·) is also coercive and, since it is symmetric, it defines an inner product on V .
From (4.9), one has that the norm induced by d(v, v)1/2 is equivalent to the norm ‖v‖V .

From Theorem 4.2, it follows that there is a exactly one w ∈ V with

d(w, v) = f(v) ∀ v ∈ V.

Now, inserting u = T ′w in b(·, ·) gives with (4.6)

b(T ′w, v) = a(TT ′w, v) = d(w, v) = f(v) ∀ v ∈ V,

hence u = T ′w is a solution of (4.5).

The uniqueness of the solution is proved analogously as in the symmetric case. �

4.2 Weak Formulation of Boundary Value Problems

Remark 4.6. Model problem. Consider the Poisson equation with homoge-
neous Dirichlet boundary conditions

−∆u = f in Ω ⊂ R
d,

u = 0 on ∂Ω.
(4.10)

✷

Definition 4.7. Weak formulation of (4.10). Let f ∈ L2(Ω). A weak
formulation of (4.10) consists in finding u ∈ V = H1

0 (Ω) such that

a(u, v) = (f, v) ∀ v ∈ V (4.11)

with

a(u, v) = (∇u,∇v) =

∫

Ω

∇u(x) · ∇v(x) dx

and (·, ·) is the inner product in L2(Ω). ✷

Remark 4.8. On the weak formulation.

• The weak formulation is also called variational formulation.
• As usual in mathematics, ’weak’ means that something holds for all ap-
propriately chosen test functions.

• Formally, one obtains the weak formulation by multiplying the strong
form of the equation (4.10) with the test function, by integrating the
equation on Ω, and applying integration by parts. Because of the Dirichlet
boundary condition, one can use as test space H1

0 (Ω) and therefore the
integral on the boundary vanishes.
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• The ansatz space for the solution and the test space are defined such that
the arising integrals are well defined.

• The weak formulation reduces the necessary regularity assumptions for
the solution by the integration and the transfer of derivatives to the test
function. Whereas the solution of (4.10) has to be in C2(Ω) ∩ C(Ω), the
solution of (4.11) has to be only in H1

0 (Ω). The latter assumption is much
more realistic for problems coming from applications.

• The regularity assumption on the right-hand side can be relaxed to f ∈
H−1(Ω). Then, the right-hand side of the weak formulation has the form

f(v) = 〈f, v〉H−1(Ω),H1

0
(Ω),

where the symbol 〈·, ·, 〉H−1(Ω),H1

0
(Ω) denotes the dual pairing of the spaces

H1
0 (Ω) and H−1(Ω).

✷
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Theorem 4.9. Existence and uniqueness of the weak solution. Let

f ∈ L2(Ω). There is exactly one solution of (4.11).

Proof. Because of the Poincaré inequality (3.10), there is a constant C with

‖v‖L2(Ω) ≤ C ‖∇v‖L2(Ω) ∀ v ∈ H1
0 (Ω).

It follows for v ∈ H1
0 (Ω) ⊂ H1(Ω) that

‖v‖H1(Ω) =
(

‖v‖2L2(Ω) + ‖∇v‖2L2(Ω)

)1/2
≤

(

C ‖∇v‖2L2(Ω) + ‖∇v‖2L2(Ω)

)1/2

≤ C ‖∇v‖L2(Ω) ≤ C ‖v‖H1(Ω) .

Hence, a(·, ·) is an inner product on H1
0 (Ω) with the induced norm

‖v‖H1

0
(Ω) = a(v, v)1/2,

which is equivalent to the norm ‖·‖H1(Ω).

Define for f ∈ L2(Ω) the linear functional

f̃(v) :=

∫

Ω

f(x)v(x) dx ∀ v ∈ H1
0 (Ω).

Using the Cauchy–Schwarz inequality (3.5) and the Poincaré inequality (3.10) shows that
this functional is continuous on H1

0 (Ω)

∣
∣f̃(v)

∣
∣ = |(f, v)| ≤ ‖f‖L2(Ω) ‖v‖L2(Ω) ≤ C ‖f‖L2(Ω) ‖∇v‖L2(Ω) = C ‖f‖L2(Ω) ‖v‖H1

0
(Ω) .

Applying the representation theorem of Riesz, Theorem 4.2, gives the existence and unique-

ness of the weak solution of (4.11). In addition, u(x) solves the variational problem

F (v) =
1

2
‖∇v‖22 −

∫

Ω

f(x)v(x) dx → min for all v ∈ H1
0 (Ω).

�

Example 4.10. A more general elliptic problem. Consider the problem

−∇ · (A(x)∇u) + c(x)u = f in Ω ⊂ R
d,

u = 0 on ∂Ω,
(4.12)

with A(x) ∈ R
d×d for each point x ∈ Ω. It will be assumed that the coef-

ficients aij(x) and c(x) ≥ 0 are bounded, f ∈ L2(Ω), and that the matrix
(tensor) A(x) is for all x ∈ Ω uniformly elliptic, i.e., there are positive con-
stants m and M independent of x such that

m
∥

∥y
∥

∥

2

2
≤ yTA(x)y ≤ M

∥

∥y
∥

∥

2

2
∀ y ∈ R

d, ∀ x ∈ Ω.

The weak form of (4.12) is obtained in the usual way by multiplying (4.12)
with test functions v ∈ H1

0 (Ω), integrating on Ω, and applying integration
by parts: Find u ∈ H1

0 (Ω), such that

a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω)



4.3 The Ritz Method and the Galerkin Method 73

with

a(u, v) =

∫

Ω

(

∇u(x)TA(x)∇v(x) + c(x)u(x)v(x)
)

dx.

This bilinear form is bounded (exercise). The coercivity of the bilinear form
is proved by using the uniform ellipticity of A(x) and the non-negativity of
c(x):

a(u, u) =

∫

Ω

∇u(x)TA(x)∇u(x) + c(x)u(x)u(x) dx

≥

∫

Ω

m∇u(x)T∇u(x) dx = m ‖u‖
2
H1

0
(Ω) .

Applying the Theorem of Lax–Milgram, Theorem 4.5, gives the existence and
uniqueness of a weak solution of (4.12).

If the tensor is not symmetric, aij(x) 6= aji(x) for one pair i, j, then the
solution cannot be characterized as the solution of a variational problem. ✷

4.3 The Ritz Method and the Galerkin Method

Remark 4.11. Idea of the Ritz method. Let V be a Hilbert space with the
inner product a(·, ·). Consider the problem

F (v) =
1

2
a(v, v)− f(v) → min, (4.13)

where f : V → R is a bounded linear functional. As already proved in
Theorem 4.2, there is a unique solution u ∈ V of this variational problem
which is also the unique solution of the equation

a(u, v) = f(v) ∀ v ∈ V. (4.14)

For approximating the solution of (4.13) or (4.14) with a numerical
method, it will be assumed that V has a countable orthonormal basis
(Schauder basis). Then, there are finite-dimensional subspaces V1, V2, . . . ⊂ V

with dimVk = k, which have the following property: for each u ∈ V and each
ε > 0 there is a K ∈ N and a uk ∈ Vk with

‖u− uk‖V ≤ ε ∀ k ≥ K. (4.15)

Note that it is not required that there holds an inclusion of the form Vk ⊂
Vk+1.

The Ritz approximation of (4.13) and (4.14) is defined by: Find uk ∈ Vk

with
a(uk, vk) = f(vk) ∀ vk ∈ Vk. (4.16)
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✷

Lemma 4.12. Existence and uniqueness of a solution of (4.16). There
exists exactly one solution of (4.16).

Proof. Finite-dimensional subspaces of Hilbert spaces are Hilbert spaces as well. For this
reason, one can apply the representation theorem of Riesz, Theorem 4.2, to (4.16) which

gives the statement of the lemma. In addition, the solution of (4.16) solves a minimization

problem on Vk. �

Lemma 4.13. Best approximation property. The solution of (4.16) is

the best approximation of u in Vk, i.e., it is

‖u− uk‖V = inf
vk∈Vk

‖u− vk‖V . (4.17)

Proof. Since Vk ⊂ V , one can use the test functions from Vk in the weak equation (4.14).
Then, the difference of (4.14) and (4.16) gives the orthogonality, the so-called Galerkin
orthogonality,

a(u− uk, vk) = 0 ∀ vk ∈ Vk. (4.18)

Hence, the error u− uk is orthogonal to the space Vk: u− uk ⊥ Vk. That means, uk is the
orthogonal projection of u onto Vk with respect of the inner product of V .

Let now wk ∈ Vk be an arbitrary element, then it follows with the Galerkin orthogo-
nality (4.18) and the Cauchy–Schwarz inequality that

‖u− uk‖
2
V = a(u− uk, u− uk) = a(u− uk, u− (uk − wk)

︸ ︷︷ ︸

vk

) = a(u− uk, u− vk)

≤ ‖u− uk‖V ‖u− vk‖V .

Since wk ∈ Vk was arbitrary, also vk ∈ Vk is arbitrary. If ‖u− uk‖V > 0, division by
‖u− uk‖V gives the statement of the lemma, since the error cannot be smaller than the

best approximation error. If ‖u− uk‖V = 0, the statement of the lemma is trivially true.
�

Theorem 4.14. Convergence of the Ritz approximation. The Ritz ap-

proximation converges

lim
k→∞

‖u− uk‖V = 0.

Proof. The best approximation property (4.17) and property (4.15) give

‖u− uk‖V = inf
vk∈Vk

‖u− vk‖V ≤ ε

for each ε > 0 and k ≥ K(ε). Hence, the convergence is proved. �

Remark 4.15. Formulation of the Ritz method as linear system of equations.

One can use an arbitrary basis {φi}
k
i=1 of Vk for the computation of uk.

First of all, the equation for the Ritz approximation (4.16) is satisfied for all
vk ∈ Vk if and only if it is satisfied for each basis function φi. This statement
follows from the linearity of both sides of the equation with respect to the
test function and from the fact that each function vk ∈ Vk can be represented
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as linear combination of the basis functions. Let vk =
∑k

i=i αiφi, then from
(4.16), it follows that

a(uk, vk) =

k
∑

k=1

αia(uk, φi) =

k
∑

k=1

αif(φi) = f(vk).

This equation is satisfied if a(uk, φi) = f(φi), i = 1, . . . , k. On the other
hand, if (4.16) holds then it holds in particular for each basis function φi.

Now, one uses as ansatz for the solution also a linear combination of the
basis functions

uk =

k
∑

j=1

ujφj

with unknown coefficients uj ∈ R. Using as test functions the basis functions
yields

k
∑

j=1

a(ujφj , φi) =
k

∑

j=1

a(φj , φi)u
j = f(φi), i = 1, . . . , k.

This equation is equivalent to the linear system of equations Au = f, where

A = (aij)
k
i,j=1 = a(φj , φi)

k
i,j=1

is called stiffness matrix. Note that the order of the indices is different for the
entries of the matrix and the arguments of the inner product. The right-hand
side is a vector of length k with the entries fi = f(φi), i = 1, . . . , k.

Using the one-to-one mapping between the coefficient vector (v1, . . . , vk)T

and the element vk =
∑k

i=1 v
iφi, one can show that the matrix A is symmetric

and positive definite (exercise)

A = AT ⇐⇒ a(v, w) = a(w, v) ∀ v, w ∈ Vk,

xTAx > 0 for x 6= 0 ⇐⇒ a(v, v) > 0 ∀ v ∈ Vk, v 6= 0.

✷

Remark 4.16. The case of a bounded and coercive bilinear form. If b(·, ·) is
bounded and coercive, but not symmetric, it is possible to approximate the
solution of (4.5) with the same idea as for the Ritz method. In this case, it
is called Galerkin method. The discrete problem consists in finding uk ∈ Vk

such that
b(uk, vk) = f(vk) ∀ vk ∈ Vk. (4.19)

✷

Lemma 4.17. Existence and uniqueness of a solution of (4.19). There
is exactly one solution of (4.19).
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Proof. The statement of the lemma follows directly from the Theorem of Lax–Milgram,
Theorem 4.5. �

Remark 4.18. On the discrete solution. The discrete solution is not the or-
thogonal projection into Vk in the case of a bounded and coercive bilinear
form, which is not the inner product of V . ✷

Lemma 4.19. Lemma of Cea4, error estimate. Let b : V × V → R be

a bounded and coercive bilinear form on the Hilbert space V and let f ∈ V ′

be a bounded linear functional. Let u be the solution of (4.5) and uk be the

solution of (4.19), then the following error estimate holds

‖u− uk‖V ≤
M

m
inf

vk∈Vk

‖u− vk‖V , (4.20)

where the constants M and m are given in (4.3) and (4.4).

Proof. Considering the difference of the continuous equation (4.5) and the discrete equa-

tion (4.19), one obtains the error equation

b(u− uk, vk) = 0 ∀ vk ∈ Vk,

i.e., Galerkin orthogonality holds. With (4.4), the Galerkin orthogonality, and (4.3), it
follows that

‖u− uk‖
2
V ≤

1

m
b(u− uk, u− uk) =

1

m
b(u− uk, u− vk)

≤
M

m
‖u− uk‖V ‖u− vk‖V , ∀ vk ∈ Vk,

from what the statement of the lemma follows immediately. �

Remark 4.20. On the best approximation error. It follows from estimate (4.20)
that the error is bounded by a multiple of the best approximation error, where
the factor depends on properties of the bilinear form b(·, ·). Thus, concerning
error estimates for concrete finite-dimensional spaces, the study of the best
approximation error will be of importance. ✷

Remark 4.21. The corresponding linear system of equations. The correspond-
ing linear system of equations is derived analogously to the symmetric case.
The system matrix is still positive definite but not symmetric. ✷

Remark 4.22. Choice of the basis. The most important issue of the Ritz and
Galerkin method is the choice of the spaces Vk, or more concretely, the choice
of an appropriate basis {φi}

k
i=1 that spans the space Vk. From the point of

view of numerics, there are the requirements that:

• it should be possible to compute the entries aij of the stiffness matrix
efficiently,

• and that the matrix A should be sparse.

✷

4 Jean Cea, born 1932


