Chapter 3
Introduction to Sobolev Spaces

Remark 3.1. Contents. Sobolev spaces are the basis of the theory of weak or
variational forms of partial differential equations. A very popular approach
for discretizing partial differential equations, the finite element method, is
based on variational forms. In this chapter, a short introduction into Sobolev
spaces will be given. Recommended literature are the books Adams (1975);
Adams & Fournier (2003), and Evans (2010). O

3.1 Elementary Inequalities

Lemma 3.2. Inequality for strictly monotonically increasing func-
tion. Let f : Ry U{0} — R be a continuous and strictly monotonically
increasing function with f(0) = 0 and f(x) — oo for x — oo. Then, for all
a,b e Ry U{0}, it is

a b
ab < / f(x) do + / S ) dy,

where f*l(y) is the inverse of f(x).

Proof. Since f(x) is strictly monotonically increasing, the inverse function exists.

The proof is based on a geometric argument, see Figure 3.1.

Consider the interval (0, a) on the z-axis and the interval (0, b) on the y-axis. Then, the
area of the corresponding rectangle is given by ab, foa f(x) dz is the area below the curve,

and fé’ f~1(y) dy is the area between the positive y-axis and the curve. From Figure 3.1,
the inequality follows immediately. The equal sign holds only iff f(a) = b. |

Remark 3.3. Young’s' inequality. Young’s inequality

1
ab< Za’+ b VabeR,U{0}c Ry, (3.1)

I William Henry Young (1863 — 1942)
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48 3 Introduction to Sobolev Spaces

=Y

Fig. 3.1 Sketch to the proof of Lemma 3.2.

follows from Lemma 3.2 with f(x) = ex, f~!(y) = e y. It is also possible to
derive this inequality from the binomial theorem. For proving the generalized
Young inequality

P 1
ab§ ;ap_’_ q@bq, Va,bER+U{O}7£ €R+, (32)

with p~'4+¢~* = 1,p,q € (1,00), one chooses f(z) = zP~1, f~(y) = y'/»=1
and applies Lemma 3.2 with intervals where the upper bounds are given by
ea and e 1b. O

Remark 3.4. Cauchy—Schwarz inequality.
e The Cauchy?-Schwarz?® inequality (for vectors, for sums)

(@) < llzlly [lyll, ¥z.y € R", (33)

where (-, -) is the Euclidean product and ||-||, the Euclidean norm, is well
known.

e One can prove this inequality with the help of Young’s inequality. First, it
is clear that the Cauchy—Schwarz inequality is correct if one of the vectors
is the zero vector. Now, let z,y with ||z||, = HyHQ = 1. One obtains with
the triangle inequality and Young’s inequality (3.1)

n
E T;Yi
i=1

Hence, the Cauchy—Schwarz inequality is correct for z, y. Last, one consid-
ers arbitrary vectors & # 0, § # 0. Now, one can utilize the homogeneity of
the Cauchy—Schwarz inequality. From the validity of the Cauchy—Schwarz

inequality for z and y, one obtains by a scaling argument

|(z.y)] =

n 1 n 1 n

2 2
§Z|$i||yi|§52|$i\ +§Z|yi| =1
i=1 1 i=1

=

2 Augustin Louis Cauchy (1789 — 1857)
3 Hermann Amandus Schwarz (1843 — 1921)
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(205" 2 ||all, )] <1
——

x

e{

Both vectors z,y have the Euclidean norm 1, hence

1

= |(Z,Y)| <1 <= z,9) < |zl ||y]], -
BN @ <11zl 1zl

e The generalized Cauchy-Schwarz inequality or Holder’s* inequality

n /p s n 1/q
|(Ly)| < <Z|5Ei|p> (Z?Mq)

with p™! + ¢! = 1,p,q € (1,00), can be proved in the same way with
the help of the generalized Young inequality.
O

Definition 3.5. Lebesgue spaces. The space of functions that are Lebesgue®
integrable on {2 to the power of p € [1,00) is denoted by

r@={s: [ i@l <o,

which is equipped with the norm

1/p
1l = ( /Q )P dm) ‘

For p = oo, this space is given by
L®(2)={f : |f(x)|] < oo almost everywhere in 2}

with the norm
[lfll oe () = ess sup,enlf(x)].

]

Lemma 3.6. Holder’s inequality. Let p~* +¢ ' =1,p,q € [1,0]. Ifu €
LP(£2) and v € LY(§2), then it is uv € L'(2) and it holds that

[woll Loy < Null Loy 101l Lo - (3.4)

If p = q = 2, then this inequality is also known as Cauchy—Schwarz inequality

4 Otto Holder (1859 — 1937)
5 Henri Lebesgue (1875 — 1941)
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||WHL1(Q) < ||U||L2(Q) HUHL2(Q)~ (3:5)

Proof. i) p,q € (1,00). First, one has to show that |uv(z)| can be estimated from above by
an integrable function. Setting in the generalized Young inequality (3.2) e = 1, a = |u(x)],
and b = |v(x)| gives

1 1
[u(z)v(e)| < ;IU(w)\p +3 [v(@)|? . (36)
Since the right-hand side of this inequality is integrable, by assumption, it follows that
uwv € L1(£2). Integrating (3.6), Holder’s inequality is proved for the case lull ooy =
ol gy = 1

1 1
/;z|u(m)v(m)| de < ];/Q\u(mﬂp da:—i—;/n\v(a:)r] de = 1.

The general inequality follows, for the case that both functions do not vanish almost
everywhere, with the same homogeneity argument as used for proving the Cauchy—Schwarz
inequality of sums. In the case that one of the functions vanishes almost everywhere, (3.4)
is trivially satisfied.

) p=1qg=occ. It is

/Q u(@)o(@)| do < /Q (@) ess supgelo(@)] i = lull 1 (o) 10l oo 0 -

3.2 Weak Derivative and Distributions

Remark 3.7. Contents. This section introduces a generalization of the deriva-
tive which is needed for the definition of weak or variational problems. For an
introduction to the topic of this section, e.g., see Haroske & Triebel (2008)
Let 2 C R? be a domain with boundary I" = 862, d € N, £2 # (). A domain
is always an open set. O

Definition 3.8. The space C§°(f2). The space of infinitely often differen-
tiable real functions with compact (closed and bounded) support in 2 is

denoted by C§°(12)
CE(2) = (v ve C=(2), supp(v) € 2),

where

supp(v) = {z € 2 : v(x) # 0}.

In particular, functions from Cg§°(2) vanish in a neighborhood of the bound-
ary. ]

Definition 3.9. Convergence in C§°(f2). The sequence {¢,(x)}32,, ¢, €
C§°(2) for all n, is said to convergence to the zero functions if and only if
a) 3K C 2, K compact with supp(¢,) C K for all n,
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b) D¥¢,(x) — 0 for n — oo on K for all multi-indices o = (o, ..., aq),
|a| =1+ ...+ aq.
It is
lim ¢, =¢ <= lim (¢, —¢)=0.

n— oo n—oo

O

Definition 3.10. Weak derivative. Let f, F' € LL (). A function u be-

loc

longs to L (£2) if for each compact subset (2’ C £2, it holds

loc

/Q/ |u(x)| de < 0.

If for all functions g € C§°(£2), it holds that

/F(w)g(m) dw:(—l)“’“/ f(x)D%g(x) de,
(9] 2

then F(x) is called weak derivative of f(x) with respect to the multi-index
Q. O

Remark 3.11. On the weak derivative.

e The notion ‘weak’ is used in mathematics if something holds for all ap-
propriate test elements (test functions).

e One uses the same notations for the derivative as in the classical case :
F(x) = D> f(x).

o If f(x) is classically differentiable on {2, then the classical derivative is
also the weak derivative.

e The assumptions on f(x) and F(x) are such that the integrals in the
definition of the weak derivative are well defined. In particular, since the
test functions vanish in a neighborhood of the boundary, the behavior of
f(x) and F(x) if  approaches the boundary is not of importance.

e The main aspect of the weak derivative is due to the fact that the
(Lebesgue) integral is not influenced from the values of the functions on a
set of (Lebesgue) measure zero. Hence, the weak derivative is defined only
up to a set of measure zero. It follows that f(z) might be not classically
differentiable on a set of measure zero, e.g., in a point, but it can still be
weakly differentiable.

e The weak derivative is uniquely determined, in the sense described above.

O

Ezample 3.12. Weak derivative. The weak derivative of the function f(z) =
|| is
—1x<0,
fl(x)=< 0 z=0,
1 x>0
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In z = 0, one can use also any other real number. The proof of this statement
follows directly from the definition and it is left as an exercise. m|

Definition 3.13. Distribution. A continuous linear functional defined on
C§°(£2) is called distribution. The set of all distributions is denoted by
00 I
(C5 (). ,
Let w € C§°(£2) and ¢ € (C§°(£2))’, then the following notations are used
for the application of the distribution to the function

Y(u) = (Y,u) € R.
O

Remark 3.14. On distributions. Distributions are a generalization of func-
tions. They assign each function from C§°(£2) a real number. o

Ezample 3.15. Regular distribution. Let u € L (£2). Then, a distribution is
defined by

/{ u(@)o(e) dz = (0.0) Yo € D).

This distribution will be identified with u € L{ (£2).
Distributions with such an integral representation are called regular, oth-

erwise they are called singular. |

FEzxzample 3.16. Dirac distribution. Let & € {2 be fixed, then

(0g, 9) = 0(8) V¢ e C5°(12)

defines a singular distribution, the so-called Dirac® distribution or é-distribu-
tion. It is denoted by d¢ = d(z — §). O

Definition 3.17. Derivatives of distributions. Let ¢ € (C5°(£2))" be a dis-
tribution. The distribution ¥ € (C5°(£2))" is called derivative in the sense of
distributions or distributional derivative of ¢ if

(W, u) = (~1)*(¢, D*) Vu € C5*(R),
a:(al,...,ad),aj 207j:1,...,d, |a|:a1+...+ad. O

Remark 3.18. On derivatives of distributions.
e Each distribution has derivatives in the sense of distributions of arbitrary
order.
o If the derivative in the sense of distributions D®*u(z) with u € L ()
is a regular distribution, then also the weak derivative of u(x) exists and
both derivatives are identified.

]

6 Paul Adrien Maurice Dirac (1902 — 1984)
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3.3 Lebesgue Spaces and Sobolev Spaces

Remark 3.19. On the spaces LP({2). These spaces were introduced in Defini-
tion 3.5.
e The elements of LP({2) are, strictly speaking, equivalence classes of func-
tions that are different only on a set of Lebesgue measure zero.
e The spaces LP(2) are Banach” spaces (complete normed spaces). A space
X is complete, if each so-called Cauchy sequence {u,}52, € X, i.e., for
all € > 0 there is an index ng(e) such that for all 4,5 > ng(e)

lwi —ullx <e,

converges and the limit is an element of X.
e The space L?(§2) becomes a Hilbert® spaces with the inner product

(f.9) = /Q f@g(@) dz, [flz = (1, Y2 g€ L3(0).

e The dual space of a space X is the space of all bounded linear functionals
defined on X. Let {2 be a domain with sufficiently smooth boundary I
and consider the Lebesgue space LP(2), p € [1, 0], then

’ . 1 1
(LP(2)) = LY(N) with p,ge (1,00), —+ - =1,
P q
(L) = L=(%2),
(L=(2)) # LM (9),

where the prime symbolizes the dual space. The spaces L'(£2), L*°(12)
are not reflexive, i.e., the dual space of the dual space is not the original
space again.

O

Definition 3.20. Sobolev? spaces. Let k € NU {0} and p € [1,00], then
the Sobolev space WP (£2) is defined by

WhP() :={u € LP(2) : D*u e LP(2) VY a with |a| < k}.

This space is equipped with the norm

||U||Wk.p(9) = Z |\D°‘u||Lp(Q). (3.7)

lal<k

7 Stefan Banach (1892 — 1945)
8 David Hilbert (1862 — 1943)
9 Sergei Lvovich Sobolev (1908 — 1989)
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Remark 3.21. On the spaces WP ($2).

Definition 3.20 has the following meaning. From u € LP(£2), p € [1,00),
it follows in particular that u € L{ (), such that u defines (repre-
sents) a distribution. Then, all derivatives D®u exist in the sense of
distributions. The statement D*u € LP({2) means that the distribution
D € (C3°(£2)) can be represented by a function from LP(£2).

One can add elements from W*P(£2) and one can multiply them with
real numbers. The result is again a function from W*P(£2). With this
property, the space WP (£2) becomes a vector space (linear space). It is
straightforward to check that (3.7) is a norm. (ezercise)

It is D%u(x) = u(x) for a = (0,...,0) and WOP(02) = LP(£2).

The spaces W*P?(£2) are Banach spaces.

Sobolev spaces have for p € [1,00) a countable basis {¢,,(2)}52; (Schau-
der®® basis), i.e., each element u(x) can be written in the form

%)
u(w):ZUnQZDn(m)a UneR, n:1,27... .
n=1

Sobolev spaces are reflexive for p € (1, c0).

The subspace C>(£2) N WHP(02) is dense in WkP(2), see (Gilbarg &
Trudinger, 1983, p. 154). Under a certain condition on the smoothness of
the boundary of a bounded domain {2, one can show that C§°({2) is dense
in WkP(02), p € [1,00), with respect to the norm (3.7), e.g., (Adams, 1975,
Thm. 3.18). With this property, one can characterize the Sobolev spaces
WFP(£2) as completion of the functions from C§°(§2) with respect to the
norm (3.7). It follows that C*(£2) is dense in W*P(£2), p € [1, 00).

The Sobolev space H*(£2) = W¥2(§2) is a Hilbert space with the inner
product

(W) ey = Y /QDO‘u(m)Do‘v(m) dx

lee| <k

and the induced norm |lu| gx (o) = (u, u)}q/,f(g).
O

Definition 3.22. The space W (£2). The Sobolev space WEP(£2) is de-
fined as the completion of C§°(£2) in the norm of W2 (£2)

WP (@) = C(@) e,

10 Juliusz Pawel Schauder (1899 — 1943)
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3.4 The Trace of a Function from a Sobolev Space

Remark 3.23. Motivation. This class considers boundary value problems for
partial differential equations. In the theory of weak or variational solutions,
the solution of the partial differential equation is searched in an appropriate
Sobolev space. Then, for the boundary value problem, this solution has to
satisfy the boundary condition. However, since the boundary of a domain is
a manifold of dimension (d — 1), and consequently it has Lebesgue measure
zero, one has to clarify how a function from a Sobolev space is defined on
this manifold. This definition will be presented in this section. O

Definition 3.24. Lipschitz boundary, Lipschitz domain, (Grisvard,
1985, Def. 1.2.1.1). Let £2 be a bounded domain in RY, then {2 is called
Lipschitz!! domain, respectively the boundary I' of §2 is called Lipschitz
boundary, if for every = € I" there exists a neighborhood U of « in R? and
new orthogonal coordinates (yi,...,¥yq) such that

1) U is a hypercube in the new coordinates

U={(y1,.--,ya) : —a; <yi<a;, i=1,...,d}.
2) There exists a Lipschitz continuous function ¢, defined in
U={(y1,. - ya—1) : —a;<yi<a; i=1,...,d—1},

such that

(279
lo(y')] < 5 for every y' = (y1,...,94-1) € U,

2NU={y=Wyn) €V : yo <o)},
I'nU={y=0. ) eV : yn=0)}.

Remark 3.25. Lipschitz boundary.
e In a neighborhood of y, {2 is below the graph of ¢ und the boundary I”
is the graph of ¢.
e The domain (2 is not on both sides of the boundary at any point of I".
e The outer normal vector is defined almost everywhere at the boundary
and it is almost everywhere continuous.
O

Example 3.26. On Lipschitz domains.
e Domains with Lipschitz boundary are, for example, balls or polygonal
domains in two dimensions where the domain is always on one side of the
boundary.

11 Rudolf Otto Sigismund Lipschitz (1832 — 1903)
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Fig. 3.2 Polyhedral domain in three dimensions that is not Lipschitz continuous (at the
corner where the arrow points to).

e A domain that is not a Lipschitz domain is a circle with a slit

Q={(z,y) : 2> +y*> <13\ {(z,y) : >0,y =0}

At the slit, the domain is on both sides of the boundary.

e In three dimension, a polyhedral domain is not not necessarily a Lipschitz
domain. For instance, if the domain is build of two bricks that are lay-
ing on each other like in Figure 3.2, then the boundary is not Lipschitz
continuous where the edge of one brick meets the edge of the other brick.

O

Theorem 3.27. Trace theorem. Let 2 C RY, d > 2, with a Lipschitz
boundary. Then, there is exactly one linear and continuous operator 7 :
WhP(Q) — LP(I'), p € [1,00), that gives for functions u € C(£2) N WLP(0)
the classical boundary values

yu(z) =u(x), £ €I, Yuec C()NWHP(1),

ire., yu(®@) = u(@)]aer.

PT‘OOf. The proof can be found in the literature, e.g., in Adams (1975); Adams & Fournier
(2003). |

Remark 3.28. On the trace.

e The operator « is called trace or trace operator.

e By definition of the trace, one gets for u € C(§2) the classical boundary
values. By the density of C*(£2) C C(£2) in WP(£2) for domains with
smooth boundary that for all u € W1P(£2) there is a sequence {u, }5; €
C>(2) with u,, — u in WHP(£2). Then, the trace of u is defined to be
yu = limy o0 (Ytr)-

e Since a linear and continuous operator is bounded, there is a constant
C > 0 with

||’YUHLP(F) <C HUHWLP(Q) VueWhr(02)
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or
I cowrw2),o ) < C-

o It is

yu(x) =0 Yue Wyt (9),
yD%u(x) =0 Yue WPP(2),|al <k-1. (3.8)

3.5 Sobolev Spaces with Non-Integer and Negative
Exponents

Remark 3.29. Motivation. Sobolev spaces with non-integer and negative ex-
ponents are important in the theory of variational formulations of partial
differential equations.

Let 2 C R? be a domain and p € (1,00) with p~t +¢~ ! = 1. O

Definition 3.30. The space W~%4(12). The space W—%4(02),k € NU {0},
contains distributions that are defined on W¥?(£2)

Wri(2) = {0 € (D) ely-raqa) < 0}

with

(g, u)
||<P||W—k,q((z) = sup T TE—
UECE (2),u#0 ||U||Wk,p(n)

Remark 3.31. On the spaces W =FP(£2).
I
o It is WH4(0) = [Wg@”’((z)} ,ie., WF4(0) can be identified with the
dual space of WE?(£2). In particular, it is H~(2) = (H(12))".
o It is
LLCWEPQ) CcWEP() C LP(2) c W h(R) c W2I(ND). ..
O

Definition 3.32. Sobolev—Slobodeckij space. Let s € R, then the Sobo-
lev—Slobodeckij!'? or Sobolev space H*({2) is defined as follows:
escZ. H*(N)=W2(0).
es>0withs=k+o0, ke NU{0}, 0 € (0,1). The space H*({2) contains
all functions u for which the following norm is finite:

12 . N. Slobodeckij
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HU”?-IS(Q) = ||U|\§1k(n) + |U|i+a»
with
(U7U)HS(Q) = (U:U)Hk + (uav)k+0: |u‘i+g = (u7 u)k+a:
and
o= 3 [ [ LD D) D)
la|=k 7 2 /82 lz -yl

es<0. H(2) = [HO_S(Q)]' with Hy *(£2) :WH'HH—S(Q).

3.6 Theorem on Equivalent Norms

Definition 3.33. Equivalent norms. Two norms |-||; and ||-||, on the lin-
ear space X are said to be equivalent if there are constants C; and Cy such
that

Cillully < llully < Coflull, Vue X.

Remark 3.34. On equivalent norms.
e Many important properties, like continuity or convergence, do not change
if an equivalent norm is considered.
e In finite-dimensional spaces, all norms are equivalent.
O

Theorem 3.35. Equivalent norms in W*?(2) (Smirnow, 1967, § 114,

Satz 3). Let 2 C R? be a bounded domain with Lipschitz boundary I', p €

[1,00], and k € N. Let {f;}._, be a system of functionals with the following

properties:

1) fi + WEP(Q) = Ry U{0} is a seminorm,

2) boundedness: 3C; > 0 with 0 < fi(v) < C; ||v|[yyip (o), Vv € WkP(0),

3) fi is a norm on the polynomials of degree k — 1, i.e., if for v € Py_1 =
{Z|a|§k71 Caxo‘}, it holds that f;(v) =0,i=1,...,1, then it is v =0.

Then, the norm |||l .. (o) defined in (3.7) and the norm
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1 1/p
lellwrso) = (Z f(u) + |“€Vk,p(g)> with
=1
1/p

Ul (o) = Z /Q|Dau(m)‘1’ dx

|o|=k
are equivalent.

Remark 3.36. On seminorms. For a seminorm f;(-), one cannot conclude from
fi(v) = 0 that v = 0. The third assumptions however states, that this con-
clusion can be drawn for all polynomials up to a certain degree. a

Ezample 3.37. Equivalent norms in Sobolev spaces.
e The following norms are equivalent to the standard norm (3.7) in WP (£2):

P 1/p

e (R AT I
o 2 1/p

) lalhysniey = (| f 0 as] + 1l
g 1/p

) lulhyrnioy = ([ 1 s+ ulfnio)

o In WHFP($2), it is

k—1 azu
/

equivalent to the standard norm. Here, n denotes the outer normal on I’
with ||n|l, = 1.

e In the case Wéc "P(£2), one does not need the regularity of the boundary.
It is

» 1/p
ds + |“|€vk,v(9)>

Hu”;/[/(fm((g) = ‘U|Wk,p(9)a

i.e., in the spaces Wé“ P(£2) the standard seminorm is equivalent to the
standard norm.
In particular, it is for u € H}(2) (k= 1,p = 2)

Cullull gy < IVull 2oy < Callull g -
It follows that there is a constant C' > 0 such that

lull 2y < ClIVull 2oy ¥ u € Ho(£2). (3.9)
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3.7 Some Inequalities in Sobolev Spaces

Remark 3.38. Motivation. This section presents a generalization of the last
part of Example 3.37. It will be shown that for inequalities of type (3.9), it
is not necessary that the trace vanishes on the complete boundary.

Let 2 C R? be a bounded domain with Lipschitz boundary I" and let
I C I" with measga—1 (I1) = [, ds >0.

One considers the space

Vo={veW"(Q) : vlp, =0} CW"P(Q)if I} C T,
Vo =WyP(2)if I =T,

with p € [1,00). O
Lemma 3.39. Friedrichs!?® inequality, Poincaré!'* inequality, Poinca-
ré—Friedrichs inequality. Let p € [1,00) and measga—1 (I'1) > 0. Then, it
is for all u € Vjy

/Q|u(a:)\ da:SC’p/QHVu(:):)H2 dz, (3.10)

where ||-||, is the Buclidean vector norm.

Proof. The inequality will be proved with the theorem on equivalent norms, Theorem 3.35.
Let fi(u) : WHP(2) — Ry U {0} with

Fiw) = ( / It ds)l/p_

This functional has the following properties:
1) fi(u) is a seminorm.
2) It is bounded, since

0 ne = ([ ds)l/p < ([ or ds)”p

= HU‘HLP([‘) = H7“||Lp(r) < C”“”WLP(Q)-

The last estimate follows from the continuity of the trace operator.
3) Let v € Py, i.e., v is a constant. Then, one obtains from

1/p
0= fi(v) = (/F |v(s)|P ds) = |v| (measga—1 (Fl))l/p7

that |v| = 0.
Hence, all assumptions of Theorem 3.35 are satisfied. That means, there are two constants
C4 and Csy with

13 Kurt Otto Friedrichs (1901 — 1982)
14 Henri Poincaré (1854 — 1912)
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1/p
cl( [u(s)[P ds + /Q V()| dm) < Nlullwr.ogay < Co lullyr o q
I

’

HuHWLp(Q)

for all u € WHP(£2). In particular, it follows that

[ @ o [ vu@i do < cp ( / o)l da s [ ivu@is dm)

or, neglecting the non-negative term on the left-hand side,

u(x)|P dx u(8)|P ds u(x)||? de
/Q\(n d SCP(/HI()\ d+/9||V<)||2d)

with Cp = Cg. Since u € Vp vanishes on I, the statement of the lemma is proved. |

Remark 3.40. On the Poincaré—Friedrichs inequality. In the space Vj be-
comes ||y, a norm that is equivalent to |||y, (). The classical Poincaré-
Friedrichs inequality is given for I} = I" and p = 2

lull 2 () < Cp VUl o) ¥ u € Hy(2),

where the constant depends only on the diameter of the domain (2, e.g., see
(Galdi, 2011, Theorem I1.5.1). O

3.8 The Gaussian Theorem

Remark 3.41. Motivation. The Gaussian theorem is the generalization of the
integration by parts from calculus. This operation is very important for the
theory of weak or variational solutions of partial differential equations. One
has to study, under which conditions on the regularity of the domain and of
the functions it is well defined. |

Theorem 3.42. Gaussian theorem. Let 2 C R% d > 2, be a bounded
domain with Lipschitz boundary I'. Then, the following identity holds for all
ue Whi(0)

/ du(x) de = / u(s)n;(s) ds, (3.11)
2 r

where m is the unit outer normal vector on I'.

Proof. 1t is referred to the literature. |

Corollary 3.43. Vector field. Let the conditions of Theorem 3.42 on the
domain (2 be satisfied and let u € (Wl’l((?))d be a vector field. Then, it is

/QVu(ac) dx = /Fu(s) -n(s) ds.
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Proof. The statement follows by adding (3.11) from i = 1 to i = d. |

Corollary 3.44. Integration by parts. Let the conditions of Theorem 3.42
on the domain §2 be satisfied. Consider u € WYP(82) and v € WH9(82) with
p € (1,00) and % + % = 1. Then, it is

/Q&u(a:)v(a:) dmz/}ﬂu(s)v(s)ni(s) ds—/ﬂu(m)@iv(w) dx.
Proof. exercise. ]

Corollary 3.45. First Green'®’s formula. Let the conditions of Theo-
rem 3.42 on the domain {2 be satisfied, then it is

/ Vu(zx) - Vo(z) de = @(s)v(s) ds —/ Au(x)v(x) de
Q

ron o
for all w € H*(2) and v € H' ().
Proof. From the definition of the Sobolev spaces, it follows that the integrals are well

defined. Now, the proof follows the proof of Corollary 3.44, where one has to sum over the
components and one has to take 9;v instead of v. |

Remark 3.46. On the first Green’s formula. The first Green’s formula is the
formula of integrating by parts once. The boundary integral can be equiva-
lently written in the form

/FVU(S) -n(s)v(s) ds.

The formula of integrating by parts twice is called second Green’s formula.
O

Corollary 3.47. Second Green’s formula. Let the conditions of Theo-
rem 3.42 on the domain {2 be satisfied, then one has

[ (@u@p(e) - avtayut@) do = [ (5 nts) - 5 (s)uls)) as

for all u,v € H?(£2).

3.9 Sobolev Imbedding Theorems

Remark 3.48. Motivation. This section studies the question which (Sobolev)
spaces are subspaces of other Sobolev spaces. With this property, called

15 Georg Green (1793 — 1841)
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imbedding, it is possible to estimate the norm of a function in the subspace
by the norm in the larger space, compare (3.12). m|

Lemma 3.49. Imbedding of Sobolev spaces with same integration
power p and different orders of the derivative. Let 2 C R? be a domain,
p € [1,00], and k < m, then it is W™P(2) C WkP(0).

PT‘OOf. The statement of this lemma follows directly from the definition of Sobolev spaces,
see Definition 3.20. |

Lemma 3.50. Imbedding of Sobolev spaces with the same order of
the derivative k and different integration powers. Let 2 C R? be a
bounded domain, k > 0, and p,q € [1,00] with ¢ > p. Then, it is W*1(£2) C
WkP(£2).

Proof. exercise. |

Remark 3.51. Imbedding of Sobolev spaces with the same order of the deriva-
tive k and the same integration power p in imbedded domains. Let £2 C R? be
a domain with sufficiently smooth boundary I', k > 0, and p € [1, co]. Then,
there is a map E : WkP(02) — WFP(R?), the so-called (simple) extension,
with

e Bulp =,

® [|Ev[lyyrngay < Cllvllyrn(g), with C > 0 independent of v,
e.g., see (Adams, 1975, Chapter IV) for details. Likewise, the natural restric-
tion e : WFP(RY) — WFP(£) can be defined and it is |lev <

lwrr2) <
||U||Wk,p(Rd)- U

Theorem 3.52. A Sobolev inequality. Let 2 C R? be a bounded domain
with Lipschitz boundary ', k > 0, and p € [1,00) with

k>d forp=1,
k>d/p forp>1.

Then, there is a constant C' such that for all uw € W*P(£2), it follows that
u € Cp(£2), where

Cp(2) ={veC(2) : v is bounded} ,

and it is
[ullop o) = lull Lo o) < Cllullrria - (3.12)
Proof. See literature, e.g., Adams (1975); Adams & Fournier (2003). ]

Remark 3.53. On the Sobolev inequality.

e The Sobolev inequality states that each function with sufficiently many
weak derivatives (the number depends on the dimension of {2 and the in-
tegration power) can be considered as a continuous and bounded function
in £2, i.e., there is such a representative in the equivalence class where this
function belongs to. One says that W*?(£2) is imbedded in Cp(2).
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Fig. 3.3 The function f(x) of Example 3.55 for d = 2.

o It is
C () ¢ Cp(2) ¢ C(92).

Consider 2 = (0,1) and f1(z) = 1/z and fa(x) = sin(1/z). Then, f; €
C(2), f1 € Cp(2) and f2 € Cp(2), f2 & C(£2).

e Of course, it is possible to apply this theorem to weak derivatives of
functions. Then, one obtains imbeddings like WP (£2) — C%(£2) for (k —
s)p > d,p > 1. A comprehensive overview on imbeddings can be found in
Adams (1975); Adams & Fournier (2003).

O

Ezample 3.54. HY(£2) in one dimension. Let d = 1 and 2 be a bounded
interval. Then, each function from H!(£2) (k = 1,p = 2) is continuous and
bounded in 2. ad

Example 3.55. H*(£2) in higher dimensions. The functions from H'(§2) are
in general not continuous for d > 2. This property will be shown with the
following example.

Let 2 ={x € R? : |z|, < 1/2} and f(z) = In|ln|z|,]|, see Figure 3.3.

For |||, < 1/2, it is |In ||z||,] = —In ||x||, and one gets for « # 0
1 1 T
0.f () = =
' ]y flly 12l fla]|3 n |,

For p < d, one obtains

‘af(w)p_ z; [P 1 P 1 ¢
O 2lly | [l llzlly |~ [zl )y ] -
——
<1 >e

The estimate of the second factor can be obtained, e.g., with a discussion
of the curve. Using now spherical coordinates, p = e~* and S?~! is the unit
sphere, yields
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domain without Lipschitz boundary in (0,0)
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Fig. 3.4 Domain of Example 3.56.

d 1/2 d—1
[los@pazs [ oo [ [T g
o o |3zl JsivJo g

1/2 In2
= meas (Sdil) / dp - = —Ineas (Sdil) / d—; < 00,
o plngl o

because of d > 2.

It follows that 9;f € LP(£2) with p < d. Analogously, one proves that
f € LP(2) with p < d. Altogether, one has f € WLP(02) with p < d.
However, it is f & L°°(£2) and consequently f & Cp(£2). This example shows
that the condition k& > d/p for p > 1 is sharp.

In particular, it was proved for p = 2 that from f € H'(£2) in general it
does not follow that f € C(2). O

Ezxample 3.56. The assumption of a Lipschitz boundary. Also the assumption
that {2 is a Lipschitz domain is of importance.

Consider 2 = {(z,y) e R? : 0 <z <1, |y| <z",r > 1}, see Figure 3.4
for » = 2. The boundary is not Lipschitz in (0, 0).

For u(z,y) = 2~°/? with 0 < & < r, it is

Oy = /P71 (—;) = C(e,p)xif/l’*l, Oyu = 0.

Using the same notation for the constant, which might take different values
at different occasions, it follows that
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> [ Iptute )l dudy = Clerp) [ a0 dody
2 2

|a|=1
1 "
= C(a,p)/ x 7P (/ dy) dx
0 —x"
1
= C(E,p)/ x TP 4,
0

This value is finite for —e — p+1r > —1 or for p < 1 + r — €, respectively. If
one chooses r > & > 0, then it is u € WHP(£2). But for ¢ > 0, the function
u(x) is not bounded in (2, i.e., u & L°({2) and consequently u & Cp(£2).
The unbounded values of the function are compensated in the integration
by the fact that the neighborhood of the singular point (0,0) possesses a
small measure. ad



