
Chapter 7

Finite Element Methods for

Second Order Elliptic

Equations

7.1 General Convergence Theorems

Remark 7.1 Motivation. In Section 5.1, non-conforming finite element methods
have been introduced, i.e., methods where the finite element space V h is not a sub-
space of V , which is the space in the definition of the continuous variational problem.
The property V h 6⊂ V is given for the Crouzeix–Raviart and the Rannacher–Turek
element. Another case of non-conformity is given if the domain does not possess a
polyhedral boundary and one has to apply some approximation of the boundary.

For non-conforming methods, the finite element approach is not longer a Ritz
method. Hence, the convergence proof from Theorem 4.14 cannot be applied in
this case. The abstract convergence theorem, which will be proved in this section,
allows the numerical analysis of complex finite element methods. 2

Remark 7.2 Notations, Assumptions. Let {h > 0} be a set of mesh widths and
let Sh, V h normed spaces of functions which are defined on domains {Ωh ⊂ R

d}.
It will be assumed that the space Sh has a finite dimension and that Sh and V h

possess a common norm ‖·‖h. In the application of the abstract theory, Sh will be a
finite element space and V h is defined such that the restriction and/or extension of
the solution of the continuous problem to Ωh is contained in V h. Strictly speaking,
the modified solution of the continuous problem does not solve the given problem
any longer. Hence, it is consequent that the continuous problem does not appear
explicitly in the abstract theory.

Given the bilinear forms

ah : Sh × Sh → R,

ãh : (Sh + V h)× (Sh + V h) → R.

Let the bilinear form ah be regular in the sense that there is a constant m > 0,
which is independent of h, such that for each vh ∈ Sh there is a wh ∈ Sh with
∥

∥wh
∥

∥

h
= 1 such that

m
∥

∥vh
∥

∥

h
≤ ah(vh, wh). (7.1)

This condition is equivalent to the requirement that the stiffness matrix A with the
entries aij = ah(φj , φi), where {φi} is a basis of Sh, is uniformly non-singular, i.e.,
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its regularity is independent of h. For the second bilinear form, only its boundedness
will be assumed

ãh(u, v) ≤ M ‖u‖h ‖v‖h ∀ u, v ∈ Sh + V h. (7.2)

Let the linear functionals {fh(·)} : Sh → R be given. Then, the following
discrete problems will be considered: Find uh ∈ Sh with

ah(uh, vh) = fh(vh) ∀ vh ∈ Sh. (7.3)

Because the stiffness matrix is assumed to be non-singular, there is a unique solution
of (7.3). 2

Theorem 7.3 Abstract finite element error estimate. Let the conditions

(7.1) and (7.2) be satisfied and let uh be the solution of (7.3). Then the following

error estimate holds for each ũ ∈ V h

∥

∥ũ− uh
∥

∥

h
≤ c inf

vh∈Sh

{

∥

∥ũ− vh
∥

∥

h
+ sup

wh∈Sh

∣

∣ãh(vh, wh)− ah(vh, wh)
∣

∣

‖wh‖h

}

+c sup
wh∈Sh

∣

∣ãh(ũ, wh)− fh(wh)
∣

∣

‖wh‖h
(7.4)

with c = c(m,M).

Proof: Because of (7.1) there is for each vh ∈ Sh a wh ∈ Sh with
∥

∥wh
∥

∥

h
= 1 and

m
∥

∥

∥
uh − vh

∥

∥

∥

h
≤ ah(uh − vh, wh).

Using the definition of uh from (7.3), one obtains

m
∥

∥

∥
uh − vh

∥

∥

∥

h
≤ fh(wh)− ah(vh, wh) + ãh(vh, wh) + ãh(ũ− vh, wh)− ãh(ũ, wh).

From (7.2) and
∥

∥wh
∥

∥

h
= 1 it follows that

ãh(ũ− vh, wh) ≤ M
∥

∥

∥
ũ− vh

∥

∥

∥

h
.

Rearranging the terms appropriately and using
∥

∥wh/
∥

∥wh
∥

∥

h

∥

∥

h
= 1 gives

m
∥

∥

∥
uh − vh

∥

∥

∥

h
≤ M

∥

∥

∥
ũ− vh

∥

∥

∥

h
+ sup

wh∈Sh

∣

∣ãh(vh, wh)− ah(vh, wh)
∣

∣

‖wh‖
h

+ sup
wh∈Sh

∣

∣ãh(ũ, wh)− fh(wh)
∣

∣

‖wh‖
h

.

Applying the triangle inequality

∥

∥

∥
ũ− uh

∥

∥

∥

h
≤

∥

∥

∥
ũ− vh

∥

∥

∥

h
+

∥

∥

∥
uh − vh

∥

∥

∥

h

and inserting the estimate from above gives (7.4).

Remark 7.4 To Theorem 7.3. An important special case of this theorem is the
case that the stiffness matrix is uniformly positive definite, i.e., the condition

m
∥

∥vh
∥

∥

2

h
≤ ah(vh, vh) ∀ vh ∈ Sh (7.5)

is satisfied. Dividing (7.5) by
∥

∥vh
∥

∥

h
reveals that condition (7.1) is implied by (7.5).
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If the continuous problem is also defined with the bilinear form ãh(·, ·), then

sup
wh∈Sh

∣

∣ãh(vh, wh)− ah(vh, wh)
∣

∣

‖wh‖h

can be considered as consistency error of the bilinear forms and the term

sup
wh∈Sh

∣

∣ãh(ũ, wh)− fh(wh)
∣

∣

‖wh‖h

as consistency error of the right-hand sides. 2

Theorem 7.5 First Strang lemma Let Sh be a conform finite element space,

i.e., Sh ⊂ V , with ‖·‖h = ‖·‖V and let the space V h be independent of h. Consider

a continuous problem of the form

ãh(u, v) = f(v) ∀ v ∈ V,

then the following error estimate holds.

∥

∥u− uh
∥

∥

V
≤ c inf

vh∈Sh

{

∥

∥u− vh
∥

∥

V
+ sup

wh∈Sh

∣

∣ãh(vh, wh)− ah(vh, wh)
∣

∣

‖wh‖V

}

+c sup
wh∈Sh

∣

∣f(wh)− fh(wh)
∣

∣

‖wh‖V
.

Proof: The statement of this theorem follows directly from Theorem 7.3.

7.2 Linear Finite Element Method on Non-Poly-

hedral Domains

Remark 7.6 The continuous problem. The abstract theory will be applied to the
linear finite element method for the solution of second order elliptic partial differ-
ential equations.

Let Ω ⊂ R
d, d ∈ {2, 3}, be a bounded domain with Lipschitz boundary, which

does not need to be polyhedral. Let

Lu = f in Ω, u = 0 on ∂Ω, (7.6)

where the operator is given by

Lu = −∇ · (A∇u)

with
A(x) = (aij(x))

d
i,j=1, aij ∈ W 1,p(Ω), p > d, (7.7)

It will be assumed that there are two positive real numbers m,M such that

m ‖ξ‖
2
2 ≤ ξTA(x)ξ ≤ M ‖ξ‖

2
2 ∀ ξ ∈ R

d,x ∈ Ω. (7.8)

From the Sobolev inequality it follows that aij ∈ L∞(Ω). With

a(u, v) =

∫

Ω

(A(x)∇u(x)) · ∇v(x) dx

and the Cauchy–Schwarz inequality, one obtains

|a(u, v)| ≤ ‖A‖L∞(Ω)

∫

Ω

|∇u(x) · ∇v(x)| dx ≤ c ‖∇u‖L2(Ω) ‖∇v‖L2(Ω)
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for all u, v ∈ H1
0 (Ω). In addition, it follows that

m ‖∇u‖
2
L2(Ω) ≤ a(u, u) ∀ u ∈ H1

0 (Ω).

Hence, the bilinear form is bounded and elliptic. Using the Theorem of Lax–
Milgram, Theorem 4.5, it follows that there es a unique weak solution u ∈ H1

0 (Ω)
of (7.6) with

a(u, v) = f(v) ∀ v ∈ H1
0 (Ω).

2

Remark 7.7 The finite element problem. Let T h be a regular triangulation con-
sisting of simplices {K} such that the vertices of the simplices belong to Ω, see

Figure 7.1, and define Ωh = ∪K∈T hK.

Figure 7.1: Approximation of the boundary by the finite element mesh.

The space of continuous and piecewise linear functions that vanish at the bound-
ary of Ωh will be denoted by P1. It will be assumed that for the data of the problem
aij(x), f(x) there exist extensions ãij(x), f̃(x) to a larger domain Ω̃ ⊃ Ωh with

‖ãij‖W 1,p(Ω̃) ≤ c ‖aij‖W 1,p(Ω) ,
∥

∥

∥
f̃
∥

∥

∥

L2(Ω̃)
≤ c ‖f‖L2(Ω) . (7.9)

In addition, it will be assumed that the coefficients ãij(x) satisfy the ellipticity

condition (7.8) on Ω̃.
Obviously, f(x) can be continued simply by zero. The extensions of aij(x) have

to be weakly differentiable. It is possible to show that such extensions exist, see the
literature.

The finite element method is defined as follows: Find uh ∈ P1 with

ah(uh, vh) = fh(vh) ∀ vh ∈ P1,

where

ah(uh, vh) =

∫

Ωh

(

Ã(x)∇uh(x)
)

· ∇vh(x) dx, fh(vh) =

∫

Ωh

f̃(x)vh(x) dx.

In practice, it might be hard to apply the method in this form. From the
existence of the extension operators for aij(x) it is not yet clear how to compute
them. On the other hand, in practice often the coefficients aij(x) are constant or
at least piecewise constant. In these case, the extension is trivial. As remedy in the
general case, one can use quadrature rules whose nodes are situated within Ω, see
the literature. 2

Remark 7.8 Goal of the analysis, further assumptions. The goal consists in prov-
ing the linear convergence of the finite element method in ‖·‖h = ‖·‖H1(Ωh). In the

analysis, one has to pay attention to the fact that in general neither holds Ωh ⊂ Ω
nor Ω ⊂ Ωh. It will be assumed that there is an extension ũ ∈ H2(Ω̃) of u(x) with

‖ũ‖H2(Ω̃) ≤ c ‖u‖H2(Ω) . (7.10)
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In addition, it will be assumed that Ωh is a sufficiently good approximation of Ω in
the following sense

max
x∈∂Ωh

dist(x, ∂Ω) ≤ ch2. (7.11)

One can show that (7.11) is satisfied for d = 2 if the boundary of Ω is piecewise
C2 and the corners of Ω are vertices of the triangulation. In this case, one can
rotate the coordinate system locally such that the distance between ∂Ω and ∂Ωh

can be represented as the error of a one-dimensional interpolation problem with
continuous, piecewise linear finite elements. Using error estimates for this kind of
problem, e.g., see Goering et al. (2010), one can estimate the error by ch2. For
three-dimensional domains, with piecewise C∞ boundary, one needs in addition a
smoothness assumption for the edges. 2

Lemma 7.9 Estimate of a function on the difference of the domains. Let

the condition (7.11) be satisfied. Then, for all v ∈ W 1,1(Ω) it holds the estimate

∫

Ωs

|v(x)| dx ≤ ch2

∫

Ω

(|v(x)|+ ‖∇v(x)‖2) dx, (7.12)

where Ωs is the set Ω \ Ωh or Ωh \ Ω.

Proof: At the beginning, a one-dimensional estimate will be shown. Let f ∈ C1([0, 1]),
then one obtains with the fundamental theorem of calculus

f(x) =

∫ x

y

f ′(ξ) dξ + f(y) ∀ x, y ∈ [0, 1].

It follows that

|f(x)| ≤

∫ 1

0

∣

∣f ′(ξ)
∣

∣ dξ + |f(y)| .

Integrating this inequality with respect to y in [0, 1] and with respect to x in [0, a] with
a ∈ (0, 1] yields

∫ a

0

|f(x)| dx ≤ a

∫ 1

0

∣

∣f ′(ξ)
∣

∣ dξ + a

∫ 1

0

|f(y)| dy = a

∫ 1

0

(

|f(x)|+
∣

∣f ′(x)
∣

∣

)

dx. (7.13)

Consider the case Ωs = Ω \ Ωh. Since Ω has a Lipschitz boundary, it can be shown
that ∂Ω can be covered with a finite number of open sets U1, . . . , UN . After a rotation of
the coordinate system, one can represent ∂Ω∩Ui as a Lipschitz continuous function gi(y

′)
of (d− 1) arguments y′ = (y1, . . . , yd−1) ∈ U ′

i ⊂ R
d−1.

In the next step of the proof, sets will be constructed whose union covers the difference
Ω \ Ωh. Let

Si,σ =
{

(y′, yd) : gi(y
′)− σ < yd < gi(y

′), y
′ ∈ U ′

i

}

, i = 1, . . . , N,

see Figure 7.2. Then, using (7.11) it is (Ω \Ωh)∩Ui ⊂ Si,c1h
2 , where c1 depends on gi(y

′)
but not on h. In addition, there is a σ0 such that Si,σ0 ⊂ Ω for all i.

The transform of (7.13) to the interval [0, σ0] gives for sufficiently small h, such that
c1h

2 ≤ 1,
∫ c1h

2

0

|f(x)| dx ≤ ch2

∫ σ0

0

(

|f(x)|+
∣

∣f ′(x)
∣

∣

)

dx.

For v ∈ C1(Ω), one applies this estimate to the rotated function v(y′, x)

∫

S
i,c1h2

|v(y)| dy =

∫

U′

i

∫ c1h
2

0

∣

∣v(y′, x)
∣

∣ dx dy′

≤ ch2

∫

U′

i

∫ σ0

0

(
∣

∣∂xv(y
′, x)

∣

∣+
∣

∣v(y′, x)
∣

∣

)

dx dy′

≤ ch2

∫

Ω

(|∂ydv(y)|+ |v(y)|) dy,
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Figure 7.2: Si,σ.

where in the first step the theorem of Fubini was used. Taking the sum over i proves the
lemma for functions from C1(Ω). Since C1(Ω) is dense in W 1,1(Ω), the statement of the
lemma holds also for v ∈ W 1,1(Ω).

The case Ωs = Ωh \ Ω is proved analogously.

Theorem 7.10 Error estimate, linear convergence. Let the assumptions (7.7),
(7.8), (7.9), (7.10), and (7.11) be satisfied. Then, it holds the error estimate

∥

∥ũ− uh
∥

∥

H1(Ωh)
≤ ch ‖u‖H2(Ω) ,

where c does not depend on u, f , and h.

Proof: For proving the error estimate, the abstract error estimate, Theorem 7.3, is
used with Sh = P1, V

h = H1(Ωh), ‖·‖
h
= ‖·‖

H1(Ωh), and

ah(u, v) = ãh(u, v) =

∫

Ωh

(

Ã(x)∇u(x)
)

· ∇v(x) dx.

With this choice of ah(·, ·) and ãh(·, ·), the middle term in the abstract error estimate
(7.4) vanishes. Setting in the abstract error estimate vh = Ihũ, one obtains with the
interpolation error estimate (6.5) and (7.10)

‖ũ− Ihũ‖H1(Ωh) ≤ ch
∥

∥D2ũ
∥

∥

L2(Ωh)
≤ ch ‖u‖

H2(Ω) . (7.14)

It remains to estimate the last term of (7.4).
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The regularity and the boundedness of ah(·, ·) can be proved easily using the ellipticity
and the boundedness of the coefficients ãij(x).

The estimate of the last term of (7.4) starts with integration by parts

ah(ũ, wh) =

∫

Ωh

(

Ã(x)∇ũ(x)
)

· ∇wh(x) dx =

∫

Ωh

g(x)wh(x) dx

with g(x) = −∇ · (Ã∇ũ)(x). Because of g(x) = f̃(x) = f(x) in Ω it is

ah(ũ, wh)− fh(wh) =

∫

Ωh\Ω

(

g(x)− f̃(x)
)

wh(x) dx.

Using the extension of wh(x) by zero on Ω \Ωh, one obtains with (7.12), and noting that
in general Ωh 6⊂ Ω,

∫

Ωh\Ω

∣

∣

∣
wh(x)

∣

∣

∣

2

dx ≤ ch2

∫

Ω

(

∥

∥

∥
∇wh(x)

∥

∥

∥

2

2
+

∣

∣

∣
wh(x)

∣

∣

∣

2
)

dx

≤ ch2

∫

Ωh

(

∥

∥

∥
∇wh(x)

∥

∥

∥

2

2
+

∣

∣

∣
wh(x)

∣

∣

∣

2
)

dx = ch2
∥

∥

∥
wh

∥

∥

∥

2

H1(Ωh)
.

Applying the Cauchy–Schwarz inequality and the triangle inequality yields
∣

∣

∣
ah(ũ, wh)− fh(wh)

∣

∣

∣
≤

∥

∥

∥
g − f̃

∥

∥

∥

L2(Ωh\Ω)

∥

∥

∥
wh

∥

∥

∥

L2(Ωh\Ω)

≤ ch

(

‖g‖
L2(Ω̃) +

∥

∥

∥
f̃
∥

∥

∥

L2(Ω̃)

)

∥

∥

∥
wh

∥

∥

∥

H1(Ωh)
,

where Ω̃ was introduced in Remark 7.7. Now, a bound for ‖g‖
L2(Ω̃) is needed. Using the

product rule and the triangle inequality, one gets

∥

∥

∥
∇ · (Ã∇ũ)

∥

∥

∥

L2(Ω̃)
≤

∥

∥

∥

∥

∥

d
∑

i,j=1

ãij

∂2ũ

∂xi∂xj

∥

∥

∥

∥

∥

L2(Ω̃)

+
∥

∥

∥

(

∇ · Ã
)

· ∇ũ
∥

∥

∥

L2(Ω̃)
.

Because of the Sobolev imbedding W 1,p(Ω̃) → L∞(Ω̃) for p > d, Theorem 3.53, it follows

that
∥

∥

∥
Ã
∥

∥

∥

L∞(Ω̃)
≤ c. One obtains for the first term

∥

∥

∥

∥

∥

d
∑

i,j=1

ãij

∂2ũ

∂xi∂xj

∥

∥

∥

∥

∥

L2(Ω̃)

≤ c
∥

∥D2ũ
∥

∥

L2(Ω̃)
.

The estimate of the second term uses Hölders inequality (exercise)

∥

∥

∥

(

∇ · Ã
)

· ∇ũ
∥

∥

∥

L2(Ω̃)
≤

∥

∥

∥
∇ · Ã

∥

∥

∥

2

Lp(Ω̃)
‖∇ũ‖2

L2p/(p−2)(Ω̃) ≤ c ‖∇ũ‖2
L2p/(p−2)(Ω̃) .

Using a Sobolev inequality, e.g., see Adams (1975), one obtains the estimate

‖∇ũ‖
L2p/(p−2)(Ω̃) ≤ c ‖ũ‖

H2(Ω̃) .

Inserting all estimates, one obtains with (7.9) and (7.10)

∣

∣

∣
ah(ũ, wh)− fh(wh)

∣

∣

∣
≤ ch

(

‖ũ‖
H2(Ω̃) +

∥

∥

∥
f̃
∥

∥

∥

L2(Ω̃)

)

∥

∥

∥
wh

∥

∥

∥

H1(Ωh)

≤ ch
(

‖u‖
H2(Ω) + ‖f‖

L2(Ω)

)
∥

∥

∥
wh

∥

∥

∥

H1(Ωh)

≤ ch ‖u‖
H2(Ω)

∥

∥

∥
wh

∥

∥

∥

H1(Ωh)
.

In the final step of this estimate, one uses the representation of f(x) from (7.6), for which
one can perform estimates that are analog to the estimates of g(x).

The proof of the linear convergence is finished by using (7.4), (7.14), and the last

estimate.
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7.3 Finite Element Method with the Nonconform-

ing Crouzeix–Raviart Element

Remark 7.11 Assumptions and discrete problem. The nonconforming Crouzeix–
Raviart finite element P nc

1 was introduced in Example 5.30. To simplify the pre-
sentation, it will be restricted here on the two-dimensional case. In addition, to
avoid the estimate of the error coming from approximating the domain, it will be
assumed that Ω is a convex domain with polygonal boundary.

Let T h be a regular triangulation of Ω with triangles. Let P nc
1 (nc – non con-

forming) be denote the finite element space of piecewise linear functions which are
continuous at the midpoints of the edges. This space is nonconforming if it is ap-
plied for the discretization of a second order elliptic equation since the continuous
problem is given in H1

0 (Ω) and the functions of H1
0 (Ω) do not possess jumps. The

functions of P nc
1 have generally jumps, see Figure 7.3, and they are not weakly

differentiable. In addition, the space is also nonconforming with respect to the
boundary condition, which is not satisfied exactly. The functions from P nc

1 vanish
in the midpoint of the edges at the boundary. However, in the other points at the
boundary, their value is generally not equal to zero.

Figure 7.3: Function from P nc
1 .

The bilinear form

a(u, v) =

∫

Ω

(A(x)∇u(x)) · ∇v(x) dx

will be extended to H1
0 (Ω) + P nc

1 by

ah(u, v) =
∑

K∈T h

∫

K

(A(x)∇u(x)) · ∇v(x) dx ∀ u, v ∈ H1
0 (Ω) + P nc

1 .

Then the nonconforming finite element method is given by: Find uh ∈ P nc
1 with

ah(uh, vh) = (f, vh) ∀ vh ∈ P nc
1 .

The goal of this section consists in proving the linear convergence with respect

to h in the energy norm ‖·‖h =
(

ah(·, ·)
)1/2

. It will be assumed that the solution of
the continuous problem (7.6) is smooth, i.e., that u ∈ H2(Ω), that f ∈ L2(Ω), and
that the coefficients aij(x) are weakly differentiable with bounded derivatives. 2

Remark 7.12 The error equation. The first step of proving an error estimate
consists in deriving an equation for the error. To this end, multiply the continuous
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problem (7.6) with a test function from vh ∈ P nc
1 , integrate the product on Ω, and

apply integration by parts on each triangle. This approach gives

(f, vh) = −
∑

K∈T h

∫

K

∇ · (A(x)∇u(x)) vh(x) dx

=
∑

K∈T h

∫

K

(A(x)∇u(x)) · ∇vh(x) dx

−
∑

K∈T h

∫

∂K

(A(s)∇u(s)) · nK(s)vh(s) ds

= ah(u, vh)−
∑

K∈T h

∫

∂K

(A(s)∇u(s)) · nK(s)vh(s) ds,

where nK is the unit outer normal at the edges of the triangles. Subtracting the
finite element equation, one obtains

ah(u− uh, vh) =
∑

K∈T h

∫

∂K

(A(s)∇u(s)) · nK(s)vh(s) ds ∀ vh ∈ P nc
1 . (7.15)

2

Lemma 7.13 Estimate of the right-hand side of the error equation (7.15).
Assume that u ∈ H2(Ω) and aij ∈ W 1,∞(Ω), then it is

∣

∣

∣

∣

∣

∣

∑

K∈T h

∫

∂K

A(s)∇u(s) · nK(s)vh(s) ds

∣

∣

∣

∣

∣

∣

≤ ch ‖u‖H2(Ω)

∥

∥vh
∥

∥

h
.

Proof: Every edge of the triangulation which is in Ω appears exactly twice in the
boundary integrals on ∂K. The corresponding unit normals possess opposite signs. One
can choose for each edge one unit normal and then one can write the integrals in the form

∑

E

∫

E

[
∣

∣

∣
(A(s)∇u(s)) · nE(s)v

h(s)
∣

∣

∣

]

E
ds =

∑

E

∫

E

(A(s)∇u(s)) · nE(s)
[
∣

∣

∣
vh

∣

∣

∣

]

E
(s) ds,

where the sum is taken over all edges {E}. Here,
[
∣

∣vh
∣

∣

]

E
denotes the jump of vh

[
∣

∣

∣
vh

∣

∣

∣

]

E
(s) =

{

vh|K1(s)− vh|K2(s) s ∈ E ⊂ Ω,

vh(s) s ∈ E ⊂ ∂Ω,

where nE is directed from K1 to K2 or it is the outer normal on ∂Ω. For writing the
integrals in this form, it was used that ∇u(s), A(s), and nE(s) are almost everywhere
continuous, such that these functions can be written as factor in front of the jumps.
Because of the continuity condition for the functions from P nc

1 and the homogeneous
Dirichlet boundary condition, it is for all vh ∈ P nc

1 that
[
∣

∣vh
∣

∣

]

E
(P ) = 0 for the midpoints P

of all edges. From the linearity of the functions on the edges, it follows that
∫

E

[
∣

∣

∣
vh

∣

∣

∣

]

E
(s) ds = 0 ∀ E. (7.16)

Let E be an arbitrary edge in Ω which belongs to the triangles K1 and K2. The next
goal consists in proving the estimate

∣

∣

∣

∣

∫

E

(A(s)∇u(s)) · nE(s)
[
∣

∣

∣
vh

∣

∣

∣

]

E
(s) ds

∣

∣

∣

∣

≤ ch ‖u‖
H2(K1)

(

∥

∥

∥
∇vh

∥

∥

∥

L2(K1)
+

∥

∥

∥
∇vh

∥

∥

∥

L2(K2)

)

. (7.17)
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To this end, one uses a reference configuration
(

K̂1, K̂2, Ê
)

, where K̂1 is the unit triangle

and K̂2 is the triangle which one obtains by reflecting the unit triangle at the y-axis. The
common edge Ê is the interval (0, 1) on the y-axis. The unit normal on Ê will be chosen
to be the Cartesian unit vector ex, see Figure 7.4. This reference configuration can be
transformed to (K1,K2, E) by a map which is continuous and on both triangles K̂i affine.
For this map one, can prove the same properties for the transform as proved in Chapter 6.

Figure 7.4: Reference configuration.

Using (7.16), the Cauchy–Schwarz inequality, and the trace theorem, one obtains for
an arbitrary constant α ∈ R

∫

Ê

(

Â(ŝ)∇û(ŝ)
)

· ex

[
∣

∣

∣
v̂h1

∣

∣

∣

]

Ê
dŝ =

∫

Ê

((

Â(ŝ)∇û(ŝ)
)

· ex − α
) [

∣

∣

∣
v̂h1

∣

∣

∣

]

Ê
dŝ

≤ c
∥

∥

∥

(

Â∇û
)

· ex − α
∥

∥

∥

H1(K̂1)

∥

∥

∥

[
∣

∣

∣
v̂h1

∣

∣

∣

]

Ê

∥

∥

∥

L2(Ê)
.(7.18)

In particular, one can choose α such that

∫

Ê

((

Â(ŝ)∇û(ŝ)
)

· ex − α
)

dŝ = 0.

The L2(Ω) term in the first factor of the right-hand side of (7.18) can be bounded using
the estimate from Lemma 6.4 for k = 0 and l = 1

∥

∥

∥

(

Â∇û
)

· ex − α
∥

∥

∥

H1(K̂1)

≤ c
(
∥

∥

∥

(

Â∇û
)

· ex − α
)
∥

∥

∥

L2(K̂1)
+

∥

∥

∥

∥

∇
((

Â∇û
)

· ex − α
∥

∥

∥

L2(K̂1)

)

≤ c
∥

∥

∥
∇

((

Â∇û
)

· ex − α
)
∥

∥

∥

L2(K̂1)

= c
∥

∥

∥
∇

((

Â∇û
)

· ex

)
∥

∥

∥

L2(K̂1)
.

To estimate the second factor, in the first step, the trace theorem is applied

∥

∥

∥

[
∣

∣

∣
v̂h1

∣

∣

∣

]

Ê

∥

∥

∥

L2(Ê)
≤ c

(

∥

∥

∥
v̂h

∥

∥

∥

H1(K̂1)
+

∥

∥

∥
v̂h

∥

∥

∥

H1(K̂2)

)

≤ c

(

∥

∥

∥
∇v̂h

∥

∥

∥

L2(K̂1)
+

∥

∥

∥
∇v̂h

∥

∥

∥

L2(K̂2)

)

.

The second estimate follows from the equivalence of all norms in finite dimensional spaces.
To apply this argument, one has to prove that the terms in the last line are in fact norms.
Let the terms in the last line be zero, then it follows that v̂h = c1 in K̂1 and v̂h = c2 in K̂2.
Because v̂h is continuous in the midpoint of Ê, one finds that c1 = c2 and consequently
that

[
∣

∣v̂h
∣

∣

]

Ê
= 0. Hence, also the left hand side of the estimate is zero. It follows that the

right-hand side of this estimate defines a norm in the quotient space of P nc
1 with respect

to
[
∣

∣v̂h
∣

∣

]

Ê
= 0.
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Altogether, one obtains for the reference configuration
∣

∣

∣

∣

∫

Ê

(

Â(ŝ)∇u(ŝ)
)

· ex

[
∣

∣

∣
v̂h1

∣

∣

∣

]

Ê
dŝ

∣

∣

∣

∣

≤ c
∥

∥

∥
∇

((

Â∇u
)

· ex

)
∥

∥

∥

L2(K̂1)

(

∥

∥

∥
∇v̂h

∥

∥

∥

L2(K̂1)
+

∥

∥

∥
∇v̂h

∥

∥

∥

L2(K̂2)

)

.

This estimate has to be transformed to the triple (K1,K2, E). In this step, one gets for
the integral on the edge the factor c (ch for ∇ and ch−1 for dŝ). For the product of the
norms on the right-hand side, one obtains the factor ch (ch for the first factor and c for
the second factor). In addition, one uses that A(s) and all first order derivatives of A(s)
are bounded to estimated the first term on the right-hand side (exercise). In summary,
(7.17) is proved.

The statement of the lemma follows by summing over all edges and by applying on the

right-hand side the Cauchy–Schwarz inequality.

Theorem 7.14 Finite element error estimate. Let the assumptions of Lemma

7.13 be satisfied, then it holds the following error estimate

∥

∥u− uh
∥

∥

2

h
≤ ch ‖u‖H2(Ω)

∥

∥u− uh
∥

∥

h
+ ch2 ‖u‖

2
H2(Ω) .

Proof: Applying Lemma 7.13, it follows from the error equation (7.15) that
∣

∣

∣
ah(u− uh, vh)

∣

∣

∣
≤ ch ‖u‖

H2(Ω)

∥

∥

∥
vh

∥

∥

∥

h
∀ vh ∈ P nc

1 .

Let Ih : H1
0 (Ω) → P nc

1 be an interpolation operator with optimal interpolation order
in ‖·‖

h
. Then, one obtains with the Cauchy–Schwarz inequality, the triangle inequality,

and the interpolation estimate

∥

∥

∥
u− uh

∥

∥

∥

2

h
= ah(u− uh, u− uh) = ah(u− uh, u− Ihu) + ah(u− uh, Ihu− uh)

≤
∣

∣

∣
ah(u− uh, u− Ihu)

∣

∣

∣
+ ch ‖u‖

H2(Ω)

∥

∥

∥
Ihu− uh

∥

∥

∥

h

≤
∥

∥

∥
u− uh

∥

∥

∥

h
‖u− Ihu‖h + ch ‖u‖

H2(Ω)

(

‖Ihu− u‖
h
+

∥

∥

∥
u− uh

∥

∥

∥

h

)

≤ ch
∥

∥

∥
u− uh

∥

∥

∥

h
‖u‖

H2(Ω) + ch ‖u‖
H2(Ω)

(

h ‖u‖
H2(Ω) +

∥

∥

∥
u− uh

∥

∥

∥

h

)

.

Remark 7.15 To the error estimate. If h is sufficiently small, than the second
term of the error estimate is of higher order and this term can be absorbed into the
constant of the first term. One obtains the asymptotic error estimate

∥

∥u− uh
∥

∥

h
≤ ch ‖u‖H2(Ω) .

2

7.4 L
2(Ω) Error Estimates

Remark 7.16 Motivation. A method is called quasi-optimal in a given norm, if
the order of the method is the same as the optimal approximation order. Already
for one dimension, one can show that at most linear convergence in H1(Ω) can be
achieved for the best approximation in P1. This statement can be already verified
with the function v(x) = x2. Hence, all considered methods so far are quasi-optimal
in the energy norm.

However, the best approximation error in L2(Ω) is of one order higher than the
best approximation error in H1(Ω). A natural question is if finite element methods
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converge also of higher order with respect to the error in L2(Ω) than with respect
to the error in the energy norm.

In this section it will be shown that one can obtain for finite element methods
a higher order of convergence in L2(Ω) than in H1(Ω). However, there are more
restrictive assumptions to prove this property in comparison with the convergence
prove for the energy norm. 2

Remark 7.17 Model problem. Let Ω ⊂ R
d, d ∈ {2, 3}, be a convex polyhedral

domain with Lipschitz boundary. The model problem has the form

−∆u = f in Ω, u = 0 on ∂Ω. (7.19)

For proving an error estimate in L2(Ω), the regularity of the solution of (7.19) plays
an essential role. 2

Definition 7.18 m-regular differential operator. Let L be a second order
differential operator. This operator is called m-regular, m ≥ 2, if for all f ∈
Hm−2(Ω) the solutions of Lu = f in Ω, u = 0 on ∂Ω, are in the space Hm(Ω) and
the following estimate holds

‖u‖Hm(Ω) ≤ c ‖f‖Hm−2(Ω) + c ‖u‖H1(Ω) . (7.20)

2

Remark 7.19 On the m-regularity.

• The definition is formulated in a way that it can be applied also if the solution
of the problem is not unique.

• For the Laplacian, the term ‖u‖H1(Ω) can be estimated by ‖f‖L2(Ω) such that

with (7.20) one obtains (exercise)

‖u‖H2(Ω) ≤ c ‖f‖L2(Ω) .

• Many regularity results can be found in the literature. Loosely speaking, they
say that regularity is given if the data of the problem (coefficients of the oper-
ator, boundary of the domain) are sufficiently regular. For instance, an elliptic
operator in divergence form (∆ = ∇ ·∇) is 2-regular if the coefficients are from
W 1,p(Ω), p ≥ 1, and if ∂Ω is a C2 boundary. Another important result is the
2-regularity of the Laplacian on a convex domain. A comprehensive overview
on regularity results can be found in Grisvard (1985).

2

Remark 7.20 Variational form and finite element formulation of the model prob-

lem. The variational form of (7.19) is: Find u ∈ H1
0 (Ω) with

(∇u,∇v) = (f, v) ∀ v ∈ H1
0 (Ω).

The P1 finite element space, with zero boundary conditions, will be used for the
discretization. Then, the finite element problem reads as follows: Find uh ∈ P1

such that
(∇uh,∇vh) = (f, vh) ∀ vh ∈ P1. (7.21)

2

Theorem 7.21 Finite element error estimates. Let u(x) be the solution of

(7.19), let (7.19) be 2-regular, and let uh(x) be the solution of (7.21). Then, the

following error estimates hold
∥

∥∇(u− uh)
∥

∥

L2(Ω)
≤ ch ‖f‖L2(Ω) ,

∥

∥u− uh
∥

∥

L2(Ω)
≤ ch2 ‖f‖L2(Ω) .

99



Proof: With the error estimate in H1(Ω), Corollary 6.16, and the 2-regularity, one
obtains

∥

∥

∥
∇(u− uh)

∥

∥

∥

L2(Ω)
≤ ch ‖u‖

H2(Ω) ≤ ch ‖f‖
L2(Ω) .

For proving the L2(Ω) error estimate, let w ∈ H1
0 (Ω) be the unique solution of the

so-called dual problem

(∇v,∇w) = (u− uh, v) ∀ v ∈ H1
0 (Ω).

For a symmetric differential operator, the dual problem has the same form like the original
(primal) problem. Hence, the dual problem is also 2-regular and it holds the estimate

‖w‖
H2(Ω) ≤ c

∥

∥

∥
u− uh

∥

∥

∥

L2(Ω)
.

For performing the error estimate, the Galerkin orthogonality of the error is utilized

(∇(u− uh),∇vh) = (∇u,∇vh)− (∇uh,∇vh) = (f, vh)− (f, vh) = 0

for all vh ∈ P1. Now, the error u− uh is used as test function v in the dual problem. Let
Ihw be the interpolant of w in P1. Using the Galerkin orthogonality, the interpolation
estimate, and the regularity of w, one obtains

∥

∥

∥
u− uh

∥

∥

∥

2

L2(Ω)
= (∇(u− uh),∇w) = (∇(u− uh),∇(w − Ihw))

≤
∥

∥

∥
∇(u− uh)

∥

∥

∥

L2(Ω)
‖∇(w − Ihw)‖

L2(Ω)

≤ ch ‖w‖
H2(Ω)

∥

∥

∥
∇(u− uh)

∥

∥

∥

L2(Ω)

≤ ch
∥

∥

∥
u− uh

∥

∥

∥

L2(Ω)

∥

∥

∥
∇(u− uh)

∥

∥

∥

L2(Ω)
.

Finally, division by
∥

∥u− uh
∥

∥

L2(Ω)
and the application of the already known error estimate

for
∥

∥∇(u− uh)
∥

∥

L2(Ω)
are used for completing the proof of the theorem.
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Chapter 8

Outlook

Remark 8.1 Outlook to forthcoming classes. This class provided an introduction
to numerical methods for solving partial differential equations and the numerical
analysis of these methods. There are many further aspects that will be covered in
forthcoming classes.

Further aspects for elliptic problems.

• Adaptive methods and a posteriori error estimators. It will be shown how it
is possible to estimate the error of the computed solution only using known
quantities and in which ways one can decide where it makes sense to refine the
mesh and where not. (Numerical Mathematics IV)

• Multigrid methods. Multigrid methods are for certain classes of problems opti-
mal solvers. (probably Numerical Mathematics IV)

• Numerical analysis of problems with other boundary conditions or taking into
account quadrature rules.

Time-dependent problems. As mentioned in Remark 1.7, standard approaches
for the numerical solution of time-dependent problems are based on solving station-
ary problems in each discrete time.

• The numerical analysis of discretizations of time-dependent problems has some
new aspects, but also many tools from the analysis of steady-state problems are
used. (Numerical Mathematics IV)

Convection-diffusion equations. Convection-diffusion equations are of impor-
tance in many applications. Generally, the convection (first order differential oper-
ator) dominates the diffusion (second order differential operator).

• In the convection-dominated regime, the Galerkin method as presented in this
class does not work. One needs new ideas for discretizations and these new
discretizations create new challenges for the numerical analysis. (Numerical
Mathematics IV)

Problems with more than one unknown function. The fundamental equation of
fluid dynamics, the Navier–Stokes equations, Section 1.3, belong to this class.

• It will turn out that the discretization of the Navier–Stokes equations requires
special care in the choice of the finite element spaces. The numerical analysis
becomes rather involved. (special class)

2
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